1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
|
BEGIN NEW DATA CASE
C BENCHMARK DC-22
C Illustration of basic TACS logic that can be used to control the firing of
C valves (thyristers) of an ac/dc converter bridge. The electric network
C actually has no valves, however (TACS output signals are not used). The
C electric network passes balanced three-phase voltages to TACS via Type-90
C sources. Summers convert to line-to-line voltages. A constant firing
C angle DELAY1 of 1.0 msec is used, for simplicity. TACS variables FIRE1
C through FIRE6 should go back to electric network to control valves (only
C FIRE1 is passed back, and for simplicity, just to a Type-60 source).
C After this 1st small subcase, there is a 2nd, followed by 2 large subcases
C 11 November 1998, add Type-10 source to illustrate saw-toothed waveform
C Note: program created on this date, or later, is required for use.
C 26 January 1999, add Orlando Hevia's rectangular and positive-pulse
C waveforms. One new vector plot at end should be studied to understand.
PRINTED NUMBER WIDTH, 10, 2,
.000500 .040 { Double T-max on 26 Jan 99 to show repetition of Hevia signals
1 1 1 1 1 -1
40 5
TACS HYBRID
PHA-B +GENA -GENB
PHB-C +GENB -GENC
PHC-A +GENC -GENA
90GENA
90GENB
90GENC
98ZA-B 52+UNITY 1. 0. 0. PHA-B
98ZB-A 52+UNITY 1. 0. 1. PHA-B
98ZB-C 52+UNITY 1. 0. 0. PHB-C
98ZC-B 52+UNITY 1. 0. 1. PHB-C
98ZC-A 52+UNITY 1. 0. 0. PHC-A
98ZA-C 52+UNITY 1. 0. 1. PHC-A
98DELAY1 .001
98FIRE1 54+ZA-B .001 DELAY1
98FIRE4 54+ZB-A .001 DELAY1
98FIRE3 54+ZB-C .001 DELAY1
98FIRE6 54+ZC-B .001 DELAY1
98FIRE5 54+ZC-A .001 DELAY1
98FIRE2 54+ZA-C .001 DELAY1
33PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B ZC-A ZA-C GENA GENB GENC FIRE1
33FIRE4 FIRE3 FIRE6 FIRE5
BLANK card ending all TACS data
0GENA 1.0
0GENB 1.0
0GENC 1.0
FIRE1 1.0
SAW 1.0 { Load on sawtooth waveform } 1
RECT 1.0 { Load on rectangular waveform } 1
PULSE 1.0 { Load on positive pulse } 1
SINE 1.0 { Load on reference sine wave } 1
BLANK card ending branch cards of the electric network
BLANK card ending switch cards of the electric network
14GENA 1.0 60. -90.
14GENB 1.0 60. 30.
14GENC 1.0 60. 150.
60FIRE1
C Prior to 11 November 1998, saw-toothed waveforms were not generated on the
C electrical side. If needed, they were generated in TACS and passed to the
C electrical side just as the preceding Type-60 source illustrates. Orlando
C Hevia contributed the following centered sawtooth waveform that is based on
C a Type-10 analytically-defined source. Note that the signal is directly
C generated on the electrical side (no need for TACS):
10SAW 100.0*(TIMEX-(TRUNC(TIMEX/0.010)*0.010))-0.5 { See Oct 98, newsletter
C Orlando Hevia contributes rectangular waveform and positive pulse on
C 26 January 1999. The rectangular waveform is trivial, so add it first:
10RECT 0.50*SIGN(SIN(TIMEX*314.1592))
C The positive pulse is more involved. More precisely, documentation of
C the parameters is more involved. The following comment cards are from
C Mr. Hevia (hope they are self-explanatory).
C W= PULSE WIDTH (DEGREES)
C X= ARCCOS(W/2)
C X= ARCCOS(30/2)= 0.9659
C P= PHASE IN DEGREES (THE START OF PULSE)
C Y= PHASE IN RADIANS
C Y= (P+W/2)*3.141592/180.0
C Y= (45+30/2)*3.141592/180.0= 1.0472
C PULSE= 0.50*SIGN(COS(TIMEX*314.1592-Y )-X )+0.5
10PULSE 0.50*SIGN(COS(TIMEX*314.1592-1.0472)-0.9659)+0.5
C 10PULSE -.25 { Offset the preceding downward by 1/4 to demonstrate superposition
C Preceding demonstrated the superposition of two sources on the same node. But
C 3 were mistreated prior to correction 12 May 2001. To prove that 3 now can
C be handled properly, split the preceding .25 into .10 and .15:
10PULSE -.10 { Offset the preceding downward by .10 to demonstrate superposition
10PULSE -.15 { Offset the preceding downward by .15 to demonstrate superposition
C Finally, let's add Mr. Hevia's reference waveform. This documents the
C sign and phase of the rectangular waveform. Plot will be beautiful.
10SINE SIN(TIMEX*314.1592) { Reference signal (RECT is 1/2 the sign of this)
BLANK card ending source cards of the electric network
C Next 4 output variables are branch currents (flowing from the upper node to the lower node);
C Next 17 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time SAW RECT PULSE SINE TACS TACS TACS TACS TACS TACS TACS
C TERRA TERRA TERRA TERRA PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B
C
C TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS
C ZC-A ZA-C GENA GENB GENC FIRE1 FIRE4 FIRE3 FIRE6 FIRE5
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-3 -.45 0.5 -.25 .1564344 -.569614 1.701371 -1.13176 0.0 1.0 1.0 0.0
C 0.0 1.0 .1873813 .7569951 -.944376 0.0 0.0 0.0 0.0 0.0
C 2 .1E-2 -.4 0.5 -.25 .3090169 -.253023 1.61042 -1.3574 0.0 1.0 1.0 0.0
C 0.0 1.0 .3681246 .6211478 -.989272 0.0 0.0 0.0 0.0 0.0
BLANK card ending selective node voltage outputs (none)
C 80 .04 -.5 -.5 -.25 -.261E-5 1.582307 -1.40126 -.181049 1.0 0.0 0.0 1.0
C 0.0 1.0 .5877853 -.994522 .4067366 1.0 0.0 0.0 1.0 0.0
C Variable maxima : .45 0.5 .75 1.0 1.731671 1.728633 1.730532 1.0 1.0 1.0 1.0
C 1.0 1.0 1.0 .9997807 .9991228 1.0 1.0 1.0 1.0 1.0
C Times of maxima :.0395 .5E-3 .0025 .005 .0055 .0165 .011 .0015 .5E-3 .5E-3 .0045
C .007 .5E-3 .0375 .032 .0265 .0035 .0025 .0025 .0065 .009
C Variable minima : -.5 -.5 -.25 -1. -1.73167 -1.73205 -1.73167 0.0 0.0 0.0 0.0
C 0.0 0.0 -1. -.999781 -.999781 0.0 0.0 0.0 0.0 0.0
C Times of minima : .01 .0105 0.0 .015 .0305 .025 .0195 0.0 0.0 0.0 0.0
C 0.0 0.0 .0125 .007 .018 0.0 0.0 0.0 0.0 0.0
CALCOMP PLOT
194 4. 0.0 40. -1.0 1.0BRANCH { Show 2 cycles of the 4 Type-10 Hevia signals
SINE RECT PULSE SAW
PRINTER PLOT
194 2. 0.0 20. TACS PHA-B TACS FIRE1 { Axis limits: (-1.731, 1.732)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 2nd of 5 subcases of DC-22 is a hybrid TACS example of the TACS-controlled
C resistance (Type-91 electric network branch type). All-resistive electric
C network allows easy checking with a pocket calculator at any step: For each
C branch, verify that program node voltages and branch currents correspond to
C the branch constraint equations v = R * i. There actually are two discon-
C nected subnetworks, with one having two TACS-controlled arcs (illustrating
C use of the multivariable solution code of "ZINCOX") and the other having 1.
