From b18347ffc9db9641e215995edea1c04c363b2bdf Mon Sep 17 00:00:00 2001 From: Angelo Rossi Date: Wed, 21 Jun 2023 12:04:16 +0000 Subject: Initial commit. --- benchmarks/dc22.dat | 1713 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1713 insertions(+) create mode 100644 benchmarks/dc22.dat (limited to 'benchmarks/dc22.dat') diff --git a/benchmarks/dc22.dat b/benchmarks/dc22.dat new file mode 100644 index 0000000..78c1c87 --- /dev/null +++ b/benchmarks/dc22.dat @@ -0,0 +1,1713 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-22 +C Illustration of basic TACS logic that can be used to control the firing of +C valves (thyristers) of an ac/dc converter bridge. The electric network +C actually has no valves, however (TACS output signals are not used). The +C electric network passes balanced three-phase voltages to TACS via Type-90 +C sources. Summers convert to line-to-line voltages. A constant firing +C angle DELAY1 of 1.0 msec is used, for simplicity. TACS variables FIRE1 +C through FIRE6 should go back to electric network to control valves (only +C FIRE1 is passed back, and for simplicity, just to a Type-60 source). +C After this 1st small subcase, there is a 2nd, followed by 2 large subcases +C 11 November 1998, add Type-10 source to illustrate saw-toothed waveform +C Note: program created on this date, or later, is required for use. +C 26 January 1999, add Orlando Hevia's rectangular and positive-pulse +C waveforms. One new vector plot at end should be studied to understand. +PRINTED NUMBER WIDTH, 10, 2, + .000500 .040 { Double T-max on 26 Jan 99 to show repetition of Hevia signals + 1 1 1 1 1 -1 + 40 5 +TACS HYBRID + PHA-B +GENA -GENB + PHB-C +GENB -GENC + PHC-A +GENC -GENA +90GENA +90GENB +90GENC +98ZA-B 52+UNITY 1. 0. 0. PHA-B +98ZB-A 52+UNITY 1. 0. 1. PHA-B +98ZB-C 52+UNITY 1. 0. 0. PHB-C +98ZC-B 52+UNITY 1. 0. 1. PHB-C +98ZC-A 52+UNITY 1. 0. 0. PHC-A +98ZA-C 52+UNITY 1. 0. 1. PHC-A +98DELAY1 .001 +98FIRE1 54+ZA-B .001 DELAY1 +98FIRE4 54+ZB-A .001 DELAY1 +98FIRE3 54+ZB-C .001 DELAY1 +98FIRE6 54+ZC-B .001 DELAY1 +98FIRE5 54+ZC-A .001 DELAY1 +98FIRE2 54+ZA-C .001 DELAY1 +33PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B ZC-A ZA-C GENA GENB GENC FIRE1 +33FIRE4 FIRE3 FIRE6 FIRE5 +BLANK card ending all TACS data + 0GENA 1.0 + 0GENB 1.0 + 0GENC 1.0 + FIRE1 1.0 + SAW 1.0 { Load on sawtooth waveform } 1 + RECT 1.0 { Load on rectangular waveform } 1 + PULSE 1.0 { Load on positive pulse } 1 + SINE 1.0 { Load on reference sine wave } 1 +BLANK card ending branch cards of the electric network +BLANK card ending switch cards of the electric network +14GENA 1.0 60. -90. +14GENB 1.0 60. 30. +14GENC 1.0 60. 150. +60FIRE1 +C Prior to 11 November 1998, saw-toothed waveforms were not generated on the +C electrical side. If needed, they were generated in TACS and passed to the +C electrical side just as the preceding Type-60 source illustrates. Orlando +C Hevia contributed the following centered sawtooth waveform that is based on +C a Type-10 analytically-defined source. Note that the signal is directly +C generated on the electrical side (no need for TACS): +10SAW 100.0*(TIMEX-(TRUNC(TIMEX/0.010)*0.010))-0.5 { See Oct 98, newsletter +C Orlando Hevia contributes rectangular waveform and positive pulse on +C 26 January 1999. The rectangular waveform is trivial, so add it first: +10RECT 0.50*SIGN(SIN(TIMEX*314.1592)) +C The positive pulse is more involved. More precisely, documentation of +C the parameters is more involved. The following comment cards are from +C Mr. Hevia (hope they are self-explanatory). +C W= PULSE WIDTH (DEGREES) +C X= ARCCOS(W/2) +C X= ARCCOS(30/2)= 0.9659 +C P= PHASE IN DEGREES (THE START OF PULSE) +C Y= PHASE IN RADIANS +C Y= (P+W/2)*3.141592/180.0 +C Y= (45+30/2)*3.141592/180.0= 1.0472 +C PULSE= 0.50*SIGN(COS(TIMEX*314.1592-Y )-X )+0.5 +10PULSE 0.50*SIGN(COS(TIMEX*314.1592-1.0472)-0.9659)+0.5 +C 10PULSE -.25 { Offset the preceding downward by 1/4 to demonstrate superposition +C Preceding demonstrated the superposition of two sources on the same node. But +C 3 were mistreated prior to correction 12 May 2001. To prove that 3 now can +C be handled properly, split the preceding .25 into .10 and .15: +10PULSE -.10 { Offset the preceding downward by .10 to demonstrate superposition +10PULSE -.15 { Offset the preceding downward by .15 to demonstrate superposition +C Finally, let's add Mr. Hevia's reference waveform. This documents the +C sign and phase of the rectangular waveform. Plot will be beautiful. +10SINE SIN(TIMEX*314.1592) { Reference signal (RECT is 1/2 