1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
|
BEGIN NEW DATA CASE
C BENCHMARK DCNEW-12
C Automatic steady-state initialization for Type-4 U.M. (a 3-phase induction
C machine). Power coils are non-compensated. Rotor coils have external
C resistances. Apply a step to the input torque at 0.02 sec (step 100).
C Rating: 720 KVA, 4.2 KV, 4-pole ( 85.67% efficiency at 0.846 pf
C and 14.0E+3 NM.; Kipp torque = 45.09E+2 NM, slip = 2.5%)
C 4 May 2006, append the 8 subcases of IM.DAT making a total of 9. This
C is to document use of the new Type-56 Induction Machine from TEPCO.
PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns)
ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60
0.0002 0.900
1 2 0 0 1 -1
5 5 20 20 100 1 110 10 200 200
C --------- ROTOR EXTERNAL RESISTANCES
BUSA1 1.E-10 1
BUSB1 BUSA1 1
BUSC1 BUSA1 1
C -------- TRANSMISSION LINES
BUSA2 BUSAS2 1.0E-4 10.0 1
BUSB2 BUSBS2BUSA2 BUSAS2 1
BUSC2 BUSCS2BUSA2 BUSAS2 1
C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK
BUSAS2 1.0E+6
BUSBS2 BUSAS2
BUSCS2 BUSAS2
C --------- MECHANICAL NETWORK COMPONENTS
BUSMG BUSMGR .4548 1
BUSMGR BUSMG BUSMGR
BUSMG 9.8E+7 { Rotor mass = capacitance } 1
C ------- Near-zero resistance to measure electromechanical torque (a current):
BUSMS BUSMG 1.0E-6 1
BLANK card ending all branch cards
BLANK card ending all (here, nonexistent) switch cards
C --------- SOURCES FOR INFINITE BUS
14BUSAS2 3000.0 60.0 0.0 -1.0
14BUSBS2 3000.0 60.0 -120.0 -1.0
14BUSCS2 3000.0 60.0 +120.0 -1.0
C ----------- Mechanical input torque, with value set by steady-state solution:
14BUSMS -1 0.000001 0.00001 -1.0
C -------- Step change to input torque occurs at time .020 seconds (Step 100):
14BUSMS -1 3900.0 0.00001 +0.02
C ----------------------- Type-4 U.M. (3-phase induction machine) data follows:
19 UM
1 1
BLANK card ending Class-1 U.M. data
C UM-1 MACH TABLE
4 111BUSMG 2 0.0188
0.02358
0.02358
2.0 BUSMS
C UM-1 COIL TABLE
BUSA2 1
0.412 0.0012 BUSB2 1
0.412 0.0012 BUSC2 1
0.110 0.0012 BUSB1 1
0.110 0.0012 BUSC1 1
BUSA1 1
BLANK card ending all U.M. data cards
BLANK card ending all source cards
C Total network loss P-loss by summing injections = 7.171020819312E+05
C Total network loss P-loss by summing injections = 8.732408663441E+05
C Total network loss P-loss by summing injections = 1.223706646064E+07
C Total network loss P-loss by summing injections = 1.223706596064E+07
C Total network loss P-loss by summing injections = 1.223707382155E+07
C Zero-th time step documents initial conditions, cut on right edge:
BUSAS2BUSA2 BUSA1 BUSMG
C Step Time BUSAS2 BUSA2 BUSA1 BUSMG BUSA1
C TERRA
C
C BUSB2 BUSC2 BUSMG BUSMG BUSMS
C BUSBS2 BUSCS2 BUSMGR TERRA BUSMG
C
C UM-1 UM-1 UM-1 UM-1 UM-1
C IPA IPB IPC IE1 IE2
C 0 0.0 3000. 1784.374676 .1471233E-7 184.725648 147.1233291
C 376.2746526 -182.224238 203.0844855 0.0 -3965.07077
C -194.050415 376.2746526 -182.224238 0.0 0.0
C 1 .2E-3 2991.476701 1834.404076 .1467203E-7 184.7256479 146.7202619
C 374.6920464 -156.915064 203.0844854 -.092695802 -3965.07077
C -217.776982 374.6920464 -156.915064 161.7505543 -308.470816
BLANK card ending output requests (node voltages only, here)
C For some unknown reason, these agree with VAX to only 4 or 5 digits, often:
C 4500 0.9 3000. 2139.363254 -.929034E-9 188.3186232 -9.29033753
C 206.6043639 -188.546337 207.0345461 -12.7407524 -65.0707659
C -18.0580266 206.6043639 -188.546337 15.99476461 -6.70442708
C Variable max : 3000. 2142.192646 .1471233E-7 189.143889 147.1233291
C 376.2746526 376.1164039 207.9418304 3898.215212 -65.0707659
C 376.0215626 376.2746526 376.1164039 228.3663773 6.204481463
C Times of max : 0.0 .5668 0.0 .2202 0.0
C 0.0 .0222 .2202 .0202 .8786
C .011 0.0 .0222 .0544 .3316
C Variable min : -3000. -2142.13595 -.123856E-8 184.7253125 -12.385633
C -375.871946 -376.188889 203.0841166 -661.121518 -3965.07077
C -376.241942 -375.871946 -376.188889 -24.9469672 -362.34101
C Times of min : .075 .5418 .564 .02 .564
C .0082 .0138 .02 .3084 0.0
C .0194 .0082 .0138 .3076 0.0
PRINTER PLOT
193 .1 0.0 0.9 UM-1 TQGEN { Axis limits: (-4.168, 0.389)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 2nd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 1st of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C Begin several illustrations of TEPCO (Tokyo Electric Power Company in Japan)
C IM (Induction Machine) model that entered the UTPF on 7 April 2006. The
C coding is by Cao Xinglin of TEPCO Systems Corp, as communicated to BPA via
C Atsushi Kurita of TEPCO. Number 56 is the new ATP source type code that is
C to appear in columns 1-2 at the beginning of IM data. First, ATPIG56.DAT
C The TEPCO data had 21 permanently-closed switches of which only 6 have been
C retained. The remainder were removed without any confusion or difficulty
C in order to drop nonessenttial and unrelated complexity. The six switches
C that have been retained serve to pass armature currents of the two parallel
C machines to TACS. The phasor solution output of the switches clearly shows
C opposite directions for the power flow: positive (out) of the generator IG1
C and negative (into) the motor IM1. The phasor solution provides very good
C initialization, and simulation of this continues for 1.25 cycles in the dT
C loop to demonstrate stability of the steady state. Most machine variables
C are nearly constant as extrema clearly demonstrate. The original TEPCO data
C simulated to 10 seconds (5000 cycles) to demonstrate longer-term stability,
C but this has been drastically shortened to save computer time.
C G400 PG=500kW,QG=-232kVar
C L300 PL=250kW
C L400 PL=200kW,QL=-259kVar
C M400 PL=50kW,QL=27kVar
C MODE G400:LV
PRINTED NUMBER WIDTH, 11, 1, { Restore values that are common within STARTUP
POWER FREQUENCY, 50., { So one cycle is 20 msec, note
C 0.00025 10. 0.0 0.0 --- TEPCO's T-max was 10 seconds, note
0.00025 .025 0.0 0.0 { 1.25 cycles is enough to verify steady state
1 1 1 1 1 -1
5 5 20 20 100 100
TACS HYBRID
33VIG PIGEN QIGEN PIM QIM
C
C /// G1 BRANCH VOLTAGE MONITOR ///
VAB +N400A -N400B 1.0
90N400A -1.0
90N400B -1.0
90N400C -1.0
91IG1A -1.0
91IG1B -1.0
91IG1C -1.0
91IM1A -1.0
91IM1B -1.0
91IM1C -1.0
C /// VOLTAGE FEED BACK ///
99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
C /// POWER MONITOR(I.G.) ///
99QIG1 = IG1A*(N400B-N400C)
99QIG2 = IG1B*(N400C-N400A)
99QIG3 = IG1C*(N400A-N400B)
99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
99PPIG = PIGEN/1000000.
99QQIG = QIGEN/1000000.
99QIM1 = IM1A*(N400B-N400C)
99QIM2 = IM1B*(N400C-N400A)
99QIM3 = IM1C*(N400A-N400B)
99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0)
99PIM = N400A*IM1A+N400B*IM1B+N400C*IM1C
99PPIM = PIM/1000000.
99QQIM = QIM/1000000.
C
C /// TACS OUTPUT VARIABLES ///
C 33PPIG QQIG PPIM QQIM
C /// TACS INITIAL CONDITIONS ///
77VIG 1.00478
77PPIG .5000
77QQIG -.232
77PIGEN 500000.
77QIGEN -232000.
77PIM -50000.
77QIM -27600.
C
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
BLANK card ends TACS data
C /// NETWORK DATA ///
$VINTAGE, 1
C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
C *** XS *** ( j0.012(pu) : 0.1663869437mH )
N100A N200A .1663869437
N100B N200B N100A N200A
N100C N200C N100A N200A
C *** XT *** ( j0.075(pu) : 1.039918398mH )
N200A N300A 1.039918398
N200B N300B N200A N300A
N200C N300C N200A N300A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N300A N400A 0.871200000 4.326060536
N300B N400B N300A N400A
N300C N400C N300A N400A
C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
N300A 174.2211826
N300B N300A
N300C N300A
C ***INSIDE LOAD*** ( 1.00478)
N400A 221.1645148
N400B N400A
N400C N400A
N400A 18.56624062
N400B N400A
N400C N400A
$VINTAGE, 0
C
BLANK card ends electric network branches
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
C /// SWITCH DATA ///
C Only 6 of the 21 original switches are retained. This allows separate
C names for the two IM busses even though the two are in parallel. In
C fact, IG1A is the same as IM1A, etc. for B and C:
IG1A N400A MEASURING
IG1B N400B MEASURING
IG1C N400C MEASURING
IM1A N400A MEASURING
IM1B N400B MEASURING
IM1C N400C MEASURING
BLANK card ends switches
C /// SOURCE DATA ///
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
14N100A 5388.87743 50.0 0.0 -1.0
14N100B 5388.87743 50.0 -120.0 -1.0
14N100C 5388.87743 50.0 -240.0 -1.0
C
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56IG1A -0.785129 0.0
56IG1B
56IG1C
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 1 0.625 6.6 50.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.0113 0.0903 0.0093 0.114 4.3
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
1.12 0.0 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
C 0.02 .000264555
9999 { Special terminator for any Class-4 data of Type-56 IM
C CLASS5
C | BUS|N|
C | A4 |I2
FINISH { Key word that ends data for this particular (the 1st of 2) IM
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56IM1A 2.736296 0.0
56IM1B
56IM1C
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 1 0.0625 6.6 50.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.062 0.075 0.031 0.075 2.58
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
1.97 0.0 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
C 0.02 .000264555
9999 { Special terminator for any Class-4 data of Type-56 IM
C CLASS5
C | BUS|N|
C | A4 |I2
FINISH { Key word that ends data for this particular (the 2nd of 2) IM
BLANK card terminating ATP source cards
C Total network loss P-loss by summing injections = 8.693842500266E+01
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C IG1A N400A 6.13352336E+01 2.91346671E+01 6.79031642E+01 25.4080 1.66673295E+05 -7.75683916E+04
C IG1B N400B -5.43625497E+00 -6.76852040E+01 6.79031642E+01 -94.5920 1.66673295E+05 -7.75683916E+04
C IG1C N400C -5.58989787E+01 3.85505369E+01 6.79031642E+01 145.4080 1.66673295E+05 -7.75683916E+04
C IM1A N400A -6.18285824E+00 3.35138837E+00 7.03274769E+00 151.5403 -1.66673368E+04 -9.20498467E+03
C IM1B N400B 5.99381659E+00 3.67881812E+00 7.03274769E+00 31.5403 -1.66673368E+04 -9.20498467E+03
C IM1C N400C 1.89041650E-01 -7.03020649E+00 7.03274769E+00 -88.4597 -1.66673368E+04 -9.20498467E+03
C
C Column headings for the 29 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C Next 24 output variables belong to IM (with "IM" an internally-added upper name of pair).