PRINTED NUMBER WIDTH, 11, 1, { Reassert default choice (used before 25 Jan 99)
CHANGE PRINTOUT FREQUENCY
5 5
.02 2.0 { Step size is immaterial since network has no dynamics
1 1 1 1 1
TACS HYBRID { In a real case, arcs are on electric side, and equations in TACS
99RESIS = 1.0 + SIN ( 3.0 * TIMEX ) { 1st R(t) signal -- constant + sine wave
99RES = 1.0 + COS ( 3.0 * TIMEX ) { 2nd R(t) signal -- constant + cosine
33RESIS RES { Output the only 2 TACS variables: the 2 R(t) resistance functions
77RESIS 1.0 { Initial condition on 1st R(t) insures smooth start
77RES 2.0 { Initial condition on 1st R(t) insures smooth start
BLANK card ending all TACS data
BUS1 BUS2 1.0 { Master copy of five 1-ohm resistors } 1
BUS2 BUS3 BUS1 BUS2 { 2nd of 3 linear branches in 1st subnetwork
BUS3 BUS1 BUS2 { 3rd of 3 linear branches in 1st subnetwork
BUS1 BUS4 BUS1 BUS2 { 1st of 2 linear branches in second subnetwork
BUS4 BUS1 BUS2 { 2nd of 2 linear branches in second subnetwork
91BUS2 TACS RESIS { R(t) controlled by TACS variable "RESIS" } 1
91BUS3 TACS RES { R(t) controlled by TACS "RES" --- 2nd of 2 } 1
91BUS4 TACS RES { R(t) within 2nd, isolated subnetwork } 1
BLANK card ending electric network branches
BLANK card ending switches
11BUS1 1.0 { 1-volt battery excites ladder networks of both subnetw
BLANK card ending electric network source cards.
C Step Time BUS4 BUS3 BUS2 BUS1 BUS2 BUS3
C TERRA TERRA
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .02 0.4 .153846154 .384615385 1.0 .384615385 .076923077
C 2 .04 .39992797 .157235276 .393158988 1.0 .3709173 .078688436
1 { Request all node voltage outputs. Just 4: BUS1 through BUS4
C Last step: 100 2.0 .3976118 .127869158 .321592965 1.0 .484683228
C Last step cont. ..... .065854649 .204776399 .678407035 .720584502 1.96017029
C Variable max : 0.4 .175860563 .464962112 1.0 .999366283 .342009625 .999533993
C Times of maxima : .02 .28 .44 .02 1.6 1.02
PRINTER PLOT { Axis limits: (0.000, 2.000)
193 .4 0.0 2.0 TACS RESIS TACS RES { 1st of 2 plots is two TACS R(t)
193 .4 0.0 2.0 BRANCH { Axis limits: (0.000, 9.995)
BUS2 BUS3 BUS4 { 3 R(t) arc currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 3rd of 5 subcases illustrates the EMTP simulation of a rail gun or mass
C driver. It was contributed by Wendell Neugebauer as described in his
C paper on the subject (published in the Sept, 1990, issue of EMTP News).
C AUGMENTED RAILGUN (Mass driver) Simulation
C CAPACITOR BANK DRIVE
C 65 CANS OF 65 kJ, 22kV FOR EACH OF 8 STAGES, TOTAL INITIAL ENERGY = 33.8 MJ
C Wendell NEUGEBAUER
C 586 Middle Line Rd.
C Ballston Spa, New York 12020
C
C March 20, 1990
C Tel. (518) 885-6050 (home) (evenings only)
C
C This is a simulation of a mass driver as energized from a bank of charged
C capacitors. The individual switches are timed in synchronism with the
C position of the mass along the rails. The physics of the driver itself
C are modelled under TACS using its pseudo FORTRAN equations to implement
C Newton's laws. The individual TACS statements are commented to show the
C particular variables being computed. The storage capacitors and the
C associated electrical network are modelled using standard EMTP components.
C Note about time-step size. Wendell Neugebauer's originally data
C case used DELTAT = 1.E-6 and TMAX = 5.5 msec as shown below on
C comment cards. But the simulation is slow. By multiplying DELTAT
C by 5, the simulation is speeded without significantly affecting the
C PRINTER PLOT of rail current.
NEW LIST SIZES
0 0 68 8 450 35 285 0 0 0
C 0 0 4700 0 0 0 0 0 12000 0
0 0 4700 0 0 0 0 10 5000 0
0 0 220
240000
C Preceding dimensions are the same as used by the 4th subcase except that
C List 18 is increased from 0 (default 5) to 10 and List 19 is reduced to
C 5K from 12K. This addition of NLS is necessitated by the modification
C of ATD immediately below. In turn, that change was necessitated by the
C a change to SSTACS (for many years, TACS Table 1 has been overflowing).
ABSOLUTE TACS DIMENSIONS
C Expand TACS Table 1 from 60 to 90 on 29 March 2007. Orlando Hevia,
C using F95 GNU, discovered Table 1 need of 672 / 8 within SSTACS:
C 60 270 300 60 90 1250 550 180
85 270 300 60 90 1250 550 180
UNIQUE TACS SWITCH { Halt if Type-91 or 93 TACS source is not uniquely defined
C The preceding UTS is added during July of 2003. The answer is unchanged.
C This data case was picked only because both Type-91 and 93 sources exist.
C 1.E-6 5.5E-3 0. 0. ------ Orig. misc. data card
C 1 11 1 0 1 -1 ------ Orig. misc. data card
5.E-6 5.0E-3 0. 0. { Larger DELTAT speeds simulation
1 3 1 0 1 -1
5 5 20 20 100 100 500 500
TACS HYBRID
C LIST OF INPUT CONSTANTS
C RAIL RESISTANCE COEFFICIENT (R. Hawkes method for including skin effect)
C with the units ohms/amperes**0.75
11RRAIL0 5.53E-5 -1.
C RAIL INDUCTANCE GRADIENT, H/m
11LPRIME .5765E-6 -1.
C PROJECTILE MASS, kg
11MASS 2.500 -1.
C LENGTH OF RAIL, m
11XRAIL 8.0 -1.
C Muzzle discharge resistor, ohms
11RDUMP 8.E-3 -1.
C final rail inductance, H
11LRAILF 4.6E-6 -1.
C final rail resistance, ohms
11RRAILF 2.63E-4 -1.
C augmenting rail inductance, H
11LAUG 4.2E-6 -1.
C augmenting rail resistance, ohms
11RAUG 1.0E-4 -1.
C Mutual inductance gradient, augmenting to main rail, H/m
11DMDX .35E-6 -1.
C Friction approximation coefficient, fraction of applied force
11FMISC 0.2 -1.
C Initial projectile position, m
11XINIT 0. -1.
C Projectile initial velocity, m/s
11VINIT 738.0 -1.
C Rail mass ablation coefficient, kg/A/V/s
11ALPHA 49.E-9 -1.
C Threshold current for for computing effective arc drop
11ITHRES 100000. -1.
C Bore diameter, m
11BORE 0.09 -1.
C Velocity of sound in the medium within rails, m/s
11VSOUND 346.0 -1.
C Coefficient for computing shock force
11GAMMA 1.40 -1.
C Ambient pressure, N/m**2
11PAMB 1.013E5 -1.
C positions of mass along the rails where the various switches close
11XA 0.25 -1.
11X2 .50 -1.
11X3 1.00 -1.
11X4 1.70 -1.
11X5 2.10 -1.
11X6 2.70 -1.
11X7 3.00 -1.
C
C THIS CONCLUDES THE TACS SOURCES.
C
C LIST OF EMTP SOURCES
C VBREECH FROM EMTP
90VBR
C IRAIL FROM EMTP
91IRAIL
C
C
C --- EMTP NODE VOLTAGES ON 8 CAPACITORS. USED TO TRIGGER CROWBAR DIODES.
90NODE01
90NODE02
90NODE03
90NODE04
90NODE05
90NODE06
90NODE07
90NODE08
C --- EMTP SWITCH STATUS 0 = OPEN 1 = CLOSED
C --- USED TO KEEP CROWBAR DIODES ON ONCE THEY ARE TRIGGERED.
93NODE17
93NODE18
93NODE19
93NODE20
93NODE21
93NODE22
93NODE23
93NODE24
C ---
C --- SUPPLEMENTAL DEVICES
C
C --- COMPUTE GRID SIGNALS FOR CROWBAR DIODES
C --- GRID SIGNALS (N1-N8) TURN ON WHEN THE CAPACITOR VOLTAGE IS LESS THAN 0.
88N1 = - NODE01
88N2 = - NODE02
88N3 = - NODE03
88N4 = - NODE04
88N5 = - NODE05
88N6 = - NODE06
88N7 = - NODE07
88N8 = - NODE08
C
C
C SUPPLEMENTAL DEVICES
C SIMPLE RAILGUN MECHANICS
C COMPUTE MECHANICAL FORCE ON THE PROJECTILE INCL. AUGMENTATION
88FMECH =.5*(1.0-FMISC)*(LPRIME+2.*DMDX)*ABS(IRAIL)**2-FSHOCK
C USE LINEAR MODEL FOR SOLID ARMATURE ARC VOLTAGE DROP
88GNARC =45.+31.43*TIMEX*1000.