the sign of this) +BLANK card ending source cards of the electric network +C Next 4 output variables are branch currents (flowing from the upper node to the lower node); +C Next 17 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time SAW RECT PULSE SINE TACS TACS TACS TACS TACS TACS TACS +C TERRA TERRA TERRA TERRA PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B +C +C TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS +C ZC-A ZA-C GENA GENB GENC FIRE1 FIRE4 FIRE3 FIRE6 FIRE5 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-3 -.45 0.5 -.25 .1564344 -.569614 1.701371 -1.13176 0.0 1.0 1.0 0.0 +C 0.0 1.0 .1873813 .7569951 -.944376 0.0 0.0 0.0 0.0 0.0 +C 2 .1E-2 -.4 0.5 -.25 .3090169 -.253023 1.61042 -1.3574 0.0 1.0 1.0 0.0 +C 0.0 1.0 .3681246 .6211478 -.989272 0.0 0.0 0.0 0.0 0.0 +BLANK card ending selective node voltage outputs (none) +C 80 .04 -.5 -.5 -.25 -.261E-5 1.582307 -1.40126 -.181049 1.0 0.0 0.0 1.0 +C 0.0 1.0 .5877853 -.994522 .4067366 1.0 0.0 0.0 1.0 0.0 +C Variable maxima : .45 0.5 .75 1.0 1.731671 1.728633 1.730532 1.0 1.0 1.0 1.0 +C 1.0 1.0 1.0 .9997807 .9991228 1.0 1.0 1.0 1.0 1.0 +C Times of maxima :.0395 .5E-3 .0025 .005 .0055 .0165 .011 .0015 .5E-3 .5E-3 .0045 +C .007 .5E-3 .0375 .032 .0265 .0035 .0025 .0025 .0065 .009 +C Variable minima : -.5 -.5 -.25 -1. -1.73167 -1.73205 -1.73167 0.0 0.0 0.0 0.0 +C 0.0 0.0 -1. -.999781 -.999781 0.0 0.0 0.0 0.0 0.0 +C Times of minima : .01 .0105 0.0 .015 .0305 .025 .0195 0.0 0.0 0.0 0.0 +C 0.0 0.0 .0125 .007 .018 0.0 0.0 0.0 0.0 0.0 + CALCOMP PLOT + 194 4. 0.0 40. -1.0 1.0BRANCH { Show 2 cycles of the 4 Type-10 Hevia signals + SINE RECT PULSE SAW + PRINTER PLOT + 194 2. 0.0 20. TACS PHA-B TACS FIRE1 { Axis limits: (-1.731, 1.732) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 5 subcases of DC-22 is a hybrid TACS example of the TACS-controlled +C resistance (Type-91 electric network branch type). All-resistive electric +C network allows easy checking with a pocket calculator at any step: For each +C branch, verify that program node voltages and branch currents correspond to +C the branch constraint equations v = R * i. There actually are two discon- +C nected subnetworks, with one having two TACS-controlled arcs (illustrating +C use of the multivariable solution code of "ZINCOX") and the other having 1. +PRINTED NUMBER WIDTH, 11, 1, { Reassert default choice (used before 25 Jan 99) +CHANGE PRINTOUT FREQUENCY + 5 5 + .02 2.0 { Step size is immaterial since network has no dynamics + 1 1 1 1 1 +TACS HYBRID { In a real case, arcs are on electric side, and equations in TACS +99RESIS = 1.0 + SIN ( 3.0 * TIMEX ) { 1st R(t) signal -- constant + sine wave +99RES = 1.0 + COS ( 3.0 * TIMEX ) { 2nd R(t) signal -- constant + cosine +33RESIS RES { Output the only 2 TACS variables: the 2 R(t) resistance functions +77RESIS 1.0 { Initial condition on 1st R(t) insures smooth start +77RES 2.0 { Initial condition on 1st R(t) insures smooth start +BLANK card ending all TACS data + BUS1 BUS2 1.0 { Master copy of five 1-ohm resistors } 1 + BUS2 BUS3 BUS1 BUS2 { 2nd of 3 linear branches in 1st subnetwork + BUS3 BUS1 BUS2 { 3rd of 3 linear branches in 1st subnetwork + BUS1 BUS4 BUS1 BUS2 { 1st of 2 linear branches in second subnetwork + BUS4 BUS1 BUS2 { 2nd of 2 linear branches in second subnetwork +91BUS2 TACS RESIS { R(t) controlled by TACS variable "RESIS" } 1 +91BUS3 TACS RES { R(t) controlled by TACS "RES" --- 2nd of 2 } 1 +91BUS4 TACS RES { R(t) within 2nd, isolated subnetwork } 1 +BLANK card ending electric network branches +BLANK card ending switches +11BUS1 1.0 { 1-volt battery excites ladder networks of both subnetw +BLANK card ending electric network source cards. +C Step Time BUS4 BUS3 BUS2 BUS1 BUS2 BUS3 +C TERRA TERRA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .02 0.4 .153846154 .384615385 1.0 .384615385 .076923077 +C 2 .04 .39992797 .157235276 .393158988 1.0 .3709173 .078688436 + 1 { Request all node voltage outputs. Just 4: BUS1 through BUS4 +C Last step: 100 2.0 .3976118 .127869158 .321592965 1.0 .484683228 +C Last step cont. ..... .065854649 .204776399 .678407035 .720584502 1.96017029 +C Variable max : 0.4 .175860563 .464962112 1.0 .999366283 .342009625 .999533993 +C Times of maxima : .02 .28 .44 .02 1.6 1.02 + PRINTER PLOT { Axis limits: (0.000, 2.000) + 193 .4 0.0 2.0 TACS RESIS TACS RES { 1st of 2 plots is two TACS R(t) + 193 .4 0.0 2.0 BRANCH { Axis limits: (0.000, 9.995) + BUS2 BUS3 BUS4 { 3 R(t) arc currents +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 5 subcases illustrates the EMTP