C Next 5 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
C P Q ISA ISB ISC IRA IRB IRC WR ANG
C
C IM-1 IM-1 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2
C TQ TM P Q ISA ISB ISC IRA IRB IRC
C
C IM-2 IM-2 IM-2 IM-2 TACS TACS TACS TACS TACS
C WR ANG TQ TM VIG PIGEN QIGEN PIM QIM
C *** Phasor I(0) = 6.1335234E+01 Switch "IG1A " to "N400A " closed in the steady-state.
C *** Phasor I(0) = -5.4362550E+00 Switch "IG1B " to "N400B " closed in the steady-state.
C *** Phasor I(0) = -5.5898979E+01 Switch "IG1C " to "N400C " closed in the steady-state.
C *** Phasor I(0) = -6.1828582E+00 Switch "IM1A " to "N400A " closed in the steady-state.
C *** Phasor I(0) = 5.9938166E+00 Switch "IM1B " to "N400B " closed in the steady-state.
C *** Phasor I(0) = 1.8904165E-01 Switch "IM1C " to "N400C " closed in the steady-state.
C 0 0.0 500019.886 -232705.17 61.3352336 -5.436255 -55.898979 -11.518219 60.1819687 -48.66375 316.625821 1.57079633
C 1608.95108 1608.95108 -50002.011 -27614.954 -6.1828582 5.99381659 .18904165 -.58621064 -5.1267795 5.71299012
C 305.562938 1.57079633 -148.95686 -148.95686 1.0047 500000. -232000. -50000. -27600.
C 1 .25E-3 500145.619 -232725.27 58.8756131 -.11553737 -58.760076 -11.479526 60.1817443 -48.702218 316.625814 1.64995278
C 1609.32268 1608.95108 -49988.051 -27614.135 -6.4248212 5.68592478 .738896446 -.57282271 -5.1329244 5.70574715
C 305.562934 1.64718706 -148.91265 -148.95686 1.00481726 500145.619 -232725.27 -49988.051 -27614.135
C 2 .5E-3 500279.634 -232738.55 56.0518759 5.20801006 -61.259886 -11.440363 60.1804072 -48.740044 316.625795 1.72910923
C 1609.6677 1608.95108 -49976.514 -27614.492 -6.6274021 5.34328199 1.28412013 -.55938995 -5.1392418 5.69863173
C 305.562921 1.72357779 -148.87311 -148.95686 1.00485913 500279.634 -232738.55 -49976.514 -27614.492
BLANK card ending names of ATP output variables (none for this case)
C 100 .025 500666.577 -231710.46 -29.009861 67.689943 -38.680082 -7.5010766 58.7427696 -51.241693 316.626251 9.48642268
C 1610.05009 1608.95108 -50027.397 -27567.289 -3.3454225 -3.6840913 7.02951382 .767497344 -5.7887829 5.02128552
C 305.560218 9.20981993 -148.95965 -148.95686 1.00485987 500666.577 -231710.46 -50027.397 -27567.289
C Variable max: 501351.888 -230444.64 67.8036384 67.9774295 67.7273265 -7.5010766 60.1819687 -48.66375 316.62671 9.48642268
C 1612.20306 1608.95108 -49882.18 -27466.013 7.01961078 7.02912135 7.02951382 .767497344 -5.1267795 5.71299012
C 305.562938 9.20981993 -148.58255 -148.95686 1.0049302 501351.888 -230444.64 -49882.18 -27466.013
C Times of max: .005 .01 .0185 .00525 .012 .025 0.0 0.0 .021 .025
C .0045 0.0 .0045 .009 .0115 .01825 .025 .025 0.0 0.0
C 0.0 .025 .00475 0.0 .1E-2 .005 .01 .0045 .009
C Variable min: 499173.557 -232738.55 -67.822794 -67.743906 -67.960287 -11.518219 58.7427696 -51.241693 316.623142 1.57079633
C 1605.49808 1608.95108 -50027.634 -27615.163 -7.0288686 -7.0157093 -7.0236834 -.58621064 -5.7887829 5.02128552
C 305.560211 1.57079633 -148.96079 -148.95686 1.0047 499173.557 -232738.55 -50027.634 -27615.163
C Times of min: .015 .5E-3 .0085 .01525 .002 0.0 .025 .025 .009 0.0
C .0145 0.0 .024 .75E-3 .0215 .00825 .015 0.0 .025 .025
C .02175 0.0 .02375 0.0 0.0 .015 .5E-3 .024 .75E-3
PRINTER PLOT { No need for vector plotting as all variables are smooth
1942.5 0. 25. BRANCH { Plot limits: (-7.029, 7.029)
IM-2 ISA IM-2 ISB IM-2 ISC
BLANK card ending batch-mode plot cards
BEGIN NEW DATA CASE
C 3rd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 2nd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C For background of the model, see top of 1st subcase. This second case is a
C simplification of ATPIGT56.DAT which has just a single IM. Like the first
C subcase, this second one involves no transient. The phasor solution merely
C is continued for one cycle to confirm the sinusoidal steady state. Of the
C original 19 permanently-closed switches, only 10 could be eliminated without
C tampering with TACS control system logic. The 9 switches that remain are
C used to pass currents to TACS. As for outputs, these have been reduced
C drastically by elimination of the request for every node voltage (a 1-punch
C in column 2). This reduces the voltage outputs from 31 to 0.
POWER FREQUENCY, 50
C 0.00025 1.0 0.0 0.0 { TEPCO simulation extended to Tmax = 1 sec
0.00025 .020 0.0 0.0
1 1 1 1 1 -1
5 5 20 20
TACS HYBRID
C OUTPUT
33VIG PPIG QQIG TM
C
88FLG1 = TIMEX .GE. 0.1
88FLG2 = TIMEX .GE. 0.5
88TM = 1.0+FLG1*0.2+FLG2*0.3
77TM 1.0
C /// G1 BRANCH VOLTAGE MONITOR ///
VAB +N400A -N400B 1.0
90N400A -1.0
90N400B -1.0
90N400C -1.0
91IG1A -1.0
91IG1B -1.0
91IG1C -1.0
C /// VOLTAGE FEED BACK ///
99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
C /// POWER MONITOR(I.G.) ///
99QIG1 = IG1A*(N400B-N400C)
99QIG2 = IG1B*(N400C-N400A)
99QIG3 = IG1C*(N400A-N400B)
99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
99PPIG = PIGEN/1000000.
99QQIG = QIGEN/1000000.
C
C *************** CONTROLL MODEL BLOCK **************
C
90N300A -1.0
90N300B -1.0
90N300C -1.0
91N250A -1.0
91N250B -1.0
91N250C -1.0
C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
99QCB1 = N250A*(N300B-N300C)
99QCB2 = N250B*(N300C-N300A)
99QCB3 = N250C*(N300A-N300B)
99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
C 33PACCB
C 33QACCB
C /// L300 P & Q ///
91N400AD -1.0
91N400BD -1.0
91N400CD -1.0
99QCB5 = N400AD*(N400B-N400C)
99QCB6 = N400BD*(N400C-N400A)
99QCB7 = N400CD*(N400A-N400B)
99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000.
99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000.
C 33PACCB1
C 33QACCB1
C
C /// TACS OUTPUT VARIABLES ///
C 33PPIG QQIG VIG
C /// TACS INITIAL CONDITIONS ///
77VIG 1.00478
77PPIG .5000
77QQIG -.232
77PIGEN 500000.
77QIGEN -232000.
77PACCB 0.0
77QACCB 6.25
BLANK card ends TACS data
$VINTAGE, 1
C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
C *** XS *** ( j0.012(pu) : 0.1663869437mH )
N100A N200A .1663869437
N100B N200B N100A N200A
N100C N200C N100A N200A
C *** XT *** ( j0.075(pu) : 1.039918398mH )
N200A N250A 1.039918398
N200B N250B N200A N250A
N200C N250C N200A N250A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N300A N400A 0.871200000 4.326060536
N300B N400B N300A N400A
N300C N400C N300A N400A
C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
N300A 174.2211826
N300B N300A
N300C N300A
C ***INSIDE LOAD***
N400A N400AD 176.7332792
N400B N400BDN400A N400AD
N400C N400CDN400A N400AD
N400ADN400A 16.56943663
N400BDN400B N400ADN400A
N400CDN400C N400ADN400A
$VINTAGE, 0
BLANK card terminating branch cards
N250A N300A -1.0 8.10
N250B N300B -1.0 8.10
N250C N300C -1.0 8.10
IG1A N400A MEASURING 1
IG1B N400B MEASURING 1
IG1C N400C MEASURING 1
N400AD MEASURING
N400BD MEASURING
N400CD MEASURING
BLANK card ending switch cards
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
14N100A 5388.87743 50.0 0.0 -1.0
14N100B 5388.87743 50.0 -120.0 -1.0
14N100C 5388.87743 50.0 -240.0 -1.0
C CLASS1
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56IG1A -0.785129
56IG1B
56IG1C
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 1 0.625 6.6 50.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.0113 0.0903 0.0093 0.114 4.3
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
1.12 0.0 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
C 0.1 1.1 TM
0.1 1.2
0.5 1.5
9999 { Special terminator for any Class-4 data (here, 2 cards)
C CLASS5
C | BUS|N|
C | A4 |I2
C 73PGEN 1
FINISH { Key word that ends data for this particular (the one and only) IM
BLANK card ending all source cards
C Total network loss P-loss by summing injections = 7.668433002012E+01
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03
C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03
C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03
C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04
C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04
C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04
C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00
C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00
C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00
C
C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
C N400A N400B N400C P Q ISA ISB ISC IRA IRB
C
C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS
C IRC WR ANG TQ TM VIG PPIG QQIG TM
C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state.
C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state.
C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state.
C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state.
C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state.
C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state.
C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state.
C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state.
C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state.
C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406
C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0
C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161
C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0
C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828
C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0
BLANK card ending output variables (none specified here)
C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657
C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0
C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406
C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0
C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0
C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0
C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657
C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0
C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02
C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0
1942.5 0. 25. BRANCH { Plot limits: (-6.796, 6.798)
IG1A N400A IG1B N400B IG1C N400C
BLANK card ending batch-mode plot cards
BEGIN NEW DATA CASE
C 4th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 3rd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C For background of the model, see top of 1st subcase. This third case is a
C simplification of IGTMT56.DAT which has just a single IM. Like the first
C two, this third subcase involves no transient. The phasor solution merely
C is continued for one cycle to confirm the sinusoidal steady state. Of the
C original 19 permanently-closed switches, only 10 could be eliminated without
C tampering with TACS control system logic. 6 of the 9 switches that remain
C are used to pass currents to TACS. As for outputs, these have been reduced
C drastically by elimination of the request for every node voltage (a 1-punch
C in column 2). This reduces the voltage outputs from 31 to 0.
