summaryrefslogtreecommitdiffstats
path: root/benchmarks/dc22.dat
diff options
context:
space:
mode:
authorAngelo Rossi <angelo.rossi.homelab@gmail.com>2023-06-21 12:04:16 +0000
committerAngelo Rossi <angelo.rossi.homelab@gmail.com>2023-06-21 12:04:16 +0000
commitb18347ffc9db9641e215995edea1c04c363b2bdf (patch)
treef3908dc911399f1a21e17d950355ee56dc0919ee /benchmarks/dc22.dat
Initial commit.
Diffstat (limited to 'benchmarks/dc22.dat')
-rw-r--r--benchmarks/dc22.dat1713
1 files changed, 1713 insertions, 0 deletions
diff --git a/benchmarks/dc22.dat b/benchmarks/dc22.dat
new file mode 100644
index 0000000..78c1c87
--- /dev/null
+++ b/benchmarks/dc22.dat
@@ -0,0 +1,1713 @@
+BEGIN NEW DATA CASE
+C BENCHMARK DC-22
+C Illustration of basic TACS logic that can be used to control the firing of
+C valves (thyristers) of an ac/dc converter bridge. The electric network
+C actually has no valves, however (TACS output signals are not used). The
+C electric network passes balanced three-phase voltages to TACS via Type-90
+C sources. Summers convert to line-to-line voltages. A constant firing
+C angle DELAY1 of 1.0 msec is used, for simplicity. TACS variables FIRE1
+C through FIRE6 should go back to electric network to control valves (only
+C FIRE1 is passed back, and for simplicity, just to a Type-60 source).
+C After this 1st small subcase, there is a 2nd, followed by 2 large subcases
+C 11 November 1998, add Type-10 source to illustrate saw-toothed waveform
+C Note: program created on this date, or later, is required for use.
+C 26 January 1999, add Orlando Hevia's rectangular and positive-pulse
+C waveforms. One new vector plot at end should be studied to understand.
+PRINTED NUMBER WIDTH, 10, 2,
+ .000500 .040 { Double T-max on 26 Jan 99 to show repetition of Hevia signals
+ 1 1 1 1 1 -1
+ 40 5
+TACS HYBRID
+ PHA-B +GENA -GENB
+ PHB-C +GENB -GENC
+ PHC-A +GENC -GENA
+90GENA
+90GENB
+90GENC
+98ZA-B 52+UNITY 1. 0. 0. PHA-B
+98ZB-A 52+UNITY 1. 0. 1. PHA-B
+98ZB-C 52+UNITY 1. 0. 0. PHB-C
+98ZC-B 52+UNITY 1. 0. 1. PHB-C
+98ZC-A 52+UNITY 1. 0. 0. PHC-A
+98ZA-C 52+UNITY 1. 0. 1. PHC-A
+98DELAY1 .001
+98FIRE1 54+ZA-B .001 DELAY1
+98FIRE4 54+ZB-A .001 DELAY1
+98FIRE3 54+ZB-C .001 DELAY1
+98FIRE6 54+ZC-B .001 DELAY1
+98FIRE5 54+ZC-A .001 DELAY1
+98FIRE2 54+ZA-C .001 DELAY1
+33PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B ZC-A ZA-C GENA GENB GENC FIRE1
+33FIRE4 FIRE3 FIRE6 FIRE5
+BLANK card ending all TACS data
+ 0GENA 1.0
+ 0GENB 1.0
+ 0GENC 1.0
+ FIRE1 1.0
+ SAW 1.0 { Load on sawtooth waveform } 1
+ RECT 1.0 { Load on rectangular waveform } 1
+ PULSE 1.0 { Load on positive pulse } 1
+ SINE 1.0 { Load on reference sine wave } 1
+BLANK card ending branch cards of the electric network
+BLANK card ending switch cards of the electric network
+14GENA 1.0 60. -90.
+14GENB 1.0 60. 30.
+14GENC 1.0 60. 150.
+60FIRE1
+C Prior to 11 November 1998, saw-toothed waveforms were not generated on the
+C electrical side. If needed, they were generated in TACS and passed to the
+C electrical side just as the preceding Type-60 source illustrates. Orlando
+C Hevia contributed the following centered sawtooth waveform that is based on
+C a Type-10 analytically-defined source. Note that the signal is directly
+C generated on the electrical side (no need for TACS):
+10SAW 100.0*(TIMEX-(TRUNC(TIMEX/0.010)*0.010))-0.5 { See Oct 98, newsletter
+C Orlando Hevia contributes rectangular waveform and positive pulse on
+C 26 January 1999. The rectangular waveform is trivial, so add it first:
+10RECT 0.50*SIGN(SIN(TIMEX*314.1592))
+C The positive pulse is more involved. More precisely, documentation of
+C the parameters is more involved. The following comment cards are from
+C Mr. Hevia (hope they are self-explanatory).
+C W= PULSE WIDTH (DEGREES)
+C X= ARCCOS(W/2)
+C X= ARCCOS(30/2)= 0.9659
+C P= PHASE IN DEGREES (THE START OF PULSE)
+C Y= PHASE IN RADIANS
+C Y= (P+W/2)*3.141592/180.0
+C Y= (45+30/2)*3.141592/180.0= 1.0472
+C PULSE= 0.50*SIGN(COS(TIMEX*314.1592-Y )-X )+0.5
+10PULSE 0.50*SIGN(COS(TIMEX*314.1592-1.0472)-0.9659)+0.5
+C 10PULSE -.25 { Offset the preceding downward by 1/4 to demonstrate superposition
+C Preceding demonstrated the superposition of two sources on the same node. But
+C 3 were mistreated prior to correction 12 May 2001. To prove that 3 now can
+C be handled properly, split the preceding .25 into .10 and .15:
+10PULSE -.10 { Offset the preceding downward by .10 to demonstrate superposition
+10PULSE -.15 { Offset the preceding downward by .15 to demonstrate superposition
+C Finally, let's add Mr. Hevia's reference waveform. This documents the
+C sign and phase of the rectangular waveform. Plot will be beautiful.
+10SINE SIN(TIMEX*314.1592) { Reference signal (RECT is 1/2 the sign of this)
+BLANK card ending source cards of the electric network
+C Next 4 output variables are branch currents (flowing from the upper node to the lower node);
+C Next 17 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
+C Step Time SAW RECT PULSE SINE TACS TACS TACS TACS TACS TACS TACS
+C TERRA TERRA TERRA TERRA PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B
+C
+C TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS
+C ZC-A ZA-C GENA GENB GENC FIRE1 FIRE4 FIRE3 FIRE6 FIRE5
+C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+C 1 .5E-3 -.45 0.5 -.25 .1564344 -.569614 1.701371 -1.13176 0.0 1.0 1.0 0.0
+C 0.0 1.0 .1873813 .7569951 -.944376 0.0 0.0 0.0 0.0 0.0
+C 2 .1E-2 -.4 0.5 -.25 .3090169 -.253023 1.61042 -1.3574 0.0 1.0 1.0 0.0
+C 0.0 1.0 .3681246 .6211478 -.989272 0.0 0.0 0.0 0.0 0.0
+BLANK card ending selective node voltage outputs (none)
+C 80 .04 -.5 -.5 -.25 -.261E-5 1.582307 -1.40126 -.181049 1.0 0.0 0.0 1.0
+C 0.0 1.0 .5877853 -.994522 .4067366 1.0 0.0 0.0 1.0 0.0
+C Variable maxima : .45 0.5 .75 1.0 1.731671 1.728633 1.730532 1.0 1.0 1.0 1.0
+C 1.0 1.0 1.0 .9997807 .9991228 1.0 1.0 1.0 1.0 1.0
+C Times of maxima :.0395 .5E-3 .0025 .005 .0055 .0165 .011 .0015 .5E-3 .5E-3 .0045
+C .007 .5E-3 .0375 .032 .0265 .0035 .0025 .0025 .0065 .009
+C Variable minima : -.5 -.5 -.25 -1. -1.73167 -1.73205 -1.73167 0.0 0.0 0.0 0.0
+C 0.0 0.0 -1. -.999781 -.999781 0.0 0.0 0.0 0.0 0.0
+C Times of minima : .01 .0105 0.0 .015 .0305 .025 .0195 0.0 0.0 0.0 0.0
+C 0.0 0.0 .0125 .007 .018 0.0 0.0 0.0 0.0 0.0
+ CALCOMP PLOT
+ 194 4. 0.0 40. -1.0 1.0BRANCH { Show 2 cycles of the 4 Type-10 Hevia signals
+ SINE RECT PULSE SAW
+ PRINTER PLOT
+ 194 2. 0.0 20. TACS PHA-B TACS FIRE1 { Axis limits: (-1.731, 1.732)
+BLANK card ending plot cards
+BEGIN NEW DATA CASE
+C 2nd of 5 subcases of DC-22 is a hybrid TACS example of the TACS-controlled
+C resistance (Type-91 electric network branch type). All-resistive electric
+C network allows easy checking with a pocket calculator at any step: For each
+C branch, verify that program node voltages and branch currents correspond to
+C the branch constraint equations v = R * i. There actually are two discon-
+C nected subnetworks, with one having two TACS-controlled arcs (illustrating
+C use of the multivariable solution code of "ZINCOX") and the other having 1.