simulation of a rail gun or mass +C driver. It was contributed by Wendell Neugebauer as described in his +C paper on the subject (published in the Sept, 1990, issue of EMTP News). +C AUGMENTED RAILGUN (Mass driver) Simulation +C CAPACITOR BANK DRIVE +C 65 CANS OF 65 kJ, 22kV FOR EACH OF 8 STAGES, TOTAL INITIAL ENERGY = 33.8 MJ +C Wendell NEUGEBAUER +C 586 Middle Line Rd. +C Ballston Spa, New York 12020 +C +C March 20, 1990 +C Tel. (518) 885-6050 (home) (evenings only) +C +C This is a simulation of a mass driver as energized from a bank of charged +C capacitors. The individual switches are timed in synchronism with the +C position of the mass along the rails. The physics of the driver itself +C are modelled under TACS using its pseudo FORTRAN equations to implement +C Newton's laws. The individual TACS statements are commented to show the +C particular variables being computed. The storage capacitors and the +C associated electrical network are modelled using standard EMTP components. +C Note about time-step size. Wendell Neugebauer's originally data +C case used DELTAT = 1.E-6 and TMAX = 5.5 msec as shown below on +C comment cards. But the simulation is slow. By multiplying DELTAT +C by 5, the simulation is speeded without significantly affecting the +C PRINTER PLOT of rail current. +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 +C 0 0 4700 0 0 0 0 0 12000 0 + 0 0 4700 0 0 0 0 10 5000 0 + 0 0 220 + 240000 +C Preceding dimensions are the same as used by the 4th subcase except that +C List 18 is increased from 0 (default 5) to 10 and List 19 is reduced to +C 5K from 12K. This addition of NLS is necessitated by the modification +C of ATD immediately below. In turn, that change was necessitated by the +C a change to SSTACS (for many years, TACS Table 1 has been overflowing). +ABSOLUTE TACS DIMENSIONS +C Expand TACS Table 1 from 60 to 90 on 29 March 2007. Orlando Hevia, +C using F95 GNU, discovered Table 1 need of 672 / 8 within SSTACS: +C 60 270 300 60 90 1250 550 180 + 85 270 300 60 90 1250 550 180 +UNIQUE TACS SWITCH { Halt if Type-91 or 93 TACS source is not uniquely defined +C The preceding UTS is added during July of 2003. The answer is unchanged. +C This data case was picked only because both Type-91 and 93 sources exist. +C 1.E-6 5.5E-3 0. 0. ------ Orig. misc. data card +C 1 11 1 0 1 -1 ------ Orig. misc. data card + 5.E-6 5.0E-3 0. 0. { Larger DELTAT speeds simulation + 1 3 1 0 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +C LIST OF INPUT CONSTANTS +C RAIL RESISTANCE COEFFICIENT (R. Hawkes method for including skin effect) +C with the units ohms/amperes**0.75 +11RRAIL0 5.53E-5 -1. +C RAIL INDUCTANCE GRADIENT, H/m +11LPRIME .5765E-6 -1. +C PROJECTILE MASS, kg +11MASS 2.500 -1. +C LENGTH OF RAIL, m +11XRAIL 8.0 -1. +C Muzzle discharge resistor, ohms +11RDUMP 8.E-3 -1. +C final rail inductance, H +11LRAILF 4.6E-6 -1. +C final rail resistance, ohms +11RRAILF 2.63E-4 -1. +C augmenting rail inductance, H +11LAUG 4.2E-6 -1. +C augmenting rail resistance, ohms +11RAUG 1.0E-4 -1. +C Mutual inductance gradient, augmenting to main rail, H/m +11DMDX .35E-6 -1. +C Friction approximation coefficient, fraction of applied force +11FMISC 0.2 -1. +C Initial projectile position, m +11XINIT 0. -1. +C Projectile initial velocity, m/s +11VINIT 738.0 -1. +C Rail mass ablation coefficient, kg/A/V/s +11ALPHA 49.E-9 -1. +C Threshold current for for computing effective arc drop +11ITHRES 100000. -1. +C Bore diameter, m +11BORE 0.09 -1. +C Velocity of sound in the medium within rails, m/s +11VSOUND 346.0 -1. +C Coefficient for computing shock force +11GAMMA 1.40 -1. +C Ambient pressure, N/m**2 +11PAMB 1.013E5 -1. +C positions of mass along the rails where the various switches close +11XA 0.25 -1. +11X2 .50 -1. +11X3 1.00 -1. +11X4 1.70 -1. +11X5 2.10 -1. +11X6 2.70 -1. +11X7 3.00 -1. +C +C THIS CONCLUDES THE TACS SOURCES. +C +C LIST OF EMTP SOURCES +C VBREECH FROM EMTP +90VBR +C IRAIL FROM EMTP +91IRAIL +C +C +C --- EMTP NODE VOLTAGES ON 8 CAPACITORS. USED TO TRIGGER CROWBAR DIODES. +90NODE01 +90NODE02 +90NODE03 +90NODE04 +90NODE05 +90NODE06 +90NODE07 +90NODE08 +C --- EMTP SWITCH STATUS 0 = OPEN 1 = CLOSED +C --- USED TO KEEP CROWBAR DIODES ON ONCE THEY ARE TRIGGERED. +93NODE17 +93NODE18 +93NODE19 +93NODE20 +93NODE21 +93NODE22 +93NODE23 +93NODE24 +C --- +C --- SUPPLEMENTAL DEVICES +C +C --- COMPUTE GRID SIGNALS FOR CROWBAR DIODES +C --- GRID SIGNALS (N1-N8) TURN ON WHEN THE CAPACITOR VOLTAGE IS LESS THAN 0. +88N1 = - NODE01 +88N2 = - NODE02 +88N3 = - NODE03 +88N4 = - NODE04 +88N5 = - NODE05 +88N6 = - NODE06 +88N7 = - NODE07 +88N8 = - NODE08 +C +C +C SUPPLEMENTAL DEVICES +C SIMPLE RAILGUN MECHANICS +C COMPUTE MECHANICAL FORCE ON THE PROJECTILE INCL. AUGMENTATION +88FMECH =.5*(1.0-FMISC)*(LPRIME+2.