POWER FREQUENCY, 50
C
C 0.00025 1.0 0.0 0.0 --- TEPCO's T-max was 1.0 seconds, note
0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state
1 1 1 1 1 -1
5 5 20 20
TACS HYBRID
C OUTPUT
33VIG PPIG QQIG TM
C
88FLG1 = TIMEX .GE. 0.1
88FLG2 = TIMEX .GE. 0.5
C 88TM = 1.0+FLG1*0.2+FLG2*0.3
88TM = 1.0+FLG1*0.4838+FLG2*0.3709
77TM 1.0
C /// G1 BRANCH VOLTAGE MONITOR ///
VAB +N400A -N400B 1.0
90N400A -1.0
90N400B -1.0
90N400C -1.0
91IG1A -1.0
91IG1B -1.0
91IG1C -1.0
C /// VOLTAGE FEED BACK ///
99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
C /// POWER MONITOR(I.G.) ///
99QIG1 = IG1A*(N400B-N400C)
99QIG2 = IG1B*(N400C-N400A)
99QIG3 = IG1C*(N400A-N400B)
99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
99PPIG = PIGEN/1000000.
99QQIG = QIGEN/1000000.
C
C *************** CONTROLL MODEL BLOCK **************
C
90N300A -1.0
90N300B -1.0
90N300C -1.0
91N250A -1.0
91N250B -1.0
91N250C -1.0
C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
99QCB1 = N250A*(N300B-N300C)
99QCB2 = N250B*(N300C-N300A)
99QCB3 = N250C*(N300A-N300B)
99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
C 33PACCB
C 33QACCB
C /// L300 P & Q ///
91N400AD -1.0
91N400BD -1.0
91N400CD -1.0
99QCB5 = N400AD*(N400B-N400C)
99QCB6 = N400BD*(N400C-N400A)
99QCB7 = N400CD*(N400A-N400B)
99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000.
99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000.
C 33PACCB1
C 33QACCB1
C
C /// TACS OUTPUT VARIABLES ///
C 33PPIG QQIG VIG
C /// TACS INITIAL CONDITIONS ///
77VIG 1.00478
77PPIG .5000
77QQIG -.232
77PIGEN 500000.
77QIGEN -232000.
77PACCB 0.0
77QACCB 6.25
C IM TORQUE
C 99TM =TIMEX
C 88TM =TIMEX .GE. 0.1
$DISABLE
C ---FOR.IG.No1(1/4)---
C ====== TIME OF MOTOR TO GEN MODE =====
77MSLIP -0.785129
11MOTGEN 0.0 -1.0
90BUSMG -1.0
99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100.
33MSLIP
99BUSMS =(TIMEX.GE.MOTGEN)*1592
$ENABLE
BLANK card ending TACS data
C /// NETWORK DATA ///
$VINTAGE, 1
C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
C *** XS *** ( j0.012(pu) : 0.1663869437mH )
N100A N200A .1663869437
N100B N200B N100A N200A
N100C N200C N100A N200A
C *** XT *** ( j0.075(pu) : 1.039918398mH )
N200A N250A 1.039918398
N200B N250B N200A N250A
N200C N250C N200A N250A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N300A N400A 0.871200000 4.326060536
N300B N400B N300A N400A
N300C N400C N300A N400A
C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
N300A 174.2211826
N300B N300A
N300C N300A
C ***INSIDE LOAD***
N400A N400AD 176.7332792
N400B N400BDN400A N400AD
N400C N400CDN400A N400AD
N400ADN400A 16.56943663
N400BDN400B N400ADN400A
N400CDN400C N400ADN400A
$VINTAGE, 0
C
$DISABLE
C ---FOR.IG.No1(2/4)---
C --------- MECHANICAL NETWORK COMPONENTS
C Tm=1.12 :M :2H ==> 7.09E+6 pole:1
C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
BUSMG 7.09E6
C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE
BUSMS BUSMG 1.0E-8
$ENABLE
BLANK card ending branch cards
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
C /// SWITCH DATA ///
N250A N300A -1.0 8.10
N250B N300B -1.0 8.10
N250C N300C -1.0 8.10
IG1A N400A MEASURING 1
IG1B N400B MEASURING 1
IG1C N400C MEASURING 1
N400AD MEASURING
N400BD MEASURING
N400CD MEASURING
BLANK card ending switch cards
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
$DISABLE
C ---FOR.IG.No1(3/4)---
14BUSMS -1 0.0001 0.0001 .0 -1.0
$ENABLE
C /// SOURCE DATA ///
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
14N100A 5388.87743 50.0 0.0 -1.0
14N100B 5388.87743 50.0 -120.0 -1.0
14N100C 5388.87743 50.0 -240.0 -1.0
C CLASS1
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56IG1A -0.785129 0.0
56IG1B
56IG1C
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 1 0.625 6.6 50.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.0113 0.0903 0.0093 0.114 4.3
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
1.12 0.0 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
TM
9999 { Special terminator for any Class-4 data of Type-56 IM
C CLASS5
C | BUS|N|
C | A4 |I2
C 73PGEN 1
FINISH
BLANK card ending source cards
C Total network loss P-loss by summing injections = 7.668433002012E+01
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03
C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03
C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03
C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04
C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04
C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04
C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00
C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00
C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00
C
C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
C N400A N400B N400C P Q ISA ISB ISC IRA IRB
C
C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS
C IRC WR ANG TQ TM VIG PPIG QQIG TM
C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state.
C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state.
C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state.
C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state.
C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state.
C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state.
C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state.
C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state.
C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state.
C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406
C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0
C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161
C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0
C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828
C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0
BLANK card ending names for output purposes (none here)
C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657
C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0
C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406
C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0
C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0
C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0
C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657
C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0
C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02
C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0
PRINTER PLOT { No need for vector plotting as all variables are smooth
C For variety, let's not repeat the 50-Hz ac sinusoids of the preceding two
C subcases. Instead, let's plot the rotor angle ANG which should be a
C perfect ramp if rotor speed is constant.
1942.5 0. 25. BRANCH { Plot limits: ( 0.000, 7.903 )
IM-1 ANG
BLANK card ending batch-mode plot cards
BEGIN NEW DATA CASE
C 5th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 4th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C For background of the model, see top of 1st subcase. This fourth case is a
C simplification of DCN12T56.DAT, so named because it is like DCN12 (in long
C form, DCNEW-12) except that the U.M. of that old standard test case has been
C replaced by a Type-56 IM. Unlike the preceding 3 IM illustrations, this one
C _does_ involve transients. A comment card of that old data states: "Apply
C a step to the input torque at 0.02 sec (step 100). Unlike the preceding
C illustrations, there is no TACS (control system modeling). Also, 1 phasor
C solution for initial conditions suffices (compare with the five of DCNEW-12,
C each indicated by 1 line of output that begins "Total network loss P-loss
C by summing injections = ..."). Of course, the compensation of DCNEW-12 is
C nowhere to be seen. The TEPCO IM does not use compensation. Also gone is
C the external rotor inertia that Prof. Hian Lauw modeled using a capacitor
C (that unforgetable electrical analog used with the U.M.). Machine variable
C names are are a little different, but are easily recognizable. For example,
C the PRINTER PLOT of shaft torque (UM-1, TQGEN) has become (IM-1, TQ).
C But the shape is the same: a slightly underdamped rise to a constant. In
C fact, the plot limits are nearly the same. DCNEW-12 has ( -4.168 0.389 )
C whereas this new IM simulation produces ( -4.168 0.388 ).
C About solution speed, WSM's old 133-MHz Pentium PC running real MS-DOS to
C support DBOS reports the following: DCNEW-12 TEPCO 56
C Seconds for overlays 1-5 : 2.088 2.033
C Seconds for overlays 6-11 : 0.220 0.220
C Seconds for overlays 12-15 : 0.165 0.165
C Seconds for time-step loop : 2.637 1.484
C Seconds after DELTAT-loop : 0.330 0.385
C --------------------
C Totals : 5.440 4.286
C Bob Schultz reported: 7.80 6.59
C (this final row is the total job time, written only on the screen). So,
C at least for the default tolerances used, there would seem to be no worry
C that the Type-56 TEPCO IM simulates substantially slower. The surprising
C preceding result shows faster simulation even though compensation is not
C being used. Who would have predicted this? WSM's congratulations to Mr.
C Cao for a job well done. WSM. 10 April 2006
PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
0.0002 0.900
1 1 1 1 1 -1
5 5 20 20 100 1 110 10 200 200
C -------- TRANSMISSION LINES
BUSA2 BUSAS2 1.0E-4 10.0 1
BUSB2 BUSBS2BUSA2 BUSAS2 1
BUSC2 BUSCS2BUSA2 BUSAS2 1
C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK
BUSAS2 1.0E+6
BUSBS2 BUSAS2
BUSCS2 BUSAS2
BLANK card ending all branch cards
BLANK card ending all (here, nonexistent) switch cards
C --------- SOURCES FOR INFINITE BUS
14BUSAS2 3000.0 60.0 0.0 -1.0
14BUSBS2 3000.0 60.0 -120.0 -1.0
14BUSCS2 3000.0 60.0 +120.0 -1.0
C ----------- Mechanical input torque, with value set by steady-state solution:
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56BUSA2 2.0
56BUSB2
56BUSC2
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 2 0.72 4.2 60.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.0168163 0.0184649 0.0044898 0.0184649 0.3628347
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
4.8361824 0.05425244 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
0.02 -0.070204
9999 { Special terminator for any Class-4 data of Type-56 IM
C CLASS5
C | BUS|N|
C | A4 |I2
FINISH
BLANK card ending all source cards
C Bus K Phasor node voltage Phasor branch current Power flow Power loss
C Bus M Rectangular Polar Rectangular Polar P and Q P and Q
C
C BUSA2 1784.3750743312 1928.5009532126 -194.050261711 376.33642682066 -291068.3111111 7.0814553076206
C -731.5200070041 -22.2916012 322.44937910011 121.0395584 -216709.4929969 266964.5756532
C
C BUSAS2 3000. 3000. 194.05026171096 376.33642682066 291075.39256644
C 0.0 0.0 -322.4493791001 -58.9604416 483674.06865017
C
C Total network loss P-loss by summing injections = 8.732396776993E+05
C Node Source node voltage Injected source current Injected source power
C name Rectangular Polar Rectangular Polar P and Q MVA and P.F.
C
C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808
C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356
C
C Column headings for the 17 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1
C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB
C
C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
C ISC IRA IRB IRC WR ANG TQ TM
C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485
C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683
C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612
C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683
C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295
C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683
BUSAS2BUSA2
BLANK card ending output requests (node voltages only, here)
C 4500 0.9 3000. 2139.14561 -18.05955 206.541811 -188.48226 -81144.03 -729966.82 -18.05955 206.541811
C -188.48226 9.2806015 -16.003198 6.72259646 188.318532 340.252637 -259.39252 -65.075052
C Variable maxima : 3000. 2142.5602 375.961666 376.274485 375.920036 38275.6628 -648850.48 375.961666 376.274485
C 375.920036 12.3551834 24.9125877 308.4899 189.143066 340.252637 387.73688 -65.075052
C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0
C .0222 .564 .3076 0.0 .22 0.9 .3086 .02
C Variable minima : -3000. -2142.6793 -376.12582 -375.68519 -376.20297 -873758.65 -769663.96 -376.12582 -375.68519
C -376.20297 -147.12317 -228.11722 -6.2184031 184.7252 1.57079633 -4168.4668 -3965.0683
C Times of minima : .025 .5584 .0194 .0082 .0138 .2E-3 .1896 .0194 .0082
C .0138 0.0 .0546 .3312 .0198 0.0 .0138 0.0
PRINTER PLOT
193 .1 0.0 1.0 IM-1 TQ { Axis limits: (-4.168, 0.388)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 6th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 5th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C For background of the model, see top of 1st subcase. This fifth case is a
C simplification of WSMATPIG.DAT which has just a single IM. Like the first
C three, this second subcase involves no transient. The phasor solution merely
C is continued for one cycle to confirm the sinusoidal steady state. Of the
C original 19 permanently-closed switches, only 10 could be eliminated without
C tampering with TACS control system logic. The 9 switches that remain are
C used to pass 6 currents and 3 voltages to TACS. As for outputs, these have
C been reduced drastically by elimination of the request for every node voltage
C (a 1-punch in column 2). This reduces the voltage outputs from 31 to 0. New
C is illustration of the declaration to size IM tables within the working space
C of List 25. This is immediately below. The Type-56 TEPCO IM and Prof. Hian
C Lauw's Type-19 U.M. share the same working space, so what is not used by one
C model is available for the other. There should be protection against any
C attempt to use more space than exists.
