From b18347ffc9db9641e215995edea1c04c363b2bdf Mon Sep 17 00:00:00 2001 From: Angelo Rossi Date: Wed, 21 Jun 2023 12:04:16 +0000 Subject: Initial commit. --- benchmarks/dcn12.dat | 2334 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2334 insertions(+) create mode 100644 benchmarks/dcn12.dat (limited to 'benchmarks/dcn12.dat') diff --git a/benchmarks/dcn12.dat b/benchmarks/dcn12.dat new file mode 100644 index 0000000..872f311 --- /dev/null +++ b/benchmarks/dcn12.dat @@ -0,0 +1,2334 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-12 +C Automatic steady-state initialization for Type-4 U.M. (a 3-phase induction +C machine). Power coils are non-compensated. Rotor coils have external +C resistances. Apply a step to the input torque at 0.02 sec (step 100). +C Rating: 720 KVA, 4.2 KV, 4-pole ( 85.67% efficiency at 0.846 pf +C and 14.0E+3 NM.; Kipp torque = 45.09E+2 NM, slip = 2.5%) +C 4 May 2006, append the 8 subcases of IM.DAT making a total of 9. This +C is to document use of the new Type-56 Induction Machine from TEPCO. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60 +0.0002 0.900 + 1 2 0 0 1 -1 + 5 5 20 20 100 1 110 10 200 200 +C --------- ROTOR EXTERNAL RESISTANCES + BUSA1 1.E-10 1 + BUSB1 BUSA1 1 + BUSC1 BUSA1 1 +C -------- TRANSMISSION LINES + BUSA2 BUSAS2 1.0E-4 10.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 1 + BUSC2 BUSCS2BUSA2 BUSAS2 1 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 1.0E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +C --------- MECHANICAL NETWORK COMPONENTS + BUSMG BUSMGR .4548 1 + BUSMGR BUSMG BUSMGR + BUSMG 9.8E+7 { Rotor mass = capacitance } 1 +C ------- Near-zero resistance to measure electromechanical torque (a current): + BUSMS BUSMG 1.0E-6 1 +BLANK card ending all branch cards +BLANK card ending all (here, nonexistent) switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C ----------- Mechanical input torque, with value set by steady-state solution: +14BUSMS -1 0.000001 0.00001 -1.0 +C -------- Step change to input torque occurs at time .020 seconds (Step 100): +14BUSMS -1 3900.0 0.00001 +0.02 +C ----------------------- Type-4 U.M. (3-phase induction machine) data follows: +19 UM + 1 1 +BLANK card ending Class-1 U.M. data +C UM-1 MACH TABLE + 4 111BUSMG 2 0.0188 + 0.02358 + 0.02358 +2.0 BUSMS +C UM-1 COIL TABLE + BUSA2 1 +0.412 0.0012 BUSB2 1 +0.412 0.0012 BUSC2 1 +0.110 0.0012 BUSB1 1 +0.110 0.0012 BUSC1 1 + BUSA1 1 +BLANK card ending all U.M. data cards +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 7.171020819312E+05 +C Total network loss P-loss by summing injections = 8.732408663441E+05 +C Total network loss P-loss by summing injections = 1.223706646064E+07 +C Total network loss P-loss by summing injections = 1.223706596064E+07 +C Total network loss P-loss by summing injections = 1.223707382155E+07 +C Zero-th time step documents initial conditions, cut on right edge: + BUSAS2BUSA2 BUSA1 BUSMG +C Step Time BUSAS2 BUSA2 BUSA1 BUSMG BUSA1 +C TERRA +C +C BUSB2 BUSC2 BUSMG BUSMG BUSMS +C BUSBS2 BUSCS2 BUSMGR TERRA BUSMG +C +C UM-1 UM-1 UM-1 UM-1 UM-1 +C IPA IPB IPC IE1 IE2 +C 0 0.0 3000. 1784.374676 .1471233E-7 184.725648 147.1233291 +C 376.2746526 -182.224238 203.0844855 0.0 -3965.07077 +C -194.050415 376.2746526 -182.224238 0.0 0.0 +C 1 .2E-3 2991.476701 1834.404076 .1467203E-7 184.7256479 146.7202619 +C 374.6920464 -156.915064 203.0844854 -.092695802 -3965.07077 +C -217.776982 374.6920464 -156.915064 161.7505543 -308.470816 +BLANK card ending output requests (node voltages only, here) +C For some unknown reason, these agree with VAX to only 4 or 5 digits, often: +C 4500 0.9 3000. 2139.363254 -.929034E-9 188.3186232 -9.29033753 +C 206.6043639 -188.546337 207.0345461 -12.7407524 -65.0707659 +C -18.0580266 206.6043639 -188.546337 15.99476461 -6.70442708 +C Variable max : 3000. 2142.192646 .1471233E-7 189.143889 147.1233291 +C 376.2746526 376.1164039 207.9418304 3898.215212 -65.0707659 +C 376.0215626 376.2746526 376.1164039 228.3663773 6.204481463 +C Times of max : 0.0 .5668 0.0 .2202 0.0 +C 0.0 .0222 .2202 .0202 .8786 +C .011 0.0 .0222 .0544 .3316 +C Variable min : -3000. -2142.13595 -.123856E-8 184.7253125 -12.385633 +C -375.871946 -376.188889 203.0841166 -661.121518 -3965.07077 +C -376.241942 -375.871946 -376.188889 -24.9469672 -362.34101 +C Times of min : .075 .5418 .564 .02 .564 +C .0082 .0138 .02 .3084 0.0 +C .0194 .0082 .0138 .3076 0.0 + PRINTER PLOT + 193 .1 0.0 0.9 UM-1 TQGEN { Axis limits: (-4.168, 0.389) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 1st of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C Begin several illustrations of TEPCO (Tokyo Electric Power Company in Japan) +C IM (Induction Machine) model that entered the UTPF on 7 April 2006. The +C coding is by Cao Xinglin of TEPCO Systems Corp, as communicated to BPA via +C Atsushi Kurita of TEPCO. Number 56 is the new ATP source type code that is +C to appear in columns 1-2 at the beginning of IM data. First, ATPIG56.DAT +C The TEPCO data had 21 permanently-closed switches of which only 6 have been +C retained. The remainder were removed without any confusion or difficulty +C in order to drop nonessenttial and unrelated complexity. The six switches +C that have been retained serve to pass armature currents of the two parallel +C machines to TACS. The phasor solution output of the switches clearly shows +C opposite directions for the power flow: positive (out) of the generator IG1 +C and negative (into) the motor IM1. The phasor solution provides very good +C initialization, and simulation of this continues for 1.25 cycles in the dT +C loop to demonstrate stability of the steady state. Most machine variables +C are nearly constant as extrema clearly demonstrate. The original TEPCO data +C simulated to 10 seconds (5000 cycles) to demonstrate longer-term stability, +C but this has been drastically shortened to save computer time. +C G400 PG=500kW,QG=-232kVar +C L300 PL=250kW +C L400 PL=200kW,QL=-259kVar +C M400 PL=50kW,QL=27kVar +C MODE G400:LV +PRINTED NUMBER WIDTH, 11, 1, { Restore values that are common within STARTUP +POWER FREQUENCY, 50., { So one cycle is 20 msec, note +C 0.00025 10. 