diff options
author | Angelo Rossi <angelo.rossi.homelab@gmail.com> | 2023-06-21 12:04:16 +0000 |
---|---|---|
committer | Angelo Rossi <angelo.rossi.homelab@gmail.com> | 2023-06-21 12:04:16 +0000 |
commit | b18347ffc9db9641e215995edea1c04c363b2bdf (patch) | |
tree | f3908dc911399f1a21e17d950355ee56dc0919ee /benchmarks/dcn12.dat |
Initial commit.
Diffstat (limited to 'benchmarks/dcn12.dat')
-rw-r--r-- | benchmarks/dcn12.dat | 2334 |
1 files changed, 2334 insertions, 0 deletions
diff --git a/benchmarks/dcn12.dat b/benchmarks/dcn12.dat new file mode 100644 index 0000000..872f311 --- /dev/null +++ b/benchmarks/dcn12.dat @@ -0,0 +1,2334 @@ +BEGIN NEW DATA CASE
+C BENCHMARK DCNEW-12
+C Automatic steady-state initialization for Type-4 U.M. (a 3-phase induction
+C machine). Power coils are non-compensated. Rotor coils have external
+C resistances. Apply a step to the input torque at 0.02 sec (step 100).
+C Rating: 720 KVA, 4.2 KV, 4-pole ( 85.67% efficiency at 0.846 pf
+C and 14.0E+3 NM.; Kipp torque = 45.09E+2 NM, slip = 2.5%)
+C 4 May 2006, append the 8 subcases of IM.DAT making a total of 9. This
+C is to document use of the new Type-56 Induction Machine from TEPCO.
+PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns)
+ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60
+0.0002 0.900
+ 1 2 0 0 1 -1
+ 5 5 20 20 100 1 110 10 200 200
+C --------- ROTOR EXTERNAL RESISTANCES
+ BUSA1 1.E-10 1
+ BUSB1 BUSA1 1
+ BUSC1 BUSA1 1
+C -------- TRANSMISSION LINES
+ BUSA2 BUSAS2 1.0E-4 10.0 1
+ BUSB2 BUSBS2BUSA2 BUSAS2 1
+ BUSC2 BUSCS2BUSA2 BUSAS2 1
+C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK
+ BUSAS2 1.0E+6
+ BUSBS2 BUSAS2
+ BUSCS2 BUSAS2
+C --------- MECHANICAL NETWORK COMPONENTS
+ BUSMG BUSMGR .4548 1
+ BUSMGR BUSMG BUSMGR
+ BUSMG 9.8E+7 { Rotor mass = capacitance } 1
+C ------- Near-zero resistance to measure electromechanical torque (a current):
+ BUSMS BUSMG 1.0E-6 1
+BLANK card ending all branch cards
+BLANK card ending all (here, nonexistent) switch cards
+C --------- SOURCES FOR INFINITE BUS
+14BUSAS2 3000.0 60.0 0.0 -1.0
+14BUSBS2 3000.0 60.0 -120.0 -1.0
+14BUSCS2 3000.0 60.0 +120.0 -1.0
+C ----------- Mechanical input torque, with value set by steady-state solution:
+14BUSMS -1 0.000001 0.00001 -1.0
+C -------- Step change to input torque occurs at time .020 seconds (Step 100):
+14BUSMS -1 3900.0 0.00001 +0.02
+C ----------------------- Type-4 U.M. (3-phase induction machine) data follows:
+19 UM
+ 1 1
+BLANK card ending Class-1 U.M. data
+C UM-1 MACH TABLE
+ 4 111BUSMG 2 0.0188
+ 0.02358
+ 0.02358
+2.0 BUSMS
+C UM-1 COIL TABLE
+ BUSA2 1
+0.412 0.0012 BUSB2 1
+0.412 0.0012 BUSC2 1
+0.110 0.0012 BUSB1 1
+0.110 0.0012 BUSC1 1
+ BUSA1 1
+BLANK card ending all U.M. data cards
+BLANK card ending all source cards
+C Total network loss P-loss by summing injections = 7.171020819312E+05
+C Total network loss P-loss by summing injections = 8.732408663441E+05
+C Total network loss P-loss by summing injections = 1.223706646064E+07
+C Total network loss P-loss by summing injections = 1.223706596064E+07
+C Total network loss P-loss by summing injections = 1.223707382155E+07
+C Zero-th time step documents initial conditions, cut on right edge:
+ BUSAS2BUSA2 BUSA1 BUSMG
+C Step Time BUSAS2 BUSA2 BUSA1 BUSMG BUSA1
+C TERRA
+C
+C BUSB2 BUSC2 BUSMG BUSMG BUSMS
+C BUSBS2 BUSCS2 BUSMGR TERRA BUSMG
+C
+C UM-1 UM-1 UM-1 UM-1 UM-1
+C IPA IPB IPC IE1 IE2
+C 0 0.0 3000. 1784.374676 .1471233E-7 184.725648 147.1233291
+C 376.2746526 -182.224238 203.0844855 0.0 -3965.07077
+C -194.050415 376.2746526 -182.224238 0.0 0.0
+C 1 .2E-3 2991.476701 1834.404076 .1467203E-7 184.7256479 146.7202619
+C 374.6920464 -156.915064 203.0844854 -.092695802 -3965.07077
+C -217.776982 374.6920464 -156.915064 161.7505543 -308.470816
+BLANK card ending output requests (node voltages only, here)
+C For some unknown reason, these agree with VAX to only 4 or 5 digits, often:
+C 4500 0.9 3000. 2139.363254 -.929034E-9 188.3186232 -9.29033753
+C 206.6043639 -188.546337 207.0345461 -12.7407524 -65.0707659
+C -18.0580266 206.6043639 -188.546337 15.99476461 -6.70442708
+C Variable max : 3000. 2142.192646 .1471233E-7 189.143889 147.1233291
+C 376.2746526 376.1164039 207.9418304 3898.215212 -65.0707659
+C 376.0215626 376.2746526 376.1164039 228.3663773 6.204481463
+C Times of max : 0.0 .5668 0.0 .2202 0.0
+C 0.0 .0222 .2202 .0202 .8786
+C .011 0.0 .0222 .0544 .3316
+C Variable min : -3000. -2142.13595 -.123856E-8 184.7253125 -12.385633
+C -375.871946 -376.188889 203.0841166 -661.121518 -3965.07077
+C -376.241942 -375.871946 -376.188889 -24.9469672 -362.34101
+C Times of min : .075 .5418 .564 .02 .564
+C .0082 .0138 .02 .3084 0.0
+C .0194 .0082 .0138 .3076 0.0
+ PRINTER PLOT
+ 193 .1 0.0 0.9 UM-1 TQGEN { Axis limits: (-4.168, 0.389)
+BLANK card ending plot cards
+BEGIN NEW DATA CASE
+C 2nd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 1st of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C Begin several illustrations of TEPCO (Tokyo Electric Power Company in Japan)
+C IM (Induction Machine) model that entered the UTPF on 7 April 2006. The
+C coding is by Cao Xinglin of TEPCO Systems Corp, as communicated to BPA via
+C Atsushi Kurita of TEPCO. Number 56 is the new ATP source type code that is
+C to appear in columns 1-2 at the beginning of IM data. First, ATPIG56.DAT
+C The TEPCO data had 21 permanently-closed switches of which only 6 have been
+C retained. The remainder were removed without any confusion or difficulty
+C in order to drop nonessenttial and unrelated complexity. The six switches
+C that have been retained serve to pass armature currents of the two parallel
+C machines to TACS. The phasor solution output of the switches clearly shows
+C opposite directions for the power flow: positive (out) of the generator IG1
+C and negative (into) the motor IM1. The phasor solution provides very good
+C initialization, and simulation of this continues for 1.25 cycles in the dT
+C loop to demonstrate stability of the steady state. Most machine variables
+C are nearly constant as extrema clearly demonstrate. The original TEPCO data
+C simulated to 10 seconds (5000 cycles) to demonstrate longer-term stability,
+C but this has been drastically shortened to save computer time.
+C G400 PG=500kW,QG=-232kVar
+C L300 PL=250kW
+C L400 PL=200kW,QL=-259kVar
+C M400 PL=50kW,QL=27kVar
+C MODE G400:LV
+PRINTED NUMBER WIDTH, 11, 1, { Restore values that are common within STARTUP
+POWER FREQUENCY, 50., { So one cycle is 20 msec, note
+C 0.00025 10. 0.0 0.0 --- TEPCO's T-max was 10 seconds, note
+ 0.00025 .025 0.0 0.0 { 1.25 cycles is enough to verify steady state
+ 1 1 1 1 1 -1
+ 5 5 20 20 100 100
+TACS HYBRID
+33VIG PIGEN QIGEN PIM QIM
+C
+C /// G1 BRANCH VOLTAGE MONITOR ///
+ VAB +N400A -N400B 1.0
+90N400A -1.0
+90N400B -1.0
+90N400C -1.0
+91IG1A -1.0
+91IG1B -1.0
+91IG1C -1.0
+91IM1A -1.0
+91IM1B -1.0
+91IM1C -1.0
+C /// VOLTAGE FEED BACK ///
+99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
+C /// POWER MONITOR(I.G.) ///
+99QIG1 = IG1A*(N400B-N400C)
+99QIG2 = IG1B*(N400C-N400A)
+99QIG3 = IG1C*(N400A-N400B)
+99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
+99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
+99PPIG = PIGEN/1000000.
+99QQIG = QIGEN/1000000.
+99QIM1 = IM1A*(N400B-N400C)
+99QIM2 = IM1B*(N400C-N400A)
+99QIM3 = IM1C*(N400A-N400B)
+99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0)
+99PIM = N400A*IM1A+N400B*IM1B+N400C*IM1C
+99PPIM = PIM/1000000.
+99QQIM = QIM/1000000.
+C
+C /// TACS OUTPUT VARIABLES ///
+C 33PPIG QQIG PPIM QQIM
+C /// TACS INITIAL CONDITIONS ///
+77VIG 1.00478
+77PPIG .5000
+77QQIG -.232
+77PIGEN 500000.
+77QIGEN -232000.
+77PIM -50000.
+77QIM -27600.
+C
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+BLANK card ends TACS data
+C /// NETWORK DATA ///
+$VINTAGE, 1
+C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
+C *** XS *** ( j0.012(pu) : 0.1663869437mH )
+ N100A N200A .1663869437
+ N100B N200B N100A N200A
+ N100C N200C N100A N200A
+C *** XT *** ( j0.075(pu) : 1.039918398mH )
+ N200A N300A 1.039918398
+ N200B N300B N200A N300A
+ N200C N300C N200A N300A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N300A N400A 0.871200000 4.326060536
+ N300B N400B N300A N400A
+ N300C N400C N300A N400A
+C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
+ N300A 174.2211826
+ N300B N300A
+ N300C N300A
+C ***INSIDE LOAD*** ( 1.00478)
+ N400A 221.1645148
+ N400B N400A
+ N400C N400A
+ N400A 18.56624062
+ N400B N400A
+ N400C N400A
+$VINTAGE, 0
+C
+BLANK card ends electric network branches
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+C /// SWITCH DATA ///
+C Only 6 of the 21 original switches are retained. This allows separate
+C names for the two IM busses even though the two are in parallel. In
+C fact, IG1A is the same as IM1A, etc. for B and C:
+ IG1A N400A MEASURING
+ IG1B N400B MEASURING
+ IG1C N400C MEASURING
+ IM1A N400A MEASURING
+ IM1B N400B MEASURING
+ IM1C N400C MEASURING
+BLANK card ends switches
+C /// SOURCE DATA ///
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
+14N100A 5388.87743 50.0 0.0 -1.0
+14N100B 5388.87743 50.0 -120.0 -1.0
+14N100C 5388.87743 50.0 -240.0 -1.0
+C
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56IG1A -0.785129 0.0
+56IG1B
+56IG1C
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 1 0.625 6.6 50.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.0113 0.0903 0.0093 0.114 4.3
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 1.12 0.0 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+C 0.02 .000264555
+ 9999 { Special terminator for any Class-4 data of Type-56 IM
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+ FINISH { Key word that ends data for this particular (the 1st of 2) IM
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56IM1A 2.736296 0.0
+56IM1B
+56IM1C
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 1 0.0625 6.6 50.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.062 0.075 0.031 0.075 2.58
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 1.97 0.0 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+C 0.02 .000264555
+ 9999 { Special terminator for any Class-4 data of Type-56 IM
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+ FINISH { Key word that ends data for this particular (the 2nd of 2) IM
+BLANK card terminating ATP source cards
+C Total network loss P-loss by summing injections = 8.693842500266E+01
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C IG1A N400A 6.13352336E+01 2.91346671E+01 6.79031642E+01 25.4080 1.66673295E+05 -7.75683916E+04
+C IG1B N400B -5.43625497E+00 -6.76852040E+01 6.79031642E+01 -94.5920 1.66673295E+05 -7.75683916E+04
+C IG1C N400C -5.58989787E+01 3.85505369E+01 6.79031642E+01 145.4080 1.66673295E+05 -7.75683916E+04
+C IM1A N400A -6.18285824E+00 3.35138837E+00 7.03274769E+00 151.5403 -1.66673368E+04 -9.20498467E+03
+C IM1B N400B 5.99381659E+00 3.67881812E+00 7.03274769E+00 31.5403 -1.66673368E+04 -9.20498467E+03
+C IM1C N400C 1.89041650E-01 -7.03020649E+00 7.03274769E+00 -88.4597 -1.66673368E+04 -9.20498467E+03
+C
+C Column headings for the 29 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C Next 24 output variables belong to IM (with "IM" an internally-added upper name of pair).