C COMPUTE RATE OF MASS ABLATION FROM THE RAILS
88MDOT =(ALPHA*ABS(IRAIL)*ABS(GNVOLT))*FLAG1
C COMPUTE VDOT = PROJECTILE ACCELERATION, INCLUDE TIME DELAY OF ONE
C STEP FOR STABILITY
VEL1 +VEL
88VDOT =((FMECH-VEL1*MDOT)/MASS1)*FLAG1
C COMPUTE MACH NUMBER, PRESSURE RATIO, AND SHOCK FORCE
88MACH =VEL1/VSOUND
88PR =GAMMA*(GAMMA+1.)/4.*ABS(MACH)**2+1
88PRATIO =PR+GAMMA*MACH*ABS(((ABS(MACH)**2*ABS((GAMMA+1.))**2/16.+1.)))**0.5
88FSHOCK =PI*BORE**2/4*PRATIO*PAMB
C
C COMPUTE RESET SIGNAL FOR FIRST LAUNCH
C FLAG1 IS 1 AS LONG AS PROJECTILE IS IN BARREL
C Introduce one time step delay for stability of computation
X1 +X
88FLAG1 =(TIMEX .GT. (2.*DELTAT)).AND.(X1.LE.XRAIL)
88FLAG4 =(TIMEX .GT. (2.*DELTAT))
88FLAG5 =NOT(FLAG1)
C
C COMPUTE MASS1, PROJECTILE PLUS ABLATED RAIL MASS
88MASS1 58+MDOT 1.0 0.0 1.0FLAG4 MASS
C INTEGRATE VDOT TO GET VELOCITY OF MASS
88VEL 58+VDOT 1.0 0.0 1.0FLAG4 VINIT
C INTEGRATE VELOCITY TO GET PROJECTILE POSITION
88X 58+VEL 1.0 0.0 1.0FLAG4 XINIT
C COMPUTE THE INSTANTANEOUS RAIL INDUCTANCE
88LRAIL =LPRIME*ABS(X1)*FLAG1+FLAG5*LRAILF
C COMPUTE THE INSTANTANEOUS RAIL RESISTANCE
88RRAIL =FLAG1*RRAIL0*ABS(X1)**0.75+FLAG5*RRAILF
C COMPUTE INSTANTANEOUS MUTUAL INDUCTANCE, AUGMENTING TO MAIN RAILS
88M =DMDX*(FLAG1*X1+FLAG5*XRAIL)
C
C CALCULATE THE POWER AND ENERGY DELIVERED TO THE RAILS
88PBR =VBR*IRAIL
88EBR 58+PBR 1.0 0.0 1.0FLAG4 ZERO
C CALCULATE SHOCK POWER AND ENERGY
88PSHOCK =FSHOCK*VEL*FLAG1
88ESHOCK58+PSHOCK 1.0 0.0 1.0FLAG4 ZERO
C CALCULATE ARC POWER AND ENERGY
88PARC =IRAIL*GNVOLT*FLAG1
88EARC 58+PARC 1.0 0.0 1.0FLAG4 ZERO
C CALCULATE MIXING POWER AND ENERGY
88PMIX =0.5*VEL**2*MDOT*FLAG1
88EMIX 58+PMIX 1.0 0.0 1.0FLAG4 ZERO
C CALCULATE THE DUMP RESISTOR POWER AND ENERGY
88PMUZ =RDUMP*(ABS(IRAIL-I3A)**2)
88EMUZ 58+PMUZ 1.0 0.0 1.0FLAG5 ZERO
C CALCULATE PROJECTILE CHANGE IN KINETIC ENERGY
88DKE =0.5*MASS*(VEL**2-VINIT**2)
C CALCULATE ABLATED PLASMA CHANGE IN KINETIC ENERGY
88PLSMKE =0.5*(MASS1-MASS)*VEL**2
C CALCULATE INSTANTANEOUS RAIL HEAT POWER AND ENERGY
88HPOWR =ABS(IRAIL)**2*RRAIL
88HEAT 58+HPOWR 1.0 0.0 1.0FLAG4 ZERO
C COMPUTE AUGMENTING RAIL LOSS
88PAUG =IRAIL*IRAIL*RAUG
88EAUG 58+PAUG 1.0 0.0 1.0FLAG4 ZERO
C CALCULATE FRICTION POWER AND ENERGY
88PFRIC =VEL*0.25*FMISC*(FMECH+FSHOCK)*FLAG1
88EFRIC 58+PFRIC 1.0 0.0 1.0FLAG4 ZERO
C CALCULATE TRAPPED MAGNETIC ENERGY WITHIN RAIL MATERIAL (ASSUMPTION)
88ETRAP =3.0*EFRIC
C COMPUTE ENERGY STORED IN RAIL AND MUTUAL INDUCTANCE
88ESTORE =(.5*LRAIL+.5*LAUG+M)*IRAIL*IRAIL
C COMPUTE ENERGY BALANCE DYNAMICALLY-should equal zero-conservation of energy
88EBAL =EBR-ETRAP-EFRIC-HEAT-PLSMKE-DKE-EMUZ-EMIX-EARC-ESHOCK-ESTORE-EAUG
C
C COMPUTE INJECTION CURRENTS I1, I2, I3
C THESE CURRENTS EFFECTIVELY REPRESENT THE BACK EMF OF THE MOVING MASS
88I1 =(IRAIL*(RRAIL-RRAILF)/RRAILF)*FLAG1
88I2A =(IRAIL*(LRAIL-LRAILF)/LRAILF)*FLAG1+M*IRAIL*FLAG4/LRAILF
88I2 =I2A-I1
C Compute the effective arc voltage
88GNVOLT =SIGN(IRAIL)*GNARC*(1.-EXP(-ABS(IRAIL)/ITHRES))
88I3A =((IRAIL*(-RDUMP)+GNVOLT)/RDUMP)*FLAG1
88I3 =I3A-I2A
C COMPUTE INJECTION CURRENT DUE TO MUTUAL EFFECTS
88I4I =M*IRAIL/LAUG
88I4O =-I4I
C
C CAPACITOR SWITCHING FLAGS BASED UPON PROJECTILE POSITION
88FLAG11 =X .GT. XA
88FLAG12 =X .GT. X2
88FLAG13 =X .GT. X3
88FLAG14 =X .GT. X4
88FLAG15 =X .GT. X5
88FLAG16 =X .GT. X6
88FLAG17 =X .GT. X7
C
C TACS OUTPUTS
C 111111222222333333444444555555666666777777888888999999AAAAAABBBBBBCCCCCCDDDDDD
33VDOT VEL X MASS1 IRAIL I1 I2 I3 FMECH MDOT ESTOREVBR EAUG
33EBR ESHOCKEARC EMIX EMUZ DKE PLSMKEHEAT EFRIC ETRAP EBAL
BLANK card that ends TACS data cards
C EMTP CIRCUIT INPUT FOLLOWS
C --- ELECTRIC NETWORK BRANCHES.