0.0 0.0 --- TEPCO's T-max was 10 seconds, note + 0.00025 .025 0.0 0.0 { 1.25 cycles is enough to verify steady state + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +TACS HYBRID +33VIG PIGEN QIGEN PIM QIM +C +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +91IM1A -1.0 +91IM1B -1.0 +91IM1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +99QIM1 = IM1A*(N400B-N400C) +99QIM2 = IM1B*(N400C-N400A) +99QIM3 = IM1C*(N400A-N400B) +99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0) +99PIM = N400A*IM1A+N400B*IM1B+N400C*IM1C +99PPIM = PIM/1000000. +99QQIM = QIM/1000000. +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG PPIM QQIM +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PIM -50000. +77QIM -27600. +C +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +BLANK card ends TACS data +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N300A 1.039918398 + N200B N300B N200A N300A + N200C N300C N200A N300A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** ( 1.00478) + N400A 221.1645148 + N400B N400A + N400C N400A + N400A 18.56624062 + N400B N400A + N400C N400A +$VINTAGE, 0 +C +BLANK card ends electric network branches +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// +C Only 6 of the 21 original switches are retained. This allows separate +C names for the two IM busses even though the two are in parallel. In +C fact, IG1A is the same as IM1A, etc. for B and C: + IG1A N400A MEASURING + IG1B N400B MEASURING + IG1C N400C MEASURING + IM1A N400A MEASURING + IM1B N400B MEASURING + IM1C N400C MEASURING +BLANK card ends switches +C /// SOURCE DATA /// +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH { Key word that ends data for this particular (the 1st of 2) IM +C |BUS | | SLIP || TM0 | +C | A6 | | E10.6 || E10.6 | +56IM1A 2.736296 0.0 +56IM1B +56IM1C +C CLASS2 +C TY < RMVA >< RSKV >< FREQ > + 0 1 0.0625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.062 0.075 0.031 0.075 2.58 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.97 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH { Key word that ends data for this particular (the 2nd of 2) IM +BLANK card terminating ATP source cards +C Total network loss P-loss by summing injections = 8.693842500266E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C IG1A N400A 6.13352336E+01 2.91346671E+01 6.79031642E+01 25.4080 1.66673295E+05 -7.75683916E+04 +C IG1B N400B -5.43625497E+00 -6.76852040E+01 6.79031642E+01 -94.5920 1.66673295E+05 -7.75683916E+04 +C IG1C N400C -5.58989787E+01 3.85505369E+01 6.79031642E+01 145.4080 1.66673295E+05 -7.75683916E+04 +C IM1A N400A -6.18285824E+00 3.35138837E+00 7.03274769E+00 151.5403 -1.66673368E+04 -9.20498467E+03 +C IM1B N400B 5.99381659E+00 3.67881812E+00 7.03274769E+00 31.5403 -1.66673368E+04 -9.20498467E+03 +C IM1C N400C 1.89041650E-01 -7.03020649E+00 7.03274769E+00 -88.4597 -1.66673368E+04 -9.20498467E+03 +C +C Column headings for the 29 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 24 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 5 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C P Q ISA ISB ISC IRA IRB IRC WR ANG +C +C IM-1 IM-1 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 +C TQ TM P Q ISA ISB ISC IRA IRB IRC +C +C IM-2 IM-2 IM-2 IM-2 TACS TACS TACS TACS TACS +C WR ANG TQ TM VIG PIGEN QIGEN PIM QIM +C *** Phasor I(0) = 6.1335234E+01 Switch "IG1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = -5.4362550E+00 Switch "IG1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = -5.5898979E+01 Switch "IG1C " to "N400C " closed in the steady-state. +C *** Phasor I(0) = -6.1828582E+00 Switch "IM1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = 5.9938166E+00 Switch "IM1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = 1.8904165E-01 Switch "IM1C " to "N400C " closed in the steady-state. +C 0 0.0 500019.886 -232705.17 61.3352336 -5.436255 -55.898979 -11.518219 60.1819687 -48.66375 316.625821 1.57079633 +C 1608.95108 1608.95108 -50002.011 -27614.954 -6.1828582 5.99381659 .18904165 -.58621064 -5.1267795 5.71299012 +C 305.562938 1.57079633 -148.95686 -148.95686 1.0047 500000. -232000. -50000. -27600. +C 1 .25E-3 500145.619 -232725.27 58.8756131 -.11553737 -58.760076 -11.479526 60.1817443 -48.702218 316.625814 1.64995278 +C 1609.32268 1608.95108 -49988.051 -27614.135 -6.4248212 5.68592478 .738896446 -.57282271 -5.1329244 5.70574715 +C 305.562934 1.64718706 -148.91265 -148.95686 1.00481726 500145.619 -232725.27 -49988.051 -27614.135 +C 2 .5E-3 500279.634 -232738.55 56.0518759 5.20801006 -61.259886 -11.440363 60.1804072 -48.740044 316.625795 1.72910923 +C 1609.6677 1608.95108 -49976.514 -27614.492 -6.6274021 5.34328199 1.28412013 -.55938995 -5.1392418 5.69863173 +C 305.562921 1.72357779 -148.87311 -148.95686 1.00485913 500279.634 -232738.55 -49976.514 -27614.492 +BLANK card ending names of ATP output variables (none for this case) +C 100 .025 500666.577 -231710.46 -29.009861 67.689943 -38.680082 -7.5010766 58.7427696 -51.241693 316.626251 9.48642268 +C 1610.05009 1608.95108 -50027.397 -27567.289 -3.3454225 -3.6840913 7.02951382 .767497344 -5.7887829 5.02128552 +C 305.560218 9.20981993 -148.95965 -148.95686 1.00485987 500666.577 -231710.46 -50027.397 -27567.289 +C Variable max: 501351.888 -230444.64 67.8036384 67.9774295 67.7273265 -7.5010766 60.1819687 -48.66375 316.62671 9.48642268 +C 1612.20306 1608.95108 -49882.18 -27466.013 7.01961078 7.02912135 7.02951382 .767497344 -5.1267795 5.71299012 +C 305.562938 9.20981993 -148.58255 -148.95686 1.0049302 501351.888 -230444.64 -49882.18 -27466.013 +C Times of max: .005 .01 .0185 .00525 .012 .025 0.0 0.0 .021 .025 +C .0045 0.0 .0045 .009 .0115 .01825 .025 .025 0.0 0.0 +C 0.0 .025 .00475 0.0 .1E-2 .005 .01 .0045 .009 +C Variable min: 499173.557 -232738.55 -67.822794 -67.743906 -67.960287 -11.518219 58.7427696 -51.241693 316.623142 1.57079633 +C 1605.49808 1608.95108 -50027.634 -27615.163 -7.0288686 -7.0157093 -7.0236834 -.58621064 -5.7887829 5.02128552 +C 305.560211 1.57079633 -148.96079 -148.95686 1.0047 499173.557 -232738.55 -50027.634 -27615.163 +C Times of min: .015 .5E-3 .0085 .01525 .002 0.0 .025 .025 .009 0.0 +C .0145 0.0 .024 .75E-3 .0215 .00825 .015 0.0 .025 .025 +C .02175 0.0 .02375 0.0 0.0 .015 .5E-3 .024 .75E-3 + PRINTER PLOT { No need for vector plotting as all variables are smooth + 1942.5 0. 25. BRANCH { Plot limits: (-7.029, 7.029) + IM-2 ISA IM-2 ISB IM-2 ISC +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 3rd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 2nd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This second case is a +C simplification of ATPIGT56.DAT which has just a single IM. Like the first +C subcase, this second one involves no transient. The phasor solution merely +C is continued for one cycle to confirm the sinusoidal steady state. Of the +C original 19 permanently-closed switches, only 10 could be eliminated without +C tampering with TACS control system logic. The 9 switches that remain are +C used to pass currents to TACS. As for outputs, these have been reduced +C drastically by elimination of the request for every node voltage (a 1-punch +C in column 2). This reduces the voltage outputs from 31 to 0. +POWER FREQUENCY, 50 +C 0.00025 1.0 0.0 0.0 { TEPCO simulation extended to Tmax = 1 sec + 0.00025 .020 0.0 0.0 + 1 1 1 1 1 -1 + 5 5 20 20 +TACS HYBRID +C OUTPUT +33VIG PPIG