+C Next 5 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
+C P Q ISA ISB ISC IRA IRB IRC WR ANG
+C
+C IM-1 IM-1 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2
+C TQ TM P Q ISA ISB ISC IRA IRB IRC
+C
+C IM-2 IM-2 IM-2 IM-2 TACS TACS TACS TACS TACS
+C WR ANG TQ TM VIG PIGEN QIGEN PIM QIM
+C *** Phasor I(0) = 6.1335234E+01 Switch "IG1A " to "N400A " closed in the steady-state.
+C *** Phasor I(0) = -5.4362550E+00 Switch "IG1B " to "N400B " closed in the steady-state.
+C *** Phasor I(0) = -5.5898979E+01 Switch "IG1C " to "N400C " closed in the steady-state.
+C *** Phasor I(0) = -6.1828582E+00 Switch "IM1A " to "N400A " closed in the steady-state.
+C *** Phasor I(0) = 5.9938166E+00 Switch "IM1B " to "N400B " closed in the steady-state.
+C *** Phasor I(0) = 1.8904165E-01 Switch "IM1C " to "N400C " closed in the steady-state.
+C 0 0.0 500019.886 -232705.17 61.3352336 -5.436255 -55.898979 -11.518219 60.1819687 -48.66375 316.625821 1.57079633
+C 1608.95108 1608.95108 -50002.011 -27614.954 -6.1828582 5.99381659 .18904165 -.58621064 -5.1267795 5.71299012
+C 305.562938 1.57079633 -148.95686 -148.95686 1.0047 500000. -232000. -50000. -27600.
+C 1 .25E-3 500145.619 -232725.27 58.8756131 -.11553737 -58.760076 -11.479526 60.1817443 -48.702218 316.625814 1.64995278
+C 1609.32268 1608.95108 -49988.051 -27614.135 -6.4248212 5.68592478 .738896446 -.57282271 -5.1329244 5.70574715
+C 305.562934 1.64718706 -148.91265 -148.95686 1.00481726 500145.619 -232725.27 -49988.051 -27614.135
+C 2 .5E-3 500279.634 -232738.55 56.0518759 5.20801006 -61.259886 -11.440363 60.1804072 -48.740044 316.625795 1.72910923
+C 1609.6677 1608.95108 -49976.514 -27614.492 -6.6274021 5.34328199 1.28412013 -.55938995 -5.1392418 5.69863173
+C 305.562921 1.72357779 -148.87311 -148.95686 1.00485913 500279.634 -232738.55 -49976.514 -27614.492
+BLANK card ending names of ATP output variables (none for this case)
+C 100 .025 500666.577 -231710.46 -29.009861 67.689943 -38.680082 -7.5010766 58.7427696 -51.241693 316.626251 9.48642268
+C 1610.05009 1608.95108 -50027.397 -27567.289 -3.3454225 -3.6840913 7.02951382 .767497344 -5.7887829 5.02128552
+C 305.560218 9.20981993 -148.95965 -148.95686 1.00485987 500666.577 -231710.46 -50027.397 -27567.289
+C Variable max: 501351.888 -230444.64 67.8036384 67.9774295 67.7273265 -7.5010766 60.1819687 -48.66375 316.62671 9.48642268
+C 1612.20306 1608.95108 -49882.18 -27466.013 7.01961078 7.02912135 7.02951382 .767497344 -5.1267795 5.71299012
+C 305.562938 9.20981993 -148.58255 -148.95686 1.0049302 501351.888 -230444.64 -49882.18 -27466.013
+C Times of max: .005 .01 .0185 .00525 .012 .025 0.0 0.0 .021 .025
+C .0045 0.0 .0045 .009 .0115 .01825 .025 .025 0.0 0.0
+C 0.0 .025 .00475 0.0 .1E-2 .005 .01 .0045 .009
+C Variable min: 499173.557 -232738.55 -67.822794 -67.743906 -67.960287 -11.518219 58.7427696 -51.241693 316.623142 1.57079633
+C 1605.49808 1608.95108 -50027.634 -27615.163 -7.0288686 -7.0157093 -7.0236834 -.58621064 -5.7887829 5.02128552
+C 305.560211 1.57079633 -148.96079 -148.95686 1.0047 499173.557 -232738.55 -50027.634 -27615.163
+C Times of min: .015 .5E-3 .0085 .01525 .002 0.0 .025 .025 .009 0.0
+C .0145 0.0 .024 .75E-3 .0215 .00825 .015 0.0 .025 .025
+C .02175 0.0 .02375 0.0 0.0 .015 .5E-3 .024 .75E-3
+ PRINTER PLOT { No need for vector plotting as all variables are smooth
+ 1942.5 0. 25. BRANCH { Plot limits: (-7.029, 7.029)
+ IM-2 ISA IM-2 ISB IM-2 ISC
+BLANK card ending batch-mode plot cards
+BEGIN NEW DATA CASE
+C 3rd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 2nd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C For background of the model, see top of 1st subcase. This second case is a
+C simplification of ATPIGT56.DAT which has just a single IM. Like the first
+C subcase, this second one involves no transient. The phasor solution merely
+C is continued for one cycle to confirm the sinusoidal steady state. Of the
+C original 19 permanently-closed switches, only 10 could be eliminated without
+C tampering with TACS control system logic. The 9 switches that remain are
+C used to pass currents to TACS. As for outputs, these have been reduced
+C drastically by elimination of the request for every node voltage (a 1-punch
+C in column 2). This reduces the voltage outputs from 31 to 0.
+POWER FREQUENCY, 50
+C 0.00025 1.0 0.0 0.0 { TEPCO simulation extended to Tmax = 1 sec
+ 0.00025 .020 0.0 0.0
+ 1 1 1 1 1 -1
+ 5 5 20 20
+TACS HYBRID
+C OUTPUT
+33VIG PPIG QQIG TM
+C
+88FLG1 = TIMEX .GE. 0.1
+88FLG2 = TIMEX .GE. 0.5
+88TM = 1.0+FLG1*0.2+FLG2*0.3
+77TM 1.0
+C /// G1 BRANCH VOLTAGE MONITOR ///
+ VAB +N400A -N400B 1.0
+90N400A -1.0
+90N400B -1.0
+90N400C -1.0
+91IG1A -1.0
+91IG1B -1.0
+91IG1C -1.0
+C /// VOLTAGE FEED BACK ///
+99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
+C /// POWER MONITOR(I.G.) ///
+99QIG1 = IG1A*(N400B-N400C)
+99QIG2 = IG1B*(N400C-N400A)
+99QIG3 = IG1C*(N400A-N400B)
+99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
+99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
+99PPIG = PIGEN/1000000.
+99QQIG = QIGEN/1000000.
+C
+C *************** CONTROLL MODEL BLOCK **************
+C
+90N300A -1.0
+90N300B -1.0
+90N300C -1.0
+91N250A -1.0
+91N250B -1.0
+91N250C -1.0
+C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
+99QCB1 = N250A*(N300B-N300C)
+99QCB2 = N250B*(N300C-N300A)
+99QCB3 = N250C*(N300A-N300B)
+99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
+99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
+C 33PACCB
+C 33QACCB
+C /// L300 P & Q ///
+91N400AD -1.0
+91N400BD -1.0
+91N400CD -1.0
+99QCB5 = N400AD*(N400B-N400C)
+99QCB6 = N400BD*(N400C-N400A)
+99QCB7 = N400CD*(N400A-N400B)
+99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000.
+99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000.
+C 33PACCB1
+C 33QACCB1
+C
+C /// TACS OUTPUT VARIABLES ///
+C 33PPIG QQIG VIG
+C /// TACS INITIAL CONDITIONS ///
+77VIG 1.00478
+77PPIG .5000
+77QQIG -.232
+77PIGEN 500000.
+77QIGEN -232000.
+77PACCB 0.0
+77QACCB 6.25
+BLANK card ends TACS data
+$VINTAGE, 1
+C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
+C *** XS *** ( j0.012(pu) : 0.1663869437mH )
+ N100A N200A .1663869437
+ N100B N200B N100A N200A
+ N100C N200C N100A N200A
+C *** XT *** ( j0.075(pu) : 1.039918398mH )
+ N200A N250A 1.039918398
+ N200B N250B N200A N250A
+ N200C N250C N200A N250A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N300A N400A 0.871200000 4.326060536
+ N300B N400B N300A N400A
+ N300C N400C N300A N400A
+C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
+ N300A 174.2211826
+ N300B N300A
+ N300C N300A
+C ***INSIDE LOAD***
+ N400A N400AD 176.7332792
+ N400B N400BDN400A N400AD
+ N400C N400CDN400A N400AD
+ N400ADN400A 16.56943663
+ N400BDN400B N400ADN400A
+ N400CDN400C N400ADN400A
+$VINTAGE, 0
+BLANK card terminating branch cards
+ N250A N300A -1.0 8.10
+ N250B N300B -1.0 8.10
+ N250C N300C -1.0 8.10
+ IG1A N400A MEASURING 1
+ IG1B N400B MEASURING 1
+ IG1C N400C MEASURING 1
+ N400AD MEASURING
+ N400BD MEASURING
+ N400CD MEASURING
+BLANK card ending switch cards
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
+14N100A 5388.87743 50.0 0.0 -1.0
+14N100B 5388.87743 50.0 -120.0 -1.0
+14N100C 5388.87743 50.0 -240.0 -1.0
+C CLASS1
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56IG1A -0.785129
+56IG1B
+56IG1C
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 1 0.625 6.6 50.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.0113 0.0903 0.0093 0.114 4.3
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 1.12 0.0 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+C 0.1 1.1 TM
+ 0.1 1.2
+ 0.5 1.5
+ 9999 { Special terminator for any Class-4 data (here, 2 cards)
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+C 73PGEN 1
+ FINISH { Key word that ends data for this particular (the one and only) IM
+BLANK card ending all source cards
+C Total network loss P-loss by summing injections = 7.668433002012E+01
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03
+C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03
+C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03
+C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04
+C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04
+C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04
+C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00
+C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00
+C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00
+C
+C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
+C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
+C N400A N400B N400C P Q ISA ISB ISC IRA IRB
+C
+C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS
+C IRC WR ANG TQ TM VIG PPIG QQIG TM
+C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state.
+C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state.
+C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state.
+C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state.
+C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state.
+C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state.
+C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state.
+C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state.
+C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state.
+C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406
+C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0
+C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161
+C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0
+C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828
+C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0
+BLANK card ending output variables (none specified here)
+C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657
+C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0
+C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406
+C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0
+C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0
+C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0
+C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657
+C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0
+C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02
+C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0
+ 1942.5 0. 25. BRANCH { Plot limits: (-6.796, 6.798)
+ IG1A N400A IG1B N400B IG1C N400C
+BLANK card ending batch-mode plot cards
+BEGIN NEW DATA CASE
+C 4th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 3rd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C For background of the model, see top of 1st subcase. This third case is a
+C simplification of IGTMT56.DAT which has just a single IM. Like the first
+C two, this third subcase involves no transient. The phasor solution merely
+C is continued for one cycle to confirm the sinusoidal steady state. Of the
+C original 19 permanently-closed switches, only 10 could be eliminated without
+C tampering with TACS control system logic. 6 of the 9 switches that remain
+C are used to pass currents to TACS. As for outputs, these have been reduced
+C drastically by elimination of the request for every node voltage (a 1-punch
+C in column 2). This reduces the voltage outputs from 31 to 0.