C --- SERIES R-L-C BRANCHES
$VINTAGE, 1
C --- RC SNUBBER ACROSS RAIL GUN
C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
0I1 0.033 4.5E2 4
C --- RAIL FINAL RESISTANCE R_RF
0I1 I2 2.63E-4
C --- RAIL FINAL INDUCTANCE L_LF
0I2 I3 4.6E-3
C --- DUMP RESISTANCE R_DUMP
0I3 8.0E-3
C --- CAPACITORS C = 16116 MICRO FARADS , R_FUSE = 223 MICRO OHMS
C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
0NODE01 223.E-6 17459. 4
0NODE02 NODE01 4
0NODE03 NODE01 4
0NODE04 NODE01 4
0NODE05 NODE01 4
0NODE06 NODE01 4
0NODE07 NODE01 4
0NODE08 NODE01 4
C --- IGNITRON SWITCHES R_SWITCH = 30 MICRO OHMS, L_SWITCH = 0.35 MICRO HENRIES
C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
0NODE09NODE25 30.E-6 0.35E-3
0NODE10NODE26NODE09NODE25
0NODE11NODE27NODE09NODE25
0NODE12NODE28NODE09NODE25
0NODE13NODE29NODE09NODE25
0NODE14NODE30NODE09NODE25
0NODE15NODE31NODE09NODE25
0NODE16NODE32NODE09NODE25
C --- INDUCTORS R_IND = 250 MICRO OHMS, L_IND = 20 MICRO HENRIES
C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
0NODE33NODE41 75.E-6 3.0E-3
0NODE34NODE41NODE33NODE41
0NODE35NODE41NODE33NODE41
0NODE36NODE41NODE33NODE41
0NODE37NODE41NODE33NODE41
0NODE38NODE41NODE33NODE41
0NODE39NODE41NODE33NODE41
0NODE40NODE41NODE33NODE41
C --- INTERNAL BUSWORK R_INT = 25 MICRO OHMS L_INT = 1 MICRO HENRY
C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
0NODE25NODE33 25.E-6 1.0E-3
0NODE26NODE34NODE25NODE33
0NODE27NODE35NODE25NODE33
0NODE28NODE36NODE25NODE33
0NODE29NODE37NODE25NODE33
0NODE30NODE38NODE25NODE33
0NODE31NODE39NODE25NODE33
0NODE32NODE40NODE25NODE33
C --- DIODE IMPEDANCE: R_DIODE = 73 MICRO OHMS , L_DIODE = 0.2 MICRO HENRIES
C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
0 NODE17 73.E-6 0.2E-3
0 NODE18 NODE17
0 NODE19 NODE17
0 NODE20 NODE17
0 NODE21 NODE17
0 NODE22 NODE17
0 NODE23 NODE17
0 NODE24 NODE17
C --- EXTERNAL BUSWORK: R_BUS = 37.3 MICRO OHMS, L_BUS = 0.47 MICRO HENRIES
C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC
0NODE41VBR 37.3E-6 0.47E-3
0VBR I4I 1.E-4
0I4I I4O 4.2E-3
0I4O IRAIL 1.0E-9
$VINTAGE, 0
BLANK card after last electric network branch
C INPUT SWITCH CARDS HERE
IRAIL I1 -1.0 1000.00 1
C --- SWITCH DATA.
C --- 8 IGNITRON SWITCHES
C --- <---TCLOSE<----TOPEN
NODE01NODE09 0. 50.E-3
C --- TACS CONTROLLED SWITCHES USING FLAGS
13NODE02NODE10 FLAG11 1
13NODE03NODE11 FLAG12 1
13NODE04NODE12 FLAG13 1
13NODE05NODE13 FLAG14 1
13NODE06NODE14 FLAG15 1
13NODE07NODE15 FLAG16 1
13NODE08NODE16 FLAG17 1
C
C --- DIODE DATA: 8 CROWBAR DIODES. (TACS CONTROLLED)
C --- GRID SIGNAL TURNS ON DIODE, TACS SIGNAL KEEPS THE DIODE ON REGARDLESS
C --- OF "RINGING VOLTAGE" ACROSS THE DIODE. THIS HELPS TO SMOOTH THE SOLUTION
C --- ESPECIALLY WHEN THE BANKS ARE TRIGGERED AT DIFFERENT TIMES.
C <---N1<---N2<------VON<----IHOLD<---TEDION CLOSED <-GRID<-TACS XX
11NODE17NODE25 0. 0. 0. N1 NODE17 10
11NODE18NODE26 0. 0. 0. N2 NODE18 10
11NODE19NODE27 0. 0. 0. N3 NODE19 10
11NODE20NODE28 0. 0. 0. N4 NODE20 10
11NODE21NODE29 0. 0. 0. N5 NODE21 10
11NODE22NODE30 0. 0. 0. N6 NODE22 10
11NODE23NODE31 0. 0. 0. N7 NODE23 10
11NODE24NODE32 0. 0. 0. N8 NODE24 10
BLANK card ends all switch cards
C SOURCE CARDS follow ....
C MASS DRIVER EQUIVALENT CURRENT SOURCES
60I1 -1
60I2 -1
60I3 -1
60I4I -1
60I4O -1
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C I1 |TERRA *I2 *IRAIL *
C I2 |I1 *I3 *
C I3 |TERRA *I2 *
C NODE01 |TERRA *NODE09*
C NODE02 |TERRA *NODE10*
C NODE03 |TERRA *NODE11*
C NODE04 |TERRA *NODE12*
C NODE05 |TERRA *NODE13*
C NODE06 |TERRA *NODE14*
C NODE07 |TERRA *NODE15*
BLANK card after last electric network source
C --- INITIAL CONDITIONS: INITIAL VOLTAGE ON THE 8 CAPACITORS
2NODE01 22.E3
2NODE02 22.E3
2NODE03 22.E3
2NODE04 22.E3
2NODE05 22.E3
2NODE06 22.E3
2NODE07 22.E3
2NODE08 22.E3
C --- INITIAL CONDITIONS: LINEAR BRANCH CURRENTS
3NODE01 0. 22.E3
3NODE02 0. 22.E3
3NODE03 0. 22.E3
3NODE04 0. 22.E3
3NODE05 0. 22.E3
3NODE06 0. 22.E3
3NODE07 0. 22.E3
3NODE08 0. 22.E3
C --- LIST OF NODE VOLTAGE OUTPUT REQUESTS
NODE01I1
C Step Time I1 NODE01 NODE02 NODE03 NODE04 NODE05
C TERRA TERRA TERRA TERRA TERRA TERRA
C
C I1 IRAIL I1 NODE01 NODE02 NODE03
C I1 TERRA TERRA TERRA TERRA
C
C NODE08 TACS TACS TACS TACS TACS
C TERRA VDOT VEL X MASS1 IRAIL
C
C TACS TACS TACS TACS TACS TACS
C MDOT ESTORE VBR EAUG EBR ESHOCK
C
C TACS TACS TACS TACS TACS
C PLSMKE HEAT EFRIC ETRAP EBAL
C *** Switch "IRAIL " to "I1 " closed before 0.00000000E+00 sec.
C *** Switch "NODE01" to "NODE09" closed after 0.00000000E+00 sec.
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 0.0
C 1 .5E-5 .1346699E7 -.13272E9 .163913E-3 .163913E-3 .163913E-3 .163913E-3
C 227.865632 6033.34599 3.36674866 -331.8007 .409782E-9 .409782E-9
C .409782E-9 0.0 738. 0.0 2.5 6033.34599
C 0.0 262.0891 10364.4902 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 -262.81712
C 2 .1E-4 .1028069E8 -.35417E9 0.0 0.0 0.0 0.0
C 663.274543 16104.2329 32.4352182 -1549.0272 .819564E-9 .819564E-9
C .819564E-9 0.0 738. 0.0 2.5 16104.2329
C 0.0 1867.29349 14205.3015 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 -1873.9365
C Warning. The powers (NODE01, TERRA) through (NODE07, TERRA) should be
C ------- zero initially. But these are floating (near) zeros. The problem
C comes from the current. Turning the debugger on or off may change
C these from near zeros to exact zeros, or vice versa. The SUBTS2
C computation involves the cancellation of 2 very large numbers to
C give the current. If numbers such as 1.E-4 are seen, this is the
C best that can be guaranteed using 64 bits. WSM + THL, 8 August 96
BLANK card ending node voltage outputs
C Valve "NODE22" to "NODE30" closing after 2.56000000E-03 sec.
C Switch "NODE08" to "NODE16" closing after 2.61500000E-03 sec.
C Valve "NODE23" to "NODE31" closing after 2.93000000E-03 sec.
C Valve "NODE24" to "NODE32" closing after 3.10000000E-03 sec.
C 1000 .005 .9701709E8 .1788576E8 .114869E8 .3849588E9 -.530779E9 -.327226E9
C 4394.39452 857904.981 5103.30646 -.415356E7 -.407104E7 -.389447E7
C -.387852E7 0.0 2415.92363 8.18382873 2.53769379 857904.981
C 0.0 .5299207E7 -4437.3114 872163.762 .1706545E8 272689.202
C 110003.436 .1023366E7 353147.438 .1059442E7 181783.733
C Variable max: .102486E9 .3091743E9 .141619E10 .316849E10 .38723E10 .31399E10
C 4394.39452 .1634357E7 5103.30646 0.0 .286847E-7 .553206E-7
C .214316E-6 534570.044 2415.92363 8.18382873 2.53769379 .1634357E7
C 10.1502923 .9999568E7 22826.1693 872163.762 .170705E8 272689.202
C 110003.436 .1023366E7 353147.438 .1059442E7 297386.202
C Times of max: .00499 .001105 .00109 .0013 .00178 .00235
C .005 .00152 .005 0.0 .35E-3 .675E-3
C .002615 .001515 .00493 .005 .00493 .00152
C .002975 .0029 .45E-4 .005 .004895 .00493
C .00493 .005 .00493 .00493 .004925
PRINTER PLOT
194 1. 0.0 5.5 TACS IRAIL { Axis limits: (0.000, 1.634)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC).