C LIM56 LIMTM { 32X, 2I8 data
ABSOLUTE I.M. DIMENSIONS 3 12 { 2 and 10 are the defaults
POWER FREQUENCY, 50
PRINTED NUMBER WIDTH, 11, 1, { This is the default choice; return to its use
C 0.00025 1.0 0.0 0.0 { Original TEPCO simulation was to 1.0 second
0.00025 .020 0.0 0.0
1 1 1 1 1 -1
5 5 20 20
TACS HYBRID
C OUTPUT
33VIG PPIG QQIG
C
C /// G1 BRANCH VOLTAGE MONITOR ///
VAB +N400A -N400B 1.0
90N400A -1.0
90N400B -1.0
90N400C -1.0
91IG1A -1.0
91IG1B -1.0
91IG1C -1.0
C /// VOLTAGE FEED BACK ///
99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0
C /// POWER MONITOR(I.G.) ///
99QIG1 = IG1A*(N400B-N400C)
99QIG2 = IG1B*(N400C-N400A)
99QIG3 = IG1C*(N400A-N400B)
99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0)
99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C
99PPIG = PIGEN/1000000.
99QQIG = QIGEN/1000000.
C
C *************** CONTROLL MODEL BLOCK **************
C
90N300A -1.0
90N300B -1.0
90N300C -1.0
91N250A -1.0
91N250B -1.0
91N250C -1.0
C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
99QCB1 = N250A*(N300B-N300C)
99QCB2 = N250B*(N300C-N300A)
99QCB3 = N250C*(N300A-N300B)
99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
C 33PACCB
C 33QACCB
C /// L300 P & Q ///
91N400AD -1.0
91N400BD -1.0
91N400CD -1.0
99QCB5 = N400AD*(N400B-N400C)
99QCB6 = N400BD*(N400C-N400A)
99QCB7 = N400CD*(N400A-N400B)
99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000.
99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000.
C 33PACCB1
C 33QACCB1
C
C /// TACS OUTPUT VARIABLES ///
C 33PPIG QQIG VIG
C /// TACS INITIAL CONDITIONS ///
77VIG 1.00478
77PPIG .5000
77QQIG -.232
77PIGEN 500000.
77QIGEN -232000.
77PACCB 0.0
77QACCB 6.25
$DISABLE
C ---FOR.IG.No1(1/4)---
C ====== TIME OF MOTOR TO GEN MODE =====
77MSLIP -0.785129
11MOTGEN 0.0 -1.0
90BUSMG -1.0
99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100.
33MSLIP
99BUSMS =(TIMEX.GE.MOTGEN)*1592
$ENABLE
BLANK card ending TACS data
C /// NETWORK DATA ///
$VINTAGE, 1
C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
C *** XS *** ( j0.012(pu) : 0.1663869437mH )
N100A N200A .1663869437
N100B N200B N100A N200A
N100C N200C N100A N200A
C *** XT *** ( j0.075(pu) : 1.039918398mH )
N200A N250A 1.039918398
N200B N250B N200A N250A
N200C N250C N200A N250A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N300A N400A 0.871200000 4.326060536
N300B N400B N300A N400A
N300C N400C N300A N400A
C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W
N300A 174.2211826
N300B N300A
N300C N300A
C ***INSIDE LOAD***
N400A N400AD 176.7332792
N400B N400BDN400A N400AD
N400C N400CDN400A N400AD
N400ADN400A 16.56943663
N400BDN400B N400ADN400A
N400CDN400C N400ADN400A
$VINTAGE, 0
C
$DISABLE
C ---FOR.IG.No1(2/4)---
C --------- MECHANICAL NETWORK COMPONENTS
C Tm=1.12 :M :2H ==> 7.09E+6 pole:1
C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
BUSMG 7.09E6
C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE
BUSMS BUSMG 1.0E-8
$ENABLE
BLANK card ending branch cards
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
C /// SWITCH DATA ///
N250A N300A -1.0 8.10
N250B N300B -1.0 8.10
N250C N300C -1.0 8.10
IG1A N400A MEASURING 1
IG1B N400B MEASURING 1
IG1C N400C MEASURING 1
N400AD MEASURING
N400BD MEASURING
N400CD MEASURING
BLANK card ending switch cards
C /// SOURCE DATA ///
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
14N100A 5388.87743 50.0 0.0 -1.0
14N100B 5388.87743 50.0 -120.0 -1.0
14N100C 5388.87743 50.0 -240.0 -1.0
C CLASS1
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56IG1A -0.785129 0.0
56IG1B
56IG1C
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 1 0.625 6.6 50.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.0113 0.0903 0.0093 0.114 4.3
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
1.12 0.0 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
C 0.02 .000264555
9999 { Special terminator for any Class-4 data of Type-56 IM
C CLASS5
C | BUS|N|
C | A4 |I2
C 73PGEN 1
FINISH { Key word that ends data for this particular (the one and only) IM
BLANK CARD ending source cards
C Total network loss P-loss by summing injections = 7.668433002012E+01
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03
C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03
C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03
C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04
C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04
C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04
C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00
C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00
C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00
C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
C Next 3 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
C N400A N400B N400C P Q ISA ISB ISC IRA IRB
C
C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS
C IRC WR ANG TQ TM VIG PPIG QQIG
C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406
C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232
C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161
C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518
C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828
C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613
BLANK CARD ending names for output (none here)
C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657
C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699
C Variable max:67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406
C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662
C Times of max: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0
C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01
C Variable min:-67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657
C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613
C Times of min: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02
C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3
PRINTER PLOT { No need for vector plotting as all variables are smooth
194 2. 0. 20. BRANCH { Plot limits: (-6.796, 6.798)
IM-1 ISA IM-1 ISB IM-1 ISC
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 7th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 6th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C For background of the model, see top of 1st subcase. This sixth subcase
C is a simplification of WSM12TAC.DAT which is like DCN12 (in long form,
C DCNEW-12) except that the U.M. of that old standard test case has been
C replaced by a Type-56 IM. The solution here seems to be the same as the 4th
C subcase except that TACS is involved, and is used to initiate the transient
C rather than such special capability within the Type-56 IM model itself.
PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
C ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60
0.0002 0.900
1 3 1 1 1 -1
5 5 20 20 100 100 500 500
TACS HYBRID
33TM { The only TACS output variable will be this torque TM, which is a step
88FLG1 = TIMEX .GE. 0.02
88TM = 1.0-FLG1*0.98358791
77TM 1.0
BLANK
C -------- TRANSMISSION LINES
BUSA2 BUSAS2 1.0E-4 10.0 1
BUSB2 BUSBS2BUSA2 BUSAS2 1
BUSC2 BUSCS2BUSA2 BUSAS2 1
C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK
BUSAS2 1.0E+6
BUSBS2 BUSAS2
BUSCS2 BUSAS2
BLANK card ending all branch cards
BLANK card ending all (here, nonexistent) switch cards
C --------- SOURCES FOR INFINITE BUS
14BUSAS2 3000.0 60.0 0.0 -1.0
14BUSBS2 3000.0 60.0 -120.0 -1.0
14BUSCS2 3000.0 60.0 +120.0 -1.0
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56BUSA2 2.0
56BUSB2
56BUSC2
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 2 0.72 4.2 60.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.0168163 0.0184649 0.0044898 0.0184649 0.3628347
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
4.8361824 0.05425244 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
0.02 -0.0702041 TM
9999
C CLASS5
C | BUS|N|
C | A4 |I2
FINISH { Key word that ends data for this particular (the one and only) IM
BLANK card ending all source cards
C Total network loss P-loss by summing injections = 8.732396776993E+05
C Node Source node voltage Injected source current Injected source power
C name Rectangular Polar Rectangular Polar P and Q MVA and P.F.
C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808
C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356
BUSAS2BUSA2 { Names of nodes for voltage output
C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1
C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB
C
C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 TACS
C ISC IRA IRB IRC WR ANG TQ TM TM
C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485
C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 1.0
C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612
C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 1.0
C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295
C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 1.0
BLANK card ending output requests (node voltages only, here)
C 4500 0.9 3000. 2139.14389 -18.055352 206.54004 -188.48469 -81125.234 -729968.29 -18.055352 206.54004
C -188.48469 9.31443983 -15.992732 6.67829219 188.318584 340.24976 -259.2923 -65.075057 .01641209
C Variable maxima : 3000. 2142.56391 375.961666 376.274485 375.939009 38282.079 -648850.48 375.961666 376.274485
C 375.939009 12.4231891 24.885902 308.4899 189.143064 340.24976 387.735739 -65.075057 1.0
C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0
C .0222 .5642 .308 0.0 .2204 0.9 .309 .0204 0.0
C Variable minima : -3000. -2142.6794 -376.12582 -375.69165 -376.20297 -873758.65 -769666.51 -376.12582 -375.69165
C -376.20297 -147.12317 -228.64774 -6.1496539 184.725187 1.57079633 -4168.4668 -3965.0683 .01641209
C Times of minima : .025 .5584 .0194 .025 .0138 .2E-3 .1896 .0194 .025
C .0138 0.0 .0548 .3318 .0202 0.0 .0138 0.0 .0202
PRINTER PLOT
193 .1 0.0 1.0 IM-1 TQ IM-1 TM { Axis limits: (-4.168, 0.388)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 8th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 7th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C For background of the model, see top of 1st subcase. This seventh case is a
C simplification of ATPSGIUM.DAT which has no Type-56 IM. Instead, it uses
C the U.M. to model an induction machine. It establishes the standard of
C comparison for the following subset which replaces the U.M. by a Type-56 IM.
C Like the first three subcases, this seventh one involves no transient. The
C phasor solution merely is continued for one cycle to confirm the sinusoidal
C steady state. Of the original 33 permanently-closed switches, only 12 could
C be eliminated without tampering with TACS control system logic, leaving 21.
C There is a lot of TACS modeling, and this required more storage than the
C usual 3 * default of List 19. So, NEW LIST SIZES has been added to expand
C the space for TACS while at the same time reducing a lot of other sizes.
C Different from previous illustrations, Type-58 S.M. modeling is used.