+POWER FREQUENCY, 50
+C
+C 0.00025 1.0 0.0 0.0 --- TEPCO's T-max was 1.0 seconds, note
+ 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state
+ 1 1 1 1 1 -1
+ 5 5 20 20
+TACS HYBRID
+C OUTPUT
+33VIG PPIG QQIG TM
+C
+88FLG1 = TIMEX .GE. 0.1
+88FLG2 = TIMEX .GE. 0.5
+C 88TM = 1.0+FLG1*0.2+FLG2*0.3
+88TM = 1.0+FLG1*0.4838+FLG2*0.3709
+77TM 1.0
+C /// G1 BRANCH VOLTAGE MONITOR ///
+ VAB +N400A -N400B 1.0
+90N400A -1.0
+90N400B -1.0
+90N400C -1.0
+91IG1A -1.0
+91IG1B -1.0
+91IG1C -1.0
+C /// VOLTAGE FEED BACK ///
+99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
+C /// POWER MONITOR(I.G.) ///
+99QIG1 = IG1A*(N400B-N400C)
+99QIG2 = IG1B*(N400C-N400A)
+99QIG3 = IG1C*(N400A-N400B)
+99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
+99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
+99PPIG = PIGEN/1000000.
+99QQIG = QIGEN/1000000.
+C
+C *************** CONTROLL MODEL BLOCK **************
+C
+90N300A -1.0
+90N300B -1.0
+90N300C -1.0
+91N250A -1.0
+91N250B -1.0
+91N250C -1.0
+C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
+99QCB1 = N250A*(N300B-N300C)
+99QCB2 = N250B*(N300C-N300A)
+99QCB3 = N250C*(N300A-N300B)
+99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
+99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
+C 33PACCB
+C 33QACCB
+C /// L300 P & Q ///
+91N400AD -1.0
+91N400BD -1.0
+91N400CD -1.0
+99QCB5 = N400AD*(N400B-N400C)
+99QCB6 = N400BD*(N400C-N400A)
+99QCB7 = N400CD*(N400A-N400B)
+99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000.
+99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000.
+C 33PACCB1
+C 33QACCB1
+C
+C /// TACS OUTPUT VARIABLES ///
+C 33PPIG QQIG VIG
+C /// TACS INITIAL CONDITIONS ///
+77VIG 1.00478
+77PPIG .5000
+77QQIG -.232
+77PIGEN 500000.
+77QIGEN -232000.
+77PACCB 0.0
+77QACCB 6.25
+C IM TORQUE
+C 99TM =TIMEX
+C 88TM =TIMEX .GE. 0.1
+$DISABLE
+C ---FOR.IG.No1(1/4)---
+C ====== TIME OF MOTOR TO GEN MODE =====
+77MSLIP -0.785129
+11MOTGEN 0.0 -1.0
+90BUSMG -1.0
+99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100.
+33MSLIP
+99BUSMS =(TIMEX.GE.MOTGEN)*1592
+$ENABLE
+BLANK card ending TACS data
+C /// NETWORK DATA ///
+$VINTAGE, 1
+C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
+C *** XS *** ( j0.012(pu) : 0.1663869437mH )
+ N100A N200A .1663869437
+ N100B N200B N100A N200A
+ N100C N200C N100A N200A
+C *** XT *** ( j0.075(pu) : 1.039918398mH )
+ N200A N250A 1.039918398
+ N200B N250B N200A N250A
+ N200C N250C N200A N250A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N300A N400A 0.871200000 4.326060536
+ N300B N400B N300A N400A
+ N300C N400C N300A N400A
+C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
+ N300A 174.2211826
+ N300B N300A
+ N300C N300A
+C ***INSIDE LOAD***
+ N400A N400AD 176.7332792
+ N400B N400BDN400A N400AD
+ N400C N400CDN400A N400AD
+ N400ADN400A 16.56943663
+ N400BDN400B N400ADN400A
+ N400CDN400C N400ADN400A
+$VINTAGE, 0
+C
+$DISABLE
+C ---FOR.IG.No1(2/4)---
+C --------- MECHANICAL NETWORK COMPONENTS
+C Tm=1.12 :M :2H ==> 7.09E+6 pole:1
+C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
+ BUSMG 7.09E6
+C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE
+ BUSMS BUSMG 1.0E-8
+$ENABLE
+BLANK card ending branch cards
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+C /// SWITCH DATA ///
+ N250A N300A -1.0 8.10
+ N250B N300B -1.0 8.10
+ N250C N300C -1.0 8.10
+ IG1A N400A MEASURING 1
+ IG1B N400B MEASURING 1
+ IG1C N400C MEASURING 1
+ N400AD MEASURING
+ N400BD MEASURING
+ N400CD MEASURING
+BLANK card ending switch cards
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+$DISABLE
+C ---FOR.IG.No1(3/4)---
+14BUSMS -1 0.0001 0.0001 .0 -1.0
+$ENABLE
+C /// SOURCE DATA ///
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
+14N100A 5388.87743 50.0 0.0 -1.0
+14N100B 5388.87743 50.0 -120.0 -1.0
+14N100C 5388.87743 50.0 -240.0 -1.0
+C CLASS1
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56IG1A -0.785129 0.0
+56IG1B
+56IG1C
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 1 0.625 6.6 50.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.0113 0.0903 0.0093 0.114 4.3
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 1.12 0.0 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+ TM
+ 9999 { Special terminator for any Class-4 data of Type-56 IM
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+C 73PGEN 1
+ FINISH
+BLANK card ending source cards
+C Total network loss P-loss by summing injections = 7.668433002012E+01
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03
+C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03
+C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03
+C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04
+C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04
+C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04
+C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00
+C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00
+C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00
+C
+C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
+C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
+C N400A N400B N400C P Q ISA ISB ISC IRA IRB
+C
+C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS
+C IRC WR ANG TQ TM VIG PPIG QQIG TM
+C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state.
+C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state.
+C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state.
+C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state.
+C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state.
+C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state.
+C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state.
+C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state.
+C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state.
+C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406
+C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0
+C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161
+C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0
+C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828
+C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0
+BLANK card ending names for output purposes (none here)
+C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657
+C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0
+C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406
+C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0
+C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0
+C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0
+C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657
+C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0
+C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02
+C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0
+ PRINTER PLOT { No need for vector plotting as all variables are smooth
+C For variety, let's not repeat the 50-Hz ac sinusoids of the preceding two
+C subcases. Instead, let's plot the rotor angle ANG which should be a
+C perfect ramp if rotor speed is constant.
+ 1942.5 0. 25. BRANCH { Plot limits: ( 0.000, 7.903 )
+ IM-1 ANG
+BLANK card ending batch-mode plot cards
+BEGIN NEW DATA CASE
+C 5th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 4th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C For background of the model, see top of 1st subcase. This fourth case is a
+C simplification of DCN12T56.DAT, so named because it is like DCN12 (in long
+C form, DCNEW-12) except that the U.M. of that old standard test case has been
+C replaced by a Type-56 IM. Unlike the preceding 3 IM illustrations, this one
+C _does_ involve transients. A comment card of that old data states: "Apply
+C a step to the input torque at 0.02 sec (step 100). Unlike the preceding
+C illustrations, there is no TACS (control system modeling). Also, 1 phasor
+C solution for initial conditions suffices (compare with the five of DCNEW-12,
+C each indicated by 1 line of output that begins "Total network loss P-loss
+C by summing injections = ..."). Of course, the compensation of DCNEW-12 is
+C nowhere to be seen. The TEPCO IM does not use compensation. Also gone is
+C the external rotor inertia that Prof. Hian Lauw modeled using a capacitor
+C (that unforgetable electrical analog used with the U.M.). Machine variable
+C names are are a little different, but are easily recognizable. For example,
+C the PRINTER PLOT of shaft torque (UM-1, TQGEN) has become (IM-1, TQ).
+C But the shape is the same: a slightly underdamped rise to a constant. In
+C fact, the plot limits are nearly the same. DCNEW-12 has ( -4.168 0.389 )
+C whereas this new IM simulation produces ( -4.168 0.388 ).
+C About solution speed, WSM's old 133-MHz Pentium PC running real MS-DOS to
+C support DBOS reports the following: DCNEW-12 TEPCO 56
+C Seconds for overlays 1-5 : 2.088 2.033
+C Seconds for overlays 6-11 : 0.220 0.220
+C Seconds for overlays 12-15 : 0.165 0.165
+C Seconds for time-step loop : 2.637 1.484
+C Seconds after DELTAT-loop : 0.330 0.385
+C --------------------
+C Totals : 5.440 4.286
+C Bob Schultz reported: 7.80 6.59
+C (this final row is the total job time, written only on the screen). So,
+C at least for the default tolerances used, there would seem to be no worry
+C that the Type-56 TEPCO IM simulates substantially slower. The surprising
+C preceding result shows faster simulation even though compensation is not
+C being used. Who would have predicted this? WSM's congratulations to Mr.
+C Cao for a job well done. WSM. 10 April 2006
+PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
+0.0002 0.900
+ 1 1 1 1 1 -1
+ 5 5 20 20 100 1 110 10 200 200
+C -------- TRANSMISSION LINES
+ BUSA2 BUSAS2 1.0E-4 10.0 1
+ BUSB2 BUSBS2BUSA2 BUSAS2 1
+ BUSC2 BUSCS2BUSA2 BUSAS2 1
+C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK
+ BUSAS2 1.0E+6
+ BUSBS2 BUSAS2
+ BUSCS2 BUSAS2
+BLANK card ending all branch cards
+BLANK card ending all (here, nonexistent) switch cards
+C --------- SOURCES FOR INFINITE BUS
+14BUSAS2 3000.0 60.0 0.0 -1.0
+14BUSBS2 3000.0 60.0 -120.0 -1.0
+14BUSCS2 3000.0 60.0 +120.0 -1.0
+C ----------- Mechanical input torque, with value set by steady-state solution:
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56BUSA2 2.0
+56BUSB2
+56BUSC2
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 2 0.72 4.2 60.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.0168163 0.0184649 0.0044898 0.0184649 0.3628347
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 4.8361824 0.05425244 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+ 0.02 -0.070204
+ 9999 { Special terminator for any Class-4 data of Type-56 IM
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+ FINISH
+BLANK card ending all source cards
+C Bus K Phasor node voltage Phasor branch current Power flow Power loss
+C Bus M Rectangular Polar Rectangular Polar P and Q P and Q
+C
+C BUSA2 1784.3750743312 1928.5009532126 -194.050261711 376.33642682066 -291068.3111111 7.0814553076206
+C -731.5200070041 -22.2916012 322.44937910011 121.0395584 -216709.4929969 266964.5756532
+C
+C BUSAS2 3000. 3000. 194.05026171096 376.33642682066 291075.39256644
+C 0.0 0.0 -322.4493791001 -58.9604416 483674.06865017
+C
+C Total network loss P-loss by summing injections = 8.732396776993E+05
+C Node Source node voltage Injected source current Injected source power
+C name Rectangular Polar Rectangular Polar P and Q MVA and P.F.
+C
+C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808
+C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356
+C
+C Column headings for the 17 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage);
+C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
+C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1
+C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB
+C
+C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
+C ISC IRA IRB IRC WR ANG TQ TM
+C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485
+C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683
+C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612
+C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683
+C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295
+C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683
+ BUSAS2BUSA2
+BLANK card ending output requests (node voltages only, here)
+C 4500 0.9 3000. 2139.14561 -18.05955 206.541811 -188.48226 -81144.03 -729966.82 -18.05955 206.541811
+C -188.48226 9.2806015 -16.003198 6.72259646 188.318532 340.252637 -259.39252 -65.075052
+C Variable maxima : 3000. 2142.5602 375.961666 376.274485 375.920036 38275.6628 -648850.48 375.961666 376.274485
+C 375.920036 12.3551834 24.9125877 308.4899 189.143066 340.252637 387.73688 -65.075052
+C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0
+C .0222 .564 .3076 0.0 .22 0.9 .3086 .02
+C Variable minima : -3000. -2142.6793 -376.12582 -375.68519 -376.20297 -873758.65 -769663.96 -376.12582 -375.68519
+C -376.20297 -147.12317 -228.11722 -6.2184031 184.7252 1.57079633 -4168.4668 -3965.0683
+C Times of minima : .025 .5584 .0194 .0082 .0138 .2E-3 .1896 .0194 .0082
+C .0138 0.0 .0546 .3312 .0198 0.0 .0138 0.0
+ PRINTER PLOT
+ 193 .1 0.0 1.0 IM-1 TQ { Axis limits: (-4.168, 0.388)
+BLANK card ending plot cards
+BEGIN NEW DATA CASE
+C 6th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 5th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C For background of the model, see top of 1st subcase. This fifth case is a
+C simplification of WSMATPIG.DAT which has just a single IM. Like the first
+C three, this second subcase involves no transient. The phasor solution merely
+C is continued for one cycle to confirm the sinusoidal steady state. Of the
+C original 19 permanently-closed switches, only 10 could be eliminated without
+C tampering with TACS control system logic. The 9 switches that remain are
+C used to pass 6 currents and 3 voltages to TACS. As for outputs, these have
+C been reduced drastically by elimination of the request for every node voltage
+C (a 1-punch in column 2). This reduces the voltage outputs from 31 to 0. New
+C is illustration of the declaration to size IM tables within the working space
+C of List 25. This is immediately below. The Type-56 TEPCO IM and Prof. Hian
+C Lauw's Type-19 U.M. share the same working space, so what is not used by one
+C model is available for the other. There should be protection against any
+C attempt to use more space than exists.