C Contributed to ATP materials of the Can/Am user group February 1992 by:
C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant
C #203 - 1745 Martin Drive 705 Westtown Circle
C White Rock/ South Surrey B.C. West Chester, PA 19382
C CANADA V4A 6Z1 USA
C Phone: 604-535-6540 Phone: 610-344-0432
C FAX: 604-535-6548
C In July of 1993, Mr. Furst revised it again in preparation for his use
C of it at Prof. Ned Mohan's University of Minnesota short course there.
C Size 1-10: 43 63 56 3 230 18 167 0 0 0
C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0
C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999
NEW LIST SIZES
0 0 68 8 450 35 285 0 0 0
0 0 4700 0 0 0 0 0 12000 0
0 0 220
240000
C *********** A GENERIC 6 PULSE SVC MODEL ************************************
C
C This is a conceptual model only, it must be refined
C for any specific system; the control algorithm can be greatly improved.
C
C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer;
C TCR's connected in delta.
C
C Thyristor gating pulses are phase locked to the current zero transition
C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT;
C individual phase open loop VAR control is used, with a superimposed.
C slow voltage control.
C
C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV
C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s
C value of the 34.5 kV phase to phase voltages, which are the TACS variables
C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC,
C the thyristors have to be blocked. One way of doing this is to punch
C 1000000. in col. 17-24 of the thyristor switches 11.
C
C To get the SVC overall response plot the transformer ph-ph r.m.s secondary
C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three
C ph-ph r.m.s. voltages
C
C To get the VAR import/phase through the transformer secondary
C plot QINA (TACS)
C
C To get the transformer secondary voltage (instant.) plot TRSA
C
C TRSA-XLA shows the switching of the phase to phase load
C
C RXAB-TRSB plots the current through one AB arm of the thyristor bridge
C
C For sake of simplicity, some of the TACS variables have not been
C initialized, so ignore the first 25 ms of the plots.
C
C If in the "Superimposed Voltage Control Section the gain
C of DVQ is set to zero, the model reverts to open loop VAR control
PRINTED NUMBER WIDTH, 13, 2,
ALLOW EVEN PLOT FREQUENCY { See April, 1998, newsletter (to allow IPLOT = 2 below)
C For best results, do not use a time step more than 1/2 Degree (23.148
C microsec for 60 Hz). Here, to speed the illustration, we use twice that,
C & only simulate for half as long (extend to 0.5 sec for more transients).
C Free-format data input is used in order to specify DELTAT precisely:
C DELTAT TMAX XOPT COPT EPSILN TOLMAT
C .0000462962962962963, 0.25, 60., , , , , , , , ,
C That was the old, brute-force way. Alternative finesse first was made
C available on 19 August 1998. As long as columns 1-16 involve no decimal
C point, dT and T-max are replaced by points/cycle & end time in cycles:
360 15 60. { Points per cycle, simulation time in cycles, XOPT
1 4 1 2 1 -1
5 5 20 20 100 100 500 500
TACS HYBRID
C
C Firing pulses are derived from the current through the measuring inductances
C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into
C TACS from the measuring switches connecting the RM's in delta,
C corresponding to the delta connected thyristor valves.
C
C The current lags the voltage 90 deg. and its zero transition produces
C the firing signal at an alpha of 90 deg.
C This is done by TACS level triggered switches Device 52.
C The firing pulse delay is calculated by the variables DELAB/BC/CA
C and implemented by TACS transport device Device 54;
C
C For convenience, the firing angle is initialized to alpha = 180 deg.
C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system.
C The required firing angle is then calculated backwards from the
C 180 deg. point, by using the variable DELYA(B,C).
C The actual firing angle is then DELAB = DELIN -DELYA etc.
C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms.
C Then DELAB= DELIN - DELYA =0.0 (90 deg.)
C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees.
C For 50 Hz, DELIN = 5.0 ms.
C
C *********** VOLTAGE AND REACTIVE REFERENCE *************
11VREFD 1.0
C VAR reference
C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.;
C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase;
C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV;
C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u.
88QTCR = 33.3*10**6
C The VAR reference QREF should be determined so that the superimposed
C voltage control changes the VAR flow as little as possible
88QREF = 0.30
C
C *********** VOLTAGES TRANSFERRED FROM NETWORK *************
C
C ******* Import 34.5 kV phase voltages, get phase to phase and normalize *****
C TRSA/B/C are the transformer secondary ph-g voltages
C 90 - TACS voltage source driven by an EMTP network node voltage
C (Rule Book p. 3-15)
90TRSA
90TRSB
90TRSC
C the phase to phase voltages
99TRAB = TRSA - TRSB
99TRBC = TRSB - TRSC
99TRCA = TRSC - TRSA
C normalize to get one p.u. for the phase to phase rms value
99TABX = TRAB/34500
99TBCX = TRBC/34500
99TCAX = TRCA/34500
C get the rms value of the A-B phase to phase voltage
C Device 66 (Rule Book p. 3-32)
99TXNAB 66+TABX 60.
99TXNBC 66+TBCX 60.
99TXNCA 66+TCAX 60.
C
C ************** PHASE A FIRING PULSES **************************************
C
C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15)
91RMAB
C send square impulse at current zero Device 52 (Rule B. p. 3-21)
88FAB1 52+UNITY 1. 0. 0 RMAB
88FAB2 52+UNITY 1. 0. -1 RMAB
C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23)
98FIAB1 54+FAB1 .0000 DELAB
98FIAB2 54+FAB2 .0000 DELAB
C for a 50 Hz system the constant .004167 below should be changed to 0.005
88DELIN = .004167 { to initialize alpha to 180 deg.
C
C ************* PHASE B FIRING PULSES *************************************
C
91RMBC
88FBC1 52+UNITY 1. 0. 0 RMBC
88FBC2 52+UNITY 1. 0. -1 RMBC
98FIBC1 54+FBC1 .0000 DELBC
98FIBC2 54+FBC2 .0000 DELBC
C
C ************ PHASE C FIRING PULSES *************************************
C
91RMCA
88FCA1 52+UNITY 1. 0. 0 RMCA
88FCA2 52+UNITY 1. 0. -1 RMCA
98FICA1 54+FCA1 .0000 DELCA
98FICA2 54+FCA2 .0000 DELCA
C
C ************* OPEN LOOP VAR CONTROL **************************
C **** WITH SUPERIMPOSED VOLTAGE CONTROL ***********
C
C the following will be repeated for all three phases as the SVC
C
C ************ RACTIVE POWER FLOWS *********
C
C calclate VAR transfer at transf. secondary
91TRXA { 34.5 kV side current through transformer
C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22)
88TRIA 53+TRXA .00417 .0043
88TRVA 53+TRSA .00417 .0043
C the following equation for calculating VAR flow is from
C Miller: Reactive power Control etc. (text book) p. 321
88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR
C
91TRXB
88TRIB 53+TRXB .00417 .0043
88TRVB 53+TRSB .00417 .0043
88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR
C
91TRXC
88TRIC 53+TRXC .00417 .0043
88TRVC 53+TRSC .00417 .0043
88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR
C
C ******************** SUPERIMPOSED VOLTAGE CONTROL ********************
C
C ******** DELTA Q TO ADJUST VOLTAGE ************
C the average value of phase to phase voltage is
0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15
C the difference between ref. and actual voltage is
C slow down the response by a (1/1+st) block
1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0
1.0
1.0 0.500
C the required VAR import taking voltage correction into account
0QRNEW +QREF +DVQ
C ***************** PHASE A ERROR ******************************************
C
C error in VAR import
0ERRQA +QRNEW -QINA
0QINCRA +ERRQA
C the new reactor output is then given by the Steinmetz Algorithm as
C the output at T-delT + QINCRA + QINCRB - QINCRC;
C as shown below in calculating the new SVC VAR's
C ****************** PHASE B ERROR ****************************************
C
0ERRQB +QRNEW -QINB
0QINCRB +ERRQB
C
C ****************** PHASE C ERROR *****************************************
C
0ERRQC +QRNEW -QINC
C
0QINCRC +ERRQC
C
C
C **************** PHASE A PULSE DELAY CONTROL ****************************
C the current firing angle is DELAB, this corresponds to an old reactor
C p.u. current given by the following non linear relation corresponding
C to the x = sigma-sin(sigma) function
99DLA1 = 1 - DELAB/.004167
C where DLA1 is the normalized conduction angle sigma between firing
C angle alpha 90 and 180 degrees.