+PRINTED NUMBER WIDTH, 11, 1, { Reassert default choice (used before 25 Jan 99)
+CHANGE PRINTOUT FREQUENCY
+ 5 5
+ .02 2.0 { Step size is immaterial since network has no dynamics
+ 1 1 1 1 1
+TACS HYBRID { In a real case, arcs are on electric side, and equations in TACS
+99RESIS = 1.0 + SIN ( 3.0 * TIMEX ) { 1st R(t) signal -- constant + sine wave
+99RES = 1.0 + COS ( 3.0 * TIMEX ) { 2nd R(t) signal -- constant + cosine
+33RESIS RES { Output the only 2 TACS variables: the 2 R(t) resistance functions
+77RESIS 1.0 { Initial condition on 1st R(t) insures smooth start
+77RES 2.0 { Initial condition on 1st R(t) insures smooth start
+BLANK card ending all TACS data
+ BUS1 BUS2 1.0 { Master copy of five 1-ohm resistors } 1
+ BUS2 BUS3 BUS1 BUS2 { 2nd of 3 linear branches in 1st subnetwork
+ BUS3 BUS1 BUS2 { 3rd of 3 linear branches in 1st subnetwork
+ BUS1 BUS4 BUS1 BUS2 { 1st of 2 linear branches in second subnetwork
+ BUS4 BUS1 BUS2 { 2nd of 2 linear branches in second subnetwork
+91BUS2 TACS RESIS { R(t) controlled by TACS variable "RESIS" } 1
+91BUS3 TACS RES { R(t) controlled by TACS "RES" --- 2nd of 2 } 1
+91BUS4 TACS RES { R(t) within 2nd, isolated subnetwork } 1
+BLANK card ending electric network branches
+BLANK card ending switches
+11BUS1 1.0 { 1-volt battery excites ladder networks of both subnetw
+BLANK card ending electric network source cards.
+C Step Time BUS4 BUS3 BUS2 BUS1 BUS2 BUS3
+C TERRA TERRA
+C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+C 1 .02 0.4 .153846154 .384615385 1.0 .384615385 .076923077
+C 2 .04 .39992797 .157235276 .393158988 1.0 .3709173 .078688436
+ 1 { Request all node voltage outputs. Just 4: BUS1 through BUS4
+C Last step: 100 2.0 .3976118 .127869158 .321592965 1.0 .484683228
+C Last step cont. ..... .065854649 .204776399 .678407035 .720584502 1.96017029
+C Variable max : 0.4 .175860563 .464962112 1.0 .999366283 .342009625 .999533993
+C Times of maxima : .02 .28 .44 .02 1.6 1.02
+ PRINTER PLOT { Axis limits: (0.000, 2.000)
+ 193 .4 0.0 2.0 TACS RESIS TACS RES { 1st of 2 plots is two TACS R(t)
+ 193 .4 0.0 2.0 BRANCH { Axis limits: (0.000, 9.995)
+ BUS2 BUS3 BUS4 { 3 R(t) arc currents
+BLANK card ending plot cards
+BEGIN NEW DATA CASE
+C 3rd of 5 subcases illustrates the EMTP simulation of a rail gun or mass
+C driver. It was contributed by Wendell Neugebauer as described in his
+C paper on the subject (published in the Sept, 1990, issue of EMTP News).
+C AUGMENTED RAILGUN (Mass driver) Simulation
+C CAPACITOR BANK DRIVE
+C 65 CANS OF 65 kJ, 22kV FOR EACH OF 8 STAGES, TOTAL INITIAL ENERGY = 33.8 MJ
+C Wendell NEUGEBAUER
+C 586 Middle Line Rd.
+C Ballston Spa, New York 12020
+C
+C March 20, 1990
+C Tel. (518) 885-6050 (home) (evenings only)
+C
+C This is a simulation of a mass driver as energized from a bank of charged
+C capacitors. The individual switches are timed in synchronism with the
+C position of the mass along the rails. The physics of the driver itself
+C are modelled under TACS using its pseudo FORTRAN equations to implement
+C Newton's laws. The individual TACS statements are commented to show the
+C particular variables being computed. The storage capacitors and the
+C associated electrical network are modelled using standard EMTP components.
+C Note about time-step size. Wendell Neugebauer's originally data
+C case used DELTAT = 1.E-6 and TMAX = 5.5 msec as shown below on
+C comment cards. But the simulation is slow. By multiplying DELTAT
+C by 5, the simulation is speeded without significantly affecting the
+C PRINTER PLOT of rail current.
+NEW LIST SIZES
+ 0 0 68 8 450 35 285 0 0 0
+C 0 0 4700 0 0 0 0 0 12000 0
+ 0 0 4700 0 0 0 0 10 5000 0
+ 0 0 220
+ 240000
+C Preceding dimensions are the same as used by the 4th subcase except that
+C List 18 is increased from 0 (default 5) to 10 and List 19 is reduced to
+C 5K from 12K. This addition of NLS is necessitated by the modification
+C of ATD immediately below. In turn, that change was necessitated by the
+C a change to SSTACS (for many years, TACS Table 1 has been overflowing).
+ABSOLUTE TACS DIMENSIONS
+C Expand TACS Table 1 from 60 to 90 on 29 March 2007. Orlando Hevia,
+C using F95 GNU, discovered Table 1 need of 672 / 8 within SSTACS:
+C 60 270 300 60 90 1250 550 180
+ 85 270 300 60 90 1250 550 180
+UNIQUE TACS SWITCH { Halt if Type-91 or 93 TACS source is not uniquely defined
+C The preceding UTS is added during July of 2003. The answer is unchanged.
+C This data case was picked only because both Type-91 and 93 sources exist.
+C 1.E-6 5.5E-3 0. 0. ------ Orig. misc. data card
+C 1 11 1 0 1 -1 ------ Orig. misc. data card
+ 5.E-6 5.0E-3 0. 0. { Larger DELTAT speeds simulation
+ 1 3 1 0 1 -1
+ 5 5 20 20 100 100 500 500
+TACS HYBRID
+C LIST OF INPUT CONSTANTS
+C RAIL RESISTANCE COEFFICIENT (R. Hawkes method for including skin effect)
+C with the units ohms/amperes**0.75
+11RRAIL0 5.53E-5 -1.
+C RAIL INDUCTANCE GRADIENT, H/m
+11LPRIME .5765E-6 -1.
+C PROJECTILE MASS, kg
+11MASS 2.500 -1.
+C LENGTH OF RAIL, m
+11XRAIL 8.0 -1.
+C Muzzle discharge resistor, ohms
+11RDUMP 8.E-3 -1.
+C final rail inductance, H
+11LRAILF 4.6E-6 -1.
+C final rail resistance, ohms
+11RRAILF 2.63E-4 -1.
+C augmenting rail inductance, H
+11LAUG 4.2E-6 -1.
+C augmenting rail resistance, ohms
+11RAUG 1.0E-4 -1.
+C Mutual inductance gradient, augmenting to main rail, H/m
+11DMDX .35E-6 -1.
+C Friction approximation coefficient, fraction of applied force
+11FMISC 0.2 -1.
+C Initial projectile position, m
+11XINIT 0. -1.
+C Projectile initial velocity, m/s
+11VINIT 738.0 -1.
+C Rail mass ablation coefficient, kg/A/V/s
+11ALPHA 49.E-9 -1.
+C Threshold current for for computing effective arc drop
+11ITHRES 100000. -1.
+C Bore diameter, m
+11BORE 0.09 -1.
+C Velocity of sound in the medium within rails, m/s
+11VSOUND 346.0 -1.
+C Coefficient for computing shock force
+11GAMMA 1.40 -1.
+C Ambient pressure, N/m**2
+11PAMB 1.013E5 -1.
+C positions of mass along the rails where the various switches close
+11XA 0.25 -1.
+11X2 .50 -1.
+11X3 1.00 -1.
+11X4 1.70 -1.
+11X5 2.10 -1.
+11X6 2.70 -1.
+11X7 3.00 -1.
+C
+C THIS CONCLUDES THE TACS SOURCES.
+C
+C LIST OF EMTP SOURCES
+C VBREECH FROM EMTP
+90VBR
+C IRAIL FROM EMTP
+91IRAIL
+C
+C
+C --- EMTP NODE VOLTAGES ON 8 CAPACITORS. USED TO TRIGGER CROWBAR DIODES.
+90NODE01
+90NODE02
+90NODE03
+90NODE04
+90NODE05
+90NODE06
+90NODE07
+90NODE08
+C --- EMTP SWITCH STATUS 0 = OPEN 1 = CLOSED
+C --- USED TO KEEP CROWBAR DIODES ON ONCE THEY ARE TRIGGERED.
+93NODE17
+93NODE18
+93NODE19
+93NODE20
+93NODE21
+93NODE22
+93NODE23
+93NODE24
+C ---
+C --- SUPPLEMENTAL DEVICES
+C
+C --- COMPUTE GRID SIGNALS FOR CROWBAR DIODES
+C --- GRID SIGNALS (N1-N8) TURN ON WHEN THE CAPACITOR VOLTAGE IS LESS THAN 0.