*DMDX)*ABS(IRAIL)**2-FSHOCK +C USE LINEAR MODEL FOR SOLID ARMATURE ARC VOLTAGE DROP +88GNARC =45.+31.43*TIMEX*1000. +C COMPUTE RATE OF MASS ABLATION FROM THE RAILS +88MDOT =(ALPHA*ABS(IRAIL)*ABS(GNVOLT))*FLAG1 +C COMPUTE VDOT = PROJECTILE ACCELERATION, INCLUDE TIME DELAY OF ONE +C STEP FOR STABILITY + VEL1 +VEL +88VDOT =((FMECH-VEL1*MDOT)/MASS1)*FLAG1 +C COMPUTE MACH NUMBER, PRESSURE RATIO, AND SHOCK FORCE +88MACH =VEL1/VSOUND +88PR =GAMMA*(GAMMA+1.)/4.*ABS(MACH)**2+1 +88PRATIO =PR+GAMMA*MACH*ABS(((ABS(MACH)**2*ABS((GAMMA+1.))**2/16.+1.)))**0.5 +88FSHOCK =PI*BORE**2/4*PRATIO*PAMB +C +C COMPUTE RESET SIGNAL FOR FIRST LAUNCH +C FLAG1 IS 1 AS LONG AS PROJECTILE IS IN BARREL +C Introduce one time step delay for stability of computation + X1 +X +88FLAG1 =(TIMEX .GT. (2.*DELTAT)).AND.(X1.LE.XRAIL) +88FLAG4 =(TIMEX .GT. (2.*DELTAT)) +88FLAG5 =NOT(FLAG1) +C +C COMPUTE MASS1, PROJECTILE PLUS ABLATED RAIL MASS +88MASS1 58+MDOT 1.0 0.0 1.0FLAG4 MASS +C INTEGRATE VDOT TO GET VELOCITY OF MASS +88VEL 58+VDOT 1.0 0.0 1.0FLAG4 VINIT +C INTEGRATE VELOCITY TO GET PROJECTILE POSITION +88X 58+VEL 1.0 0.0 1.0FLAG4 XINIT +C COMPUTE THE INSTANTANEOUS RAIL INDUCTANCE +88LRAIL =LPRIME*ABS(X1)*FLAG1+FLAG5*LRAILF +C COMPUTE THE INSTANTANEOUS RAIL RESISTANCE +88RRAIL =FLAG1*RRAIL0*ABS(X1)**0.75+FLAG5*RRAILF +C COMPUTE INSTANTANEOUS MUTUAL INDUCTANCE, AUGMENTING TO MAIN RAILS +88M =DMDX*(FLAG1*X1+FLAG5*XRAIL) +C +C CALCULATE THE POWER AND ENERGY DELIVERED TO THE RAILS +88PBR =VBR*IRAIL +88EBR 58+PBR 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE SHOCK POWER AND ENERGY +88PSHOCK =FSHOCK*VEL*FLAG1 +88ESHOCK58+PSHOCK 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE ARC POWER AND ENERGY +88PARC =IRAIL*GNVOLT*FLAG1 +88EARC 58+PARC 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE MIXING POWER AND ENERGY +88PMIX =0.5*VEL**2*MDOT*FLAG1 +88EMIX 58+PMIX 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE THE DUMP RESISTOR POWER AND ENERGY +88PMUZ =RDUMP*(ABS(IRAIL-I3A)**2) +88EMUZ 58+PMUZ 1.0 0.0 1.0FLAG5 ZERO +C CALCULATE PROJECTILE CHANGE IN KINETIC ENERGY +88DKE =0.5*MASS*(VEL**2-VINIT**2) +C CALCULATE ABLATED PLASMA CHANGE IN KINETIC ENERGY +88PLSMKE =0.5*(MASS1-MASS)*VEL**2 +C CALCULATE INSTANTANEOUS RAIL HEAT POWER AND ENERGY +88HPOWR =ABS(IRAIL)**2*RRAIL +88HEAT 58+HPOWR 1.0 0.0 1.0FLAG4 ZERO +C COMPUTE AUGMENTING RAIL LOSS +88PAUG =IRAIL*IRAIL*RAUG +88EAUG 58+PAUG 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE FRICTION POWER AND ENERGY +88PFRIC =VEL*0.25*FMISC*(FMECH+FSHOCK)*FLAG1 +88EFRIC 58+PFRIC 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE TRAPPED MAGNETIC ENERGY WITHIN RAIL MATERIAL (ASSUMPTION) +88ETRAP =3.0*EFRIC +C COMPUTE ENERGY STORED IN RAIL AND MUTUAL INDUCTANCE +88ESTORE =(.5*LRAIL+.5*LAUG+M)*IRAIL*IRAIL +C COMPUTE ENERGY BALANCE DYNAMICALLY-should equal zero-conservation of energy +88EBAL =EBR-ETRAP-EFRIC-HEAT-PLSMKE-DKE-EMUZ-EMIX-EARC-ESHOCK-ESTORE-EAUG +C +C COMPUTE INJECTION CURRENTS I1, I2, I3 +C THESE CURRENTS EFFECTIVELY REPRESENT THE BACK EMF OF THE MOVING MASS +88I1 =(IRAIL*(RRAIL-RRAILF)/RRAILF)*FLAG1 +88I2A =(IRAIL*(LRAIL-LRAILF)/LRAILF)*FLAG1+M*IRAIL*FLAG4/LRAILF +88I2 =I2A-I1 +C Compute the effective arc voltage +88GNVOLT =SIGN(IRAIL)*GNARC*(1.-EXP(-ABS(IRAIL)/ITHRES)) +88I3A =((IRAIL*(-RDUMP)+GNVOLT)/RDUMP)*FLAG1 +88I3 =I3A-I2A +C COMPUTE INJECTION CURRENT DUE TO MUTUAL EFFECTS +88I4I =M*IRAIL/LAUG +88I4O =-I4I +C +C CAPACITOR SWITCHING FLAGS BASED UPON PROJECTILE POSITION +88FLAG11 =X .GT. XA +88FLAG12 =X .GT. X2 +88FLAG13 =X .GT. X3 +88FLAG14 =X .GT. X4 +88FLAG15 =X .GT. X5 +88FLAG16 =X .GT. X6 +88FLAG17 =X .GT. X7 +C +C TACS OUTPUTS +C 111111222222333333444444555555666666777777888888999999AAAAAABBBBBBCCCCCCDDDDDD +33VDOT VEL X MASS1 IRAIL I1 I2 I3 FMECH MDOT ESTOREVBR EAUG +33EBR ESHOCKEARC EMIX EMUZ DKE PLSMKEHEAT EFRIC ETRAP EBAL +BLANK card that ends TACS data cards +C EMTP CIRCUIT INPUT FOLLOWS +C --- ELECTRIC NETWORK BRANCHES. +C --- SERIES R-L-C BRANCHES +$VINTAGE, 1 +C --- RC SNUBBER ACROSS RAIL GUN +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0I1 0.033 4.5E2 4 +C --- RAIL FINAL RESISTANCE R_RF + 0I1 I2 2.63E-4 +C --- RAIL FINAL INDUCTANCE L_LF + 0I2 I3 4.6E-3 +C --- DUMP RESISTANCE R_DUMP + 0I3 8.0E-3 +C --- CAPACITORS C = 16116 MICRO FARADS , R_FUSE = 223 MICRO OHMS +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE01 223.E-6 17459. 