QQIG TM +C +88FLG1 = TIMEX .GE. 0.1 +88FLG2 = TIMEX .GE. 0.5 +88TM = 1.0+FLG1*0.2+FLG2*0.3 +77TM 1.0 +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +C +C *************** CONTROLL MODEL BLOCK ************** +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB5 = N400AD*(N400B-N400C) +99QCB6 = N400BD*(N400C-N400A) +99QCB7 = N400CD*(N400A-N400B) +99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. +99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. +C 33PACCB1 +C 33QACCB1 +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG VIG +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PACCB 0.0 +77QACCB 6.25 +BLANK card ends TACS data +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** + N400A N400AD 176.7332792 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 16.56943663 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +$VINTAGE, 0 +BLANK card terminating branch cards + N250A N300A -1.0 8.10 + N250B N300B -1.0 8.10 + N250C N300C -1.0 8.10 + IG1A N400A MEASURING 1 + IG1B N400B MEASURING 1 + IG1C N400C MEASURING 1 + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING +BLANK card ending switch cards +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.1 1.1 TM + 0.1 1.2 + 0.5 1.5 + 9999 { Special terminator for any Class-4 data (here, 2 cards) +C CLASS5 +C | BUS|N| +C | A4 |I2 +C 73PGEN 1 + FINISH { Key word that ends data for this particular (the one and only) IM +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 7.668433002012E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 +C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 +C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 +C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 +C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 +C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 +C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 +C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 +C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 +C +C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B N400C P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS +C IRC WR ANG TQ TM VIG PPIG QQIG TM +C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state. +C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state. +C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state. +C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state. +C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state. +C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state. +C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state. +C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 +C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0 +C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 +C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0 +C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 +C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0 +BLANK card ending output variables (none specified here) +C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 +C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0 +C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 +C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0 +C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 +C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0 +C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 +C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0 +C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 +C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0 + 1942.5 0. 25. BRANCH { Plot limits: (-6.796, 6.798) + IG1A N400A IG1B N400B IG1C N400C +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 4th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 3rd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This third case is a +C simplification of IGTMT56.DAT which has just a single IM. Like the first +C two, this third subcase involves no transient. The phasor solution merely +C is continued for one cycle to confirm the sinusoidal steady state. Of the +C original 19 permanently-closed switches, only 10 could be eliminated without +C tampering with TACS control system logic. 6 of the 9 switches that remain +C are used to pass currents to TACS. As for outputs, these have been reduced +C drastically by elimination of the request for every node voltage (a 1-punch +C in column 2). This reduces the voltage outputs from 31 to 0. +POWER FREQUENCY, 50 +C +C 0.00025 1.0 0.0 0.0 --- TEPCO's T-max was 1.0 seconds, note + 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state + 1 1 1 1 1 -1 + 5 5 20 20 +TACS HYBRID +C OUTPUT +33VIG PPIG QQIG TM +C +88FLG1 = TIMEX .GE. 0.1 +88FLG2 = TIMEX .GE. 0.5 +C 88TM = 1.0+FLG1*0.2+FLG2*0.3 +88TM = 1.0+FLG1*0.4838+FLG2*0.3709 +77TM 1.0 +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +C +C *************** CONTROLL MODEL BLOCK ************** +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB5 = N400AD*(N400B-N400C) +99QCB6 = N400BD*(N400C-N400A) +99QCB7 = N400CD*(N400A-N400B) +99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. +99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. +C 33PACCB1 +C 33QACCB1 +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG VIG +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PACCB 0.0 +77QACCB 6.25 +C IM TORQUE +C 99TM =TIMEX +C 88TM =TIMEX .GE. 0.1 +$DISABLE +C ---FOR.IG.No1(1/4)--- +C ====== TIME OF MOTOR TO GEN MODE ===== +77MSLIP -0.785129 +11MOTGEN 0.0 -1.0 +90BUSMG -1.0 +99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100. +33MSLIP +99BUSMS =(TIMEX.GE.MOTGEN)*1592 +$ENABLE +BLANK card ending TACS data +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** + N400A N400AD 176.7332792 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 16.56943663 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +$VINTAGE, 0 +C +$DISABLE +C ---FOR.IG.No1(2/4)--- +C --------- MECHANICAL NETWORK COMPONENTS +C Tm=1.12 :M :2H ==> 7.09E+6 pole:1 +C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 + BUSMG 7.09E6 +C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE + BUSMS BUSMG 1.0E-8 +$ENABLE +BLANK card ending branch cards +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 8.10 + N250B N300B -1.0 8.10 + N250C N300C -1.0 8.10 + IG1A N400A MEASURING 1 + IG1B N400B MEASURING 1 + IG1C N400C MEASURING 1 + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING +BLANK card ending switch cards +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +$DISABLE +C ---FOR.IG.No1(3/4)--- +14BUSMS -1 0.0001 0.0001 .0 -1.0 +$ENABLE +C /// SOURCE DATA /// +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | + TM + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 +C 73PGEN 1 + FINISH +BLANK card ending source cards +C Total