NEW LIST SIZES
70 60 50 20 250 50 300 0 0 0
0 20 0 0 0 0 0 0 12500 0
0 0 0
240000
ABSOLUTE TACS DIMENSIONS
C 40 170 200 50 120 2500 350 180
C Expand various TACS Tables on 1 April 2007. Force acceptance
C without worrying about probable waste that might be involved:
C 57 256 285 36 85 713 998 171 --- default
C Tacs table number 1 2 3 4 5 6 7 8
C Present figure 145 64 32 50 91 2229 212 165
C Program limit 230 65 80 50 170 8000 420 300
230 65 80 50 170 8000 420 300
PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
POWER FREQUENCY, 50
C 0.00025 10. 0.0 0.0 { Note TEPCO Tmax was 10 seconds
0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state
1 1 1 1 1 -1
5 5 20 20 100 100 500 500
TACS HYBRID
C OUTPUT
33VT4 PPG4 QQG4
33VT5 PPG5 QQG5
C
C /// G1 S.G. GOVERNOR MODEL G400///
00WGREF4 +PLUS1 1.0
99GOVNR4 = -WGREF4+WGFBK4
C
99GOV014 = GOVNR4*(1/0.04/0.1)
99GOV3R4 = GOV034*(1.0/0.1)
00GOV024 +GOV014 -GOV3R4 1.0
01GOV034 +GOV024 1.0
1.0
1.0
99GOV044 = PLUS1-GOV034
99GOV054 = GOV044*(1.0/0.6)
99TQTR4 = TQT4*(1.0/0.6)
00GOV064 +GOV054 -TQTR4 1.0
01TQT4 +GOV064 1.0 -0.02 1.1
1.0
1.0
C /// G1 S.G. GOVERNOR MODEL G500///
00WGREF5 +PLUS1 1.0
99GOVNR5 = -WGREF5+WGFBK5
C
99GOV015 = GOVNR5*(1/0.04/0.1)
99GOV3R5 = GOV035*(1.0/0.1)
00GOV025 +GOV015 -GOV3R5 1.0
01GOV035 +GOV025 1.0
1.0
1.0
99GOV045 = PLUS1-GOV035
99GOV055 = GOV045*(1.0/0.6)
99TQTR5 = TQT5*(1.0/0.6)
00GOV065 +GOV055 -TQTR5 1.0
01TQT5 +GOV065 1.0 -0.02 1.1
1.0
1.0
C
C /// G1 S.G. AVR MODEL G400///
C
77DROOP4 0.0
77DROP14 0.0
77DROP24 0.0
99DROP24 = DROP14*0.04
99PUFB14 = (PUFBK4+DROP24)*(1.0/0.035)
99VGFBR4 = VGFBK4*(1.0/0.035)
00PUFB24 +PUFB14 -VGFBR4 1.0
99LLIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*(-9999.)
99ULIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*9999.
01VGFBK4 +PUFB24 1.0 LLIM24ULIM24
1.0
1.0
C
99AVR014 = VGREF4-VGFBK4
99LLIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
99ULIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
01AVR024 +AVR014 1.0 LLIM14ULIM14
10.0
1.56
99AVR034 = AVR014*(10.0*1.56/1.56)
C
99AVR044 = AVR024+AVR034+GAIN4
99AVR054 = AVR044*(1.0/0.2)
99AVR7R4 = AVR074*(1.0/0.2)
99AVR064 = AVR054-AVR7R4
99LLIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*(-9999.)
99ULIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*9999.
01AVR074 +AVR064 1.0 LLIM34ULIM34
1.0
1.0
99EF4 = AVR074/GAIN4
C
C /// G1 S.G. AVR MODEL G500///
C
77DROOP5 0.0
77DROP15 0.0
77DROP25 0.0
99DROP25 = DROP15*0.04
99PUFB15 = (PUFBK5+DROP25)*(1.0/0.035)
99VGFBR5 = VGFBK5*(1.0/0.035)
00PUFB25 +PUFB15 -VGFBR5 1.0
99LLIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*(-9999.)
99ULIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*9999.
01VGFBK5 +PUFB25 1.0 LLIM25ULIM25
1.0
1.0
C
99AVR015 = VGREF5-VGFBK5
99LLIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
99ULIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
01AVR025 +AVR015 1.0 LLIM15ULIM15
10.0
1.56
99AVR035 = AVR015*(10.0*1.56/1.56)
C
99AVR045 = AVR025+AVR035+GAIN5
99AVR055 = AVR045*(1.0/0.2)
99AVR7R5 = AVR075*(1.0/0.2)
99AVR065 = AVR055-AVR7R5
99LLIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*(-9999.)
99ULIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*9999.
01AVR075 +AVR065 1.0 LLIM35ULIM35
1.0
1.0
99EF5 = AVR075/GAIN5
C
C /// SG BRANCH VOLTAGE MONITOR ///
VAB4 +N400A -N400B 1.0
VAB5 +N500A -N500B 1.0
90N400A -1.0
90N400B -1.0
90N400C -1.0
91GSG4A -1.0
91GSG4B -1.0
91GSG4C -1.0
91IM4A -1.0
91IM4B -1.0
91IM4C -1.0
90N500A -1.0
90N500B -1.0
90N500C -1.0
91GSG5A -1.0
91GSG5B -1.0
91GSG5C -1.0
92SGOMG4 -1.0
92SGOMG5 -1.0
C /// VOLTAGE FEED BACK G400///
99PUFBK4 = SQRT(N400A*N400A + N400B*N400B + N400C*N400C)/6600.0
00VT4 +PUFBK4 1.0
C /// POWER MONITOR(S.G.) ///
99QSG4A = GSG4A*(N400B-N400C)
99QSG4B = GSG4B*(N400C-N400A)
99QSG4C = GSG4C*(N400A-N400B)
99QSGEN4 = (QSG4A+QSG4B+QSG4C)/SQRT(3.0)
99PSGEN4 = N400A*GSG4A+N400B*GSG4B+N400C*GSG4C
99PPG4 = PSGEN4/1000000.
99QQG4 = QSGEN4/1000000.
C /// VOLTAGE FEED BACK G500///
99PUFBK5 = SQRT(N500A*N500A + N500B*N500B + N500C*N500C)/6600.0
00VT5 +PUFBK5 1.0
C /// POWER MONITOR(S.G.) ///
99QSG5A = GSG5A*(N500B-N500C)
99QSG5B = GSG5B*(N500C-N500A)
99QSG5C = GSG5C*(N500A-N500B)
99QSGEN5 = (QSG5A+QSG5B+QSG5C)/SQRT(3.0)
99PSGEN5 = N500A*GSG5A+N500B*GSG5B+N500C*GSG5C
99PPG5 = PSGEN5/1000000.
99QQG5 = QSGEN5/1000000.
C
99QIM1 = IM4A*(N400B-N400C)
99QIM2 = IM4B*(N400C-N400A)
99QIM3 = IM4C*(N400A-N400B)
99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0)
99PIM = N400A*IM4A+N400B*IM4B+N400C*IM4C
99PPIM = PIM
99QQIM = QIM
33PPG4 PPG5 QQG4 QQG5 PPIM QQIM
C *************** CONTROLL MODEL BLOCK **************
C /// G400 ///
99DROOP4 = (QSGEN4-QSGI4)/625000./VT4
00DROP14 +DROOP4
99WGFBK4 = SGOMG4/314.159265
99RPMSG4 = 30.0*SGOMG4/PI
C /// G500 ///
99DROOP5 = (QSGEN5-QSGI5)/625000./VT5
00DROP15 +DROOP5
99WGFBK5 = SGOMG5/314.159265
99RPMSG5 = 30.0*SGOMG5/PI
C
90N300A -1.0
90N300B -1.0
90N300C -1.0
91N250A -1.0
91N250B -1.0
91N250C -1.0
C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
99QCB1 = N250A*(N300B-N300C)
99QCB2 = N250B*(N300C-N300A)
99QCB3 = N250C*(N300A-N300B)
99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
C 33PACCB
C 33QACCB
C /// L300 P & Q ///
91N300AD -1.0
91N300BD -1.0
91N300CD -1.0
99PACCB3 = (N300A*N300AD+N300B*N300BD+N300C*N300CD)/1000.
C 33PACCB3
C /// L400 P & Q ///
91N400AD -1.0
91N400BD -1.0
91N400CD -1.0
99QCB4 = N400AD*(N400B-N400C)
99QCB5 = N400BD*(N400C-N400A)
99QCB6 = N400CD*(N400A-N400B)
99QACCB4 = ((QCB4+QCB5+QCB6)/SQRT(3.0))/1000.
99PACCB4 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000.
C 33PACCB4
C 33QACCB4
C /// L500 P & Q ///
91N500AD -1.0
91N500BD -1.0
91N500CD -1.0
99QCB7 = N500AD*(N500B-N500C)
99QCB8 = N500BD*(N500C-N500A)
99QCB9 = N500CD*(N500A-N500B)
99QACCB5 = ((QCB7+QCB8+QCB9)/SQRT(3.0))/1000000.
99PACCB5 = (N500A*N500AD+N500B*N500BD+N500C*N500CD)/1000000.
C 33PACCB5
C 33QACCB5
C
C 33EF4 EF5
C /// TACS GOV,AVR REF ///
11VGREF4 1.00758 -1.0
11VGREF5 1.01249 -1.0
C IF/AGLINE
11GAIN4 2.661027 -1.0
11GAIN5 2.655261 -1.0
11QSGI4 242000.0 -1.0
11QSGI5 242000.0 -1.0
C /// TACS INITIAL CONDITIONS ///
77PPIM -300000.
77QQIM -167000.
77PPG4 .500000
77QQG4 .242000
77VGREF4 1.00758
77VGFBK4 1.00758
77PUFBK4 1.00758
77VT4 1.00758
77VGREF5 1.01249
77PUFBK5 1.01249
77VGFBK5 1.01249
77VT5 1.01249
77PPG5 .500000
77QQG5 .242000
C Vini/0.035
77VGFBR4 28.78800
77PUFB14 28.78800
C GAIN4/0.2:2.661027
77AVR7R4 13.3051350
77AVR054 13.3051350
C GAIN4:
77AVR044 2.661027
77AVR074 2.661027
C G500
C Vini/0.035
77VGFBR5 28.9282857
77PUFB15 28.9282857
C GAIN5/0.2:2.655261
77AVR055 13.2763050
77AVR7R5 13.2763050
C GAIN5
77AVR045 2.655261
77AVR075 2.655261
C
77PUFB24 0.0
77AVR065 0.0
77RPMSG4 3000.0
77WGREF4 1.0
77WGFBK4 1.0
77SGOMG4 314.159265
77TQT4 1.0
77GOVNR4 0.0
77GOV014 0.0
77GOV024 0.0
77GOV034 0.0
77GOV3R4 0.0
77GOV044 1.0
77GOV054 1.66666667
77GOV064 0.0
77TQTR4 1.66666667
77AVR014 0.0
77AVR024 0.0
77AVR034 0.0
77AVR064 0.0
77EF4 1.0
77WGREF5 1.0
77WGFBK5 1.0
77SGOMG5 314.159265
77TQT5 1.0
77PUFB25 0.0
77RPMSG5 3000.0
77GOVNR5 0.0
77GOV015 0.0
77GOV025 0.0
77GOV035 0.0
77GOV3R5 0.0
77GOV045 1.0
77GOV055 1.66666667
77GOV065 0.0
77TQTR5 1.66666667
77AVR015 0.0
77AVR025 0.0
77AVR035 0.0
77EF5 1.0
C
C ---FOR.IM.No1(1/4)---
C ====== TIME OF MOTOR TO GEN MODE =====
77MSLIPM 2.719739
90BUSMGM -1.0
99MSLIPM = (1.0-BUSMGM/(2.*PI*50.))*100.