C
99REOAB 56+DLA1
0.0 0.0
0.111 0.0022
0.222 0.0176
0.333 0.0575
0.444 0.1306
0.555 0.2414
0.666 0.3900
0.777 0.5718
0.888 0.7783
1.000 1.0000
9999.
C the new reactor current demanded is the increment plus the old
C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0
C this is applying the Steinmetz algorithm
0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00
C this is now reconverted into an angle, using the inverse of the
C above relation, and becomes the new DELAB; (Rule Book p. 3-25 )
99DELYAA56+INREAB
0.0 0.0
0.0022 0.111
0.0176 0.222
0.0575 0.333
0.1306 0.444
0.2414 0.555
0.3900 0.666
0.5718 0.777
0.7783 0.888
1.0000 1.000
9999.
99DELYA =DELYAA * 0.004167
C now smooth it out a bit
1DELAB +DELIN -DELYA 1.0 .0040
1.0
1.0 0.015
C
C ****************** PHASE B PULSE DELAY CONTROL **************************
C
99DLB1 = 1 - DELBC/.004167
C
99REOBC 56+DLB1
0.0 0.0
0.111 0.0022
0.222 0.0176
0.333 0.0575
0.444 0.1306
0.555 0.2414
0.666 0.3900
0.777 0.5718
0.888 0.7783
1.000 1.000
9999.
C
0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00
C
99DELYBB56+INREBC
0.0 0.0
0.0022 0.111
0.0176 0.222
0.0575 0.333
0.1306 0.444
0.2414 0.555
0.3900 0.666
0.5718 0.777
0.7783 0.888
1.000 1.000
9999.
99DELYB =DELYBB * 0.004167
C
1DELBC +DELIN -DELYB 1.0 0.0040
1.0
1.0 0.015
C
C *************** PHASE C PULSE DELAY CONTROL ******************************
C
99DLC1 = 1 - DELCA/.004167
C
99REOCA 56+DLC1
0.0 0.0
0.111 0.0022
0.222 0.0176
0.333 0.0575
0.444 0.1306
0.555 0.2414
0.666 0.3900
0.777 0.5718
0.888 0.7783
1.000 1.000
9999.
C
0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00
C
99DELYCC56+INRECA
0.0 0.0
0.0022 0.111
0.0176 0.222
0.0575 0.333
0.1306 0.444
0.2414 0.555
0.3900 0.666
0.5718 0.777
0.7783 0.888
1.000 1.000
9999.
99DELYC =DELYCC * 0.004167
C
1DELCA +DELIN -DELYC 1.0 0.0040
1.0
1.0 0.015
C
C ***************** REACTOR SWITCHING ***************************************
C
C control signals to switch reactive load 'XLA/B/C' on and off
C see TYPE 12 switches in power network.
C TACS source (Rule Book p. 3-14)
23FRLA 1000. 0.200 0.100 0.2
23FRLB 1000. 0.200 0.100 0.2
23FRLC 1000. 0.200 0.100 10.0
C
C initializations
77VLLAVG 1.0
77TXNAB 1.0
77QRNEW .30
77QINA .30
77QINB .30
77QINC .30
C
C ********* TACS OUTPUTS ************
C
33TXNAB TXNBC TXNCA ERRQA VLLAVG
33QRNEW DVQ QINA
BLANK end of TACS
C
C ************** NETWORK DATA *********************
C
C ********* LINE TO SOURCE ***********
C
C transmission line (equivalent) from GEN source to transformer
GENA TRFA 4.5 25.0
GENB TRFB 4.5 25.0
GENC TRFC 4.5 25.0
C fault level at trsf. 230 kV approx. 2083 MVA
C
C ************** MAIN TRANSFORMER **************
C
C transformer capacitance to ground 10000pF
C a very simple model, can be replaced with any more complex model
C transformer 230000/34500 Y/D 100 MVA; In=250 A
C x = 7.0% on 100 MVA
C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
C TRANSFORMER busref imag flux busin rmag empty
C ------------______------______------______------_____________________________-
C
C no saturation
TRANSFORMER 0.7 700.0 X
0.7 700.0 { 100%
9999
1TRPA 0.80 36.0 1330
2TRXA TRXB 1.00 385 {372
TRANSFORMER X Y
1TRPB
2TRXB TRXC
TRANSFORMER X Z
1TRPC
2TRXC TRXA
C
C transformer capacitance to ground and ph - ph 10000pF
TRXA 0.01
TRXB 0.01
TRXC 0.01
C capacitance between phases
TRXA TRXB 0.01
TRXB TRXC 0.01
TRXC TRXA 0.01
C
C *********** HARMONIC FILTERS ***************
C
C 5th harmonic filter 20 MVAR
TRSA TF5 2.38 44.5
TRSB TF5 2.38 44.5
TRSC TF5 2.38 44.5
C 7th harmonic filter 20 MVAR
TRSA TF7 1.21 44.5
TRSB TF7 1.21 44.5
TRUC TF7 1.21 44.5
C
C ******** TRANSFORMER SECONDARY LOAD ***************
C 75 MW, 30 MVAR
TRSA ND 13.67 5.47
TRSB ND 13.67 5.47
TRSC ND 13.67 5.47
C
C shunt capacitor 20 MVAR
TRSA 44.5
TRSB 44.5
TRSC 44.5
C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
C
C switched reactor .1 sec. on .1 sec. off
C see switch type 13 below and type 23 source in TACS
C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
XLA NSR 34.00 34.00
XLB NSR 34.00 34.00
XLC NSR 34.00 34.00
C
C
C ************** SNUBBERS **************
C
C the snubber parameters shown below are not necessarily the
C values a manufacturer would choose for a 34.5 kV valve.
C The parameters were selected so that only a small currrent flows
C through the control reactor with the valves non conducting,
C and overvoltages and spikes interfering with the firing control
C are prevented. It is quite possible that a better combination
C than that shown exists.
C
C in series with valves
C
CATAB RXAB .1
ANOAB RXAB .1
CATAB RXAB 4.0
ANOAB RXAB 4.0
C
CATBC RXBC .1
ANOBC RXBC .1
CATBC RXBC 4.0
ANOBC RXBC 4.0
C
CATCA RXCA .1
ANOCA RXCA .1
CATCA RECA 4.0
ANOCA RXCA 4.0
C
C across valves
C
CATAB TRSA 2000. .1
ANOAB TRSA 2000. .1
C
CATBC TRSB 2000. .1
ANOBC TRSB 2000. .1
C
CATCA TRSC 2000. .1
ANOCA TRSC 2000. .1
C
C ************* SVC CONTROLLED REACTOR *************
C
C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
RXAB TRSB 0.1 35.71 1
RXBC TRSC 0.1 35.71
RXCA TRSA 0.1 35.71
C
C *************** REACTOR FOR FIRING PULSE GENERATION ******
C
C Fire angle reference measurement using delta connected reactors
C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
TRSA RMXA 0.01 1
TRSB RMXB 0.01
TRSC RMXC 0.01
C The reactors are delta connected through measuring switches below
RMAB RMXB 200. 20000.
RMBC RMXC 200. 20000.
RMCA RMXA 200. 20000.