+C LIM56 LIMTM { 32X, 2I8 data
+ABSOLUTE I.M. DIMENSIONS 3 12 { 2 and 10 are the defaults
+POWER FREQUENCY, 50
+PRINTED NUMBER WIDTH, 11, 1, { This is the default choice; return to its use
+C 0.00025 1.0 0.0 0.0 { Original TEPCO simulation was to 1.0 second
+ 0.00025 .020 0.0 0.0
+ 1 1 1 1 1 -1
+ 5 5 20 20
+TACS HYBRID
+C OUTPUT
+33VIG PPIG QQIG
+C
+C /// G1 BRANCH VOLTAGE MONITOR ///
+ VAB +N400A -N400B 1.0
+90N400A -1.0
+90N400B -1.0
+90N400C -1.0
+91IG1A -1.0
+91IG1B -1.0
+91IG1C -1.0
+C /// VOLTAGE FEED BACK ///
+99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
+C /// POWER MONITOR(I.G.) ///
+99QIG1 = IG1A*(N400B-N400C)
+99QIG2 = IG1B*(N400C-N400A)
+99QIG3 = IG1C*(N400A-N400B)
+99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
+99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
+99PPIG = PIGEN/1000000.
+99QQIG = QIGEN/1000000.
+C
+C *************** CONTROLL MODEL BLOCK **************
+C
+90N300A -1.0
+90N300B -1.0
+90N300C -1.0
+91N250A -1.0
+91N250B -1.0
+91N250C -1.0
+C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
+99QCB1 = N250A*(N300B-N300C)
+99QCB2 = N250B*(N300C-N300A)
+99QCB3 = N250C*(N300A-N300B)
+99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
+99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
+C 33PACCB
+C 33QACCB
+C /// L300 P & Q ///
+91N400AD -1.0
+91N400BD -1.0
+91N400CD -1.0
+99QCB5 = N400AD*(N400B-N400C)
+99QCB6 = N400BD*(N400C-N400A)
+99QCB7 = N400CD*(N400A-N400B)
+99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000.
+99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000.
+C 33PACCB1
+C 33QACCB1
+C
+C /// TACS OUTPUT VARIABLES ///
+C 33PPIG QQIG VIG
+C /// TACS INITIAL CONDITIONS ///
+77VIG 1.00478
+77PPIG .5000
+77QQIG -.232
+77PIGEN 500000.
+77QIGEN -232000.
+77PACCB 0.0
+77QACCB 6.25
+$DISABLE
+C ---FOR.IG.No1(1/4)---
+C ====== TIME OF MOTOR TO GEN MODE =====
+77MSLIP -0.785129
+11MOTGEN 0.0 -1.0
+90BUSMG -1.0
+99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100.
+33MSLIP
+99BUSMS =(TIMEX.GE.MOTGEN)*1592
+$ENABLE
+BLANK card ending TACS data
+C /// NETWORK DATA ///
+$VINTAGE, 1
+C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
+C *** XS *** ( j0.012(pu) : 0.1663869437mH )
+ N100A N200A .1663869437
+ N100B N200B N100A N200A
+ N100C N200C N100A N200A
+C *** XT *** ( j0.075(pu) : 1.039918398mH )
+ N200A N250A 1.039918398
+ N200B N250B N200A N250A
+ N200C N250C N200A N250A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N300A N400A 0.871200000 4.326060536
+ N300B N400B N300A N400A
+ N300C N400C N300A N400A
+C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
+ N300A 174.2211826
+ N300B N300A
+ N300C N300A
+C ***INSIDE LOAD***
+ N400A N400AD 176.7332792
+ N400B N400BDN400A N400AD
+ N400C N400CDN400A N400AD
+ N400ADN400A 16.56943663
+ N400BDN400B N400ADN400A
+ N400CDN400C N400ADN400A
+$VINTAGE, 0
+C
+$DISABLE
+C ---FOR.IG.No1(2/4)---
+C --------- MECHANICAL NETWORK COMPONENTS
+C Tm=1.12 :M :2H ==> 7.09E+6 pole:1
+C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
+ BUSMG 7.09E6
+C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE
+ BUSMS BUSMG 1.0E-8
+$ENABLE
+BLANK card ending branch cards
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+C /// SWITCH DATA ///
+ N250A N300A -1.0 8.10
+ N250B N300B -1.0 8.10
+ N250C N300C -1.0 8.10
+ IG1A N400A MEASURING 1
+ IG1B N400B MEASURING 1
+ IG1C N400C MEASURING 1
+ N400AD MEASURING
+ N400BD MEASURING
+ N400CD MEASURING
+BLANK card ending switch cards
+C /// SOURCE DATA ///
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
+14N100A 5388.87743 50.0 0.0 -1.0
+14N100B 5388.87743 50.0 -120.0 -1.0
+14N100C 5388.87743 50.0 -240.0 -1.0
+C CLASS1
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56IG1A -0.785129 0.0
+56IG1B
+56IG1C
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 1 0.625 6.6 50.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.0113 0.0903 0.0093 0.114 4.3
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 1.12 0.0 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+C 0.02 .000264555
+ 9999 { Special terminator for any Class-4 data of Type-56 IM
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+C 73PGEN 1
+ FINISH { Key word that ends data for this particular (the one and only) IM
+BLANK CARD ending source cards
+C Total network loss P-loss by summing injections = 7.668433002012E+01
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03
+C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03
+C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03
+C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04
+C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04
+C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04
+C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00
+C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00
+C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00
+C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
+C Next 3 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
+C N400A N400B N400C P Q ISA ISB ISC IRA IRB
+C
+C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS
+C IRC WR ANG TQ TM VIG PPIG QQIG
+C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406
+C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232
+C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161
+C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518
+C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828
+C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613
+BLANK CARD ending names for output (none here)
+C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657
+C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699
+C Variable max:67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406
+C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662
+C Times of max: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0
+C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01
+C Variable min:-67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657
+C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613
+C Times of min: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02
+C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3
+ PRINTER PLOT { No need for vector plotting as all variables are smooth
+ 194 2. 0. 20. BRANCH { Plot limits: (-6.796, 6.798)
+ IM-1 ISA IM-1 ISB IM-1 ISC
+BLANK card ending plot cards
+BEGIN NEW DATA CASE
+C 7th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 6th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C For background of the model, see top of 1st subcase. This sixth subcase
+C is a simplification of WSM12TAC.DAT which is like DCN12 (in long form,
+C DCNEW-12) except that the U.M. of that old standard test case has been
+C replaced by a Type-56 IM. The solution here seems to be the same as the 4th
+C subcase except that TACS is involved, and is used to initiate the transient
+C rather than such special capability within the Type-56 IM model itself.
+PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
+C ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60
+0.0002 0.900
+ 1 3 1 1 1 -1
+ 5 5 20 20 100 100 500 500
+TACS HYBRID
+33TM { The only TACS output variable will be this torque TM, which is a step
+88FLG1 = TIMEX .GE. 0.02
+88TM = 1.0-FLG1*0.98358791
+77TM 1.0
+BLANK
+C -------- TRANSMISSION LINES
+ BUSA2 BUSAS2 1.0E-4 10.0 1
+ BUSB2 BUSBS2BUSA2 BUSAS2 1
+ BUSC2 BUSCS2BUSA2 BUSAS2 1
+C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK
+ BUSAS2 1.0E+6
+ BUSBS2 BUSAS2
+ BUSCS2 BUSAS2
+BLANK card ending all branch cards
+BLANK card ending all (here, nonexistent) switch cards
+C --------- SOURCES FOR INFINITE BUS
+14BUSAS2 3000.0 60.0 0.0 -1.0
+14BUSBS2 3000.0 60.0 -120.0 -1.0
+14BUSCS2 3000.0 60.0 +120.0 -1.0
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56BUSA2 2.0
+56BUSB2
+56BUSC2
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 2 0.72 4.2 60.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.0168163 0.0184649 0.0044898 0.0184649 0.3628347
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 4.8361824 0.05425244 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+ 0.02 -0.0702041 TM
+ 9999
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+ FINISH { Key word that ends data for this particular (the one and only) IM
+BLANK card ending all source cards
+C Total network loss P-loss by summing injections = 8.732396776993E+05
+C Node Source node voltage Injected source current Injected source power
+C name Rectangular Polar Rectangular Polar P and Q MVA and P.F.
+C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808
+C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356
+ BUSAS2BUSA2 { Names of nodes for voltage output
+C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage);
+C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
+C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1
+C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB
+C
+C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 TACS
+C ISC IRA IRB IRC WR ANG TQ TM TM
+C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485
+C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 1.0
+C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612
+C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 1.0
+C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295
+C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 1.0
+BLANK card ending output requests (node voltages only, here)
+C 4500 0.9 3000. 2139.14389 -18.055352 206.54004 -188.48469 -81125.234 -729968.29 -18.055352 206.54004
+C -188.48469 9.31443983 -15.992732 6.67829219 188.318584 340.24976 -259.2923 -65.075057 .01641209
+C Variable maxima : 3000. 2142.56391 375.961666 376.274485 375.939009 38282.079 -648850.48 375.961666 376.274485
+C 375.939009 12.4231891 24.885902 308.4899 189.143064 340.24976 387.735739 -65.075057 1.0
+C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0
+C .0222 .5642 .308 0.0 .2204 0.9 .309 .0204 0.0
+C Variable minima : -3000. -2142.6794 -376.12582 -375.69165 -376.20297 -873758.65 -769666.51 -376.12582 -375.69165
+C -376.20297 -147.12317 -228.64774 -6.1496539 184.725187 1.57079633 -4168.4668 -3965.0683 .01641209
+C Times of minima : .025 .5584 .0194 .025 .0138 .2E-3 .1896 .0194 .025
+C .0138 0.0 .0548 .3318 .0202 0.0 .0138 0.0 .0202
+ PRINTER PLOT
+ 193 .1 0.0 1.0 IM-1 TQ IM-1 TM { Axis limits: (-4.168, 0.388)
+BLANK card ending plot cards
+BEGIN NEW DATA CASE
+C 8th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 7th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C For background of the model, see top of 1st subcase. This seventh case is a
+C simplification of ATPSGIUM.DAT which has no Type-56 IM. Instead, it uses
+C the U.M. to model an induction machine. It establishes the standard of
+C comparison for the following subset which replaces the U.M. by a Type-56 IM.
+C Like the first three subcases, this seventh one involves no transient. The
+C phasor solution merely is continued for one cycle to confirm the sinusoidal
+C steady state. Of the original 33 permanently-closed switches, only 12 could
+C be eliminated without tampering with TACS control system logic, leaving 21.
+C There is a lot of TACS modeling, and this required more storage than the
+C usual 3 * default of List 19. So, NEW LIST SIZES has been added to expand
+C the space for TACS while at the same time reducing a lot of other sizes.
+C Different from previous illustrations, Type-58 S.M. modeling is used.