4 + 0NODE02 NODE01 4 + 0NODE03 NODE01 4 + 0NODE04 NODE01 4 + 0NODE05 NODE01 4 + 0NODE06 NODE01 4 + 0NODE07 NODE01 4 + 0NODE08 NODE01 4 +C --- IGNITRON SWITCHES R_SWITCH = 30 MICRO OHMS, L_SWITCH = 0.35 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE09NODE25 30.E-6 0.35E-3 + 0NODE10NODE26NODE09NODE25 + 0NODE11NODE27NODE09NODE25 + 0NODE12NODE28NODE09NODE25 + 0NODE13NODE29NODE09NODE25 + 0NODE14NODE30NODE09NODE25 + 0NODE15NODE31NODE09NODE25 + 0NODE16NODE32NODE09NODE25 +C --- INDUCTORS R_IND = 250 MICRO OHMS, L_IND = 20 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE33NODE41 75.E-6 3.0E-3 + 0NODE34NODE41NODE33NODE41 + 0NODE35NODE41NODE33NODE41 + 0NODE36NODE41NODE33NODE41 + 0NODE37NODE41NODE33NODE41 + 0NODE38NODE41NODE33NODE41 + 0NODE39NODE41NODE33NODE41 + 0NODE40NODE41NODE33NODE41 +C --- INTERNAL BUSWORK R_INT = 25 MICRO OHMS L_INT = 1 MICRO HENRY +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE25NODE33 25.E-6 1.0E-3 + 0NODE26NODE34NODE25NODE33 + 0NODE27NODE35NODE25NODE33 + 0NODE28NODE36NODE25NODE33 + 0NODE29NODE37NODE25NODE33 + 0NODE30NODE38NODE25NODE33 + 0NODE31NODE39NODE25NODE33 + 0NODE32NODE40NODE25NODE33 +C --- DIODE IMPEDANCE: R_DIODE = 73 MICRO OHMS , L_DIODE = 0.2 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0 NODE17 73.E-6 0.2E-3 + 0 NODE18 NODE17 + 0 NODE19 NODE17 + 0 NODE20 NODE17 + 0 NODE21 NODE17 + 0 NODE22 NODE17 + 0 NODE23 NODE17 + 0 NODE24 NODE17 +C --- EXTERNAL BUSWORK: R_BUS = 37.3 MICRO OHMS, L_BUS = 0.47 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE41VBR 37.3E-6 0.47E-3 + 0VBR I4I 1.E-4 + 0I4I I4O 4.2E-3 + 0I4O IRAIL 1.0E-9 +$VINTAGE, 0 +BLANK card after last electric network branch +C INPUT SWITCH CARDS HERE + IRAIL I1 -1.0 1000.00 1 +C --- SWITCH DATA. +C --- 8 IGNITRON SWITCHES +C --- <---TCLOSE<----TOPEN + NODE01NODE09 0. 50.E-3 +C --- TACS CONTROLLED SWITCHES USING FLAGS +13NODE02NODE10 FLAG11 1 +13NODE03NODE11 FLAG12 1 +13NODE04NODE12 FLAG13 1 +13NODE05NODE13 FLAG14 1 +13NODE06NODE14 FLAG15 1 +13NODE07NODE15 FLAG16 1 +13NODE08NODE16 FLAG17 1 +C +C --- DIODE DATA: 8 CROWBAR DIODES. (TACS CONTROLLED) +C --- GRID SIGNAL TURNS ON DIODE, TACS SIGNAL KEEPS THE DIODE ON REGARDLESS +C --- OF "RINGING VOLTAGE" ACROSS THE DIODE. THIS HELPS TO SMOOTH THE SOLUTION +C --- ESPECIALLY WHEN THE BANKS ARE TRIGGERED AT DIFFERENT TIMES. +C <---N1<---N2<------VON<----IHOLD<---TEDION CLOSED <-GRID<-TACS XX +11NODE17NODE25 0. 0. 0. N1 NODE17 10 +11NODE18NODE26 0. 0. 0. N2 NODE18 10 +11NODE19NODE27 0. 0. 0. N3 NODE19 10 +11NODE20NODE28 0. 0. 0. N4 NODE20 10 +11NODE21NODE29 0. 0. 0. N5 NODE21 10 +11NODE22NODE30 0. 0. 0. N6 NODE22 10 +11NODE23NODE31 0. 0. 0. N7 NODE23 10 +11NODE24NODE32 0. 0. 0. N8 NODE24 10 +BLANK card ends all switch cards +C SOURCE CARDS follow .... +C MASS DRIVER EQUIVALENT CURRENT SOURCES +60I1 -1 +60I2 -1 +60I3 -1 +60I4I -1 +60I4O -1 +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C I1 |TERRA *I2 *IRAIL * +C I2 |I1 *I3 * +C I3 |TERRA *I2 * +C NODE01 |TERRA *NODE09* +C NODE02 |TERRA *NODE10* +C NODE03 |TERRA *NODE11* +C NODE04 |TERRA *NODE12* +C NODE05 |TERRA *NODE13* +C NODE06 |TERRA *NODE14* +C NODE07 |TERRA *NODE15* +BLANK card after last electric network source +C --- INITIAL CONDITIONS: INITIAL VOLTAGE ON THE 8 CAPACITORS + 2NODE01 22.E3 + 2NODE02 22.E3 + 2NODE03 22.E3 + 2NODE04 22.E3 + 2NODE05 22.E3 + 2NODE06 22.E3 + 2NODE07 22.E3 + 2NODE08 22.E3 +C --- INITIAL CONDITIONS: LINEAR BRANCH CURRENTS + 3NODE01 0. 22.E3 + 3NODE02 0. 22.E3 + 3NODE03 0. 22.E3 + 3NODE04 0. 22.E3 + 3NODE05 0. 22.E3 + 3NODE06 0. 22.E3 + 3NODE07 0. 22.E3 + 3NODE08 0. 22.E3 +C --- LIST OF NODE VOLTAGE OUTPUT REQUESTS + NODE01I1 +C Step Time I1 NODE01 NODE02 NODE03 NODE04 NODE05 +C TERRA TERRA TERRA TERRA TERRA TERRA +C +C I1 IRAIL I1 NODE01 NODE02 NODE03 +C I1 TERRA TERRA TERRA TERRA +C +C NODE08 TACS TACS TACS TACS TACS +C TERRA VDOT VEL X MASS1 IRAIL +C +C TACS TACS TACS TACS TACS TACS +C MDOT ESTORE VBR EAUG EBR ESHOCK +C +C TACS TACS TACS TACS TACS +C PLSMKE HEAT EFRIC ETRAP EBAL +C *** Switch "IRAIL " to "I1 " closed before 0.00000000E+00 sec. +C *** Switch "NODE01" to "NODE09" closed after 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-5 .1346699E7 -.13272E9 .163913E-3 .163913E-3 .163913E-3 .163913E-3 +C 227.865632 6033.34599 3.36674866 -331.8007 .409782E-9 .409782E-9 +C .409782E-9 0.0 738. 0.0 2.5 6033.34599 +C 0.0 262.0891 10364.4902 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 -262.81712 +C 2 .1E-4 .1028069E8 -.35417E9 0.0 0.0 0.0 0.0 +C 663.274543 16104.2329 32.4352182 -1549.0272 .819564E-9 .819564E-9 +C .819564E-9 0.0 738. 