network loss P-loss by summing injections = 7.668433002012E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 +C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 +C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 +C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 +C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 +C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 +C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 +C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 +C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 +C +C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B N400C P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS +C IRC WR ANG TQ TM VIG PPIG QQIG TM +C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state. +C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state. +C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state. +C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state. +C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state. +C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state. +C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state. +C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 +C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0 +C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 +C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0 +C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 +C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0 +BLANK card ending names for output purposes (none here) +C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 +C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0 +C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 +C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0 +C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 +C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0 +C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 +C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0 +C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 +C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0 + PRINTER PLOT { No need for vector plotting as all variables are smooth +C For variety, let's not repeat the 50-Hz ac sinusoids of the preceding two +C subcases. Instead, let's plot the rotor angle ANG which should be a +C perfect ramp if rotor speed is constant. + 1942.5 0. 25. BRANCH { Plot limits: ( 0.000, 7.903 ) + IM-1 ANG +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 5th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 4th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This fourth case is a +C simplification of DCN12T56.DAT, so named because it is like DCN12 (in long +C form, DCNEW-12) except that the U.M. of that old standard test case has been +C replaced by a Type-56 IM. Unlike the preceding 3 IM illustrations, this one +C _does_ involve transients. A comment card of that old data states: "Apply +C a step to the input torque at 0.02 sec (step 100). Unlike the preceding +C illustrations, there is no TACS (control system modeling). Also, 1 phasor +C solution for initial conditions suffices (compare with the five of DCNEW-12, +C each indicated by 1 line of output that begins "Total network loss P-loss +C by summing injections = ..."). Of course, the compensation of DCNEW-12 is +C nowhere to be seen. The TEPCO IM does not use compensation. Also gone is +C the external rotor inertia that Prof. Hian Lauw modeled using a capacitor +C (that unforgetable electrical analog used with the U.M.). Machine variable +C names are are a little different, but are easily recognizable. For example, +C the PRINTER PLOT of shaft torque (UM-1, TQGEN) has become (IM-1, TQ). +C But the shape is the same: a slightly underdamped rise to a constant. In +C fact, the plot limits are nearly the same. DCNEW-12 has ( -4.168 0.389 ) +C whereas this new IM simulation produces ( -4.168 0.388 ). +C About solution speed, WSM's old 133-MHz Pentium PC running real MS-DOS to +C support DBOS reports the following: DCNEW-12 TEPCO 56 +C Seconds for overlays 1-5 : 2.088 2.033 +C Seconds for overlays 6-11 : 0.220 0.220 +C Seconds for overlays 12-15 : 0.165 0.165 +C Seconds for time-step loop : 2.637 1.484 +C Seconds after DELTAT-loop : 0.330 0.385 +C -------------------- +C Totals : 5.440 4.286 +C Bob Schultz reported: 7.80 6.59 +C (this final row is the total job time, written only on the screen). So, +C at least for the default tolerances used, there would seem to be no worry +C that the Type-56 TEPCO IM simulates substantially slower. The surprising +C preceding result shows faster simulation even though compensation is not +C being used. Who would have predicted this? WSM's congratulations to Mr. +C Cao for a job well done. WSM. 10 April 2006 +PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough +0.0002 0.900 + 1 1 1 1 1 -1 + 5 5 20 20 100 1 110 10 200 200 +C -------- TRANSMISSION LINES + BUSA2 BUSAS2 1.0E-4 10.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 1 + BUSC2 BUSCS2BUSA2 BUSAS2 1 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 1.0E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +BLANK card ending all branch cards +BLANK card ending all (here, nonexistent) switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C ----------- Mechanical input torque, with value set by steady-state solution: +C |BUS | | SLIP || TM0 | +C | A6 | | E10.6 || E10.6 | +56BUSA2 2.0 +56BUSB2 +56BUSC2 +C CLASS2 +C TY < RMVA >< RSKV >< FREQ > + 0 2 0.72 4.2 60.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0168163 0.0184649 0.0044898 0.0184649 0.3628347 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 4.8361824 0.05425244 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | + 0.02 -0.070204 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH +BLANK card ending all source cards +C Bus K Phasor node voltage Phasor branch current Power flow Power loss +C Bus M Rectangular Polar Rectangular Polar P and Q P and Q +C +C BUSA2 1784.3750743312 1928.5009532126 -194.050261711 376.33642682066 -291068.3111111 7.0814553076206 +C -731.5200070041 -22.2916012 322.44937910011 121.0395584 -216709.4929969 266964.5756532 +C +C BUSAS2 3000. 3000. 194.05026171096 376.33642682066 291075.39256644 +C 0.0 0.0 -322.4493791001 -58.9604416 483674.06865017 +C +C Total network loss P-loss by summing injections = 8.732396776993E+05 +C Node Source node voltage Injected source current Injected source power +C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. +C +C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808 +C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356 +C +C Column headings for the 17 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1 +C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C ISC IRA IRB IRC WR ANG TQ TM +C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485 +C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 +C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612 +C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 +C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295 +C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 + BUSAS2BUSA2 +BLANK card ending output requests (node voltages only, here) +C 4500 0.9 3000. 