+NEW LIST SIZES
+ 70 60 50 20 250 50 300 0 0 0
+ 0 20 0 0 0 0 0 0 12500 0
+ 0 0 0
+ 240000
+ABSOLUTE TACS DIMENSIONS
+C 40 170 200 50 120 2500 350 180
+C Expand various TACS Tables on 1 April 2007. Force acceptance
+C without worrying about probable waste that might be involved:
+C 57 256 285 36 85 713 998 171 --- default
+C Tacs table number 1 2 3 4 5 6 7 8
+C Present figure 145 64 32 50 91 2229 212 165
+C Program limit 230 65 80 50 170 8000 420 300
+ 230 65 80 50 170 8000 420 300
+PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
+POWER FREQUENCY, 50
+C 0.00025 10. 0.0 0.0 { Note TEPCO Tmax was 10 seconds
+ 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state
+ 1 1 1 1 1 -1
+ 5 5 20 20 100 100 500 500
+TACS HYBRID
+C OUTPUT
+33VT4 PPG4 QQG4
+33VT5 PPG5 QQG5
+C
+C /// G1 S.G. GOVERNOR MODEL G400///
+00WGREF4 +PLUS1 1.0
+99GOVNR4 = -WGREF4+WGFBK4
+C
+99GOV014 = GOVNR4*(1/0.04/0.1)
+99GOV3R4 = GOV034*(1.0/0.1)
+00GOV024 +GOV014 -GOV3R4 1.0
+01GOV034 +GOV024 1.0
+ 1.0
+ 1.0
+99GOV044 = PLUS1-GOV034
+99GOV054 = GOV044*(1.0/0.6)
+99TQTR4 = TQT4*(1.0/0.6)
+00GOV064 +GOV054 -TQTR4 1.0
+01TQT4 +GOV064 1.0 -0.02 1.1
+ 1.0
+ 1.0
+C /// G1 S.G. GOVERNOR MODEL G500///
+00WGREF5 +PLUS1 1.0
+99GOVNR5 = -WGREF5+WGFBK5
+C
+99GOV015 = GOVNR5*(1/0.04/0.1)
+99GOV3R5 = GOV035*(1.0/0.1)
+00GOV025 +GOV015 -GOV3R5 1.0
+01GOV035 +GOV025 1.0
+ 1.0
+ 1.0
+99GOV045 = PLUS1-GOV035
+99GOV055 = GOV045*(1.0/0.6)
+99TQTR5 = TQT5*(1.0/0.6)
+00GOV065 +GOV055 -TQTR5 1.0
+01TQT5 +GOV065 1.0 -0.02 1.1
+ 1.0
+ 1.0
+C
+C /// G1 S.G. AVR MODEL G400///
+C
+77DROOP4 0.0
+77DROP14 0.0
+77DROP24 0.0
+99DROP24 = DROP14*0.04
+99PUFB14 = (PUFBK4+DROP24)*(1.0/0.035)
+99VGFBR4 = VGFBK4*(1.0/0.035)
+00PUFB24 +PUFB14 -VGFBR4 1.0
+99LLIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*(-9999.)
+99ULIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*9999.
+01VGFBK4 +PUFB24 1.0 LLIM24ULIM24
+ 1.0
+ 1.0
+C
+99AVR014 = VGREF4-VGFBK4
+99LLIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
+99ULIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
+01AVR024 +AVR014 1.0 LLIM14ULIM14
+ 10.0
+ 1.56
+99AVR034 = AVR014*(10.0*1.56/1.56)
+C
+99AVR044 = AVR024+AVR034+GAIN4
+99AVR054 = AVR044*(1.0/0.2)
+99AVR7R4 = AVR074*(1.0/0.2)
+99AVR064 = AVR054-AVR7R4
+99LLIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*(-9999.)
+99ULIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*9999.
+01AVR074 +AVR064 1.0 LLIM34ULIM34
+ 1.0
+ 1.0
+99EF4 = AVR074/GAIN4
+C
+C /// G1 S.G. AVR MODEL G500///
+C
+77DROOP5 0.0
+77DROP15 0.0
+77DROP25 0.0
+99DROP25 = DROP15*0.04
+99PUFB15 = (PUFBK5+DROP25)*(1.0/0.035)
+99VGFBR5 = VGFBK5*(1.0/0.035)
+00PUFB25 +PUFB15 -VGFBR5 1.0
+99LLIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*(-9999.)
+99ULIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*9999.
+01VGFBK5 +PUFB25 1.0 LLIM25ULIM25
+ 1.0
+ 1.0
+C
+99AVR015 = VGREF5-VGFBK5
+99LLIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
+99ULIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
+01AVR025 +AVR015 1.0 LLIM15ULIM15
+ 10.0
+ 1.56
+99AVR035 = AVR015*(10.0*1.56/1.56)
+C
+99AVR045 = AVR025+AVR035+GAIN5
+99AVR055 = AVR045*(1.0/0.2)
+99AVR7R5 = AVR075*(1.0/0.2)
+99AVR065 = AVR055-AVR7R5
+99LLIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*(-9999.)
+99ULIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*9999.
+01AVR075 +AVR065 1.0 LLIM35ULIM35
+ 1.0
+ 1.0
+99EF5 = AVR075/GAIN5
+C
+C /// SG BRANCH VOLTAGE MONITOR ///
+ VAB4 +N400A -N400B 1.0
+ VAB5 +N500A -N500B 1.0
+90N400A -1.0
+90N400B -1.0
+90N400C -1.0
+91GSG4A -1.0
+91GSG4B -1.0
+91GSG4C -1.0
+91IM4A -1.0
+91IM4B -1.0
+91IM4C -1.0
+90N500A -1.0
+90N500B -1.0
+90N500C -1.0
+91GSG5A -1.0
+91GSG5B -1.0
+91GSG5C -1.0
+92SGOMG4 -1.0
+92SGOMG5 -1.0
+C /// VOLTAGE FEED BACK G400///
+99PUFBK4 = SQRT(N400A*N400A + N400B*N400B + N400C*N400C)/6600.0
+00VT4 +PUFBK4 1.0
+C /// POWER MONITOR(S.G.) ///
+99QSG4A = GSG4A*(N400B-N400C)
+99QSG4B = GSG4B*(N400C-N400A)
+99QSG4C = GSG4C*(N400A-N400B)
+99QSGEN4 = (QSG4A+QSG4B+QSG4C)/SQRT(3.0)
+99PSGEN4 = N400A*GSG4A+N400B*GSG4B+N400C*GSG4C
+99PPG4 = PSGEN4/1000000.
+99QQG4 = QSGEN4/1000000.
+C /// VOLTAGE FEED BACK G500///
+99PUFBK5 = SQRT(N500A*N500A + N500B*N500B + N500C*N500C)/6600.0
+00VT5 +PUFBK5 1.0
+C /// POWER MONITOR(S.G.) ///
+99QSG5A = GSG5A*(N500B-N500C)
+99QSG5B = GSG5B*(N500C-N500A)
+99QSG5C = GSG5C*(N500A-N500B)
+99QSGEN5 = (QSG5A+QSG5B+QSG5C)/SQRT(3.0)
+99PSGEN5 = N500A*GSG5A+N500B*GSG5B+N500C*GSG5C
+99PPG5 = PSGEN5/1000000.
+99QQG5 = QSGEN5/1000000.
+C
+99QIM1 = IM4A*(N400B-N400C)
+99QIM2 = IM4B*(N400C-N400A)
+99QIM3 = IM4C*(N400A-N400B)
+99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0)
+99PIM = N400A*IM4A+N400B*IM4B+N400C*IM4C
+99PPIM = PIM
+99QQIM = QIM
+33PPG4 PPG5 QQG4 QQG5 PPIM QQIM
+C *************** CONTROLL MODEL BLOCK **************
+C /// G400 ///
+99DROOP4 = (QSGEN4-QSGI4)/625000./VT4
+00DROP14 +DROOP4
+99WGFBK4 = SGOMG4/314.159265
+99RPMSG4 = 30.0*SGOMG4/PI
+C /// G500 ///
+99DROOP5 = (QSGEN5-QSGI5)/625000./VT5
+00DROP15 +DROOP5
+99WGFBK5 = SGOMG5/314.159265
+99RPMSG5 = 30.0*SGOMG5/PI
+C
+90N300A -1.0
+90N300B -1.0
+90N300C -1.0
+91N250A -1.0
+91N250B -1.0
+91N250C -1.0
+C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
+99QCB1 = N250A*(N300B-N300C)
+99QCB2 = N250B*(N300C-N300A)
+99QCB3 = N250C*(N300A-N300B)
+99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
+99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
+C 33PACCB
+C 33QACCB
+C /// L300 P & Q ///
+91N300AD -1.0
+91N300BD -1.0
+91N300CD -1.0
+99PACCB3 = (N300A*N300AD+N300B*N300BD+N300C*N300CD)/1000.
+C 33PACCB3
+C /// L400 P & Q ///
+91N400AD -1.0
+91N400BD -1.0
+91N400CD -1.0
+99QCB4 = N400AD*(N400B-N400C)
+99QCB5 = N400BD*(N400C-N400A)
+99QCB6 = N400CD*(N400A-N400B)
+99QACCB4 = ((QCB4+QCB5+QCB6)/SQRT(3.0))/1000.
+99PACCB4 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000.
+C 33PACCB4
+C 33QACCB4
+C /// L500 P & Q ///
+91N500AD -1.0
+91N500BD -1.0
+91N500CD -1.0
+99QCB7 = N500AD*(N500B-N500C)
+99QCB8 = N500BD*(N500C-N500A)
+99QCB9 = N500CD*(N500A-N500B)
+99QACCB5 = ((QCB7+QCB8+QCB9)/SQRT(3.0))/1000000.
+99PACCB5 = (N500A*N500AD+N500B*N500BD+N500C*N500CD)/1000000.
+C 33PACCB5
+C 33QACCB5
+C
+C 33EF4 EF5
+C /// TACS GOV,AVR REF ///
+11VGREF4 1.00758 -1.0
+11VGREF5 1.01249 -1.0
+C IF/AGLINE
+11GAIN4 2.661027 -1.0
+11GAIN5 2.655261 -1.0
+11QSGI4 242000.0 -1.0
+11QSGI5 242000.0 -1.0
+C /// TACS INITIAL CONDITIONS ///
+77PPIM -300000.
+77QQIM -167000.
+77PPG4 .500000
+77QQG4 .242000
+77VGREF4 1.00758
+77VGFBK4 1.00758
+77PUFBK4 1.00758
+77VT4 1.00758
+77VGREF5 1.01249
+77PUFBK5 1.01249
+77VGFBK5 1.01249
+77VT5 1.01249
+77PPG5 .500000
+77QQG5 .242000
+C Vini/0.035
+77VGFBR4 28.78800
+77PUFB14 28.78800
+C GAIN4/0.2:2.661027
+77AVR7R4 13.3051350
+77AVR054 13.3051350
+C GAIN4:
+77AVR044 2.661027
+77AVR074 2.661027
+C G500
+C Vini/0.035
+77VGFBR5 28.9282857
+77PUFB15 28.9282857
+C GAIN5/0.2:2.655261
+77AVR055 13.2763050
+77AVR7R5 13.2763050
+C GAIN5
+77AVR045 2.655261
+77AVR075 2.655261
+C
+77PUFB24 0.0
+77AVR065 0.0
+77RPMSG4 3000.0
+77WGREF4 1.0
+77WGFBK4 1.0
+77SGOMG4 314.159265
+77TQT4 1.0
+77GOVNR4 0.0
+77GOV014 0.0
+77GOV024 0.0
+77GOV034 0.0
+77GOV3R4 0.0
+77GOV044 1.0
+77GOV054 1.66666667
+77GOV064 0.0
+77TQTR4 1.66666667
+77AVR014 0.0
+77AVR024 0.0
+77AVR034 0.0
+77AVR064 0.0
+77EF4 1.0
+77WGREF5 1.0
+77WGFBK5 1.0
+77SGOMG5 314.159265
+77TQT5 1.0
+77PUFB25 0.0
+77RPMSG5 3000.0
+77GOVNR5 0.0
+77GOV015 0.0
+77GOV025 0.0
+77GOV035 0.0
+77GOV3R5 0.0
+77GOV045 1.0
+77GOV055 1.66666667
+77GOV065 0.0
+77TQTR5 1.66666667
+77AVR015 0.0
+77AVR025 0.0
+77AVR035 0.0
+77EF5 1.0
+C
+C ---FOR.IM.No1(1/4)---
+C ====== TIME OF MOTOR TO GEN MODE =====
+77MSLIPM 2.719739
+90BUSMGM -1.0
+99MSLIPM = (1.0-BUSMGM/(2.*PI*50.))*100.