+88N1 = - NODE01
+88N2 = - NODE02
+88N3 = - NODE03
+88N4 = - NODE04
+88N5 = - NODE05
+88N6 = - NODE06
+88N7 = - NODE07
+88N8 = - NODE08
+C
+C
+C SUPPLEMENTAL DEVICES
+C SIMPLE RAILGUN MECHANICS
+C COMPUTE MECHANICAL FORCE ON THE PROJECTILE INCL. AUGMENTATION
+88FMECH =.5*(1.0-FMISC)*(LPRIME+2.*DMDX)*ABS(IRAIL)**2-FSHOCK
+C USE LINEAR MODEL FOR SOLID ARMATURE ARC VOLTAGE DROP
+88GNARC =45.+31.43*TIMEX*1000.
+C COMPUTE RATE OF MASS ABLATION FROM THE RAILS
+88MDOT =(ALPHA*ABS(IRAIL)*ABS(GNVOLT))*FLAG1
+C COMPUTE VDOT = PROJECTILE ACCELERATION, INCLUDE TIME DELAY OF ONE
+C STEP FOR STABILITY
+ VEL1 +VEL
+88VDOT =((FMECH-VEL1*MDOT)/MASS1)*FLAG1
+C COMPUTE MACH NUMBER, PRESSURE RATIO, AND SHOCK FORCE
+88MACH =VEL1/VSOUND
+88PR =GAMMA*(GAMMA+1.)/4.*ABS(MACH)**2+1
+88PRATIO =PR+GAMMA*MACH*ABS(((ABS(MACH)**2*ABS((GAMMA+1.))**2/16.+1.)))**0.5
+88FSHOCK =PI*BORE**2/4*PRATIO*PAMB
+C
+C COMPUTE RESET SIGNAL FOR FIRST LAUNCH
+C FLAG1 IS 1 AS LONG AS PROJECTILE IS IN BARREL
+C Introduce one time step delay for stability of computation
+ X1 +X
+88FLAG1 =(TIMEX .GT. (2.*DELTAT)).AND.(X1.LE.XRAIL)
+88FLAG4 =(TIMEX .GT. (2.*DELTAT))
+88FLAG5 =NOT(FLAG1)
+C
+C COMPUTE MASS1, PROJECTILE PLUS ABLATED RAIL MASS
+88MASS1 58+MDOT 1.0 0.0 1.0FLAG4 MASS
+C INTEGRATE VDOT TO GET VELOCITY OF MASS
+88VEL 58+VDOT 1.0 0.0 1.0FLAG4 VINIT
+C INTEGRATE VELOCITY TO GET PROJECTILE POSITION
+88X 58+VEL 1.0 0.0 1.0FLAG4 XINIT
+C COMPUTE THE INSTANTANEOUS RAIL INDUCTANCE
+88LRAIL =LPRIME*ABS(X1)*FLAG1+FLAG5*LRAILF
+C COMPUTE THE INSTANTANEOUS RAIL RESISTANCE
+88RRAIL =FLAG1*RRAIL0*ABS(X1)**0.75+FLAG5*RRAILF
+C COMPUTE INSTANTANEOUS MUTUAL INDUCTANCE, AUGMENTING TO MAIN RAILS
+88M =DMDX*(FLAG1*X1+FLAG5*XRAIL)
+C
+C CALCULATE THE POWER AND ENERGY DELIVERED TO THE RAILS
+88PBR =VBR*IRAIL
+88EBR 58+PBR 1.0 0.0 1.0FLAG4 ZERO
+C CALCULATE SHOCK POWER AND ENERGY
+88PSHOCK =FSHOCK*VEL*FLAG1
+88ESHOCK58+PSHOCK 1.0 0.0 1.0FLAG4 ZERO
+C CALCULATE ARC POWER AND ENERGY
+88PARC =IRAIL*GNVOLT*FLAG1
+88EARC 58+PARC 1.0 0.0 1.0FLAG4 ZERO
+C CALCULATE MIXING POWER AND ENERGY
+88PMIX =0.5*VEL**2*MDOT*FLAG1
+88EMIX 58+PMIX 1.0 0.0 1.0FLAG4 ZERO
+C CALCULATE THE DUMP RESISTOR POWER AND ENERGY
+88PMUZ =RDUMP*(ABS(IRAIL-I3A)**2)
+88EMUZ 58+PMUZ 1.0 0.0 1.0FLAG5 ZERO
+C CALCULATE PROJECTILE CHANGE IN KINETIC ENERGY
+88DKE =0.5*MASS*(VEL**2-VINIT**2)
+C CALCULATE ABLATED PLASMA CHANGE IN KINETIC ENERGY
+88PLSMKE =0.5*(MASS1-MASS)*VEL**2
+C CALCULATE INSTANTANEOUS RAIL HEAT POWER AND ENERGY
+88HPOWR =ABS(IRAIL)**2*RRAIL
+88HEAT 58+HPOWR 1.0 0.0 1.0FLAG4 ZERO
+C COMPUTE AUGMENTING RAIL LOSS
+88PAUG =IRAIL*IRAIL*RAUG
+88EAUG 58+PAUG 1.0 0.0 1.0FLAG4 ZERO
+C CALCULATE FRICTION POWER AND ENERGY
+88PFRIC =VEL*0.25*FMISC*(FMECH+FSHOCK)*FLAG1
+88EFRIC 58+PFRIC 1.0 0.0 1.0FLAG4 ZERO
+C CALCULATE TRAPPED MAGNETIC ENERGY WITHIN RAIL MATERIAL (ASSUMPTION)
+88ETRAP =3.0*EFRIC
+C COMPUTE ENERGY STORED IN RAIL AND MUTUAL INDUCTANCE
+88ESTORE =(.5*LRAIL+.5*LAUG+M)*IRAIL*IRAIL
+C COMPUTE ENERGY BALANCE DYNAMICALLY-should equal zero-conservation of energy
+88EBAL =EBR-ETRAP-EFRIC-HEAT-PLSMKE-DKE-EMUZ-EMIX-EARC-ESHOCK-ESTORE-EAUG
+C
+C COMPUTE INJECTION CURRENTS I1, I2, I3
+C THESE CURRENTS EFFECTIVELY REPRESENT THE BACK EMF OF THE MOVING MASS
+88I1 =(IRAIL*(RRAIL-RRAILF)/RRAILF)*FLAG1
+88I2A =(IRAIL*(LRAIL-LRAILF)/LRAILF)*FLAG1+M*IRAIL*FLAG4/LRAILF
+88I2 =I2A-I1
+C Compute the effective arc voltage
+88GNVOLT =SIGN(IRAIL)*GNARC*(1.-EXP(-ABS(IRAIL)/ITHRES))
+88I3A =((IRAIL*(-RDUMP)+GNVOLT)/RDUMP)*FLAG1
+88I3 =I3A-I2A
+C COMPUTE INJECTION CURRENT DUE TO MUTUAL EFFECTS
+88I4I =M*IRAIL/LAUG
+88I4O =-I4I
+C
+C CAPACITOR SWITCHING FLAGS BASED UPON PROJECTILE POSITION
+88FLAG11 =X .GT. XA
+88FLAG12 =X .GT. X2
+88FLAG13 =X .GT. X3
+88FLAG14 =X .GT. X4
+88FLAG15 =X .GT. X5
+88FLAG16 =X .GT. X6
+88FLAG17 =X .GT. X7
+C
+C TACS OUTPUTS
+C 111111222222333333444444555555666666777777888888999999AAAAAABBBBBBCCCCCCDDDDDD
+33VDOT VEL X MASS1 IRAIL I1 I2 I3 FMECH MDOT ESTOREVBR EAUG
+33EBR ESHOCKEARC EMIX EMUZ DKE PLSMKEHEAT EFRIC ETRAP EBAL
+BLANK card that ends TACS data cards
+C EMTP CIRCUIT INPUT FOLLOWS
+C --- ELECTRIC NETWORK BRANCHES.