C
BLANK end of branch data
C *************** SWITCH DATA ***************8
C
C current measurement in the auxiliary reactor for firing pulse generation
C these switches complete the delta connection of the reactors
C (Rule Book p.6A-9)
RMXA RMAB MEASURING
RMXB RMBC MEASURING
RMXC RMCA MEASURING
C
C current measurement in the main transformer secondary
TRXA TRSA MEASURING 1
TRXB TRSB MEASURING 0
TRXC TRSC MEASURING 0
C current measurement in the main transformer primary
TRFA TRPA MEASURING 1
TRFB TRPB MEASURING 0
TRFC TRPC MEASURING 0
C
C switch for on/off switching the 17.5 MVAR resistive-reactive load
C (Rule Book p. 6C-1)
12TRSA XLA FRLA 11
12TRSB XLB FRLB 10
12TRSC XLC FRLC 10
C
C VALVES
C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
C Rule Book p. 6B-1
11TRSA CATAB 00. 15.0 FIAB1 1
11ANOAB TRSA 00. 15.0 FIAB2 1
11TRSB CATBC 0000. 15.0 FIBC1 1
11ANOBC TRSB 000. 15.0 FIBC2 1
11TRSC CATCA 0000. 15.0 FICA1 1
11ANOCA TRSC 000. 15.0 FICA2 1
C
BLANK end of switch data
C
C AC sources
C 230 kV supply
14GENA 187794. 60. 0. -1.
14GENB 187794. 60. 240. -1.
14GENC 187794. 60. 120. -1.
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C GENA |TRFA *
C TRFA |GENA *TRPA *
C GENB |TRFB *
C TRFB |GENB *TRPB *
C GENC |TRFC *
C TRFC |GENC *TRPC *
C X |TERRA *TERRA *TRPA *
C TRPA |TRFA * X*
C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA *
C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB *
BLANK end of source cards
C Total network loss P-loss by summing injections = 9.766831747973E+07
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04
C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04
C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04
C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07
C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07
C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06
C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07
C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06
C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06
C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8
C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951
TRSA TRFA { Names of nodes for which voltage is to be outputted
C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS
C TRSA TRPA XLA TRSB RMXA TXNAB
C
C TACS TACS TACS TACS TACS TACS TACS
C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA
C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0
C 0.0 0.0 0.0 1.0 0.3 0.0 0.3
C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562
C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0
C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec.
C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949
C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0
BLANK end of output requests
C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec.
C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec.
C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec.
C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec.
C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec.
C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec.
C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec.
C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec.
C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036
C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946
C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099
C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066
C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259
C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481
C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0
C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0
C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0
C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4
PRINTER PLOT
193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient
BLANK end of plot requests
BEGIN NEW DATA CASE
C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC).
C This is very similar to the preceding 4th case except that here newer
C MODELS replaces TACS for the control system modeling. The same
C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed
C this during February of 1995 (see January and April newsletters). To
C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec.
NEW LIST SIZES
0 0 68 8 450 35 285 0 0 0
0 0 4700 0 64800 0 0 0 0 0
C 0 0 220 126000
0 0 220 30 126000 { 16 March 2007
C About the preceding 2 lines, List 27 default = 26 resulted in TACS1 overflow
C Since year 1 (1995), this went undetected until Orlando Hevia's G95 testing
240000 742
PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations
C DELTAT TMAX XOPT COPT EPSILN TOLMAT
C 46.296-6 0.600 60. ---- Gabor Furst's original data card
.0000462962962962963, 0.100, 60., , , , , , , , ,
C the time step is the cycle time 1/60 sec. divided by 360 degrees
C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP
C 9999 1 0 1 1
1 3 1 2 1 -1
5 5 20 20 100 100 500 500
C The running of this MODELS file requires the latest version of TPbig
C with the increased list sizes for MODELS
C
C The example demonstrates a generic SVC connected to a 230/34.5 kV
C step-down transformer, with an SVC reactor rating of 100 MVA.
C The SVC is tested by switching on and off a 25 MVA 0.7 p.f.
C load on the 34.5 kV bus
C plot vatiable 'vllavg' for SVC response
C ==============================================================================
MODELS
INPUT trma {v(TRSA)} -- transf. sec. voltage
trmb {v(TRSB)}
trmc {v(TRSC)}
--
irab {i(RMAB)} -- aux. reactor delata current
irbc {i(RMBC)}
irca {i(RMCA)}
--
itra {i(TRXA)} -- transf. sec. current
itrb {i(TRXB)}
itrc {i(TRXC)}
--
rxab {i(TRXA)} -- main reactor current
rxbc {i(TRXB)}
rxca {i(TRXC)}
--
OUTPUT -- firing signals
FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals
FRLA, FRLB, FRLC -- reactor switching
--
MODEL svcmod -- MODELS version of DC 22 subcase 4
--
--
DATA omega {dflt: 2*pi*freq}
dt {dflt :0.25/freq}
--
CONST freq {val: 60}
tper {val: 1/freq}
qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase
qref {val: 0.00} -- set 0 for this example
delin {val: 0.25/freq} -- initialization for firing delay (60Hz)
tpimp {val: 0.200} -- test reactor switching cycle
ton {val: 0.100} -- reactor on time
tstart {val: 0.3} -- start of switching reactors
--
VAR
tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3
dvq, error, fdb, vref, verr, inreact, delyi
vtrsec[1..3], vtrff[1..3]
f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3]
vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3]
errq[1..3], qincr[1..3]
--
HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages
vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages
--
dvq {dflt: 0} -- forward block output
error {dflt: 0} -- error signal
fdb {dflt: 0} -- feedback
--
ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current
itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current
del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles
--
INPUT trma {dflt: trma} -- trsf sec. voltage ph-g
trmb {dflt: trmb}
trmc {dflt: trmc}
--
irab {dflt: irab} -- svc reactor currents
irbc {dflt: irbc}
irca {dflt: irca}
--
itra {dflt: itra} -- transf. sec. current
itrb {dflt: itrb}
itrc {dflt: itrc}
--
rxab {dflt: 0} -- main reactor delta current
rxbc {dflt: 0}
rxca {dflt: 0}
--
OUTPUT
ficat[1..3], fian[1..3] -- firing signals to thyristors
ttt1, ttt2, ttt3 -- control signal to switch reactors
--
INIT
vref:= 1.0 -- reference voltage
verr:= 0 -- voltage error
tt := timestep/tper -- integration multiplier
vrms[1..3] := 0
ficat[1..3]:= 0 -- firing pulse to cathode
fian[1..3]:= 0 -- firing pulse to anode
qin[1..3]:= 0.3 -- rective power
ttt1:= 0 -- test rector breaker control
--
ENDINIT
--
DELAY CELLS DFLT: 100
CELLS(vtrsec[1..3]):500
CELLS(vtrff[1..3]):500
--
-- liearization of angel versus p.u. current through thyristors
FUNCTION dely POINTLIST
-- angle current
( 0.0, 0.0)
( 0.0022, 0.111)
( 0.0176, 0.222)
( 0.0575, 0.333)
( 0.1306, 0.444)
( 0.2414, 0.555)
( 0.3900, 0.666)
( 0.5718, 0.777)
( 0.7783, 0.888)
( 1.0000 1.000)
--
-- ************** EXEC ****************
EXEC
-- convert to arrays
ir[1..3] := [irab, irbc, irca]
vtrsec[1..3] := [trma, trmb, trmc]
--
-- control signals for the type 12 switches in EMTP
-- to switch test reactors
-- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s
ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart)
ttt2 := ttt1
ttt3 := ttt1
--
-- form phase to phase voltages and normalize
vtrff[1] :=(trma - trmb)/34500
vtrff[2] :=(trmb - trmc)/34500
vtrff[3] :=(trmc - trma)/34500
--
-- calculation of voltage rms values
FOR i := 1 TO 3 DO
vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2))
ENDFOR
--
-- calculate reactive through transformer
-- qina, qinb, qinc
-- see DC22-3 for explanation
itr[1..3] := [itra, itrb, itrc]
FOR i:= 1 TO 3 DO
tri[i]:= delay(itr[i],tper/4)
trv[i]:= delay(vtrsec[i],tper/4)
qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr
ENDFOR
--
-- generate firing pulses 500 microsec wide
--
if t> timestep then
--
FOR i := 1 TO 3 DO
f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 )
f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 )