0.0 2.5 16104.2329 +C 0.0 1867.29349 14205.3015 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 -1873.9365 +C Warning. The powers (NODE01, TERRA) through (NODE07, TERRA) should be +C ------- zero initially. But these are floating (near) zeros. The problem +C comes from the current. Turning the debugger on or off may change +C these from near zeros to exact zeros, or vice versa. The SUBTS2 +C computation involves the cancellation of 2 very large numbers to +C give the current. If numbers such as 1.E-4 are seen, this is the +C best that can be guaranteed using 64 bits. WSM + THL, 8 August 96 +BLANK card ending node voltage outputs +C Valve "NODE22" to "NODE30" closing after 2.56000000E-03 sec. +C Switch "NODE08" to "NODE16" closing after 2.61500000E-03 sec. +C Valve "NODE23" to "NODE31" closing after 2.93000000E-03 sec. +C Valve "NODE24" to "NODE32" closing after 3.10000000E-03 sec. +C 1000 .005 .9701709E8 .1788576E8 .114869E8 .3849588E9 -.530779E9 -.327226E9 +C 4394.39452 857904.981 5103.30646 -.415356E7 -.407104E7 -.389447E7 +C -.387852E7 0.0 2415.92363 8.18382873 2.53769379 857904.981 +C 0.0 .5299207E7 -4437.3114 872163.762 .1706545E8 272689.202 +C 110003.436 .1023366E7 353147.438 .1059442E7 181783.733 +C Variable max: .102486E9 .3091743E9 .141619E10 .316849E10 .38723E10 .31399E10 +C 4394.39452 .1634357E7 5103.30646 0.0 .286847E-7 .553206E-7 +C .214316E-6 534570.044 2415.92363 8.18382873 2.53769379 .1634357E7 +C 10.1502923 .9999568E7 22826.1693 872163.762 .170705E8 272689.202 +C 110003.436 .1023366E7 353147.438 .1059442E7 297386.202 +C Times of max: .00499 .001105 .00109 .0013 .00178 .00235 +C .005 .00152 .005 0.0 .35E-3 .675E-3 +C .002615 .001515 .00493 .005 .00493 .00152 +C .002975 .0029 .45E-4 .005 .004895 .00493 +C .00493 .005 .00493 .00493 .004925 + PRINTER PLOT + 194 1. 0.0 5.5 TACS IRAIL { Axis limits: (0.000, 1.634) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC). +C Contributed to ATP materials of the Can/Am user group February 1992 by: +C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant +C #203 - 1745 Martin Drive 705 Westtown Circle +C White Rock/ South Surrey B.C. West Chester, PA 19382 +C CANADA V4A 6Z1 USA +C Phone: 604-535-6540 Phone: 610-344-0432 +C FAX: 604-535-6548 +C In July of 1993, Mr. Furst revised it again in preparation for his use +C of it at Prof. Ned Mohan's University of Minnesota short course there. +C Size 1-10: 43 63 56 3 230 18 167 0 0 0 +C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0 +C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999 +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 + 0 0 4700 0 0 0 0 0 12000 0 + 0 0 220 + 240000 +C *********** A GENERIC 6 PULSE SVC MODEL ************************************ +C +C This is a conceptual model only, it must be refined +C for any specific system; the control algorithm can be greatly improved. +C +C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer; +C TCR's connected in delta. +C +C Thyristor gating pulses are phase locked to the current zero transition +C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT; +C individual phase open loop VAR control is used, with a superimposed. +C slow voltage control. +C +C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV +C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s +C value of the 34.5 kV phase to phase voltages, which are the TACS variables +C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC, +C the thyristors have to be blocked. One way of doing this is to punch +C 1000000. in col. 17-24 of the thyristor switches 11. +C +C To get the SVC overall response plot the transformer ph-ph r.m.s secondary +C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three +C ph-ph r.m.s. voltages +C +C To get the VAR import/phase through the transformer secondary +C plot QINA (TACS) +C +C To get the transformer secondary voltage (instant.) plot TRSA +C +C TRSA-XLA shows the switching of the phase to phase load +C +C RXAB-TRSB plots the current through one AB arm of the thyristor bridge +C +C For sake of simplicity, some of the TACS variables have not been +C initialized, so ignore the first 25 ms of the plots. +C +C If in the "Superimposed Voltage Control Section the gain +C of DVQ is set to zero, the model reverts to open loop VAR control +PRINTED NUMBER WIDTH, 13, 2, +ALLOW EVEN PLOT FREQUENCY { See April, 1998, newsletter (to allow IPLOT = 2 below) +C For best results, do not use a time step more than 1/2 Degree (23.148 +C microsec for 60 Hz). Here, to speed the