+C --- SERIES R-L-C BRANCHES
+$VINTAGE, 1
+C --- RC SNUBBER ACROSS RAIL GUN
+C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
+ 0I1 0.033 4.5E2 4
+C --- RAIL FINAL RESISTANCE R_RF
+ 0I1 I2 2.63E-4
+C --- RAIL FINAL INDUCTANCE L_LF
+ 0I2 I3 4.6E-3
+C --- DUMP RESISTANCE R_DUMP
+ 0I3 8.0E-3
+C --- CAPACITORS C = 16116 MICRO FARADS , R_FUSE = 223 MICRO OHMS
+C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
+ 0NODE01 223.E-6 17459. 4
+ 0NODE02 NODE01 4
+ 0NODE03 NODE01 4
+ 0NODE04 NODE01 4
+ 0NODE05 NODE01 4
+ 0NODE06 NODE01 4
+ 0NODE07 NODE01 4
+ 0NODE08 NODE01 4
+C --- IGNITRON SWITCHES R_SWITCH = 30 MICRO OHMS, L_SWITCH = 0.35 MICRO HENRIES
+C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
+ 0NODE09NODE25 30.E-6 0.35E-3
+ 0NODE10NODE26NODE09NODE25
+ 0NODE11NODE27NODE09NODE25
+ 0NODE12NODE28NODE09NODE25
+ 0NODE13NODE29NODE09NODE25
+ 0NODE14NODE30NODE09NODE25
+ 0NODE15NODE31NODE09NODE25
+ 0NODE16NODE32NODE09NODE25
+C --- INDUCTORS R_IND = 250 MICRO OHMS, L_IND = 20 MICRO HENRIES
+C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
+ 0NODE33NODE41 75.E-6 3.0E-3
+ 0NODE34NODE41NODE33NODE41
+ 0NODE35NODE41NODE33NODE41
+ 0NODE36NODE41NODE33NODE41
+ 0NODE37NODE41NODE33NODE41
+ 0NODE38NODE41NODE33NODE41
+ 0NODE39NODE41NODE33NODE41
+ 0NODE40NODE41NODE33NODE41
+C --- INTERNAL BUSWORK R_INT = 25 MICRO OHMS L_INT = 1 MICRO HENRY
+C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
+ 0NODE25NODE33 25.E-6 1.0E-3
+ 0NODE26NODE34NODE25NODE33
+ 0NODE27NODE35NODE25NODE33
+ 0NODE28NODE36NODE25NODE33
+ 0NODE29NODE37NODE25NODE33
+ 0NODE30NODE38NODE25NODE33
+ 0NODE31NODE39NODE25NODE33
+ 0NODE32NODE40NODE25NODE33
+C --- DIODE IMPEDANCE: R_DIODE = 73 MICRO OHMS , L_DIODE = 0.2 MICRO HENRIES
+C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
+ 0 NODE17 73.E-6 0.2E-3
+ 0 NODE18 NODE17
+ 0 NODE19 NODE17
+ 0 NODE20 NODE17
+ 0 NODE21 NODE17
+ 0 NODE22 NODE17
+ 0 NODE23 NODE17
+ 0 NODE24 NODE17
+C --- EXTERNAL BUSWORK: R_BUS = 37.3 MICRO OHMS, L_BUS = 0.47 MICRO HENRIES
+C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
+ 0NODE41VBR 37.3E-6 0.47E-3
+ 0VBR I4I 1.E-4
+ 0I4I I4O 4.2E-3
+ 0I4O IRAIL 1.0E-9
+$VINTAGE, 0
+BLANK card after last electric network branch
+C INPUT SWITCH CARDS HERE
+ IRAIL I1 -1.0 1000.00 1
+C --- SWITCH DATA.
+C --- 8 IGNITRON SWITCHES
+C --- <---TCLOSE<----TOPEN
+ NODE01NODE09 0. 50.E-3
+C --- TACS CONTROLLED SWITCHES USING FLAGS
+13NODE02NODE10 FLAG11 1
+13NODE03NODE11 FLAG12 1
+13NODE04NODE12 FLAG13 1
+13NODE05NODE13 FLAG14 1
+13NODE06NODE14 FLAG15 1
+13NODE07NODE15 FLAG16 1
+13NODE08NODE16 FLAG17 1
+C
+C --- DIODE DATA: 8 CROWBAR DIODES. (TACS CONTROLLED)
+C --- GRID SIGNAL TURNS ON DIODE, TACS SIGNAL KEEPS THE DIODE ON REGARDLESS
+C --- OF "RINGING VOLTAGE" ACROSS THE DIODE. THIS HELPS TO SMOOTH THE SOLUTION
+C --- ESPECIALLY WHEN THE BANKS ARE TRIGGERED AT DIFFERENT TIMES.
+C <---N1<---N2<------VON<----IHOLD<---TEDION CLOSED <-GRID<-TACS XX
+11NODE17NODE25 0. 0. 0. N1 NODE17 10
+11NODE18NODE26 0. 0. 0. N2 NODE18 10
+11NODE19NODE27 0. 0. 0. N3 NODE19 10
+11NODE20NODE28 0. 0. 0. N4 NODE20 10
+11NODE21NODE29 0. 0. 0. N5 NODE21 10
+11NODE22NODE30 0. 0. 0. N6 NODE22 10
+11NODE23NODE31 0. 0. 0. N7 NODE23 10
+11NODE24NODE32 0. 0. 0. N8 NODE24 10
+BLANK card ends all switch cards
+C SOURCE CARDS follow ....
+C MASS DRIVER EQUIVALENT CURRENT SOURCES
+60I1 -1
+60I2 -1
+60I3 -1
+60I4I -1
+60I4O -1
+C --------------+------------------------------
+C From bus name | Names of all adjacent busses.
+C --------------+------------------------------
+C I1 |TERRA *I2 *IRAIL *
+C I2 |I1 *I3 *
+C I3 |TERRA *I2 *
+C NODE01 |TERRA *NODE09*
+C NODE02 |TERRA *NODE10*
+C NODE03 |TERRA *NODE11*
+C NODE04 |TERRA *NODE12*
+C NODE05 |TERRA *NODE13*
+C NODE06 |TERRA *NODE14*
+C NODE07 |TERRA *NODE15*
+BLANK card after last electric network source
+C --- INITIAL CONDITIONS: INITIAL VOLTAGE ON THE 8 CAPACITORS
+ 2NODE01 22.E3
+ 2NODE02 22.E3
+ 2NODE03 22.E3
+ 2NODE04 22.E3
+ 2NODE05 22.E3
+ 2NODE06 22.E3
+ 2NODE07 22.E3
+ 2NODE08 22.E3
+C --- INITIAL CONDITIONS: LINEAR BRANCH CURRENTS
+ 3NODE01 0. 22.E3
+ 3NODE02 0. 22.E3
+ 3NODE03 0. 22.E3
+ 3NODE04 0. 22.E3
+ 3NODE05 0. 22.E3
+ 3NODE06 0. 22.E3
+ 3NODE07 0. 22.E3
+ 3NODE08 0. 22.E3
+C --- LIST OF NODE VOLTAGE OUTPUT REQUESTS
+ NODE01I1
+C Step Time I1 NODE01 NODE02 NODE03 NODE04 NODE05
+C TERRA TERRA TERRA TERRA TERRA TERRA
+C
+C I1 IRAIL I1 NODE01 NODE02 NODE03
+C I1 TERRA TERRA TERRA TERRA
+C
+C NODE08 TACS TACS TACS TACS TACS
+C TERRA VDOT VEL X MASS1 IRAIL
+C
+C TACS TACS TACS TACS TACS TACS
+C MDOT ESTORE VBR EAUG EBR ESHOCK
+C
+C TACS TACS TACS TACS TACS
+C PLSMKE HEAT EFRIC ETRAP EBAL
+C *** Switch "IRAIL " to "I1 " closed before 0.00000000E+00 sec.
+C *** Switch "NODE01" to "NODE09" closed after 0.00000000E+00 sec.
+C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 0.0
+C 1 .5E-5 .1346699E7 -.13272E9 .163913E-3 .163913E-3 .163913E-3 .163913E-3
+C 227.865632 6033.34599 3.36674866 -331.8007 .409782E-9 .409782E-9
+C .409782E-9 0.0 738. 0.0 2.5 6033.34599
+C 0.0 262.0891 10364.4902 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 -262.81712
+C 2 .1E-4 .1028069E8 -.35417E9 0.0 0.0 0.0 0.0
+C 663.274543 16104.2329 32.4352182 -1549.0272 .819564E-9 .819564E-9
+C .819564E-9 0.0 738. 0.0 2.5 16104.2329
+C 0.0 1867.29349 14205.3015 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 -1873.9365
+C Warning. The powers (NODE01, TERRA) through (NODE07, TERRA) should be
+C ------- zero initially. But these are floating (near) zeros. The problem
+C comes from the current. Turning the debugger on or off may change
+C these from near zeros to exact zeros, or vice versa. The SUBTS2
+C computation involves the cancellation of 2 very large numbers to
+C give the current. If numbers such as 1.E-4 are seen, this is the
+C best that can be guaranteed using 64 bits. WSM + THL, 8 August 96
+BLANK card ending node voltage outputs
+C Valve "NODE22" to "NODE30" closing after 2.56000000E-03 sec.
+C Switch "NODE08" to "NODE16" closing after 2.61500000E-03 sec.
+C Valve "NODE23" to "NODE31" closing after 2.93000000E-03 sec.
+C Valve "NODE24" to "NODE32" closing after 3.10000000E-03 sec.
+C 1000 .005 .9701709E8 .1788576E8 .114869E8 .3849588E9 -.530779E9 -.327226E9
+C 4394.39452 857904.981 5103.30646 -.415356E7 -.407104E7 -.389447E7
+C -.387852E7 0.0 2415.92363 8.18382873 2.53769379 857904.981
+C 0.0 .5299207E7 -4437.3114 872163.762 .1706545E8 272689.202
+C 110003.436 .1023366E7 353147.438 .1059442E7 181783.733
+C Variable max: .102486E9 .3091743E9 .141619E10 .316849E10 .38723E10 .31399E10
+C 4394.39452 .1634357E7 5103.30646 0.0 .286847E-7 .553206E-7
+C .214316E-6 534570.044 2415.92363 8.18382873 2.53769379 .1634357E7
+C 10.1502923 .9999568E7 22826.1693 872163.762 .170705E8 272689.202
+C 110003.436 .1023366E7 353147.438 .1059442E7 297386.202
+C Times of max: .00499 .001105 .00109 .0013 .00178 .00235
+C .005 .00152 .005 0.0 .35E-3 .675E-3
+C .002615 .001515 .00493 .005 .00493 .00152
+C .002975 .0029 .45E-4 .005 .004895 .00493
+C .00493 .005 .00493 .00493 .004925
+ PRINTER PLOT
+ 194 1. 0.0 5.5 TACS IRAIL { Axis limits: (0.000, 1.634)
+BLANK card ending plot cards
+BEGIN NEW DATA CASE
+C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC).