C 300kW/2*PI*F
99BUSMSM =954.9
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
BLANK CARD
C /// NETWORK DATA ///
$VINTAGE, 1
C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
C *** XS *** ( j0.012(pu) : 0.1663869437mH )
N100A N200A .1663869437
N100B N200B N100A N200A
N100C N200C N100A N200A
C *** XT *** ( j0.075(pu) : 1.039918398mH )
N200A N250A 1.039918398
N200B N250B N200A N250A
N200C N250C N200A N250A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N300A N400A 0.871200000 4.326060536
N300B N400B N300A N400A
N300C N400C N300A N400A
C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW
N300A N300AD 108.8762611
N300B N300BDN300A N300AD
N300C N300CDN300A N300AD
C ***INSIDE LOAD***
N400A N400AD 986.5321930
N400B N400BDN400A N400AD
N400C N400CDN400A N400AD
N400ADN400A 1727.590765
N400BDN400B N400ADN400A
N400CDN400C N400ADN400A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N400A N500A 0.871200000 4.326060536
N400B N500B N400A N500A
N400C N500C N400A N500A
C ***INSIDE LOAD*** ( )
N500A N500AD 177.9930622
N500B N500BDN500A N500AD
N500C N500CDN500A N500AD
N500ADN500A 588.6919231
N500BDN500B N500ADN500A
N500CDN500C N500ADN500A
$VINTAGE, 0
C ---FOR.IM.No1(2/4)---
C Tm=1.97 :M :2H ==> 7.49E+6 pole:1 1.97*0.375MVA/(2*PI*F)**2
BUSMGM 7.49E6
C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE
BUSMSMBUSMGM 1.0E-8
BLANK CARD
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
C /// SWITCH DATA ///
N250A N300A -1.0 10.0
N250B N300B -1.0 10.0
N250C N300C -1.0 10.0
GSG4A N400A MEASURING
GSG4B N400B MEASURING
GSG4C N400C MEASURING
IM4A N400A MEASURING 1
IM4B N400B MEASURING 1
IM4C N400C MEASURING 1
GSG5A N500A MEASURING
GSG5B N500B MEASURING
GSG5C N500C MEASURING
N300AD MEASURING
N300BD MEASURING
N300CD MEASURING
N400AD MEASURING
N400BD MEASURING
N400CD MEASURING
N500AD MEASURING
N500BD MEASURING
N500CD MEASURING
BLANK CARD
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
C /// SOURCE DATA ///
C ---FOR.IM.No1(3/4)---
14BUSMSM-1 0.0001 0.0001 .0 -1.0
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
14N100A 5388.87743 50.0 0.0 -1.0
14N100B 5388.87743 50.0 -120.0 -1.0
14N100C 5388.87743 50.0 -240.0 -1.0
C *** 59 TYPE S.G. G400 ***
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.00758pu)
58GSG4A 5429.72512 50.0 0.724
58GSG4B
58GSG4C
TOLERANCES 50.0 1.E-4 1.E-5 10
PARAMETER FITTING 1.0
C 1-2:NM NUMBER OF MASS ON THE SHAFT
C 3-4:KM MASS (OF MOTOR OR GENERATOR) NUMBER
C 5-6:KE EXCITER MASS NUMBER
C RMVA:VOLT-AMPERE RATING UNIT IS MVA
C RKV :RATED LINE-TO-LINE VOLTAGE UNIT IS KV
C AGLINE:VALUE OF THE FIELD CURRENT IN AMPERES WHICH WILL PRODUCE RATED ARMATURE VOLTAGE.
C S1,S2:SATURATION CURVE
C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
1 1 2 0.625 6.6 +2000.
BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
1.55 0.0 0.032 0.295 0.1032
C 1-2:ML MASS NUMBER
C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
1 1.0 5.91314E-4
BLANK CARD TERMINATING MASS CARDS
$DISABLE
1 14
21
31
51
$ENABLE
BLANK CARD
71EF4
72TQT4 1
74SGOMG4 2
FINISH
C *** 59 TYPE S.G. G500 ***
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.01249p.u.)
58GSG5A 5456.18451 50.0 1.16
58GSG5B
58GSG5C
TOLERANCES 50.0 1.E-4 1.E-5 10
PARAMETER FITTING 1.0
C 1-2:NM NUMBER OF MASS ON THE SHAFT
C 3-4:KM MASS (OF MOTOR OR GENERATOR) NUMBER
C 5-6:KE EXCITER MASS NUMBER
C RMVA:VOLT-AMPERE RATING UNIT IS MVA
C RKV :RATED LINE-TO-LINE VOLTAGE UNIT IS KV
C AGLINE:VALUE OF THE FIELD CURRENT IN AMPERES WHICH WILL PRODUCE RATED ARMATURE VOLTAGE.
C S1,S2:SATURATION CURVE
C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
1 1 2 0.625 6.6 +2000.
BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
1.55 0.0 0.032 0.295 0.1032
C 1-2:ML MASS NUMBER
C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
1 1.0 5.91314E-4
BLANK CARD TERMINATING MASS CARDS
$DISABLE
1 14
21
31
51
$ENABLE
BLANK CARD
71EF5
72TQT5 1
74SGOMG5 2
FINISH
C --------- UM TYPE 4 (IND.MACH) DATA
19
1 1
BLANK CARD ENDING CLASS 1 UM DATA CARDS
C UM-1 MACHINE TABLE :
C --I----1----I----2----I----3----I----4----I----5----I----6
4 BUSMGM 1 0.0001
0. 0.95
0.95
C slip=2.719739 v=1.00758pu
2.719739 0.0 BUSMSM
C UM-1 COIL TABLE
7.202 0.0277 IM4A
7.202 0.0277 IM4B
7.202 0.0277 IM4C
3.601 0.0277
3.601 0.0277
3.601 0.0277
BLANK CARD ending U.M. data
BLANK CARD ending sources
C Total network loss P-loss by summing injections = 6.465526932823E+06
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C N250A N300A 2.51255296E-03 -1.55308344E+00 1.55308548E+00 -89.9073 6.76991997E+00 4.18423111E+03
C N250B N300B -1.34626599E+00 7.74365788E-01 1.55308548E+00 150.0927 6.76991997E+00 4.18423111E+03
C N250C N300C 1.34375344E+00 7.78717657E-01 1.55308548E+00 30.0927 6.76991997E+00 4.18423111E+03
C GSG4A N400A 6.17654057E+01 -2.89353708E+01 6.82071918E+01 -25.1018 1.66678584E+05 8.06681202E+04
C GSG4B N400B -5.59414690E+01 -3.90227250E+01 6.82071918E+01 -145.1018 1.66678584E+05 8.06681202E+04
C GSG4C N400C -5.82393666E+00 6.79580958E+01 6.82071918E+01 94.8982 1.66678584E+05 8.06681202E+04
C IM4A N400A -3.70884429E+01 2.00063377E+01 4.21403149E+01 151.6566 -9.99956771E+04 -5.55824247E+04
C IM4B N400B 3.58702181E+01 2.21163649E+01 4.21403149E+01 31.6566 -9.99956771E+04 -5.55824247E+04
C IM4C N400C 1.21822477E+00 -4.21227026E+01 4.21403149E+01 -88.3434 -9.99956771E+04 -5.55824247E+04
C GSG5A N500A 6.16852582E+01 -2.83272148E+01 6.78785841E+01 -24.6656 1.66684112E+05 8.06702138E+04
C GSG5B N500B -5.53747168E+01 -3.92573933E+01 6.78785841E+01 -144.6656 1.66684112E+05 8.06702138E+04
C GSG5C N500C -6.31054146E+00 6.75846081E+01 6.78785841E+01 95.3344 1.66684112E+05 8.06702138E+04
C N300AD 4.94900247E+01 -8.74559074E-06 4.94900247E+01 0.0000 0.00000000E+00 0.00000000E+00
C N300BD -2.47450199E+01 -4.28596143E+01 4.94900247E+01 -120.0000 0.00000000E+00 0.00000000E+00
C N300CD -2.47450048E+01 4.28596230E+01 4.94900247E+01 120.0000 0.00000000E+00 0.00000000E+00
C N400AD 5.62982343E+00 -9.93396450E+00 1.14183432E+01 -60.4587 0.00000000E+00 0.00000000E+00
C N400BD -1.14179773E+01 9.14121415E-02 1.14183432E+01 179.5413 0.00000000E+00 0.00000000E+00
C N400CD 5.78815390E+00 9.84255236E+00 1.14183432E+01 59.5413 0.00000000E+00 0.00000000E+00
C N500AD 3.12448854E+01 -2.88753581E+01 4.25444376E+01 -42.7430 0.00000000E+00 0.00000000E+00
C N500BD -4.06292364E+01 -1.26211854E+01 4.25444376E+01 -162.7430 0.00000000E+00 0.00000000E+00
C N500CD 9.38435098E+00 4.14965436E+01 4.25444376E+01 77.2570 0.00000000E+00 0.00000000E+00
IM4A { Name just one node for voltage output. This provides variety
C Column headings for the 16 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Next 12 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time IM4A IM4A IM4B IM4C TACS TACS TACS TACS TACS
C N400A N400B N400C VT4 PPG4 QQG4 VT5 PPG5
C
C TACS TACS TACS TACS TACS TACS TACS
C QQG5 PPG4 PPG5 QQG4 QQG5 PPIM QQIM
C 0 0.0 5429.29164 -37.088443 35.8702181 1.21822477 1.00758 0.5 .242 1.01249 0.5
C .242 0.5 0.5 .242 .242 -300000. -167000.
C 1 .25E-3 5408.04051 -38.546862 34.0271397 4.51972263 1.00774091 .497417362 .242085856 1.01270569 .497427839
C .242085941 .497417362 .497427839 .242085856 .242085941 -300060.54 -166784.28
C 2 .5E-3 5352.10311 -39.767667 31.973725 7.79394194 1.00765329 .497480094 .242098254 1.01261362 .497474823
C .242095109 .497480094 .497474823 .242098254 .242095109 -300055.21 -166785.1
BLANK CARD ending node voltage outputs
C 80 .02 5429.77262 -37.07804 35.8620845 1.21595556 1.00766919 .497422726 .242679222 1.01261812 .497466894
C .242802626 .497422726 .497466894 .242679222 .242802626 -299930.2 -166731.59
C Variable maxima : 5429.77262 42.1298428 42.1257726 42.1525059 1.00774091 0.5 .244128008 1.01270569 0.5
C .243805907 0.5 0.5 .244128008 .243805907 -299835.77 -166731.59
C Times of maxima : .02 .0115 .01825 .005 .25E-3 0.0 .009 .25E-3 0.0
C .00925 0.0 0.0 .009 .00925 .01475 .02
C Variable minima : -5429.9429 -42.142689 -42.161443 -42.109874 1.00758 .496996734 .242 1.01249 .497205573
C .242 .496996734 .497205573 .242 .242 -300179.44 -167081.7
C Times of minima : .01 .0015 .00825 .015 0.0 .01525 0.0 0.0 .01525
C 0.0 .01525 .01525 0.0 0.0 .00375 .008
PRINTER PLOT { No need for vector plotting as all variables are smooth
194 2. 0. 20. BRANCH { Plot limits: (-4.216, 4.215)
IM4A N400A IM4B N400B IM4C N400C
BLANK CARD ending plot cards
BEGIN NEW DATA CASE
C 9th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006.
C 8th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine).
C For background of the model, see top of 1st subcase. This eighth case is a
C simplification of ATPSGI58.DAT which replaces the U.M. of the 7th subcase
C by a Type-56 IM. Like the 7th subcase, this one involves no transient. The
C phasor solution merely is continued for one cycle to confirm the sinusoidal
C steady state. Of the original 33 permanently-closed switches, only 12 could
C be eliminated without tampering with TACS control system logic, leaving 21.
C There is a lot of TACS modeling, and this required more storage than the
C usual 3 * default of List 19. So, NEW LIST SIZES has been added to expand
C the space for TACS while at the same time reducing a lot of other sizes.