ENDFOR
-- delayed pulses caclulated
-- by var and voltage control
FOR i:= 1 TO 3 DO
ficat[i] := delay(f1[i],del[i]) -- cathode
fian[i] := delay(f2[i],del[i]) -- anode
ENDFOR
endif
-- average ph-ph voltage normalized
vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85}
--
-- alternative to above but not used in this model
-- 12 pulse rectfication with output smoothed alternative to rms signal
-- smoothing rough, should be done with 120 c/s filter, not used here
-- shown as possible alternative only
-- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41
-- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 )
--
-- voltage error forward and feedback loop
verr:= vllavg - vref
-- combine endcombine used because forward - feedback loop
COMBINE AS first_group
error := sum( 1|vllavg - 1|vref - 1|fdb)
-- forward gain . 1/1+stdelay
laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1)
-- derivative feedback
claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 )
ENDCOMBINE
--
FOR i := 1 TO 3 DO
-- total error the qref - qin[i] component may be omitted
-- it is usefull for unbalanced loads
errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0}
ENDFOR
-- calculate new firing angles
-- phase A
FOR i:= 1 TO 3 DO
k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B
l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C
-- apply phase unbalance correction
inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0}
-- linearize and convert from firing angle to time delay
delyi := delin - dely(inreact ) * dt
claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:=
1.0|s0/(1.0|s0 + 0.005|s1)
ENDFOR
--
ENDEXEC
ENDMODEL
USE svcmod AS test
INPUT trma:= trma trmb:= trmb trmc:= trmc
irab:= irab irbc:= irbc irca:= irca
itra:= itra itrb:= itrb itrc:= itrc
--
OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2]
FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3]
FRLA := ttt1 FRLB := ttt2 FRLC := ttt3
ENDUSE
C
RECORD test.vrms[1] AS vrmsab
test.vrms[2] AS vrmsbc
test.vrms[3] AS vrmsca
test.vllavg AS vllavg
test.error AS error
test.dvq AS dvq
test.fdb AS fdb
test.verr AS verr
ENDMODELS
C ************** NETWORK DATA *********************
C
C ********* LINE TO SOURCE ***********
C
C transmission line (equivalent) from GEN source to transformer
GENA TRFA 4.5 25.0
GENB TRFB 4.5 25.0
GENC TRFC 4.5 25.0
C fault level at trsf. 230 kV approx. 2083 MVA
C
C ************** MAIN TRANSFORMER **************
C
C transformer capacitance to ground 10000pF
C a very simple model, can be replaced with any more complex model
C transformer 230000/34500 Y/D 100 MVA; In=250 A
C x = 7.2% on 100 MVA
C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
C TRANSFORMER busref imag flux busin rmag empty
C ------------______------______------______------_____________________________-
C
C no saturation
TRANSFORMER 0.7 700.0 X
0.7 700.0 { 100%
9999
1TRPA 0.80 36.0 1330
2TRXA TRXB 1.00 375 {385
TRANSFORMER X Y
1TRPB
2TRXB TRXC
TRANSFORMER X Z
1TRPC
2TRXC TRXA
C
C transformer capacitance to ground and ph - ph 10000pF
TRXA 0.01
TRXB 0.01
TRXC 0.01
C capacitance between phases
TRXA TRXB 0.01
TRXB TRXC 0.01
TRXC TRXA 0.01
C
C *********** HARMONIC FILTERS ***************
C
C 5th harmonic filter 20 MVAR
TRSA TF5 2.38 44.6 1
TRSB TF5 2.38 44.6
TRSC TF5 2.38 44.6
C 7th harmonic filter 10 MVAR
TRSA TF7 2.43 22.3 1
TRSB TF7 2.43 22.3
TRUC TF7 2.43 22.3
C
C ******** TRANSFORMER SECONDARY LOAD ***************
C 70 MW, 30 MVAR
TRSA ND 13.67 5.47
TRSB ND 13.67 5.47
TRSC ND 13.67 5.47
C
C shunt capacitor 20 MVAR
TRSA 44.5
TRSB 44.5
TRSC 44.5
C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
C
C switched .1 sec. on .1 sec. off
C see switch type 13 below and type 23 source in TACS
C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
C
XLA NSR 34.0 34.0
XLB NSR 34.0 34.0
XLC NSR 34.0 34.0
C
C ************** SNUBBERS **************
C
C the snubber parameters shown below are not necessarily the
C values a manufacturer would choose for a 34.5 kV valve.
C The parameters were selected so that only a small currrent flows
C through the control reactor with the valves non conducting,
C and overvoltages and spikes interfering with the firing control
C are prevented. It is quite possible that a better combination
C than that shown exists.
C
C in series with valves
C
CATAB RXAB .1
ANOAB RXAB .1
CATAB RXAB 4.0
ANOAB RXAB 4.0
C
CATBC RXBC .1
ANOBC RXBC .1
CATBC RXBC 4.0
ANOBC RXBC 4.0
C
CATCA RXCA .1
ANOCA RXCA .1
CATCA RECA 4.0
ANOCA RXCA 4.0
C
C across valves
C
CATAB TRSA 2000. .1
ANOAB TRSA 2000. .1
C
CATBC TRSB 2000. .1
ANOBC TRSB 2000. .1
C
CATCA TRSC 2000. .1
ANOCA TRSC 2000. .1
C
C ************* SVC CONTROLLED REACTOR *************
C
C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
RXAB TRSB 0.1 35.71 1
RXBC TRSC 0.1 35.71
RXCA TRSA 0.1 35.71
C
C *************** REACTOR FOR FIRING PULSE GENERATION ******
C
C Fire angle reference measurement using delta connected reactors
C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
TRSA RMXA 0.01 1
TRSB RMXB 0.01
TRSC RMXC 0.01
C The reactors are delta connected through measuring switches below
RMAB RMXB 200. 20000.
RMBC RMXC 200. 20000.
RMCA RMXA 200. 20000.
C
BLANK end of branch data
C *************** SWITCH DATA ***************8
C
C current measurement in the auxiliary reactor for firing pulse generation
C these switches complete the delta connection of the reactors
C (Rule Book p.6A-9)
RMXA RMAB MEASURING 1
RMXB RMBC MEASURING 1
RMXC RMCA MEASURING 1
C
C current measurement in the main transformer secondary
TRXA TRSA MEASURING
TRXB TRSB MEASURING
TRXC TRSC MEASURING
C current measurement in the main transformer prinmary
TRFA TRPA MEASURING
TRFB TRPB MEASURING
TRFC TRPC MEASURING
C
C switch for on/off switching the 36.6 MVAR resistive-reactive load
C (Rule Book p. 6C-1)
12TRSA XLA FRLA 1
12TRSB XLB FRLB 1
12TRSC XLC FRLC 1
C
C VALVES
C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
C Rule Book p. 6B-1
11TRSA CATAB 100. 35.0 FIAB1 1
11ANOAB TRSA 100. 35.0 FIAB2 1
11TRSB CATBC 100. 35.0 FIBC1 1
11ANOBC TRSB 100. 35.0 FIBC2 1
11TRSC CATCA 100. 35.0 FICA1 1
11ANOCA TRSC 100. 35.0 FICA2 1
C
BLANK end of switch data
C
C AC sources
C 230 kV supply
14GENA 187794. 60. 0. -1.
14GENB 187794. 60. 240. -1.
14GENC 187794. 60. 120. -1.
C --------------+------------------------------
BLANK end of source cards
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04
C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04
C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04
C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06
C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06
C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06
C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06
C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06
C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06
C TRSA XLA Open Open .... Etc. (all remaining switches)
C
C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8
C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739
TRSA TRFA { Node voltage output requests
C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB
C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA
C
C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS
C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC
C
C MODELS MODELS MODELS MODELS MODELS MODELS
C VRMSCA VLLAVG ERROR DVQ FDB VERR
C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491
C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15
C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865
C .046333037 .85 .007233288 -.37886586 -.15723329 -.15
C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142
C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15
BLANK end of output requests
C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0
C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633
C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629
C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119
C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273
C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165
C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625
C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407
C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111
PRINTER PLOT
193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930)
BLANK end of plot requests
BEGIN NEW DATA CASE
BLANK
EOF
10 June 2002, WSM adds output to the screen in case of DISK use.
Without any EATS, this is simple as should be illustrated in the October
(or later) newsletter. But with EATS, there are variations depending upon:
1) the subcase number; and 2) whether NEW LIST SIZES (NLS) is being
used. The subject is mentioned here because the preceding data _does_
involve NLS. So, if EATS is requested from STARTUP (FLZERO < 0),
expect the following new output to the screen:
---- Begin EATS for subcase number KNTSUB = 1
---- Begin EATS for subcase number KNTSUB = 2
---- Begin EATS for subcase number KNTSUB = 3
---- Begin next subcase number KNTSUB = 4
---- Begin next subcase number KNTSUB = 5
The NLS requests in the 4th and 5th subcases conflict with EATS,
and NLS takes precedence.
|