+C Contributed to ATP materials of the Can/Am user group February 1992 by:
+C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant
+C #203 - 1745 Martin Drive 705 Westtown Circle
+C White Rock/ South Surrey B.C. West Chester, PA 19382
+C CANADA V4A 6Z1 USA
+C Phone: 604-535-6540 Phone: 610-344-0432
+C FAX: 604-535-6548
+C In July of 1993, Mr. Furst revised it again in preparation for his use
+C of it at Prof. Ned Mohan's University of Minnesota short course there.
+C Size 1-10: 43 63 56 3 230 18 167 0 0 0
+C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0
+C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999
+NEW LIST SIZES
+ 0 0 68 8 450 35 285 0 0 0
+ 0 0 4700 0 0 0 0 0 12000 0
+ 0 0 220
+ 240000
+C *********** A GENERIC 6 PULSE SVC MODEL ************************************
+C
+C This is a conceptual model only, it must be refined
+C for any specific system; the control algorithm can be greatly improved.
+C
+C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer;
+C TCR's connected in delta.
+C
+C Thyristor gating pulses are phase locked to the current zero transition
+C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT;
+C individual phase open loop VAR control is used, with a superimposed.
+C slow voltage control.
+C
+C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV
+C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s
+C value of the 34.5 kV phase to phase voltages, which are the TACS variables
+C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC,
+C the thyristors have to be blocked. One way of doing this is to punch
+C 1000000. in col. 17-24 of the thyristor switches 11.
+C
+C To get the SVC overall response plot the transformer ph-ph r.m.s secondary
+C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three
+C ph-ph r.m.s. voltages
+C
+C To get the VAR import/phase through the transformer secondary
+C plot QINA (TACS)
+C
+C To get the transformer secondary voltage (instant.) plot TRSA
+C
+C TRSA-XLA shows the switching of the phase to phase load
+C
+C RXAB-TRSB plots the current through one AB arm of the thyristor bridge
+C
+C For sake of simplicity, some of the TACS variables have not been
+C initialized, so ignore the first 25 ms of the plots.
+C
+C If in the "Superimposed Voltage Control Section the gain
+C of DVQ is set to zero, the model reverts to open loop VAR control
+PRINTED NUMBER WIDTH, 13, 2,
+ALLOW EVEN PLOT FREQUENCY { See April, 1998, newsletter (to allow IPLOT = 2 below)
+C For best results, do not use a time step more than 1/2 Degree (23.148
+C microsec for 60 Hz). Here, to speed the illustration, we use twice that,
+C & only simulate for half as long (extend to 0.5 sec for more transients).
+C Free-format data input is used in order to specify DELTAT precisely:
+C DELTAT TMAX XOPT COPT EPSILN TOLMAT
+C .0000462962962962963, 0.25, 60., , , , , , , , ,
+C That was the old, brute-force way. Alternative finesse first was made
+C available on 19 August 1998. As long as columns 1-16 involve no decimal
+C point, dT and T-max are replaced by points/cycle & end time in cycles:
+ 360 15 60. { Points per cycle, simulation time in cycles, XOPT
+ 1 4 1 2 1 -1
+ 5 5 20 20 100 100 500 500
+TACS HYBRID
+C
+C Firing pulses are derived from the current through the measuring inductances
+C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into
+C TACS from the measuring switches connecting the RM's in delta,
+C corresponding to the delta connected thyristor valves.
+C
+C The current lags the voltage 90 deg. and its zero transition produces
+C the firing signal at an alpha of 90 deg.
+C This is done by TACS level triggered switches Device 52.
+C The firing pulse delay is calculated by the variables DELAB/BC/CA
+C and implemented by TACS transport device Device 54;
+C
+C For convenience, the firing angle is initialized to alpha = 180 deg.
+C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system.
+C The required firing angle is then calculated backwards from the
+C 180 deg. point, by using the variable DELYA(B,C).
+C The actual firing angle is then DELAB = DELIN -DELYA etc.
+C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms.
+C Then DELAB= DELIN - DELYA =0.0 (90 deg.)
+C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees.
+C For 50 Hz, DELIN = 5.0 ms.
+C
+C *********** VOLTAGE AND REACTIVE REFERENCE *************
+11VREFD 1.0
+C VAR reference
+C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.;
+C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase;
+C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV;
+C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u.
+88QTCR = 33.3*10**6
+C The VAR reference QREF should be determined so that the superimposed
+C voltage control changes the VAR flow as little as possible
+88QREF = 0.30
+C
+C *********** VOLTAGES TRANSFERRED FROM NETWORK *************
+C
+C ******* Import 34.5 kV phase voltages, get phase to phase and normalize *****
+C TRSA/B/C are the transformer secondary ph-g voltages
+C 90 - TACS voltage source driven by an EMTP network node voltage
+C (Rule Book p. 3-15)
+90TRSA
+90TRSB
+90TRSC
+C the phase to phase voltages
+99TRAB = TRSA - TRSB
+99TRBC = TRSB - TRSC
+99TRCA = TRSC - TRSA
+C normalize to get one p.u. for the phase to phase rms value
+99TABX = TRAB/34500
+99TBCX = TRBC/34500
+99TCAX = TRCA/34500
+C get the rms value of the A-B phase to phase voltage
+C Device 66 (Rule Book p. 3-32)
+99TXNAB 66+TABX 60.
+99TXNBC 66+TBCX 60.
+99TXNCA 66+TCAX 60.
+C
+C ************** PHASE A FIRING PULSES **************************************
+C
+C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15)
+91RMAB
+C send square impulse at current zero Device 52 (Rule B. p. 3-21)
+88FAB1 52+UNITY 1. 0. 0 RMAB
+88FAB2 52+UNITY 1. 0. -1 RMAB
+C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23)
+98FIAB1 54+FAB1 .0000 DELAB
+98FIAB2 54+FAB2 .0000 DELAB
+C for a 50 Hz system the constant .004167 below should be changed to 0.005
+88DELIN = .004167 { to initialize alpha to 180 deg.
+C
+C ************* PHASE B FIRING PULSES *************************************
+C
+91RMBC
+88FBC1 52+UNITY 1. 0. 0 RMBC
+88FBC2 52+UNITY 1. 0. -1 RMBC
+98FIBC1 54+FBC1 .0000 DELBC
+98FIBC2 54+FBC2 .0000 DELBC
+C
+C ************ PHASE C FIRING PULSES *************************************
+C
+91RMCA
+88FCA1 52+UNITY 1. 0. 0 RMCA
+88FCA2 52+UNITY 1. 0. -1 RMCA
+98FICA1 54+FCA1 .0000 DELCA
+98FICA2 54+FCA2 .0000 DELCA
+C
+C ************* OPEN LOOP VAR CONTROL **************************
+C **** WITH SUPERIMPOSED VOLTAGE CONTROL ***********
+C
+C the following will be repeated for all three phases as the SVC
+C
+C ************ RACTIVE POWER FLOWS *********
+C
+C calclate VAR transfer at transf. secondary
+91TRXA { 34.5 kV side current through transformer
+C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22)
+88TRIA 53+TRXA .00417 .0043
+88TRVA 53+TRSA .00417 .0043
+C the following equation for calculating VAR flow is from
+C Miller: Reactive power Control etc. (text book) p. 321
+88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR
+C
+91TRXB
+88TRIB 53+TRXB .00417 .0043
+88TRVB 53+TRSB .00417 .0043
+88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR
+C
+91TRXC
+88TRIC 53+TRXC .00417 .0043
+88TRVC 53+TRSC .00417 .0043
+88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR
+C
+C ******************** SUPERIMPOSED VOLTAGE CONTROL ********************
+C
+C ******** DELTA Q TO ADJUST VOLTAGE ************
+C the average value of phase to phase voltage is
+ 0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15
+C the difference between ref. and actual voltage is
+C slow down the response by a (1/1+st) block
+ 1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0
+ 1.0
+ 1.0 0.500
+C the required VAR import taking voltage correction into account
+ 0QRNEW +QREF +DVQ
+C ***************** PHASE A ERROR ******************************************
+C
+C error in VAR import
+ 0ERRQA +QRNEW -QINA
+ 0QINCRA +ERRQA
+C the new reactor output is then given by the Steinmetz Algorithm as
+C the output at T-delT + QINCRA + QINCRB - QINCRC;
+C as shown below in calculating the new SVC VAR's
+C ****************** PHASE B ERROR ****************************************
+C
+ 0ERRQB +QRNEW -QINB
+ 0QINCRB +ERRQB
+C
+C ****************** PHASE C ERROR *****************************************
+C
+ 0ERRQC +QRNEW -QINC
+C
+ 0QINCRC +ERRQC
+C
+C
+C **************** PHASE A PULSE DELAY CONTROL ****************************
+C the current firing angle is DELAB, this corresponds to an old reactor
+C p.u. current given by the following non linear relation corresponding
+C to the x = sigma-sin(sigma) function
+99DLA1 = 1 - DELAB/.004167
+C where DLA1 is the normalized conduction angle sigma between firing
+C angle alpha 90 and 180 degrees.