+C 300kW/2*PI*F
+99BUSMSM =954.9
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+BLANK CARD
+C /// NETWORK DATA ///
+$VINTAGE, 1
+C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
+C *** XS *** ( j0.012(pu) : 0.1663869437mH )
+ N100A N200A .1663869437
+ N100B N200B N100A N200A
+ N100C N200C N100A N200A
+C *** XT *** ( j0.075(pu) : 1.039918398mH )
+ N200A N250A 1.039918398
+ N200B N250B N200A N250A
+ N200C N250C N200A N250A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N300A N400A 0.871200000 4.326060536
+ N300B N400B N300A N400A
+ N300C N400C N300A N400A
+C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW
+ N300A N300AD 108.8762611
+ N300B N300BDN300A N300AD
+ N300C N300CDN300A N300AD
+C ***INSIDE LOAD***
+ N400A N400AD 986.5321930
+ N400B N400BDN400A N400AD
+ N400C N400CDN400A N400AD
+ N400ADN400A 1727.590765
+ N400BDN400B N400ADN400A
+ N400CDN400C N400ADN400A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N400A N500A 0.871200000 4.326060536
+ N400B N500B N400A N500A
+ N400C N500C N400A N500A
+C ***INSIDE LOAD*** ( )
+ N500A N500AD 177.9930622
+ N500B N500BDN500A N500AD
+ N500C N500CDN500A N500AD
+ N500ADN500A 588.6919231
+ N500BDN500B N500ADN500A
+ N500CDN500C N500ADN500A
+$VINTAGE, 0
+C ---FOR.IM.No1(2/4)---
+C Tm=1.97 :M :2H ==> 7.49E+6 pole:1 1.97*0.375MVA/(2*PI*F)**2
+ BUSMGM 7.49E6
+C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE
+ BUSMSMBUSMGM 1.0E-8
+BLANK CARD
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+C /// SWITCH DATA ///
+ N250A N300A -1.0 10.0
+ N250B N300B -1.0 10.0
+ N250C N300C -1.0 10.0
+ GSG4A N400A MEASURING
+ GSG4B N400B MEASURING
+ GSG4C N400C MEASURING
+ IM4A N400A MEASURING 1
+ IM4B N400B MEASURING 1
+ IM4C N400C MEASURING 1
+ GSG5A N500A MEASURING
+ GSG5B N500B MEASURING
+ GSG5C N500C MEASURING
+ N300AD MEASURING
+ N300BD MEASURING
+ N300CD MEASURING
+ N400AD MEASURING
+ N400BD MEASURING
+ N400CD MEASURING
+ N500AD MEASURING
+ N500BD MEASURING
+ N500CD MEASURING
+BLANK CARD
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+C /// SOURCE DATA ///
+C ---FOR.IM.No1(3/4)---
+14BUSMSM-1 0.0001 0.0001 .0 -1.0
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
+14N100A 5388.87743 50.0 0.0 -1.0
+14N100B 5388.87743 50.0 -120.0 -1.0
+14N100C 5388.87743 50.0 -240.0 -1.0
+C *** 59 TYPE S.G. G400 ***
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.00758pu)
+58GSG4A 5429.72512 50.0 0.724
+58GSG4B
+58GSG4C
+TOLERANCES 50.0 1.E-4 1.E-5 10
+PARAMETER FITTING 1.0
+C 1-2:NM NUMBER OF MASS ON THE SHAFT
+C 3-4:KM MASS (OF MOTOR OR GENERATOR) NUMBER
+C 5-6:KE EXCITER MASS NUMBER
+C RMVA:VOLT-AMPERE RATING UNIT IS MVA
+C RKV :RATED LINE-TO-LINE VOLTAGE UNIT IS KV
+C AGLINE:VALUE OF THE FIELD CURRENT IN AMPERES WHICH WILL PRODUCE RATED ARMATURE VOLTAGE.
+C S1,S2:SATURATION CURVE
+C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
+ 1 1 2 0.625 6.6 +2000.
+BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
+C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
+0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
+C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
+1.55 0.0 0.032 0.295 0.1032
+C 1-2:ML MASS NUMBER
+C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
+C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
+ 1 1.0 5.91314E-4
+BLANK CARD TERMINATING MASS CARDS
+$DISABLE
+ 1 14
+ 21
+ 31
+ 51
+$ENABLE
+BLANK CARD
+71EF4
+72TQT4 1
+74SGOMG4 2
+ FINISH
+C *** 59 TYPE S.G. G500 ***
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.01249p.u.)
+58GSG5A 5456.18451 50.0 1.16
+58GSG5B
+58GSG5C
+TOLERANCES 50.0 1.E-4 1.E-5 10
+PARAMETER FITTING 1.0
+C 1-2:NM NUMBER OF MASS ON THE SHAFT
+C 3-4:KM MASS (OF MOTOR OR GENERATOR) NUMBER
+C 5-6:KE EXCITER MASS NUMBER
+C RMVA:VOLT-AMPERE RATING UNIT IS MVA
+C RKV :RATED LINE-TO-LINE VOLTAGE UNIT IS KV
+C AGLINE:VALUE OF THE FIELD CURRENT IN AMPERES WHICH WILL PRODUCE RATED ARMATURE VOLTAGE.
+C S1,S2:SATURATION CURVE
+C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
+ 1 1 2 0.625 6.6 +2000.
+BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
+C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
+0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
+C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
+1.55 0.0 0.032 0.295 0.1032
+C 1-2:ML MASS NUMBER
+C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
+C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
+ 1 1.0 5.91314E-4
+BLANK CARD TERMINATING MASS CARDS
+$DISABLE
+ 1 14
+ 21
+ 31
+ 51
+$ENABLE
+BLANK CARD
+71EF5
+72TQT5 1
+74SGOMG5 2
+ FINISH
+C --------- UM TYPE 4 (IND.MACH) DATA
+19
+ 1 1
+BLANK CARD ENDING CLASS 1 UM DATA CARDS
+C UM-1 MACHINE TABLE :
+C --I----1----I----2----I----3----I----4----I----5----I----6
+ 4 BUSMGM 1 0.0001
+0. 0.95
+ 0.95
+C slip=2.719739 v=1.00758pu
+ 2.719739 0.0 BUSMSM
+C UM-1 COIL TABLE
+7.202 0.0277 IM4A
+7.202 0.0277 IM4B
+7.202 0.0277 IM4C
+3.601 0.0277
+3.601 0.0277
+3.601 0.0277
+BLANK CARD ending U.M. data
+BLANK CARD ending sources
+C Total network loss P-loss by summing injections = 6.465526932823E+06
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C N250A N300A 2.51255296E-03 -1.55308344E+00 1.55308548E+00 -89.9073 6.76991997E+00 4.18423111E+03
+C N250B N300B -1.34626599E+00 7.74365788E-01 1.55308548E+00 150.0927 6.76991997E+00 4.18423111E+03
+C N250C N300C 1.34375344E+00 7.78717657E-01 1.55308548E+00 30.0927 6.76991997E+00 4.18423111E+03
+C GSG4A N400A 6.17654057E+01 -2.89353708E+01 6.82071918E+01 -25.1018 1.66678584E+05 8.06681202E+04
+C GSG4B N400B -5.59414690E+01 -3.90227250E+01 6.82071918E+01 -145.1018 1.66678584E+05 8.06681202E+04
+C GSG4C N400C -5.82393666E+00 6.79580958E+01 6.82071918E+01 94.8982 1.66678584E+05 8.06681202E+04
+C IM4A N400A -3.70884429E+01 2.00063377E+01 4.21403149E+01 151.6566 -9.99956771E+04 -5.55824247E+04
+C IM4B N400B 3.58702181E+01 2.21163649E+01 4.21403149E+01 31.6566 -9.99956771E+04 -5.55824247E+04
+C IM4C N400C 1.21822477E+00 -4.21227026E+01 4.21403149E+01 -88.3434 -9.99956771E+04 -5.55824247E+04
+C GSG5A N500A 6.16852582E+01 -2.83272148E+01 6.78785841E+01 -24.6656 1.66684112E+05 8.06702138E+04
+C GSG5B N500B -5.53747168E+01 -3.92573933E+01 6.78785841E+01 -144.6656 1.66684112E+05 8.06702138E+04
+C GSG5C N500C -6.31054146E+00 6.75846081E+01 6.78785841E+01 95.3344 1.66684112E+05 8.06702138E+04
+C N300AD 4.94900247E+01 -8.74559074E-06 4.94900247E+01 0.0000 0.00000000E+00 0.00000000E+00
+C N300BD -2.47450199E+01 -4.28596143E+01 4.94900247E+01 -120.0000 0.00000000E+00 0.00000000E+00
+C N300CD -2.47450048E+01 4.28596230E+01 4.94900247E+01 120.0000 0.00000000E+00 0.00000000E+00
+C N400AD 5.62982343E+00 -9.93396450E+00 1.14183432E+01 -60.4587 0.00000000E+00 0.00000000E+00
+C N400BD -1.14179773E+01 9.14121415E-02 1.14183432E+01 179.5413 0.00000000E+00 0.00000000E+00
+C N400CD 5.78815390E+00 9.84255236E+00 1.14183432E+01 59.5413 0.00000000E+00 0.00000000E+00
+C N500AD 3.12448854E+01 -2.88753581E+01 4.25444376E+01 -42.7430 0.00000000E+00 0.00000000E+00
+C N500BD -4.06292364E+01 -1.26211854E+01 4.25444376E+01 -162.7430 0.00000000E+00 0.00000000E+00
+C N500CD 9.38435098E+00 4.14965436E+01 4.25444376E+01 77.2570 0.00000000E+00 0.00000000E+00
+ IM4A { Name just one node for voltage output. This provides variety
+C Column headings for the 16 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage);
+C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 12 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time IM4A IM4A IM4B IM4C TACS TACS TACS TACS TACS
+C N400A N400B N400C VT4 PPG4 QQG4 VT5 PPG5
+C
+C TACS TACS TACS TACS TACS TACS TACS
+C QQG5 PPG4 PPG5 QQG4 QQG5 PPIM QQIM
+C 0 0.0 5429.29164 -37.088443 35.8702181 1.21822477 1.00758 0.5 .242 1.01249 0.5
+C .242 0.5 0.5 .242 .242 -300000. -167000.
+C 1 .25E-3 5408.04051 -38.546862 34.0271397 4.51972263 1.00774091 .497417362 .242085856 1.01270569 .497427839
+C .242085941 .497417362 .497427839 .242085856 .242085941 -300060.54 -166784.28
+C 2 .5E-3 5352.10311 -39.767667 31.973725 7.79394194 1.00765329 .497480094 .242098254 1.01261362 .497474823
+C .242095109 .497480094 .497474823 .242098254 .242095109 -300055.21 -166785.1
+BLANK CARD ending node voltage outputs
+C 80 .02 5429.77262 -37.07804 35.8620845 1.21595556 1.00766919 .497422726 .242679222 1.01261812 .497466894
+C .242802626 .497422726 .497466894 .242679222 .242802626 -299930.2 -166731.59
+C Variable maxima : 5429.77262 42.1298428 42.1257726 42.1525059 1.00774091 0.5 .244128008 1.01270569 0.5
+C .243805907 0.5 0.5 .244128008 .243805907 -299835.77 -166731.59
+C Times of maxima : .02 .0115 .01825 .005 .25E-3 0.0 .009 .25E-3 0.0
+C .00925 0.0 0.0 .009 .00925 .01475 .02
+C Variable minima : -5429.9429 -42.142689 -42.161443 -42.109874 1.00758 .496996734 .242 1.01249 .497205573
+C .242 .496996734 .497205573 .242 .242 -300179.44 -167081.7
+C Times of minima : .01 .0015 .00825 .015 0.0 .01525 0.0 0.0 .01525
+C 0.0 .01525 .01525 0.0 0.0 .00375 .008
+ PRINTER PLOT { No need for vector plotting as all variables are smooth
+ 194 2. 0. 20. BRANCH { Plot limits: (-4.216, 4.215)
+ IM4A N400A IM4B N400B IM4C N400C
+BLANK CARD ending plot cards
+BEGIN NEW DATA CASE
+C 9th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
+C 8th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
+C For background of the model, see top of 1st subcase. This eighth case is a
+C simplification of ATPSGI58.DAT which replaces the U.M. of the 7th subcase
+C by a Type-56 IM. Like the 7th subcase, this one involves no transient. The
+C phasor solution merely is continued for one cycle to confirm the sinusoidal
+C steady state. Of the original 33 permanently-closed switches, only 12 could
+C be eliminated without tampering with TACS control system logic, leaving 21.