NEW LIST SIZES
70 60 50 20 250 50 300 0 0 0
0 30 0 0 0 0 0 0 12500 0
0 0 0
240000
ABSOLUTE TACS DIMENSIONS
C 40 170 200 50 120 2500 350 180
C Expand various TACS Tables on 1 April 2007. Force acceptance
C without worrying about probable waste that might be involved:
C 57 256 285 36 85 713 998 171 --- default
C Tacs table number 1 2 3 4 5 6 7 8
C Present figure 145 64 32 49 89 2190 207 163
C Program limit 230 65 80 50 170 8000 420 300
230 65 80 50 170 8000 420 300
PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough
POWER FREQUENCY, 50
C 0.00025 10. 0.0 0.0 { Note TEPCO Tmax was 10 seconds
0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state
1 1 1 1 1 -1
5 5 20 20
TACS HYBRID
C OUTPUT
33VT4 PPG4 QQG4
33VT5 PPG5 QQG5
C
C /// G1 S.G. GOVERNOR MODEL G400///
00WGREF4 +PLUS1 1.0
99GOVNR4 = -WGREF4+WGFBK4
C
99GOV014 = GOVNR4*(1/0.04/0.1)
99GOV3R4 = GOV034*(1.0/0.1)
00GOV024 +GOV014 -GOV3R4 1.0
01GOV034 +GOV024 1.0
1.0
1.0
99GOV044 = PLUS1-GOV034
99GOV054 = GOV044*(1.0/0.6)
99TQTR4 = TQT4*(1.0/0.6)
00GOV064 +GOV054 -TQTR4 1.0
01TQT4 +GOV064 1.0 -0.02 1.1
1.0
1.0
C /// G1 S.G. GOVERNOR MODEL G500///
00WGREF5 +PLUS1 1.0
99GOVNR5 = -WGREF5+WGFBK5
C
99GOV015 = GOVNR5*(1/0.04/0.1)
99GOV3R5 = GOV035*(1.0/0.1)
00GOV025 +GOV015 -GOV3R5 1.0
01GOV035 +GOV025 1.0
1.0
1.0
99GOV045 = PLUS1-GOV035
99GOV055 = GOV045*(1.0/0.6)
99TQTR5 = TQT5*(1.0/0.6)
00GOV065 +GOV055 -TQTR5 1.0
01TQT5 +GOV065 1.0 -0.02 1.1
1.0
1.0
C
C /// G1 S.G. AVR MODEL G400///
C
77DROOP4 0.0
77DROP14 0.0
77DROP24 0.0
99DROP24 = DROP14*0.04
99PUFB14 = (PUFBK4+DROP24)*(1.0/0.035)
99VGFBR4 = VGFBK4*(1.0/0.035)
00PUFB24 +PUFB14 -VGFBR4 1.0
99LLIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*(-9999.)
99ULIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*9999.
01VGFBK4 +PUFB24 1.0 LLIM24ULIM24
1.0
1.0
C
99AVR014 = VGREF4-VGFBK4
99LLIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
99ULIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
01AVR024 +AVR014 1.0 LLIM14ULIM14
10.0
1.56
99AVR034 = AVR014*(10.0*1.56/1.56)
C
99AVR044 = AVR024+AVR034+GAIN4
99AVR054 = AVR044*(1.0/0.2)
99AVR7R4 = AVR074*(1.0/0.2)
99AVR064 = AVR054-AVR7R4
99LLIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*(-9999.)
99ULIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*9999.
01AVR074 +AVR064 1.0 LLIM34ULIM34
1.0
1.0
99EF4 = AVR074/GAIN4
C
C /// G1 S.G. AVR MODEL G500///
C
77DROOP5 0.0
77DROP15 0.0
77DROP25 0.0
99DROP25 = DROP15*0.04
99PUFB15 = (PUFBK5+DROP25)*(1.0/0.035)
99VGFBR5 = VGFBK5*(1.0/0.035)
00PUFB25 +PUFB15 -VGFBR5 1.0
99LLIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*(-9999.)
99ULIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*9999.
01VGFBK5 +PUFB25 1.0 LLIM25ULIM25
1.0
1.0
C
99AVR015 = VGREF5-VGFBK5
99LLIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0)
99ULIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0)
01AVR025 +AVR015 1.0 LLIM15ULIM15
10.0
1.56
99AVR035 = AVR015*(10.0*1.56/1.56)
C
99AVR045 = AVR025+AVR035+GAIN5
99AVR055 = AVR045*(1.0/0.2)
99AVR7R5 = AVR075*(1.0/0.2)
99AVR065 = AVR055-AVR7R5
99LLIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*(-9999.)
99ULIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*9999.
01AVR075 +AVR065 1.0 LLIM35ULIM35
1.0
1.0
99EF5 = AVR075/GAIN5
C
C /// SG BRANCH VOLTAGE MONITOR ///
VAB4 +N400A -N400B 1.0
VAB5 +N500A -N500B 1.0
90N400A -1.0
90N400B -1.0
90N400C -1.0
91GSG4A -1.0
91GSG4B -1.0
91GSG4C -1.0
91IM4A -1.0
91IM4B -1.0
91IM4C -1.0
90N500A -1.0
90N500B -1.0
90N500C -1.0
91GSG5A -1.0
91GSG5B -1.0
91GSG5C -1.0
92SGOMG4 -1.0
92SGOMG5 -1.0
C /// VOLTAGE FEED BACK G400///
99PUFBK4 = SQRT(N400A*N400A + N400B*N400B + N400C*N400C)/6600.0
00VT4 +PUFBK4 1.0
C /// POWER MONITOR(S.G.) ///
99QSG4A = GSG4A*(N400B-N400C)
99QSG4B = GSG4B*(N400C-N400A)
99QSG4C = GSG4C*(N400A-N400B)
99QSGEN4 = (QSG4A+QSG4B+QSG4C)/SQRT(3.0)
99PSGEN4 = N400A*GSG4A+N400B*GSG4B+N400C*GSG4C
99PPG4 = PSGEN4/1000000.
99QQG4 = QSGEN4/1000000.
C /// VOLTAGE FEED BACK G500///
99PUFBK5 = SQRT(N500A*N500A + N500B*N500B + N500C*N500C)/6600.0
00VT5 +PUFBK5 1.0
C /// POWER MONITOR(S.G.) ///
99QSG5A = GSG5A*(N500B-N500C)
99QSG5B = GSG5B*(N500C-N500A)
99QSG5C = GSG5C*(N500A-N500B)
99QSGEN5 = (QSG5A+QSG5B+QSG5C)/SQRT(3.0)
99PSGEN5 = N500A*GSG5A+N500B*GSG5B+N500C*GSG5C
99PPG5 = PSGEN5/1000000.
99QQG5 = QSGEN5/1000000.
C
99QIM1 = IM4A*(N400B-N400C)
99QIM2 = IM4B*(N400C-N400A)
99QIM3 = IM4C*(N400A-N400B)
99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0)
99PIM = N400A*IM4A+N400B*IM4B+N400C*IM4C
99PPIM = PIM
99QQIM = QIM
33PPG4 PPG5 QQG4 QQG5 PPIM QQIM
C *************** CONTROLL MODEL BLOCK **************
C /// G400 ///
99DROOP4 = (QSGEN4-QSGI4)/625000./VT4
00DROP14 +DROOP4
99WGFBK4 = SGOMG4/314.159265
99RPMSG4 = 30.0*SGOMG4/PI
C /// G500 ///
99DROOP5 = (QSGEN5-QSGI5)/625000./VT5
00DROP15 +DROOP5
99WGFBK5 = SGOMG5/314.159265
99RPMSG5 = 30.0*SGOMG5/PI
C
90N300A -1.0
90N300B -1.0
90N300C -1.0
91N250A -1.0
91N250B -1.0
91N250C -1.0
C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) ///
99QCB1 = N250A*(N300B-N300C)
99QCB2 = N250B*(N300C-N300A)
99QCB3 = N250C*(N300A-N300B)
99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000.
99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000.
C 33PACCB
C 33QACCB
C /// L300 P & Q ///
91N300AD -1.0
91N300BD -1.0
91N300CD -1.0
99PACCB3 = (N300A*N300AD+N300B*N300BD+N300C*N300CD)/1000.
C 33PACCB3
C /// L400 P & Q ///
91N400AD -1.0
91N400BD -1.0
91N400CD -1.0
99QCB4 = N400AD*(N400B-N400C)
99QCB5 = N400BD*(N400C-N400A)
99QCB6 = N400CD*(N400A-N400B)
99QACCB4 = ((QCB4+QCB5+QCB6)/SQRT(3.0))/1000.
99PACCB4 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000.
C 33PACCB4
C 33QACCB4
C /// L500 P & Q ///
91N500AD -1.0
91N500BD -1.0
91N500CD -1.0
99QCB7 = N500AD*(N500B-N500C)
99QCB8 = N500BD*(N500C-N500A)
99QCB9 = N500CD*(N500A-N500B)
99QACCB5 = ((QCB7+QCB8+QCB9)/SQRT(3.0))/1000000.
99PACCB5 = (N500A*N500AD+N500B*N500BD+N500C*N500CD)/1000000.
C 33PACCB5
C 33QACCB5
C
C 33EF4 EF5
C /// TACS GOV,AVR REF ///
11VGREF4 1.00758 -1.0
11VGREF5 1.01249 -1.0
C IF/AGLINE
11GAIN4 2.661027 -1.0
11GAIN5 2.655261 -1.0
11QSGI4 242000.0 -1.0
11QSGI5 242000.0 -1.0
C /// TACS INITIAL CONDITIONS ///
77PPIM -300000.
77QQIM -167000.
77PPG4 .500000
77QQG4 .242000
77VGREF4 1.00758
77VGFBK4 1.00758
77PUFBK4 1.00758
77VT4 1.00758
77VGREF5 1.01249
77PUFBK5 1.01249
77VGFBK5 1.01249
77VT5 1.01249
77PPG5 .500000
77QQG5 .242000
C Vini/0.035
77VGFBR4 28.78800
77PUFB14 28.78800
C GAIN4/0.2:2.661027
77AVR7R4 13.3051350
77AVR054 13.3051350
C GAIN4:
77AVR044 2.661027
77AVR074 2.661027
C G500
C Vini/0.035
77VGFBR5 28.9282857
77PUFB15 28.9282857
C GAIN5/0.2:2.655261
77AVR055 13.2763050
77AVR7R5 13.2763050
C GAIN5
77AVR045 2.655261
77AVR075 2.655261
C
77PUFB24 0.0
77AVR065 0.0
77RPMSG4 3000.0
77WGREF4 1.0
77WGFBK4 1.0
77SGOMG4 314.159265
77TQT4 1.0
77GOVNR4 0.0
77GOV014 0.0
77GOV024 0.0
77GOV034 0.0
77GOV3R4 0.0
77GOV044 1.0
77GOV054 1.66666667
77GOV064 0.0
77TQTR4 1.66666667
77AVR014 0.0
77AVR024 0.0
77AVR034 0.0
77AVR064 0.0
77EF4 1.0
77WGREF5 1.0
77WGFBK5 1.0
77SGOMG5 314.159265
77TQT5 1.0
77PUFB25 0.0
77RPMSG5 3000.0
77GOVNR5 0.0
77GOV015 0.0
77GOV025 0.0
77GOV035 0.0
77GOV3R5 0.0
77GOV045 1.0
77GOV055 1.66666667
77GOV065 0.0
77TQTR5 1.66666667
77AVR015 0.0
77AVR025 0.0
77AVR035 0.0
77EF5 1.0
C
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
BLANK CARD
C /// NETWORK DATA ///
$VINTAGE, 1
C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF)
C *** XS *** ( j0.012(pu) : 0.1663869437mH )
N100A N200A .1663869437
N100B N200B N100A N200A
N100C N200C N100A N200A
C *** XT *** ( j0.075(pu) : 1.039918398mH )
N200A N250A 1.039918398
N200B N250B N200A N250A
N200C N250C N200A N250A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N300A N400A 0.871200000 4.326060536
N300B N400B N300A N400A
N300C N400C N300A N400A
C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW
N300A N300AD 108.8762611
N300B N300BDN300A N300AD
N300C N300CDN300A N300AD
C ***INSIDE LOAD***
N400A N400AD 986.5321930
N400B N400BDN400A N400AD
N400C N400CDN400A N400AD
N400ADN400A 1727.590765
N400BDN400B N400ADN400A
N400CDN400C N400ADN400A
C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH )
N400A N500A 0.871200000 4.326060536
N400B N500B N400A N500A
N400C N500C N400A N500A
C ***INSIDE LOAD*** ( )
N500A N500AD 177.9930622
N500B N500BDN500A N500AD
N500C N500CDN500A N500AD
N500ADN500A 588.6919231
N500BDN500B N500ADN500A
N500CDN500C N500ADN500A
$VINTAGE, 0
BLANK CARD
C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
C /// SWITCH DATA ///
N250A N300A -1.0 10.0
N250B N300B -1.0 10.0
N250C N300C -1.0 10.0
GSG4A N400A MEASURING
GSG4B N400B MEASURING
GSG4C N400C MEASURING
IM4A N400A MEASURING 1
IM4B N400B MEASURING 1
IM4C N400C MEASURING 0
GSG5A N500A MEASURING
GSG5B N500B MEASURING
GSG5C N500C MEASURING
N300AD MEASURING
N300BD MEASURING
N300CD MEASURING
N400AD MEASURING
N400BD MEASURING
N400CD MEASURING
N500AD MEASURING
N500BD MEASURING
N500CD MEASURING
BLANK CARD
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.0pu:5388.87743v)
14N100A 5388.87743 50.0 0.0 -1.0
14N100B 5388.87743 50.0 -120.0 -1.0
14N100C 5388.87743 50.0 -240.0 -1.0
C *** 59 TYPE S.G. G400 ***
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.00758pu)
58GSG4A 5429.72512 50.0 0.724
58GSG4B 5429.72512 50.0 -119.276
58GSG4C 5429.72512 50.0 -239.276
TOLERANCES 50.0 1.E-4 1.E-5 10
PARAMETER FITTING 1.0
C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
1 1 2 0.625 6.6 +2000.
BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
1.55 0.0 0.032 0.295 0.1032
C 1-2:ML MASS NUMBER
C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
1 1.0 5.91314E-4
BLANK CARD TERMINATING MASS CARDS
BLANK CARD
71EF4
72TQT4 1
74SGOMG4 2
FINISH
C *** 59 TYPE S.G. G500 ***
C <BUS----<VOLT-----<FREQ-----<ANGLE----(1.01249p.u.)
58GSG5A 5456.18451 50.0 1.16
58GSG5B 5456.18451 50.0 -118.84
58GSG5C 5456.18451 50.0 -238.84
TOLERANCES 50.0 1.E-4 1.E-5 10
PARAMETER FITTING 1.0
C ....<--- :NP NUMBER OF POLES<RMVA-----<RKV------<AGLINE---<S1-------<S2-------
1 1 2 0.625 6.6 +2000.
BLANK CARD Q-AXIS SATURATION DATA IS ZERO SETTING
C Ra----->XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''----->
0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21
C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn------->
1.55 0.0 0.032 0.295 0.1032
C 1-2:ML MASS NUMBER
C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2))....
C <EXTRS----<HICO-----<DSR------<DSM------<HSP------<DSD------<BUS--
1 1.0 5.91314E-4
BLANK CARD TERMINATING MASS CARDS
BLANK CARD
71EF5
72TQT5 1
74SGOMG5 2
FINISH
C |BUS | | SLIP || TM0 |
C | A6 | | E10.6 || E10.6 |
56IM4A 2.719739 0.0
56IM4B
56IM4C
C CLASS2
C TY <NP>< RMVA >< RSKV >< FREQ >
0 1 0.375 6.6 50.0
C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs |
C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 |
0.062 0.075 0.031 0.075 2.58
C CLASS3
C | M || D || EMSOM | |NM|P|E|M|
C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2
1.97 0.0 1 1 1
C CLASS4
C T || TM | |TBUS|
C E10.6 || E10.6 | | A6 |
C 0.02 .000264555
9999
C CLASS5
C | BUS|N|
C | A4 |I2
FINISH
BLANK CARD ending source cards
C Total network loss P-loss by summing injections = 1.000121334411E+06
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C N250A N300A 2.51255296E-03 -1.55308344E+00 1.55308548E+00 -89.9073 6.76991997E+00 4.18423111E+03
C N250B N300B -1.34626599E+00 7.74365788E-01 1.55308548E+00 150.0927 6.76991997E+00 4.18423111E+03
C N250C N300C 1.34375344E+00 7.78717657E-01 1.55308548E+00 30.0927 6.76991997E+00 4.18423111E+03
C GSG4A N400A 6.17662457E+01 -2.88761587E+01 6.81828545E+01 -25.0564 1.66682896E+05 8.05074090E+04
C GSG4B N400B -5.58906098E+01 -3.90530585E+01 6.81828545E+01 -145.0564 1.66682896E+05 8.05074090E+04
C GSG4C N400C -5.87563589E+00 6.79292172E+01 6.81828545E+01 94.9436 1.66682896E+05 8.05074090E+04
C IM4A N400A -3.70892829E+01 1.99471256E+01 4.21129757E+01 151.7280 -9.99999888E+04 -5.54217136E+04
C IM4B N400B 3.58193589E+01 2.21466984E+01 4.21129757E+01 31.7280 -9.99999888E+04 -5.54217136E+04
C IM4C N400C 1.26992399E+00 -4.20938240E+01 4.21129757E+01 -88.2720 -9.99999888E+04 -5.54217136E+04
C GSG5A N500A 6.16852582E+01 -2.83272148E+01 6.78785841E+01 -24.6656 1.66684112E+05 8.06702138E+04
C GSG5B N500B -5.53747168E+01 -3.92573933E+01 6.78785841E+01 -144.6656 1.66684112E+05 8.06702138E+04
C GSG5C N500C -6.31054146E+00 6.75846081E+01 6.78785841E+01 95.3344 1.66684112E+05 8.06702138E+04
C N300AD 4.94900247E+01 -8.74559074E-06 4.94900247E+01 0.0000 0.00000000E+00 0.00000000E+00
C N300BD -2.47450199E+01 -4.28596143E+01 4.94900247E+01 -120.0000 0.00000000E+00 0.00000000E+00
C N300CD -2.47450048E+01 4.28596230E+01 4.94900247E+01 120.0000 0.00000000E+00 0.00000000E+00
C N400AD 5.62982343E+00 -9.93396450E+00 1.14183432E+01 -60.4587 0.00000000E+00 0.00000000E+00
C N400BD -1.14179773E+01 9.14121415E-02 1.14183432E+01 179.5413 0.00000000E+00 0.00000000E+00
C N400CD 5.78815390E+00 9.84255236E+00 1.14183432E+01 59.5413 0.00000000E+00 0.00000000E+00
C N500AD 3.12448854E+01 -2.88753581E+01 4.25444376E+01 -42.7430 0.00000000E+00 0.00000000E+00
C N500BD -4.06292364E+01 -1.26211854E+01 4.25444376E+01 -162.7430 0.00000000E+00 0.00000000E+00
C N500CD 9.38435098E+00 4.14965436E+01 4.25444376E+01 77.2570 0.00000000E+00 0.00000000E+00
C Column headings for the 26 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C Next 2 output variables are branch currents (flowing from the upper node to the lower node);
C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair).
C Next 12 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time IM4A IM4B IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1
C N400A N400B P Q ISA ISB ISC IRA IRB
C
C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS
C IRC WR ANG TQ TM VT4 PPG4 QQG4 VT5
C
C TACS TACS TACS TACS TACS TACS TACS TACS
C PPG5 QQG5 PPG4 PPG5 QQG4 QQG5 PPIM QQIM
C 0 0.0 -37.089283 35.8193589 -299999.97 -166265.14 -37.089283 35.8193589 1.26992399 -3.3020869 -30.789557
C 34.0916437 305.614953 1.57079633 -893.94476 -893.94476 1.00758 0.5 .242 1.01249
C 0.5 .242 0.5 0.5 .242 .242 -300000. -167000.
C 1 .25E-3 -38.530914 33.9675872 -299996.42 -166298.13 -38.530914 33.9675872 4.56332653 -3.2222768 -30.827832
C 34.0501083 305.61495 1.64720007 -893.73559 -893.94476 1.00780767 .497455836 .241616478 1.01275637
C .497447005 .242093747 .497455836 .497447005 .241616478 .242093747 -299996.42 -166298.13
C 2 .5E-3 -39.73648 31.9076793 -299887.98 -166278.12 -39.73648 31.9076793 7.82880046 -3.1419208 -30.867462
C 34.0093826 305.61494 1.7236038 -893.55897 -893.94476 1.00766614 .49747865 .241619001 1.01263793
C .497469507 .242096958 .49747865 .497469507 .241619001 .242096958 -299887.98 -166278.12
BLANK card ending names for output variables (none here)
C 80 .02 -37.095485 35.7780641 -300088.5 -165860.96 -37.095485 35.7780641 1.31742052 3.16334023 -34.036289
C 30.8729489 305.612633 7.68306549 -893.8068 -893.94476 1.00768225 .49747812 .242225269 1.01263226
C .49750592 .242807717 .49747812 .49750592 .242225269 .242807717 -300088.5 -165860.96
C Variable maxima : 42.0472768 42.088666 -299449.52 -165559.49 42.0472768 42.088666 42.0016152 3.16334023 -30.789557
C 34.0916437 305.614953 7.68306549 -892.13839 -893.94476 1.00780767 0.5 .243498409 1.01275637
C 0.5 .243680337 0.5 0.5 .243498409 .243680337 -299449.52 -165559.49
C Times of maxima : .0115 .01825 .0045 .00975 .0115 .01825 .005 .02 0.0
C 0.0 0.0 .02 .00475 0.0 .25E-3 0.0 .009 .25E-3
C 0.0 .00925 0.0 0.0 .009 .00925 .0045 .00975
C Variable minima : -42.060504 -42.029619 -300088.5 -166298.13 -42.060504 -42.029619 -42.056444 -3.3020869 -34.036289
C 30.8729489 305.612633 1.57079633 -893.94476 -893.94476 1.00758 .497098096 .241616478 1.01249
C .497272118 .242 .497098096 .497272118 .241616478 .242 -300088.5 -167000.
C Times of minima : .0015 .00825 .02 .25E-3 .0015 .00825 .015 0.0 .02
C .02 .02 0.0 0.0 0.0 0.0 .01525 .25E-3 0.0
C .01525 0.0 .01525 .01525 .25E-3 0.0 .02 0.0
PRINTER PLOT { No need for vector plotting as all variables are smooth
194 2. 0. 20. BRANCH { Plot limits: (-4.206, 4.209)
IM4A N400A IM4B N400B IM-1 ISC
C Note the replacement of the 3rd switch current by the 3rd stator current in
C the preceding plot. They should be the same. Compare with the preceding
C subcase for which the plot of switch currents had limits (-4.216, 4.215).
BLANK CARD ending plot cards
BEGIN NEW DATA CASE
BLANK
EOF
Note: ATPIGUM.DAT is being ignored because it does not involve any
Type-56 IM modeling.
IGIMUM.DAT is being ignored for the same reason. This accounts
for all 10 of the data cases tested by RUNIM.BAT; 8 have been
retained and massaged whereas 2 have been ignored.
|