+C
+99REOAB 56+DLA1
+ 0.0 0.0
+ 0.111 0.0022
+ 0.222 0.0176
+ 0.333 0.0575
+ 0.444 0.1306
+ 0.555 0.2414
+ 0.666 0.3900
+ 0.777 0.5718
+ 0.888 0.7783
+ 1.000 1.0000
+ 9999.
+C the new reactor current demanded is the increment plus the old
+C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0
+C this is applying the Steinmetz algorithm
+ 0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00
+C this is now reconverted into an angle, using the inverse of the
+C above relation, and becomes the new DELAB; (Rule Book p. 3-25 )
+99DELYAA56+INREAB
+ 0.0 0.0
+ 0.0022 0.111
+ 0.0176 0.222
+ 0.0575 0.333
+ 0.1306 0.444
+ 0.2414 0.555
+ 0.3900 0.666
+ 0.5718 0.777
+ 0.7783 0.888
+ 1.0000 1.000
+ 9999.
+99DELYA =DELYAA * 0.004167
+C now smooth it out a bit
+ 1DELAB +DELIN -DELYA 1.0 .0040
+ 1.0
+ 1.0 0.015
+C
+C ****************** PHASE B PULSE DELAY CONTROL **************************
+C
+99DLB1 = 1 - DELBC/.004167
+C
+99REOBC 56+DLB1
+ 0.0 0.0
+ 0.111 0.0022
+ 0.222 0.0176
+ 0.333 0.0575
+ 0.444 0.1306
+ 0.555 0.2414
+ 0.666 0.3900
+ 0.777 0.5718
+ 0.888 0.7783
+ 1.000 1.000
+ 9999.
+C
+ 0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00
+C
+99DELYBB56+INREBC
+ 0.0 0.0
+ 0.0022 0.111
+ 0.0176 0.222
+ 0.0575 0.333
+ 0.1306 0.444
+ 0.2414 0.555
+ 0.3900 0.666
+ 0.5718 0.777
+ 0.7783 0.888
+ 1.000 1.000
+ 9999.
+99DELYB =DELYBB * 0.004167
+C
+ 1DELBC +DELIN -DELYB 1.0 0.0040
+ 1.0
+ 1.0 0.015
+C
+C *************** PHASE C PULSE DELAY CONTROL ******************************
+C
+99DLC1 = 1 - DELCA/.004167
+C
+99REOCA 56+DLC1
+ 0.0 0.0
+ 0.111 0.0022
+ 0.222 0.0176
+ 0.333 0.0575
+ 0.444 0.1306
+ 0.555 0.2414
+ 0.666 0.3900
+ 0.777 0.5718
+ 0.888 0.7783
+ 1.000 1.000
+ 9999.
+C
+ 0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00
+C
+99DELYCC56+INRECA
+ 0.0 0.0
+ 0.0022 0.111
+ 0.0176 0.222
+ 0.0575 0.333
+ 0.1306 0.444
+ 0.2414 0.555
+ 0.3900 0.666
+ 0.5718 0.777
+ 0.7783 0.888
+ 1.000 1.000
+ 9999.
+99DELYC =DELYCC * 0.004167
+C
+ 1DELCA +DELIN -DELYC 1.0 0.0040
+ 1.0
+ 1.0 0.015
+C
+C ***************** REACTOR SWITCHING ***************************************
+C
+C control signals to switch reactive load 'XLA/B/C' on and off
+C see TYPE 12 switches in power network.
+C TACS source (Rule Book p. 3-14)
+23FRLA 1000. 0.200 0.100 0.2
+23FRLB 1000. 0.200 0.100 0.2
+23FRLC 1000. 0.200 0.100 10.0
+C
+C initializations
+77VLLAVG 1.0
+77TXNAB 1.0
+77QRNEW .30
+77QINA .30
+77QINB .30
+77QINC .30
+C
+C ********* TACS OUTPUTS ************
+C
+33TXNAB TXNBC TXNCA ERRQA VLLAVG
+33QRNEW DVQ QINA
+BLANK end of TACS
+C
+C ************** NETWORK DATA *********************
+C
+C ********* LINE TO SOURCE ***********
+C
+C transmission line (equivalent) from GEN source to transformer
+ GENA TRFA 4.5 25.0
+ GENB TRFB 4.5 25.0
+ GENC TRFC 4.5 25.0
+C fault level at trsf. 230 kV approx. 2083 MVA
+C
+C ************** MAIN TRANSFORMER **************
+C
+C transformer capacitance to ground 10000pF
+C a very simple model, can be replaced with any more complex model
+C transformer 230000/34500 Y/D 100 MVA; In=250 A
+C x = 7.0% on 100 MVA
+C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
+C TRANSFORMER busref imag flux busin rmag empty
+C ------------______------______------______------_____________________________-
+C
+C no saturation
+ TRANSFORMER 0.7 700.0 X
+ 0.7 700.0 { 100%
+ 9999
+ 1TRPA 0.80 36.0 1330
+ 2TRXA TRXB 1.00 385 {372
+ TRANSFORMER X Y
+ 1TRPB
+ 2TRXB TRXC
+ TRANSFORMER X Z
+ 1TRPC
+ 2TRXC TRXA
+C
+C transformer capacitance to ground and ph - ph 10000pF
+ TRXA 0.01
+ TRXB 0.01
+ TRXC 0.01
+C capacitance between phases
+ TRXA TRXB 0.01
+ TRXB TRXC 0.01
+ TRXC TRXA 0.01
+C
+C *********** HARMONIC FILTERS ***************
+C
+C 5th harmonic filter 20 MVAR
+ TRSA TF5 2.38 44.5
+ TRSB TF5 2.38 44.5
+ TRSC TF5 2.38 44.5
+C 7th harmonic filter 20 MVAR
+ TRSA TF7 1.21 44.5
+ TRSB TF7 1.21 44.5
+ TRUC TF7 1.21 44.5
+C
+C ******** TRANSFORMER SECONDARY LOAD ***************
+C 75 MW, 30 MVAR
+ TRSA ND 13.67 5.47
+ TRSB ND 13.67 5.47
+ TRSC ND 13.67 5.47
+C
+C shunt capacitor 20 MVAR
+ TRSA 44.5
+ TRSB 44.5
+ TRSC 44.5
+C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
+C
+C switched reactor .1 sec. on .1 sec. off
+C see switch type 13 below and type 23 source in TACS
+C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
+ XLA NSR 34.00 34.00
+ XLB NSR 34.00 34.00
+ XLC NSR 34.00 34.00
+C
+C
+C ************** SNUBBERS **************
+C
+C the snubber parameters shown below are not necessarily the
+C values a manufacturer would choose for a 34.5 kV valve.
+C The parameters were selected so that only a small currrent flows
+C through the control reactor with the valves non conducting,
+C and overvoltages and spikes interfering with the firing control
+C are prevented. It is quite possible that a better combination
+C than that shown exists.
+C
+C in series with valves
+C
+ CATAB RXAB .1
+ ANOAB RXAB .1
+ CATAB RXAB 4.0
+ ANOAB RXAB 4.0
+C
+ CATBC RXBC .1
+ ANOBC RXBC .1
+ CATBC RXBC 4.0
+ ANOBC RXBC 4.0
+C
+ CATCA RXCA .1
+ ANOCA RXCA .1
+ CATCA RECA 4.0
+ ANOCA RXCA 4.0
+C
+C across valves
+C
+ CATAB TRSA 2000. .1
+ ANOAB TRSA 2000. .1
+C
+ CATBC TRSB 2000. .1
+ ANOBC TRSB 2000. .1
+C
+ CATCA TRSC 2000. .1
+ ANOCA TRSC 2000. .1
+C
+C ************* SVC CONTROLLED REACTOR *************
+C
+C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
+ RXAB TRSB 0.1 35.71 1
+ RXBC TRSC 0.1 35.71
+ RXCA TRSA 0.1 35.71
+C
+C *************** REACTOR FOR FIRING PULSE GENERATION ******
+C
+C Fire angle reference measurement using delta connected reactors
+C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
+ TRSA RMXA 0.01 1
+ TRSB RMXB 0.01
+ TRSC RMXC 0.01
+C The reactors are delta connected through measuring switches below
+ RMAB RMXB 200. 20000.
+ RMBC RMXC 200. 20000.
+ RMCA RMXA 200. 20000.
+C
+BLANK end of branch data
+C *************** SWITCH DATA ***************8
+C
+C current measurement in the auxiliary reactor for firing pulse generation
+C these switches complete the delta connection of the reactors
+C (Rule Book p.6A-9)
+ RMXA RMAB MEASURING
+ RMXB RMBC MEASURING
+ RMXC RMCA MEASURING
+C
+C current measurement in the main transformer secondary
+ TRXA TRSA MEASURING 1
+ TRXB TRSB MEASURING 0
+ TRXC TRSC MEASURING 0
+C current measurement in the main transformer primary
+ TRFA TRPA MEASURING 1
+ TRFB TRPB MEASURING 0
+ TRFC TRPC MEASURING 0
+C
+C switch for on/off switching the 17.5 MVAR resistive-reactive load
+C (Rule Book p. 6C-1)
+12TRSA XLA FRLA 11
+12TRSB XLB FRLB 10
+12TRSC XLC FRLC 10
+C
+C VALVES
+C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
+C Rule Book p. 6B-1
+11TRSA CATAB 00. 15.0 FIAB1 1
+11ANOAB TRSA 00. 15.0 FIAB2 1
+11TRSB CATBC 0000. 15.0 FIBC1 1
+11ANOBC TRSB 000. 15.0 FIBC2 1
+11TRSC CATCA 0000. 15.0 FICA1 1
+11ANOCA TRSC 000. 15.0 FICA2 1
+C
+BLANK end of switch data
+C
+C AC sources
+C 230 kV supply
+14GENA 187794. 60. 0. -1.