2139.14561 -18.05955 206.541811 -188.48226 -81144.03 -729966.82 -18.05955 206.541811 +C -188.48226 9.2806015 -16.003198 6.72259646 188.318532 340.252637 -259.39252 -65.075052 +C Variable maxima : 3000. 2142.5602 375.961666 376.274485 375.920036 38275.6628 -648850.48 375.961666 376.274485 +C 375.920036 12.3551834 24.9125877 308.4899 189.143066 340.252637 387.73688 -65.075052 +C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0 +C .0222 .564 .3076 0.0 .22 0.9 .3086 .02 +C Variable minima : -3000. -2142.6793 -376.12582 -375.68519 -376.20297 -873758.65 -769663.96 -376.12582 -375.68519 +C -376.20297 -147.12317 -228.11722 -6.2184031 184.7252 1.57079633 -4168.4668 -3965.0683 +C Times of minima : .025 .5584 .0194 .0082 .0138 .2E-3 .1896 .0194 .0082 +C .0138 0.0 .0546 .3312 .0198 0.0 .0138 0.0 + PRINTER PLOT + 193 .1 0.0 1.0 IM-1 TQ { Axis limits: (-4.168, 0.388) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 5th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This fifth case is a +C simplification of WSMATPIG.DAT which has just a single IM. Like the first +C three, this second subcase involves no transient. The phasor solution merely +C is continued for one cycle to confirm the sinusoidal steady state. Of the +C original 19 permanently-closed switches, only 10 could be eliminated without +C tampering with TACS control system logic. The 9 switches that remain are +C used to pass 6 currents and 3 voltages to TACS. As for outputs, these have +C been reduced drastically by elimination of the request for every node voltage +C (a 1-punch in column 2). This reduces the voltage outputs from 31 to 0. New +C is illustration of the declaration to size IM tables within the working space +C of List 25. This is immediately below. The Type-56 TEPCO IM and Prof. Hian +C Lauw's Type-19 U.M. share the same working space, so what is not used by one +C model is available for the other. There should be protection against any +C attempt to use more space than exists. +C LIM56 LIMTM { 32X, 2I8 data +ABSOLUTE I.M. DIMENSIONS 3 12 { 2 and 10 are the defaults +POWER FREQUENCY, 50 +PRINTED NUMBER WIDTH, 11, 1, { This is the default choice; return to its use +C 0.00025 1.0 0.0 0.0 { Original TEPCO simulation was to 1.0 second + 0.00025 .020 0.0 0.0 + 1 1 1 1 1 -1 + 5 5 20 20 +TACS HYBRID +C OUTPUT +33VIG PPIG QQIG +C +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +C +C *************** CONTROLL MODEL BLOCK ************** +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB5 = N400AD*(N400B-N400C) +99QCB6 = N400BD*(N400C-N400A) +99QCB7 = N400CD*(N400A-N400B) +99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. +99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. +C 33PACCB1 +C 33QACCB1 +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG VIG +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PACCB 0.0 +77QACCB 6.25 +$DISABLE +C ---FOR.IG.No1(1/4)--- +C ====== TIME OF MOTOR TO GEN MODE ===== +77MSLIP -0.785129 +11MOTGEN 0.0 -1.0 +90BUSMG -1.0 +99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100. +33MSLIP +99BUSMS =(TIMEX.GE.MOTGEN)*1592 +$ENABLE +BLANK card ending TACS data +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** + N400A N400AD 176.7332792 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 16.56943663 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +$VINTAGE, 0 +C +$DISABLE +C ---FOR.IG.No1(2/4)--- +C --------- MECHANICAL NETWORK COMPONENTS +C Tm=1.12 :M :2H ==> 7.09E+6 pole:1 +C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 + BUSMG 7.09E6 +C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE + BUSMS BUSMG 1.0E-8 +$ENABLE +BLANK card ending branch cards +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 8.10 + N250B N300B -1.0 8.10 + N250C N300C -1.0 8.10 + IG1A N400A MEASURING 1 + IG1B N400B MEASURING 1 + IG1C N400C MEASURING 1 + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING +BLANK card ending switch cards +C /// SOURCE DATA /// +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 +C 73PGEN 1 + FINISH { Key word that ends data for this particular (the one and only) IM +BLANK CARD ending source cards +C Total network loss P-loss by summing injections = 7.668433002012E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 +C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 +C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 +C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 +C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 +C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 +C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 +C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 +C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 +C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 3 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B N400C P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS +C IRC WR ANG TQ TM VIG PPIG QQIG +C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 +C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 +C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 +C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 +C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 +C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 +BLANK CARD ending names for output (none here) +C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 +C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 +C Variable max:67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 +C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 +C Times of max: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 +C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 +C Variable min:-67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 +C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 +C Times of min: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 +C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 + PRINTER PLOT { No need for vector plotting as all variables are smooth + 194 2. 0. 