+C There is a lot of TACS modeling, and this required more storage than the
+C usual 3 * default of List 19. So, NEW LIST SIZES has been added to expand
+C the space for TACS while at the same time reducing a lot of other sizes.
+NEW LIST SIZES
+ 70 60 50 20 250 50 300 0 0 0
+ 0 30 0 0 0 0 0 0 12500 0
+ 0 0 0
+ 240000
+ABSOLUTE TACS DIMENSIONS
+C 40 170 200 50 120 2500 350 180
+C Expand various TACS Tables on 1 April 2007. Force acceptance
+C without worrying about probable waste that might be involved:
+C 57 256 285 36 85 713 998 171 --- default
+C Tacs table number 1 2 3 4 5 6 7 8
+C Present figure 145 64 32 49 89 2190 207 163
+C Program limit 230 65 80 50 170 8000 420 300
+ 230 65 80 50 170 8000 420 300
+PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
+POWER FREQUENCY, 50
+C 0.00025 10. 0.0 0.0 { Note TEPCO Tmax was 10 seconds
+ 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state
+ 1 1 1 1 1 -1
+ 5 5 20 20
+TACS HYBRID
+C OUTPUT
+33VT4 PPG4 QQG4
+33VT5 PPG5 QQG5
+C
+C /// G1 S.G. GOVERNOR MODEL G400///
+00WGREF4 +PLUS1 1.0
+99GOVNR4 = -WGREF4+WGFBK4
+C
+99GOV014 = GOVNR4*(1/0.04/0.1)
+99GOV3R4 = GOV034*(1.0/0.1)
+00GOV024 +GOV014 -GOV3R4 1.0
+01GOV034 +GOV024 1.0
+ 1.0
+ 1.0
+99GOV044 = PLUS1-GOV034
+99GOV054 = GOV044*(1.0/0.6)
+99TQTR4 = TQT4*(1.0/0.6)
+00GOV064 +GOV054 -TQTR4 1.0
+01TQT4 +GOV064 1.0 -0.02 1.1
+ 1.0
+ 1.0
+C /// G1 S.G. GOVERNOR MODEL G500///
+00WGREF5 +PLUS1 1.0
+99GOVNR5 = -WGREF5+WGFBK5
+C
+99GOV015 = GOVNR5*(1/0.04/0.1)
+99GOV3R5 = GOV035*(1.0/0.1)
+00GOV025 +GOV015 -GOV3R5 1.0
+01GOV035 +GOV025 1.0
+ 1.0
+ 1.0
+99GOV045 = PLUS1-GOV035
+99GOV055 = GOV045*(1.0/0.6)
+99TQTR5 = TQT5*(1.0/0.6)
+00GOV065 +GOV055 -TQTR5 1.0
+01TQT5 +GOV065 1.0 -0.02 1.1
+ 1.0
+ 1.0
+C
+C /// G1 S.G. AVR MODEL G400///
+C
+77DROOP4 0.0
+77DROP14 0.0
+77DROP24 0.0
+99DROP24 = DROP14*0.04
+99PUFB14 = (PUFBK4+DROP24)*(1.0/0.035)
+99VGFBR4 = VGFBK4*(1.0/0.035)
+00PUFB24 +PUFB14 -VGFBR4 1.0
+99LLIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*(-9999.)
+99ULIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*9999.
+01VGFBK4 +PUFB24 1.0 LLIM24ULIM24
+ 1.0
+ 1.0
+C
+99AVR014 = VGREF4-VGFBK4
+99LLIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
+99ULIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
+01AVR024 +AVR014 1.0 LLIM14ULIM14
+ 10.0
+ 1.56
+99AVR034 = AVR014*(10.0*1.56/1.56)
+C
+99AVR044 = AVR024+AVR034+GAIN4
+99AVR054 = AVR044*(1.0/0.2)
+99AVR7R4 = AVR074*(1.0/0.2)
+99AVR064 = AVR054-AVR7R4
+99LLIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*(-9999.)
+99ULIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*9999.
+01AVR074 +AVR064 1.0 LLIM34ULIM34
+ 1.0
+ 1.0
+99EF4 = AVR074/GAIN4
+C
+C /// G1 S.G. AVR MODEL G500///
+C
+77DROOP5 0.0
+77DROP15 0.0
+77DROP25 0.0
+99DROP25 = DROP15*0.04
+99PUFB15 = (PUFBK5+DROP25)*(1.0/0.035)
+99VGFBR5 = VGFBK5*(1.0/0.035)
+00PUFB25 +PUFB15 -VGFBR5 1.0
+99LLIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*(-9999.)
+99ULIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*9999.
+01VGFBK5 +PUFB25 1.0 LLIM25ULIM25
+ 1.0
+ 1.0
+C
+99AVR015 = VGREF5-VGFBK5
+99LLIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
+99ULIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
+01AVR025 +AVR015 1.0 LLIM15ULIM15
+ 10.0
+ 1.56
+99AVR035 = AVR015*(10.0*1.56/1.56)
+C
+99AVR045 = AVR025+AVR035+GAIN5
+99AVR055 = AVR045*(1.0/0.2)
+99AVR7R5 = AVR075*(1.0/0.2)
+99AVR065 = AVR055-AVR7R5
+99LLIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*(-9999.)
+99ULIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*9999.
+01AVR075 +AVR065 1.0 LLIM35ULIM35
+ 1.0
+ 1.0
+99EF5 = AVR075/GAIN5
+C
+C /// SG BRANCH VOLTAGE MONITOR ///
+ VAB4 +N400A -N400B 1.0
+ VAB5 +N500A -N500B 1.0
+90N400A -1.0
+90N400B -1.0
+90N400C -1.0
+91GSG4A -1.0
+91GSG4B -1.0
+91GSG4C -1.0
+91IM4A -1.0
+91IM4B -1.0
+91IM4C -1.0
+90N500A -1.0
+90N500B -1.0
+90N500C -1.0
+91GSG5A -1.0
+91GSG5B -1.0
+91GSG5C -1.0
+92SGOMG4 -1.0
+92SGOMG5 -1.0
+C /// VOLTAGE FEED BACK G400///
+99PUFBK4 = SQRT(N400A*N400A + N400B*N400B + N400C*N400C)/6600.0
+00VT4 +PUFBK4 1.0
+C /// POWER MONITOR(S.G.) ///
+99QSG4A = GSG4A*(N400B-N400C)
+99QSG4B = GSG4B*(N400C-N400A)
+99QSG4C = GSG4C*(N400A-N400B)
+99QSGEN4 = (QSG4A+QSG4B+QSG4C)/SQRT(3.0)
+99PSGEN4 = N400A*GSG4A+N400B*GSG4B+N400C*GSG4C
+99PPG4 = PSGEN4/1000000.
+99QQG4 = QSGEN4/1000000.
+C /// VOLTAGE FEED BACK G500///
+99PUFBK5 = SQRT(N500A*N500A + N500B*N500B + N500C*N500C)/6600.0
+00VT5 +PUFBK5 1.0
+C /// POWER MONITOR(S.G.) ///
+99QSG5A = GSG5A*(N500B-N500C)
+99QSG5B = GSG5B*(N500C-N500A)
+99QSG5C = GSG5C*(N500A-N500B)
+99QSGEN5 = (QSG5A+QSG5B+QSG5C)/SQRT(3.0)
+99PSGEN5 = N500A*GSG5A+N500B*GSG5B+N500C*GSG5C
+99PPG5 = PSGEN5/1000000.
+99QQG5 = QSGEN5/1000000.
+C
+99QIM1 = IM4A*(N400B-N400C)
+99QIM2 = IM4B*(N400C-N400A)
+99QIM3 = IM4C*(N400A-N400B)
+99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0)
+99PIM = N400A*IM4A+N400B*IM4B+N400C*IM4C
+99PPIM = PIM
+99QQIM = QIM
+33PPG4 PPG5 QQG4 QQG5 PPIM QQIM
+C *************** CONTROLL MODEL BLOCK **************
+C /// G400 ///
+99DROOP4 = (QSGEN4-QSGI4)/625000./VT4
+00DROP14 +DROOP4
+99WGFBK4 = SGOMG4/314.159265
+99RPMSG4 = 30.0*SGOMG4/PI
+C /// G500 ///
+99DROOP5 = (QSGEN5-QSGI5)/625000./VT5
+00DROP15 +DROOP5
+99WGFBK5 = SGOMG5/314.159265
+99RPMSG5 = 30.0*SGOMG5/PI
+C
+90N300A -1.0
+90N300B -1.0
+90N300C -1.0
+91N250A -1.0
+91N250B -1.0
+91N250C -1.0
+C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
+99QCB1 = N250A*(N300B-N300C)
+99QCB2 = N250B*(N300C-N300A)
+99QCB3 = N250C*(N300A-N300B)
+99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
+99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
+C 33PACCB
+C 33QACCB
+C /// L300 P & Q ///
+91N300AD -1.0
+91N300BD -1.0
+91N300CD -1.0
+99PACCB3 = (N300A*N300AD+N300B*N300BD+N300C*N300CD)/1000.
+C 33PACCB3
+C /// L400 P & Q ///
+91N400AD -1.0
+91N400BD -1.0
+91N400CD -1.0
+99QCB4 = N400AD*(N400B-N400C)
+99QCB5 = N400BD*(N400C-N400A)
+99QCB6 = N400CD*(N400A-N400B)
+99QACCB4 = ((QCB4+QCB5+QCB6)/SQRT(3.0))/1000.
+99PACCB4 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000.
+C 33PACCB4
+C 33QACCB4
+C /// L500 P & Q ///
+91N500AD -1.0
+91N500BD -1.0
+91N500CD -1.0
+99QCB7 = N500AD*(N500B-N500C)
+99QCB8 = N500BD*(N500C-N500A)
+99QCB9 = N500CD*(N500A-N500B)
+99QACCB5 = ((QCB7+QCB8+QCB9)/SQRT(3.0))/1000000.
+99PACCB5 = (N500A*N500AD+N500B*N500BD+N500C*N500CD)/1000000.
+C 33PACCB5
+C 33QACCB5
+C
+C 33EF4 EF5
+C /// TACS GOV,AVR REF ///
+11VGREF4 1.00758 -1.0
+11VGREF5 1.01249 -1.0
+C IF/AGLINE
+11GAIN4 2.661027 -1.0
+11GAIN5 2.655261 -1.0
+11QSGI4 242000.0 -1.0
+11QSGI5 242000.0 -1.0
+C /// TACS INITIAL CONDITIONS ///
+77PPIM -300000.
+77QQIM -167000.