+14GENB 187794. 60. 240. -1.
+14GENC 187794. 60. 120. -1.
+C --------------+------------------------------
+C From bus name | Names of all adjacent busses.
+C --------------+------------------------------
+C GENA |TRFA *
+C TRFA |GENA *TRPA *
+C GENB |TRFB *
+C TRFB |GENB *TRPB *
+C GENC |TRFC *
+C TRFC |GENC *TRPC *
+C X |TERRA *TERRA *TRPA *
+C TRPA |TRFA * X*
+C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA *
+C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB *
+BLANK end of source cards
+C Total network loss P-loss by summing injections = 9.766831747973E+07
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04
+C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04
+C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04
+C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07
+C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07
+C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06
+C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07
+C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06
+C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06
+C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8
+C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951
+ TRSA TRFA { Names of nodes for which voltage is to be outputted
+C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS
+C TRSA TRPA XLA TRSB RMXA TXNAB
+C
+C TACS TACS TACS TACS TACS TACS TACS
+C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA
+C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
+C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
+C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
+C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
+C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
+C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
+C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
+C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
+C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
+C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
+C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
+C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
+C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
+C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0
+C 0.0 0.0 0.0 1.0 0.3 0.0 0.3
+C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562
+C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0
+C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec.
+C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949
+C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0
+BLANK end of output requests
+C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec.
+C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec.
+C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec.
+C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec.
+C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec.
+C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec.
+C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec.
+C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec.
+C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036
+C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946
+C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099
+C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066
+C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259
+C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481
+C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0
+C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0
+C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0
+C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4
+ PRINTER PLOT
+ 193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient
+BLANK end of plot requests
+BEGIN NEW DATA CASE
+C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC).
+C This is very similar to the preceding 4th case except that here newer
+C MODELS replaces TACS for the control system modeling. The same
+C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed
+C this during February of 1995 (see January and April newsletters). To
+C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec.
+NEW LIST SIZES
+ 0 0 68 8 450 35 285 0 0 0
+ 0 0 4700 0 64800 0 0 0 0 0
+C 0 0 220 126000
+ 0 0 220 30 126000 { 16 March 2007
+C About the preceding 2 lines, List 27 default = 26 resulted in TACS1 overflow
+C Since year 1 (1995), this went undetected until Orlando Hevia's G95 testing
+ 240000 742
+PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations
+C DELTAT TMAX XOPT COPT EPSILN TOLMAT
+C 46.296-6 0.600 60. ---- Gabor Furst's original data card
+.0000462962962962963, 0.100, 60., , , , , , , , ,
+C the time step is the cycle time 1/60 sec. divided by 360 degrees
+C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP
+C 9999 1 0 1 1
+ 1 3 1 2 1 -1
+ 5 5 20 20 100 100 500 500
+C The running of this MODELS file requires the latest version of TPbig
+C with the increased list sizes for MODELS
+C
+C The example demonstrates a generic SVC connected to a 230/34.5 kV
+C step-down transformer, with an SVC reactor rating of 100 MVA.
+C The SVC is tested by switching on and off a 25 MVA 0.7 p.f.
+C load on the 34.5 kV bus
+C plot vatiable 'vllavg' for SVC response
+C ==============================================================================
+MODELS
+ INPUT trma {v(TRSA)} -- transf. sec. voltage
+ trmb {v(TRSB)}
+ trmc {v(TRSC)}
+--
+ irab {i(RMAB)} -- aux. reactor delata current
+ irbc {i(RMBC)}
+ irca {i(RMCA)}
+--
+ itra {i(TRXA)} -- transf. sec. current
+ itrb {i(TRXB)}
+ itrc {i(TRXC)}
+--
+ rxab {i(TRXA)} -- main reactor current
+ rxbc {i(TRXB)}
+ rxca {i(TRXC)}
+--
+ OUTPUT -- firing signals
+ FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals
+ FRLA, FRLB, FRLC -- reactor switching
+--
+MODEL svcmod -- MODELS version of DC 22 subcase 4
+--
+--
+DATA omega {dflt: 2*pi*freq}
+ dt {dflt :0.25/freq}
+--
+CONST freq {val: 60}
+ tper {val: 1/freq}
+ qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase
+ qref {val: 0.00} -- set 0 for this example
+ delin {val: 0.25/freq} -- initialization for firing delay (60Hz)
+ tpimp {val: 0.200} -- test reactor switching cycle
+ ton {val: 0.100} -- reactor on time
+ tstart {val: 0.3} -- start of switching reactors
+--
+VAR
+ tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3
+ dvq, error, fdb, vref, verr, inreact, delyi
+ vtrsec[1..3], vtrff[1..3]
+ f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3]
+ vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3]
+ errq[1..3], qincr[1..3]
+--
+ HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages
+ vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages
+--
+ dvq {dflt: 0} -- forward block output
+ error {dflt: 0} -- error signal
+ fdb {dflt: 0} -- feedback
+--
+ ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current
+ itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current
+ del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles
+--
+ INPUT trma {dflt: trma} -- trsf sec. voltage ph-g
+ trmb {dflt: trmb}
+ trmc {dflt: trmc}
+--
+ irab {dflt: irab} -- svc reactor currents
+ irbc {dflt: irbc}
+ irca {dflt: irca}
+--
+ itra {dflt: itra} -- transf. sec. current
+ itrb {dflt: itrb}
+ itrc {dflt: itrc}
+--
+ rxab {dflt: 0} -- main reactor delta current
+ rxbc {dflt: 0}
+ rxca {dflt: 0}
+--
+ OUTPUT
+ ficat[1..3], fian[1..3] -- firing signals to thyristors
+ ttt1, ttt2, ttt3 -- control signal to switch reactors
+--
+ INIT
+ vref:= 1.0 -- reference voltage
+ verr:= 0 -- voltage error
+ tt := timestep/tper -- integration multiplier
+ vrms[1..3] := 0
+ ficat[1..3]:= 0 -- firing pulse to cathode
+ fian[1..3]:= 0 -- firing pulse to anode
+ qin[1..3]:= 0.3 -- rective power
+ ttt1:= 0 -- test rector breaker control
+--
+ ENDINIT
+--
+DELAY CELLS DFLT: 100
+ CELLS(vtrsec[1..3]):500
+ CELLS(vtrff[1..3]):500
+--
+-- liearization of angel versus p.u. current through thyristors
+ FUNCTION dely POINTLIST
+-- angle current
+ ( 0.0, 0.0)
+ ( 0.0022, 0.111)
+ ( 0.0176, 0.222)
+ ( 0.0575, 0.333)
+ ( 0.1306, 0.444)
+ ( 0.2414, 0.555)
+ ( 0.3900, 0.666)
+ ( 0.5718, 0.777)
+ ( 0.7783, 0.888)
+ ( 1.0000 1.000)
+--
+-- ************** EXEC ****************
+EXEC
+-- convert to arrays
+ ir[1..3] := [irab, irbc, irca]
+ vtrsec[1..3] := [trma, trmb, trmc]
+--
+-- control signals for the type 12 switches in EMTP
+-- to switch test reactors
+-- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s
+ ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart)
+ ttt2 := ttt1
+ ttt3 := ttt1
+--
+-- form phase to phase voltages and normalize
+ vtrff[1] :=(trma - trmb)/34500
+ vtrff[2] :=(trmb - trmc)/34500
+ vtrff[3] :=(trmc - trma)/34500
+--
+-- calculation of voltage rms values
+ FOR i := 1 TO 3 DO
+ vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2))
+ ENDFOR
+--
+-- calculate reactive through transformer
+-- qina, qinb, qinc
+-- see DC22-3 for explanation
+ itr[1..3] := [itra, itrb, itrc]
+ FOR i:= 1 TO 3 DO
+ tri[i]:= delay(itr[i],tper/4)
+ trv[i]:= delay(vtrsec[i],tper/4)
+ qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr
+ ENDFOR
+--
+-- generate firing pulses 500 microsec wide
+--
+ if t> timestep then
+--
+ FOR i := 1 TO 3 DO
+ f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 )
+ f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 )
+ ENDFOR
+-- delayed pulses caclulated
+-- by var and voltage control
+ FOR i:= 1 TO 3 DO
+ ficat[i] := delay(f1[i],del[i]) -- cathode
+ fian[i] := delay(f2[i],del[i]) -- anode
+ ENDFOR
+ endif
+-- average ph-ph voltage normalized
+ vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85}
+--
+-- alternative to above but not used in this model
+-- 12 pulse rectfication with output smoothed alternative to rms signal
+-- smoothing rough, should be done with 120 c/s filter, not used here