20. BRANCH { Plot limits: (-6.796, 6.798) + IM-1 ISA IM-1 ISB IM-1 ISC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 7th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 6th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This sixth subcase +C is a simplification of WSM12TAC.DAT which is like DCN12 (in long form, +C DCNEW-12) except that the U.M. of that old standard test case has been +C replaced by a Type-56 IM. The solution here seems to be the same as the 4th +C subcase except that TACS is involved, and is used to initiate the transient +C rather than such special capability within the Type-56 IM model itself. +PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough +C ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60 +0.0002 0.900 + 1 3 1 1 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +33TM { The only TACS output variable will be this torque TM, which is a step +88FLG1 = TIMEX .GE. 0.02 +88TM = 1.0-FLG1*0.98358791 +77TM 1.0 +BLANK +C -------- TRANSMISSION LINES + BUSA2 BUSAS2 1.0E-4 10.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 1 + BUSC2 BUSCS2BUSA2 BUSAS2 1 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 1.0E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +BLANK card ending all branch cards +BLANK card ending all (here, nonexistent) switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C |BUS | | SLIP || TM0 | +C | A6 | | E10.6 || E10.6 | +56BUSA2 2.0 +56BUSB2 +56BUSC2 +C CLASS2 +C TY < RMVA >< RSKV >< FREQ > + 0 2 0.72 4.2 60.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0168163 0.0184649 0.0044898 0.0184649 0.3628347 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 4.8361824 0.05425244 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | + 0.02 -0.0702041 TM + 9999 +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH { Key word that ends data for this particular (the one and only) IM +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 8.732396776993E+05 +C Node Source node voltage Injected source current Injected source power +C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. +C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808 +C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356 + BUSAS2BUSA2 { Names of nodes for voltage output +C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1 +C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 TACS +C ISC IRA IRB IRC WR ANG TQ TM TM +C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485 +C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 1.0 +C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612 +C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 1.0 +C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295 +C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 1.0 +BLANK card ending output requests (node voltages only, here) +C 4500 0.9 3000. 2139.14389 -18.055352 206.54004 -188.48469 -81125.234 -729968.29 -18.055352 206.54004 +C -188.48469 9.31443983 -15.992732 6.67829219 188.318584 340.24976 -259.2923 -65.075057 .01641209 +C Variable maxima : 3000. 2142.56391 375.961666 376.274485 375.939009 38282.079 -648850.48 375.961666 376.274485 +C 375.939009 12.4231891 24.885902 308.4899 189.143064 340.24976 387.735739 -65.075057 1.0 +C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0 +C .0222 .5642 .308 0.0 .2204 0.9 .309 .0204 0.0 +C Variable minima : -3000. -2142.6794 -376.12582 -375.69165 -376.20297 -873758.65 -769666.51 -376.12582 -375.69165 +C -376.20297 -147.12317 -228.64774 -6.1496539 184.725187 1.57079633 -4168.4668 -3965.0683 .01641209 +C Times of minima : .025 .5584 .0194 .025 .0138 .2E-3 .1896 .0194 .025 +C .0138 0.0 .0548 .3318 .0202 0.0 .0138 0.0 .0202 + PRINTER PLOT + 193 .1 0.0 1.0 IM-1 TQ IM-1 TM { Axis limits: (-4.168, 0.388) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 8th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 7th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This seventh case is a +C simplification of ATPSGIUM.DAT which has no Type-56 IM. Instead, it uses +C the U.M. to model an induction machine. It establishes the standard of +C comparison for the following subset which replaces the U.M. by a Type-56 IM. +C Like the first three subcases, this seventh one involves no transient. The +C phasor solution merely is continued for one cycle to confirm the sinusoidal +C steady state. Of the original 33 permanently-closed switches, only 12 could +C be eliminated without tampering with TACS control system logic, leaving 21. +C There is a lot of TACS modeling, and this required more storage than the +C usual 3 * default of List 19. So, NEW LIST SIZES has been added to expand +C the space for TACS while at the same time reducing a lot of other sizes. +C Different from previous illustrations, Type-58 S.M. modeling is used. +NEW LIST SIZES + 70 60 50 20 250 50 300 0 0 0 + 0 20 0 0 0 0 0 0 12500 0 + 0 0 0 + 240000 +ABSOLUTE TACS DIMENSIONS +C 40 170 200 50 120 2500 350 180 +C Expand various TACS Tables on 1 April 2007. Force acceptance +C without worrying about probable waste that might be involved: +C 57 256 285 36 85 713 998 171 --- default +C Tacs table number 1 2 3 4 5 6 7 8 +C Present figure 145 64 32 50 91 2229 212 165 +C Program limit 230 65 80 50 170 8000 420 300 + 230 65 80 50 170 8000 420 300 +PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough +POWER FREQUENCY, 50 +C 0.00025 10. 0.0 0.0 { Note TEPCO Tmax was 10 seconds + 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state + 1 1 1 1 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +C OUTPUT +33VT4 PPG4 QQG4 +33VT5 PPG5 QQG5 +C +C /// G1 S.G. GOVERNOR MODEL G400/// +00WGREF4 +PLUS1 1.0 +99GOVNR4 = -WGREF4+WGFBK4 +C +99GOV014 = GOVNR4*(1/0.04/0.1) +99GOV3R4 = GOV034*(1.0/0.1) +00GOV024 +GOV014 -GOV3R4 1.0 +01GOV034 +GOV024 1.0 + 1.0 + 1.0 +99GOV044 = PLUS1-GOV034 +99GOV054 = GOV044*(1.0/0.6) +99TQTR4 = TQT4*(1.0/0.6) +00GOV064 +GOV054 -TQTR4 1.0 +01TQT4 +GOV064 1.0 -0.02 1.1 + 1.0 + 1.0 +C /// G1 S.G. GOVERNOR MODEL G500/// +00WGREF5 +PLUS1 1.0 +99GOVNR5 = -WGREF5+WGFBK5 +C +99GOV015 = GOVNR5*(1/0.04/0.1) +99GOV3R5 = GOV035*(1.0/0.1) +00GOV025 +GOV015 -GOV3R5 1.0 +01GOV035 +GOV025 1.0 + 1.0 + 1.0 +99GOV045 = PLUS1-GOV035 +99GOV055 = GOV045*(1.0/0.6) +99TQTR5 = TQT5*(1.0/0.6) +00GOV065 +GOV055 -TQTR5 1.0 +01TQT5 +GOV065 1.0 -0.02 1.1 + 1.0 + 1.0 +C +C /// G1 S.G. AVR MODEL G400/// +C +77DROOP4 0.0 +77DROP14 0.0 +77DROP24 0.0 +99DROP24 = DROP14*0.04 +99PUFB14 = (PUFBK4+DROP24)*(1.0/0.035) +99VGFBR4 = VGFBK4*(1.0/0.035) +00PUFB24 +PUFB14 -VGFBR4 1.0 +99LLIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*(-9999.) +99ULIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*9999. +01VGFBK4 +PUFB24 1.0 LLIM24ULIM24 + 1.0 + 1.0 +C +99AVR014 = VGREF4-VGFBK4 +99LLIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0) +99ULIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0) +01AVR024 +AVR014 1.0 LLIM14ULIM14 + 10.0 + 1.56 +99AVR034 = AVR014*(10.0*1.56/1.56) +C +99AVR044 = AVR024+AVR034+GAIN4 +99AVR054 = AVR044*(1.0/0.2) +99AVR7R4 = AVR074*(1.0/0.2) +99AVR064 = AVR054-AVR7R4 +99LLIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*(-9999.) +99ULIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*9999. +01AVR074 +AVR064 1.0 LLIM34ULIM34 + 1.0 + 1.0 +99EF4 = AVR074/GAIN4 +C +C /// G1 S.G. AVR MODEL G500/// +C +77DROOP5 0.0 +77DROP15 0.0 +77DROP25 0.0 +99DROP25 = DROP15*0.04 +99PUFB15 = (PUFBK5+DROP25)*(1.0/0.035) +99VGFBR5 = VGFBK5*(1.0/0.035) +00PUFB25 +PUFB15 -VGFBR5 1.0 +99LLIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*(-9999.) +99ULIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*9999. +01VGFBK5 +PUFB25 1.0 LLIM25ULIM25 + 1.0 + 1.0 +C +99AVR015 = VGREF5-VGFBK5 +99LLIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0) +99ULIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0) +01AVR025 +AVR015 1.0 LLIM15ULIM15 + 10.0 + 1.56 +99AVR035 = AVR015*(10.0*1.56/1.56) +C +99AVR045 = AVR025+AVR035+GAIN5 +99AVR055 = AVR045*(1.0/0.2) +99AVR7R5 = AVR075*(1.0/0.2) +99AVR065 = AVR055-AVR7R5 +99LLIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*(-9999.) +99ULIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*9999. +01AVR075 +AVR065 1.0 LLIM35ULIM35 + 1.0 + 1.0 +99EF5 = AVR075/GAIN5 +C +C /// SG BRANCH VOLTAGE MONITOR /// + VAB4 +N400A -N400B 1.0 + VAB5 +N500A -N500B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91GSG4A -1.0 +91GSG4B -1.0 +91GSG4C -1.0 +91IM4A -1.0 +91IM4B -1.0 +91IM4C -1.0 +90N500A -1.0 +90N500B -1.0 +90N500C -1.0 +91GSG5A -1.0 +91GSG5B -1.0 +91GSG5C -1.0 +92SGOMG4 -1.0 +92SGOMG5 -1.0 +C /// VOLTAGE FEED BACK G400/// +99PUFBK4 = SQRT(N400A*N400A + N400B*N400B + N400C*N400C)/6600.0 +00VT4 +PUFBK4 1.0 +C /// POWER MONITOR(S.G.) /// +99QSG4A = GSG4A*(N400B-N400C) +99QSG4B = GSG4B*(N400C-N400A) +99QSG4C = GSG4C*(N400A-N400B) +99QSGEN4 = (QSG4A+QSG4B+QSG4C)/SQRT(3.0) +99PSGEN4 = N400A*GSG4A+N400B*GSG4B+N400C*GSG4C +99PPG4 = PSGEN4/1000000. +99QQG4 = QSGEN4/1000000. +C /// VOLTAGE FEED BACK G500/// +99PUFBK5 = SQRT(N500A*N500A + N500B*N500B + N500C*N500C)/6600.0 +00VT5 +PUFBK5 1.0 +C /// POWER MONITOR(S.G.) /// +99QSG5A = GSG5A*(N500B-N500C) +99QSG5B = GSG5B*(N500C-N500A) +99QSG5C = GSG5C*(N500A-N500B) +99QSGEN5 = (QSG5A+QSG5B+QSG5C)/SQRT(3.0) +99PSGEN5 = N500A*GSG5A+N500B*GSG5B+N500C*GSG5C +99PPG5 = PSGEN5/1000000. +99QQG5 = QSGEN5/1000000. +C +99QIM1 = IM4A*(N400B-N400C) +99QIM2 = IM4B*(N400C-N400A) +99QIM3 = IM4C*(N400A-N400B) +99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0) +99PIM = N400A*IM4A+N400B*IM4B+N400C*IM4C +99PPIM = PIM +99QQIM = QIM +33PPG4 PPG5 QQG4 QQG5 PPIM QQIM +C *************** CONTROLL MODEL BLOCK ************** +C /// G400 /// +99DROOP4 = (QSGEN4-QSGI4)/625000./VT4 +00DROP14 +DROOP4 +99WGFBK4 = SGOMG4/314.159265 +99RPMSG4 = 30.0*SGOMG4/PI +C /// G500 /// +99DROOP5 = (QSGEN5-QSGI5)/625000./VT5 +00DROP15 +DROOP5 +99WGFBK5 = SGOMG5/314.159265 +99RPMSG5 = 30.0*SGOMG5/PI +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N300AD -1.0 +91N300BD -1.0 +91N300CD -1.0 +99PACCB3 = (N300A*N300AD+N300B*N300BD+N300C*N300CD)/1000. +C 33PACCB3 +C /// L400 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB4 = N400AD*(N400B-N400C) +99QCB5 = N400BD*(N400C-N400A) +99QCB6 = N400CD*(N400A-N400B) +99QACCB4 = ((QCB4+QCB5+QCB6)/SQRT(3.0))/1000. +99PACCB4 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000. +C 33PACCB4 +C 33QACCB4 +C /// L500 P & Q /// +91N500AD -1.0 +91N500BD -1.0 +91N500CD -1.0 +99QCB7 = N500AD*(N500B-N500C) +99QCB8 = N500BD*(N500C-N500A) +99QCB9 = N500CD*(N500A-N500B) +99QACCB5 = ((QCB7+QCB8+QCB9)/SQRT(3.0))/1000000. +99PACCB5 = (N500A*N500AD+N500B*N500BD+N500C*N500CD)/1000000. +C 33PACCB5 +C 33QACCB5 +C +C 33EF4 EF5 +C /// TACS GOV,AVR REF /// +11VGREF4 1.00758 -1.0 +11VGREF5 1.01249 -1.0 +C IF/AGLINE +11GAIN4 2.661027 -1.0 +11GAIN5 2.655261 -1.0 +11QSGI4 242000.0 -1.0 +11QSGI5 242000.0 -1.0 +C /// TACS INITIAL CONDITIONS /// +77PPIM -300000. +77QQIM -167000. +77PPG4 .500000 +77QQG4 .242000 +77VGREF4 1.00758 +77VGFBK4 1.00758 +77PUFBK4 1.00758 +77VT4 1.00758 +77VGREF5 1.01249 +77PUFBK5 1.01249 +77VGFBK5 1.01249 +77VT5 1.01249 +77PPG5 .500000 +77QQG5 .242000 +C Vini/0.035 +77VGFBR4 28.78800 +77PUFB14 28.78800 +C GAIN4/0.2:2.661027 +77AVR7R4 13.3051350 +77AVR054 13.3051350 +C GAIN4: +77AVR044 2.661027 +77AVR074 2.661027 +C G500 +C Vini/0.035 +77VGFBR5 28.9282857 +77PUFB15 28.9282857 +C GAIN5/0.2:2.655261 +77AVR055 13.2763050 +77AVR7R5 13.2763050 +C GAIN5 +77AVR045 2.655261 +77AVR075 2.655261 +C +77PUFB24 0.0 +77AVR065 0.0 +77RPMSG4 3000.0 +77WGREF4 1.0 +77WGFBK4 1.0 +77SGOMG4 314.159265 +77TQT4 1.0 +77GOVNR4 0.0 +77GOV014 0.0 +77GOV024 0.0 +77GOV034 0.0 +77GOV3R4 0.0 +77GOV044 1.0 +77GOV054 1.66666667 +77GOV064 0.0 +77TQTR4 1.66666667 +77AVR014 0.0 +77AVR024 0.0 +77AVR034 0.0 +77AVR064 0.0 +77EF4 1.0 +77WGREF5 1.0 +77WGFBK5 1.0 +77SGOMG5 314.159265 +77TQT5 1.0 +77PUFB25 0.0 +77RPMSG5 3000.0 +77GOVNR5 0.0 +77GOV015 0.0 +77GOV025 0.0 +77GOV035 0.0 +77GOV3R5 0.0 +77GOV045 1.0 +77GOV055 1.66666667 +77GOV065 0.0 +77TQTR5 1.66666667 +77AVR015 0.0 +77AVR025 0.0 +77AVR035 0.0 +77EF5 1.0 +C +C ---FOR.IM.No1(1/4)--- +C ====== TIME OF MOTOR TO GEN MODE ===== +77MSLIPM 2.719739 +90BUSMGM -1.0 +99MSLIPM = (1.0-BUSMGM/(2.*PI*50.))*100. +C 300kW/2*PI*F +99BUSMSM =954.9 +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +BLANK CARD +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW + N300A N300AD 108.8762611 + N300B N300BDN300A N300AD + N300C N300CDN300A N300AD +C ***INSIDE LOAD*** + N400A N400AD 986.5321930 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 1727.590765 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N400A N500A 0.871200000 4.326060536 + N400B N500B N400A N500A + N400C N500C N400A N500A +C ***INSIDE LOAD*** ( ) + N500A N500AD 177.9930622 + N500B N500BDN500A N500AD + N500C N500CDN500A N500AD + N500ADN500A 588.6919231 + N500BDN500B N500ADN500A + N500CDN500C N500ADN500A +$VINTAGE, 0 +C ---FOR.IM.No1(2/4)--- +C Tm=1.97 :M :2H ==> 7.49E+6 pole:1 1.97*0.375MVA/(2*PI*F)**2 + BUSMGM 7.49E6 +C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE + BUSMSMBUSMGM 1.0E-8 +BLANK CARD +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 10.0 + N250B N300B -1.0 10.0 + N250C N300C -1.0 10.0 + GSG4A N400A MEASURING + GSG4B N400B MEASURING + GSG4C N400C MEASURING + IM4A N400A MEASURING 1 + IM4B N400B MEASURING 1 + IM4C N400C MEASURING 1 + GSG5A N500A MEASURING + GSG5B N500B MEASURING + GSG5C N500C MEASURING + N300AD MEASURING + N300BD MEASURING + N300CD MEASURING + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING + N500AD MEASURING + N500BD MEASURING + N500CD MEASURING +BLANK CARD +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SOURCE DATA /// +C ---FOR.IM.No1(3/4)--- +14BUSMSM-1 0.0001 0.0001 .0 -1.0 +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW + N300A