+77PPG4 .500000
+77QQG4 .242000
+77VGREF4 1.00758
+77VGFBK4 1.00758
+77PUFBK4 1.00758
+77VT4 1.00758
+77VGREF5 1.01249
+77PUFBK5 1.01249
+77VGFBK5 1.01249
+77VT5 1.01249
+77PPG5 .500000
+77QQG5 .242000
+C Vini/0.035
+77VGFBR4 28.78800
+77PUFB14 28.78800
+C GAIN4/0.2:2.661027
+77AVR7R4 13.3051350
+77AVR054 13.3051350
+C GAIN4:
+77AVR044 2.661027
+77AVR074 2.661027
+C G500
+C Vini/0.035
+77VGFBR5 28.9282857
+77PUFB15 28.9282857
+C GAIN5/0.2:2.655261
+77AVR055 13.2763050
+77AVR7R5 13.2763050
+C GAIN5
+77AVR045 2.655261
+77AVR075 2.655261
+C
+77PUFB24 0.0
+77AVR065 0.0
+77RPMSG4 3000.0
+77WGREF4 1.0
+77WGFBK4 1.0
+77SGOMG4 314.159265
+77TQT4 1.0
+77GOVNR4 0.0
+77GOV014 0.0
+77GOV024 0.0
+77GOV034 0.0
+77GOV3R4 0.0
+77GOV044 1.0
+77GOV054 1.66666667
+77GOV064 0.0
+77TQTR4 1.66666667
+77AVR014 0.0
+77AVR024 0.0
+77AVR034 0.0
+77AVR064 0.0
+77EF4 1.0
+77WGREF5 1.0
+77WGFBK5 1.0
+77SGOMG5 314.159265
+77TQT5 1.0
+77PUFB25 0.0
+77RPMSG5 3000.0
+77GOVNR5 0.0
+77GOV015 0.0
+77GOV025 0.0
+77GOV035 0.0
+77GOV3R5 0.0
+77GOV045 1.0
+77GOV055 1.66666667
+77GOV065 0.0
+77TQTR5 1.66666667
+77AVR015 0.0
+77AVR025 0.0
+77AVR035 0.0
+77EF5 1.0
+C
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+BLANK CARD
+C /// NETWORK DATA ///
+$VINTAGE, 1
+C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
+C *** XS *** ( j0.012(pu) : 0.1663869437mH )
+ N100A N200A .1663869437
+ N100B N200B N100A N200A
+ N100C N200C N100A N200A
+C *** XT *** ( j0.075(pu) : 1.039918398mH )
+ N200A N250A 1.039918398
+ N200B N250B N200A N250A
+ N200C N250C N200A N250A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N300A N400A 0.871200000 4.326060536
+ N300B N400B N300A N400A
+ N300C N400C N300A N400A
+C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW
+ N300A N300AD 108.8762611
+ N300B N300BDN300A N300AD
+ N300C N300CDN300A N300AD
+C ***INSIDE LOAD***
+ N400A N400AD 986.5321930
+ N400B N400BDN400A N400AD
+ N400C N400CDN400A N400AD
+ N400ADN400A 1727.590765
+ N400BDN400B N400ADN400A
+ N400CDN400C N400ADN400A
+C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
+ N400A N500A 0.871200000 4.326060536
+ N400B N500B N400A N500A
+ N400C N500C N400A N500A
+C ***INSIDE LOAD*** ( )
+ N500A N500AD 177.9930622
+ N500B N500BDN500A N500AD
+ N500C N500CDN500A N500AD
+ N500ADN500A 588.6919231
+ N500BDN500B N500ADN500A
+ N500CDN500C N500ADN500A
+$VINTAGE, 0
+BLANK CARD
+C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
+C /// SWITCH DATA ///
+ N250A N300A -1.0 10.0
+ N250B N300B -1.0 10.0
+ N250C N300C -1.0 10.0
+ GSG4A N400A MEASURING
+ GSG4B N400B MEASURING
+ GSG4C N400C MEASURING
+ IM4A N400A MEASURING 1
+ IM4B N400B MEASURING 1
+ IM4C N400C MEASURING 0
+ GSG5A N500A MEASURING
+ GSG5B N500B MEASURING
+ GSG5C N500C MEASURING
+ N300AD MEASURING
+ N300BD MEASURING
+ N300CD MEASURING
+ N400AD MEASURING
+ N400BD MEASURING
+ N400CD MEASURING
+ N500AD MEASURING
+ N500BD MEASURING
+ N500CD MEASURING
+BLANK CARD
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
+14N100A 5388.87743 50.0 0.0 -1.0
+14N100B 5388.87743 50.0 -120.0 -1.0
+14N100C 5388.87743 50.0 -240.0 -1.0
+C *** 59 TYPE S.G. G400 ***
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.00758pu)
+58GSG4A 5429.72512 50.0 0.724
+58GSG4B 5429.72512 50.0 -119.276
+58GSG4C 5429.72512 50.0 -239.276
+TOLERANCES 50.0 1.E-4 1.E-5 10
+PARAMETER FITTING 1.0
+C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
+ 1 1 2 0.625 6.6 +2000.
+BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
+C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
+0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
+C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
+1.55 0.0 0.032 0.295 0.1032
+C 1-2:ML MASS NUMBER
+C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
+C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
+ 1 1.0 5.91314E-4
+BLANK CARD TERMINATING MASS CARDS
+BLANK CARD
+71EF4
+72TQT4 1
+74SGOMG4 2
+ FINISH
+C *** 59 TYPE S.G. G500 ***
+C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.01249p.u.)
+58GSG5A 5456.18451 50.0 1.16
+58GSG5B 5456.18451 50.0 -118.84
+58GSG5C 5456.18451 50.0 -238.84
+TOLERANCES 50.0 1.E-4 1.E-5 10
+PARAMETER FITTING 1.0
+C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
+ 1 1 2 0.625 6.6 +2000.
+BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
+C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
+0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
+C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
+1.55 0.0 0.032 0.295 0.1032
+C 1-2:ML MASS NUMBER
+C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
+C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
+ 1 1.0 5.91314E-4
+BLANK CARD TERMINATING MASS CARDS
+BLANK CARD
+71EF5
+72TQT5 1
+74SGOMG5 2
+ FINISH
+C |BUS | | SLIP || TM0 |
+C | A6 | | E10.6 || E10.6 |
+56IM4A 2.719739 0.0
+56IM4B
+56IM4C
+C CLASS2
+C TY <NP>< RMVA >< RSKV >< FREQ >
+ 0 1 0.375 6.6 50.0
+C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
+C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
+0.062 0.075 0.031 0.075 2.58
+C CLASS3
+C | M || D || EMSOM | |NM|P|E|M|
+C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
+ 1.97 0.0 1 1 1
+C CLASS4
+C T || TM | |TBUS|
+C E10.6 || E10.6 | | A6 |
+C 0.02 .000264555
+ 9999
+C CLASS5
+C | BUS|N|
+C | A4 |I2
+ FINISH
+BLANK CARD ending source cards
+C Total network loss P-loss by summing injections = 1.000121334411E+06
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C N250A N300A 2.51255296E-03 -1.55308344E+00 1.55308548E+00 -89.9073 6.76991997E+00 4.18423111E+03
+C N250B N300B -1.34626599E+00 7.74365788E-01 1.55308548E+00 150.0927 6.76991997E+00 4.18423111E+03
+C N250C N300C 1.34375344E+00 7.78717657E-01 1.55308548E+00 30.0927 6.76991997E+00 4.18423111E+03
+C GSG4A N400A 6.17662457E+01 -2.88761587E+01 6.81828545E+01 -25.0564 1.66682896E+05 8.05074090E+04
+C GSG4B N400B -5.58906098E+01 -3.90530585E+01 6.81828545E+01 -145.0564 1.66682896E+05 8.05074090E+04
+C GSG4C N400C -5.87563589E+00 6.79292172E+01 6.81828545E+01 94.9436 1.66682896E+05 8.05074090E+04
+C IM4A N400A -3.70892829E+01 1.99471256E+01 4.21129757E+01 151.7280 -9.99999888E+04 -5.54217136E+04
+C IM4B N400B 3.58193589E+01 2.21466984E+01 4.21129757E+01 31.7280 -9.99999888E+04 -5.54217136E+04
+C IM4C N400C 1.26992399E+00 -4.20938240E+01 4.21129757E+01 -88.2720 -9.99999888E+04 -5.54217136E+04
+C GSG5A N500A 6.16852582E+01 -2.83272148E+01 6.78785841E+01 -24.6656 1.66684112E+05 8.06702138E+04
+C GSG5B N500B -5.53747168E+01 -3.92573933E+01 6.78785841E+01 -144.6656 1.66684112E+05 8.06702138E+04
+C GSG5C N500C -6.31054146E+00 6.75846081E+01 6.78785841E+01 95.3344 1.66684112E+05 8.06702138E+04
+C N300AD 4.94900247E+01 -8.74559074E-06 4.94900247E+01 0.0000 0.00000000E+00 0.00000000E+00
+C N300BD -2.47450199E+01 -4.28596143E+01 4.94900247E+01 -120.0000 0.00000000E+00 0.00000000E+00
+C N300CD -2.47450048E+01 4.28596230E+01 4.94900247E+01 120.0000 0.00000000E+00 0.00000000E+00
+C N400AD 5.62982343E+00 -9.93396450E+00 1.14183432E+01 -60.4587 0.00000000E+00 0.00000000E+00
+C N400BD -1.14179773E+01 9.14121415E-02 1.14183432E+01 179.5413 0.00000000E+00 0.00000000E+00
+C N400CD 5.78815390E+00 9.84255236E+00 1.14183432E+01 59.5413 0.00000000E+00 0.00000000E+00
+C N500AD 3.12448854E+01 -2.88753581E+01 4.25444376E+01 -42.7430 0.00000000E+00 0.00000000E+00
+C N500BD -4.06292364E+01 -1.26211854E+01 4.25444376E+01 -162.7430 0.00000000E+00 0.00000000E+00
+C N500CD 9.38435098E+00 4.14965436E+01 4.25444376E+01 77.2570 0.00000000E+00 0.00000000E+00
+C Column headings for the 26 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
+C Next 2 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
+C Next 12 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time IM4A IM4B IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
+C N400A N400B P Q ISA ISB ISC IRA IRB
+C
+C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS
+C IRC WR ANG TQ TM VT4 PPG4 QQG4 VT5
+C
+C TACS TACS TACS TACS TACS TACS TACS TACS
+C PPG5 QQG5 PPG4 PPG5 QQG4 QQG5 PPIM QQIM
+C 0 0.0 -37.089283 35.8193589 -299999.97 -166265.14 -37.089283 35.8193589 1.26992399 -3.3020869 -30.789557
+C 34.0916437 305.614953 1.57079633 -893.94476 -893.94476 1.00758 0.5 .242 1.01249
+C 0.5 .242 0.5 0.5 .242 .242 -300000. -167000.
+C 1 .25E-3 -38.530914 33.9675872 -299996.42 -166298.13 -38.530914 33.9675872 4.56332653 -3.2222768 -30.827832
+C 34.0501083 305.61495 1.64720007 -893.73559 -893.94476 1.00780767 .497455836 .241616478 1.01275637
+C .497447005 .242093747 .497455836 .497447005 .241616478 .242093747 -299996.42 -166298.13
+C 2 .5E-3 -39.73648 31.9076793 -299887.98 -166278.12 -39.73648 31.9076793 7.82880046 -3.1419208 -30.867462
+C 34.0093826 305.61494 1.7236038 -893.55897 -893.94476 1.00766614 .49747865 .241619001 1.01263793
+C .497469507 .242096958 .49747865 .497469507 .241619001 .242096958 -299887.98 -166278.12
+BLANK card ending names for output variables (none here)
+C 80 .02 -37.095485 35.7780641 -300088.5 -165860.96 -37.095485 35.7780641 1.31742052 3.16334023 -34.036289
+C 30.8729489 305.612633 7.68306549 -893.8068 -893.94476 1.00768225 .49747812 .242225269 1.01263226
+C .49750592 .242807717 .49747812 .49750592 .242225269 .242807717 -300088.5 -165860.96
+C Variable maxima : 42.0472768 42.088666 -299449.52 -165559.49 42.0472768 42.088666 42.0016152 3.16334023 -30.789557
+C 34.0916437 305.614953 7.68306549 -892.13839 -893.94476 1.00780767 0.5 .243498409 1.01275637
+C 0.5 .243680337 0.5 0.5 .243498409 .243680337 -299449.52 -165559.49
+C Times of maxima : .0115 .01825 .0045 .00975 .0115 .01825 .005 .02 0.0
+C 0.0 0.0 .02 .00475 0.0 .25E-3 0.0 .009 .25E-3
+C 0.0 .00925 0.0 0.0 .009 .00925 .0045 .00975
+C Variable minima : -42.060504 -42.029619 -300088.5 -166298.13 -42.060504 -42.029619 -42.056444 -3.3020869 -34.036289
+C 30.8729489 305.612633 1.57079633 -893.94476 -893.94476 1.00758 .497098096 .241616478 1.01249
+C .497272118 .242 .497098096 .497272118 .241616478 .242 -300088.5 -167000.
+C Times of minima : .0015 .00825 .02 .25E-3 .0015 .00825 .015 0.0 .02
+C .02 .02 0.0 0.0 0.0 0.0 .01525 .25E-3 0.0
+C .01525 0.0 .01525 .01525 .25E-3 0.0 .02 0.0
+ PRINTER PLOT { No need for vector plotting as all variables are smooth
+ 194 2. 0. 20. BRANCH { Plot limits: (-4.206, 4.209)
+ IM4A N400A IM4B N400B IM-1 ISC
+C Note the replacement of the 3rd switch current by the 3rd stator current in
+C the preceding plot. They should be the same. Compare with the preceding
+C subcase for which the plot of switch currents had limits (-4.216, 4.215).
+BLANK CARD ending plot cards
+BEGIN NEW DATA CASE
+BLANK
+EOF
+Note: ATPIGUM.DAT is being ignored because it does not involve any
+ Type-56 IM modeling.
+
+ IGIMUM.DAT is being ignored for the same reason. This accounts
+ for all 10 of the data cases tested by RUNIM.BAT; 8 have been
+ retained and massaged whereas 2 have been ignored.
|