+-- shown as possible alternative only
+-- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41
+-- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 )
+--
+-- voltage error forward and feedback loop
+ verr:= vllavg - vref
+-- combine endcombine used because forward - feedback loop
+ COMBINE AS first_group
+ error := sum( 1|vllavg - 1|vref - 1|fdb)
+-- forward gain . 1/1+stdelay
+ laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1)
+-- derivative feedback
+ claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 )
+ ENDCOMBINE
+--
+ FOR i := 1 TO 3 DO
+-- total error the qref - qin[i] component may be omitted
+-- it is usefull for unbalanced loads
+ errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0}
+ ENDFOR
+-- calculate new firing angles
+-- phase A
+ FOR i:= 1 TO 3 DO
+ k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B
+ l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C
+-- apply phase unbalance correction
+ inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0}
+-- linearize and convert from firing angle to time delay
+ delyi := delin - dely(inreact ) * dt
+ claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:=
+ 1.0|s0/(1.0|s0 + 0.005|s1)
+ ENDFOR
+--
+ENDEXEC
+ENDMODEL
+USE svcmod AS test
+ INPUT trma:= trma trmb:= trmb trmc:= trmc
+ irab:= irab irbc:= irbc irca:= irca
+ itra:= itra itrb:= itrb itrc:= itrc
+--
+ OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2]
+ FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3]
+ FRLA := ttt1 FRLB := ttt2 FRLC := ttt3
+ENDUSE
+C
+RECORD test.vrms[1] AS vrmsab
+ test.vrms[2] AS vrmsbc
+ test.vrms[3] AS vrmsca
+ test.vllavg AS vllavg
+ test.error AS error
+ test.dvq AS dvq
+ test.fdb AS fdb
+ test.verr AS verr
+ENDMODELS
+C ************** NETWORK DATA *********************
+C
+C ********* LINE TO SOURCE ***********
+C
+C transmission line (equivalent) from GEN source to transformer
+ GENA TRFA 4.5 25.0
+ GENB TRFB 4.5 25.0
+ GENC TRFC 4.5 25.0
+C fault level at trsf. 230 kV approx. 2083 MVA
+C
+C ************** MAIN TRANSFORMER **************
+C
+C transformer capacitance to ground 10000pF
+C a very simple model, can be replaced with any more complex model
+C transformer 230000/34500 Y/D 100 MVA; In=250 A
+C x = 7.2% on 100 MVA
+C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
+C TRANSFORMER busref imag flux busin rmag empty
+C ------------______------______------______------_____________________________-
+C
+C no saturation
+ TRANSFORMER 0.7 700.0 X
+ 0.7 700.0 { 100%
+ 9999
+ 1TRPA 0.80 36.0 1330
+ 2TRXA TRXB 1.00 375 {385
+ TRANSFORMER X Y
+ 1TRPB
+ 2TRXB TRXC
+ TRANSFORMER X Z
+ 1TRPC
+ 2TRXC TRXA
+C
+C transformer capacitance to ground and ph - ph 10000pF
+ TRXA 0.01
+ TRXB 0.01
+ TRXC 0.01
+C capacitance between phases
+ TRXA TRXB 0.01
+ TRXB TRXC 0.01
+ TRXC TRXA 0.01
+C
+C *********** HARMONIC FILTERS ***************
+C
+C 5th harmonic filter 20 MVAR
+ TRSA TF5 2.38 44.6 1
+ TRSB TF5 2.38 44.6
+ TRSC TF5 2.38 44.6
+C 7th harmonic filter 10 MVAR
+ TRSA TF7 2.43 22.3 1
+ TRSB TF7 2.43 22.3
+ TRUC TF7 2.43 22.3
+C
+C ******** TRANSFORMER SECONDARY LOAD ***************
+C 70 MW, 30 MVAR
+ TRSA ND 13.67 5.47
+ TRSB ND 13.67 5.47
+ TRSC ND 13.67 5.47
+C
+C shunt capacitor 20 MVAR
+ TRSA 44.5
+ TRSB 44.5
+ TRSC 44.5
+C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
+C
+C switched .1 sec. on .1 sec. off
+C see switch type 13 below and type 23 source in TACS
+C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
+C
+ XLA NSR 34.0 34.0
+ XLB NSR 34.0 34.0
+ XLC NSR 34.0 34.0
+C
+C ************** SNUBBERS **************
+C
+C the snubber parameters shown below are not necessarily the
+C values a manufacturer would choose for a 34.5 kV valve.
+C The parameters were selected so that only a small currrent flows
+C through the control reactor with the valves non conducting,
+C and overvoltages and spikes interfering with the firing control
+C are prevented. It is quite possible that a better combination
+C than that shown exists.
+C
+C in series with valves
+C
+ CATAB RXAB .1
+ ANOAB RXAB .1
+ CATAB RXAB 4.0
+ ANOAB RXAB 4.0
+C
+ CATBC RXBC .1
+ ANOBC RXBC .1
+ CATBC RXBC 4.0
+ ANOBC RXBC 4.0
+C
+ CATCA RXCA .1
+ ANOCA RXCA .1
+ CATCA RECA 4.0
+ ANOCA RXCA 4.0
+C
+C across valves
+C
+ CATAB TRSA 2000. .1
+ ANOAB TRSA 2000. .1
+C
+ CATBC TRSB 2000. .1
+ ANOBC TRSB 2000. .1
+C
+ CATCA TRSC 2000. .1
+ ANOCA TRSC 2000. .1
+C
+C ************* SVC CONTROLLED REACTOR *************
+C
+C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
+ RXAB TRSB 0.1 35.71 1
+ RXBC TRSC 0.1 35.71
+ RXCA TRSA 0.1 35.71
+C
+C *************** REACTOR FOR FIRING PULSE GENERATION ******
+C
+C Fire angle reference measurement using delta connected reactors
+C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
+ TRSA RMXA 0.01 1
+ TRSB RMXB 0.01
+ TRSC RMXC 0.01
+C The reactors are delta connected through measuring switches below
+ RMAB RMXB 200. 20000.
+ RMBC RMXC 200. 20000.
+ RMCA RMXA 200. 20000.
+C
+BLANK end of branch data
+C *************** SWITCH DATA ***************8
+C
+C current measurement in the auxiliary reactor for firing pulse generation
+C these switches complete the delta connection of the reactors
+C (Rule Book p.6A-9)
+ RMXA RMAB MEASURING 1
+ RMXB RMBC MEASURING 1
+ RMXC RMCA MEASURING 1
+C
+C current measurement in the main transformer secondary
+ TRXA TRSA MEASURING
+ TRXB TRSB MEASURING
+ TRXC TRSC MEASURING
+C current measurement in the main transformer prinmary
+ TRFA TRPA MEASURING
+ TRFB TRPB MEASURING
+ TRFC TRPC MEASURING
+C
+C switch for on/off switching the 36.6 MVAR resistive-reactive load
+C (Rule Book p. 6C-1)
+12TRSA XLA FRLA 1
+12TRSB XLB FRLB 1
+12TRSC XLC FRLC 1
+C
+C VALVES
+C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
+C Rule Book p. 6B-1
+11TRSA CATAB 100. 35.0 FIAB1 1
+11ANOAB TRSA 100. 35.0 FIAB2 1
+11TRSB CATBC 100. 35.0 FIBC1 1
+11ANOBC TRSB 100. 35.0 FIBC2 1
+11TRSC CATCA 100. 35.0 FICA1 1
+11ANOCA TRSC 100. 35.0 FICA2 1
+C
+BLANK end of switch data
+C
+C AC sources
+C 230 kV supply
+14GENA 187794. 60. 0. -1.
+14GENB 187794. 60. 240. -1.
+14GENC 187794. 60. 120. -1.
+C --------------+------------------------------
+BLANK end of source cards
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04
+C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04
+C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04
+C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06
+C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06
+C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06
+C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06
+C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06
+C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06
+C TRSA XLA Open Open .... Etc. (all remaining switches)
+C
+C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8
+C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739
+ TRSA TRFA { Node voltage output requests
+C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB
+C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA
+C
+C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS
+C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC
+C
+C MODELS MODELS MODELS MODELS MODELS MODELS
+C VRMSCA VLLAVG ERROR DVQ FDB VERR
+C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
+C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
+C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
+C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
+C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
+C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
+C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
+C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
+C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
+C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
+C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
+C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
+C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
+C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491
+C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15
+C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865
+C .046333037 .85 .007233288 -.37886586 -.15723329 -.15
+C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142
+C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15
+BLANK end of output requests
+C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0
+C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633
+C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629
+C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119
+C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273
+C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165
+C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625
+C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407
+C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111
+ PRINTER PLOT
+ 193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930)
+BLANK end of plot requests
+BEGIN NEW DATA CASE
+BLANK
+EOF
+
+ 10 June 2002, WSM adds output to the screen in case of DISK use.
+Without any EATS, this is simple as should be illustrated in the October
+(or later) newsletter. But with EATS, there are variations depending upon:
+1) the subcase number; and 2) whether NEW LIST SIZES (NLS) is being
+used. The subject is mentioned here because the preceding data _does_
+involve NLS. So, if EATS is requested from STARTUP (FLZERO < 0),
+expect the following new output to the screen:
+ ---- Begin EATS for subcase number KNTSUB = 1
+ ---- Begin EATS for subcase number KNTSUB = 2
+ ---- Begin EATS for subcase number KNTSUB = 3
+ ---- Begin next subcase number KNTSUB = 4
+ ---- Begin next subcase number KNTSUB = 5
+The NLS requests in the 4th and 5th subcases conflict with EATS,
+and NLS takes precedence.