N300AD 108.8762611 + N300B N300BDN300A N300AD + N300C N300CDN300A N300AD +C ***INSIDE LOAD*** + N400A N400AD 986.5321930 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 1727.590765 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N400A N500A 0.871200000 4.326060536 + N400B N500B N400A N500A + N400C N500C N400A N500A +C ***INSIDE LOAD*** ( ) + N500A N500AD 177.9930622 + N500B N500BDN500A N500AD + N500C N500CDN500A N500AD + N500ADN500A 588.6919231 + N500BDN500B N500ADN500A + N500CDN500C N500ADN500A +$VINTAGE, 0 +BLANK CARD +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 10.0 + N250B N300B -1.0 10.0 + N250C N300C -1.0 10.0 + GSG4A N400A MEASURING + GSG4B N400B MEASURING + GSG4C N400C MEASURING + IM4A N400A MEASURING 1 + IM4B N400B MEASURING 1 + IM4C N400C MEASURING 0 + GSG5A N500A MEASURING + GSG5B N500B MEASURING + GSG5C N500C MEASURING + N300AD MEASURING + N300BD MEASURING + N300CD MEASURING + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING + N500AD MEASURING + N500BD MEASURING + N500CD MEASURING +BLANK CARD +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C < RMVA >< RSKV >< FREQ > + 0 1 0.375 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.062 0.075 0.031 0.075 2.58 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.97 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH +BLANK CARD ending source cards +C Total network loss P-loss by summing injections = 1.000121334411E+06 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 2.51255296E-03 -1.55308344E+00 1.55308548E+00 -89.9073 6.76991997E+00 4.18423111E+03 +C N250B N300B -1.34626599E+00 7.74365788E-01 1.55308548E+00 150.0927 6.76991997E+00 4.18423111E+03 +C N250C N300C 1.34375344E+00 7.78717657E-01 1.55308548E+00 30.0927 6.76991997E+00 4.18423111E+03 +C GSG4A N400A 6.17662457E+01 -2.88761587E+01 6.81828545E+01 -25.0564 1.66682896E+05 8.05074090E+04 +C GSG4B N400B -5.58906098E+01 -3.90530585E+01 6.81828545E+01 -145.0564 1.66682896E+05 8.05074090E+04 +C GSG4C N400C -5.87563589E+00 6.79292172E+01 6.81828545E+01 94.9436 1.66682896E+05 8.05074090E+04 +C IM4A N400A -3.70892829E+01 1.99471256E+01 4.21129757E+01 151.7280 -9.99999888E+04 -5.54217136E+04 +C IM4B N400B 3.58193589E+01 2.21466984E+01 4.21129757E+01 31.7280 -9.99999888E+04 -5.54217136E+04 +C IM4C N400C 1.26992399E+00 -4.20938240E+01 4.21129757E+01 -88.2720 -9.99999888E+04 -5.54217136E+04 +C GSG5A N500A 6.16852582E+01 -2.83272148E+01 6.78785841E+01 -24.6656 1.66684112E+05 8.06702138E+04 +C GSG5B N500B -5.53747168E+01 -3.92573933E+01 6.78785841E+01 -144.6656 1.66684112E+05 8.06702138E+04 +C GSG5C N500C -6.31054146E+00 6.75846081E+01 6.78785841E+01 95.3344 1.66684112E+05 8.06702138E+04 +C N300AD 4.94900247E+01 -8.74559074E-06 4.94900247E+01 0.0000 0.00000000E+00 0.00000000E+00 +C N300BD -2.47450199E+01 -4.28596143E+01 4.94900247E+01 -120.0000 0.00000000E+00 0.00000000E+00 +C N300CD -2.47450048E+01 4.28596230E+01 4.94900247E+01 120.0000 0.00000000E+00 0.00000000E+00 +C N400AD 5.62982343E+00 -9.93396450E+00 1.14183432E+01 -60.4587 0.00000000E+00 0.00000000E+00 +C N400BD -1.14179773E+01 9.14121415E-02 1.14183432E+01 179.5413 0.00000000E+00 0.00000000E+00 +C N400CD 5.78815390E+00 9.84255236E+00 1.14183432E+01 59.5413 0.00000000E+00 0.00000000E+00 +C N500AD 3.12448854E+01 -2.88753581E+01 4.25444376E+01 -42.7430 0.00000000E+00 0.00000000E+00 +C N500BD -4.06292364E+01 -1.26211854E+01 4.25444376E+01 -162.7430 0.00000000E+00 0.00000000E+00 +C N500CD 9.38435098E+00 4.14965436E+01 4.25444376E+01 77.2570 0.00000000E+00 0.00000000E+00 +C Column headings for the 26 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 2 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 12 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IM4A IM4B IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS +C IRC WR ANG TQ TM VT4 PPG4 QQG4 VT5 +C +C TACS TACS TACS TACS TACS TACS TACS TACS +C PPG5 QQG5 PPG4 PPG5 QQG4 QQG5 PPIM QQIM +C 0 0.0 -37.089283 35.8193589 -299999.97 -166265.14 -37.089283 35.8193589 1.26992399 -3.3020869 -30.789557 +C 34.0916437 305.614953 1.57079633 -893.94476 -893.94476 1.00758 0.5 .242 1.01249 +C 0.5 .242 0.5 0.5 .242 .242 -300000. -167000. +C 1 .25E-3 -38.530914 33.9675872 -299996.42 -166298.13 -38.530914 33.9675872 4.56332653 -3.2222768 -30.827832 +C 34.0501083 305.61495 1.64720007 -893.73559 -893.94476 1.00780767 .497455836 .241616478 1.01275637 +C .497447005 .242093747 .497455836 .497447005 .241616478 .242093747 -299996.42 -166298.13 +C 2 .5E-3 -39.73648 31.9076793 -299887.98 -166278.12 -39.73648 31.9076793 7.82880046 -3.1419208 -30.867462 +C 34.0093826 305.61494 1.7236038 -893.55897 -893.94476 1.00766614 .49747865 .241619001 1.01263793 +C .497469507 .242096958 .49747865 .497469507 .241619001 .242096958 -299887.98 -166278.12 +BLANK card ending names for output variables (none here) +C 80 .02 -37.095485 35.7780641 -300088.5 -165860.96 -37.095485 35.7780641 1.31742052 3.16334023 -34.036289 +C 30.8729489 305.612633 7.68306549 -893.8068 -893.94476 1.00768225 .49747812 .242225269 1.01263226 +C .49750592 .242807717 .49747812 .49750592 .242225269 .242807717 -300088.5 -165860.96 +C Variable maxima : 42.0472768 42.088666 -299449.52 -165559.49 42.0472768 42.088666 42.0016152 3.16334023 -30.789557 +C 34.0916437 305.614953 7.68306549 -892.13839 -893.94476 1.00780767 0.5 .243498409 1.01275637 +C 0.5 .243680337 0.5 0.5 .243498409 .243680337 -299449.52 -165559.49 +C Times of maxima : .0115 .01825 .0045 .00975 .0115 .01825 .005 .02 0.0 +C 0.0 0.0 .02 .00475 0.0 .25E-3 0.0 .009 .25E-3 +C 0.0 .00925 0.0 0.0 .009 .00925 .0045 .00975 +C Variable minima : -42.060504 -42.029619 -300088.5 -166298.13 -42.060504 -42.029619 -42.056444 -3.3020869 -34.036289 +C 30.8729489 305.612633 1.57079633 -893.94476 -893.94476 1.00758 .497098096 .241616478 1.01249 +C .497272118 .242 .497098096 .497272118 .241616478 .242 -300088.5 -167000. +C Times of minima : .0015 .00825 .02 .25E-3 .0015 .00825 .015 0.0 .02 +C .02 .02 0.0 0.0 0.0 0.0 .01525 .25E-3 0.0 +C .01525 0.0 .01525 .01525 .25E-3 0.0 .02 0.0 + PRINTER PLOT { No need for vector plotting as all variables are smooth + 194 2. 0. 20. BRANCH { Plot limits: (-4.206, 4.209) + IM4A N400A IM4B N400B IM-1 ISC +C Note the replacement of the 3rd switch current by the 3rd stator current in +C the preceding plot. They should be the same. Compare with the preceding +C subcase for which the plot of switch currents had limits (-4.216, 4.215). +BLANK CARD ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF +Note: ATPIGUM.DAT is being ignored because it does not involve any + Type-56 IM modeling. + + IGIMUM.DAT is being ignored for the same reason. This accounts + for all 10 of the data cases tested by RUNIM.BAT; 8 have been + retained and massaged whereas 2 have been ignored. -- cgit v1.2.3