illustration, we use twice that, +C & only simulate for half as long (extend to 0.5 sec for more transients). +C Free-format data input is used in order to specify DELTAT precisely: +C DELTAT TMAX XOPT COPT EPSILN TOLMAT +C .0000462962962962963, 0.25, 60., , , , , , , , , +C That was the old, brute-force way. Alternative finesse first was made +C available on 19 August 1998. As long as columns 1-16 involve no decimal +C point, dT and T-max are replaced by points/cycle & end time in cycles: + 360 15 60. { Points per cycle, simulation time in cycles, XOPT + 1 4 1 2 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +C +C Firing pulses are derived from the current through the measuring inductances +C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into +C TACS from the measuring switches connecting the RM's in delta, +C corresponding to the delta connected thyristor valves. +C +C The current lags the voltage 90 deg. and its zero transition produces +C the firing signal at an alpha of 90 deg. +C This is done by TACS level triggered switches Device 52. +C The firing pulse delay is calculated by the variables DELAB/BC/CA +C and implemented by TACS transport device Device 54; +C +C For convenience, the firing angle is initialized to alpha = 180 deg. +C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system. +C The required firing angle is then calculated backwards from the +C 180 deg. point, by using the variable DELYA(B,C). +C The actual firing angle is then DELAB = DELIN -DELYA etc. +C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms. +C Then DELAB= DELIN - DELYA =0.0 (90 deg.) +C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees. +C For 50 Hz, DELIN = 5.0 ms. +C +C *********** VOLTAGE AND REACTIVE REFERENCE ************* +11VREFD 1.0 +C VAR reference +C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.; +C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase; +C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV; +C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u. +88QTCR = 33.3*10**6 +C The VAR reference QREF should be determined so that the superimposed +C voltage control changes the VAR flow as little as possible +88QREF = 0.30 +C +C *********** VOLTAGES TRANSFERRED FROM NETWORK ************* +C +C ******* Import 34.5 kV phase voltages, get phase to phase and normalize ***** +C TRSA/B/C are the transformer secondary ph-g voltages +C 90 - TACS voltage source driven by an EMTP network node voltage +C (Rule Book p. 3-15) +90TRSA +90TRSB +90TRSC +C the phase to phase voltages +99TRAB = TRSA - TRSB +99TRBC = TRSB - TRSC +99TRCA = TRSC - TRSA +C normalize to get one p.u. for the phase to phase rms value +99TABX = TRAB/34500 +99TBCX = TRBC/34500 +99TCAX = TRCA/34500 +C get the rms value of the A-B phase to phase voltage +C Device 66 (Rule Book p. 3-32) +99TXNAB 66+TABX 60. +99TXNBC 66+TBCX 60. +99TXNCA 66+TCAX 60. +C +C ************** PHASE A FIRING PULSES ************************************** +C +C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15) +91RMAB +C send square impulse at current zero Device 52 (Rule B. p. 3-21) +88FAB1 52+UNITY 1. 0. 0 RMAB +88FAB2 52+UNITY 1. 0. -1 RMAB +C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23) +98FIAB1 54+FAB1 .0000 DELAB +98FIAB2 54+FAB2 .0000 DELAB +C for a 50 Hz system the constant .004167 below should be changed to 0.005 +88DELIN = .004167 { to initialize alpha to 180 deg. +C +C ************* PHASE B FIRING PULSES ************************************* +C +91RMBC +88FBC1 52+UNITY 1. 0. 0 RMBC +88FBC2 52+UNITY 1. 0. -1 RMBC +98FIBC1 54+FBC1 .0000 DELBC +98FIBC2 54+FBC2 .0000 DELBC +C +C ************ PHASE C FIRING PULSES ************************************* +C +91RMCA +88FCA1 52+UNITY 1. 0. 0 RMCA +88FCA2 52+UNITY 1. 0. -1 RMCA +98FICA1 54+FCA1 .0000 DELCA +98FICA2 54+FCA2 .0000 DELCA +C +C ************* OPEN LOOP VAR CONTROL ************************** +C **** WITH SUPERIMPOSED VOLTAGE CONTROL *********** +C +C the following will be repeated for all three phases as the SVC +C +C ************ RACTIVE POWER FLOWS ********* +C +C calclate VAR transfer at transf. secondary +91TRXA { 34.5 kV side current through transformer +C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22) +88TRIA 53+TRXA .00417 .0043 +88TRVA 53+TRSA .00417 .0043 +C the following equation for calculating VAR flow is from +C Miller: Reactive power Control etc. (text book) p. 321 +88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR +C +91TRXB +88TRIB 53+TRXB .00417 .0043 +88TRVB 53+TRSB .00417 .0043 +88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR +C +91TRXC +88TRIC 53+TRXC .00417 .0043 +88TRVC 53+TRSC .00417 .0043 +88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR +C +C ******************** SUPERIMPOSED VOLTAGE CONTROL ******************** +C +C ******** DELTA Q TO ADJUST VOLTAGE ************ +C the average value of phase to phase voltage is + 0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15 +C the difference between ref. and actual voltage is +C slow down the response by a (1/1+st) block + 1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0 + 1.0 + 1.0 0.500 +C the required VAR import taking voltage correction into account + 0QRNEW +QREF +DVQ +C ***************** PHASE A ERROR ****************************************** +C +C error in VAR import + 0ERRQA +QRNEW -QINA + 0QINCRA +ERRQA +C the new reactor output is then given by the Steinmetz Algorithm as +C the output at T-delT + QINCRA + QINCRB - QINCRC; +C as shown below in calculating the new SVC VAR's +C ****************** PHASE B ERROR **************************************** +C + 0ERRQB +QRNEW -QINB + 0QINCRB +ERRQB +C +C ****************** PHASE C ERROR ***************************************** +C + 0ERRQC +QRNEW -QINC +C + 0QINCRC +ERRQC +C +C +C **************** PHASE A PULSE DELAY CONTROL **************************** +C the current firing angle is DELAB, this corresponds to an old reactor +C p.u. current given by the following non linear relation corresponding +C to the x = sigma-sin(sigma) function +99DLA1 = 1 - DELAB/.004167 +C where DLA1 is the normalized conduction angle sigma between firing +C angle alpha 90 and 180 degrees. +C +99REOAB 56+DLA1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.0000 + 9999. +C the new reactor current demanded is the increment plus the old +C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0 +C this is applying the Steinmetz algorithm + 0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00 +C this is now reconverted into an angle, using the inverse of the +C above relation, and becomes the new DELAB; (Rule Book p. 3-25 ) +99DELYAA56+INREAB + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.0000 1.000 + 9999. +99DELYA =DELYAA * 0.004167 +C now smooth it out a bit + 1DELAB +DELIN -DELYA 1.0 .0040 + 1.0 + 1.0 0.015 +C +C ****************** PHASE B PULSE DELAY CONTROL ************************** +C +99DLB1 = 1 - DELBC/.004167 +C +99REOBC 56+DLB1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.000 + 9999. +C + 0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00 +C +99DELYBB56+INREBC + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.000 1.000 + 9999. +99DELYB =DELYBB * 0.004167 +C + 1DELBC +DELIN -DELYB 1.0 0.0040 + 1.0 + 1.0 0.015 +C +C *************** PHASE C PULSE DELAY CONTROL ****************************** +C +99DLC1 = 1 - DELCA/.004167 +C +99REOCA 56+DLC1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.000 + 9999. +C + 0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00 +C +99DELYCC56+INRECA + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.000 1.000 + 9999. +99DELYC =DELYCC * 0.004167 +C + 1DELCA +DELIN -DELYC 1.0 0.0040 + 1.0 + 1.0 0.015 +C +C ***************** REACTOR SWITCHING *************************************** +C +C control signals to switch reactive load 'XLA/B/C' on and off +C see TYPE 12 switches in power network. +C TACS source (Rule Book p. 3-14) +23FRLA 1000. 0.200 0.100 0.2 +23FRLB 1000. 0.200 0.100 0.2 +23FRLC 1000. 0.200 0.100 10.0 +C +C initializations +77VLLAVG 1.0 +77TXNAB 1.0 +77QRNEW .30 +77QINA .30 +77QINB .30 +77QINC .30 +C +C ********* TACS OUTPUTS ************ +C +33TXNAB TXNBC TXNCA ERRQA VLLAVG +33QRNEW DVQ QINA +BLANK end of TACS +C +C ************** NETWORK DATA ********************* +C +C ********* LINE TO SOURCE *********** +C +C transmission line (equivalent) from GEN source to transformer + GENA TRFA 4.5 25.0 + GENB TRFB 4.5 25.0 + GENC TRFC 4.5 25.0 +C fault level at trsf. 230 kV approx. 2083 MVA +C +C ************** MAIN TRANSFORMER ************** +C +C transformer capacitance to ground 10000pF +C a very simple model, can be replaced with any more complex model +C transformer 230000/34500 Y/D 100 MVA; In=250 A +C x = 7.0% on 100 MVA +C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance +C TRANSFORMER busref imag flux busin rmag empty +C ------------______------______------______------_____________________________- +C +C no saturation + TRANSFORMER 0.7 700.0 X + 0.7 700.0 { 100% + 9999 + 1TRPA 0.80 36.0 1330 + 2TRXA TRXB 1.00 385 {372 + TRANSFORMER X Y + 1TRPB + 2TRXB TRXC + TRANSFORMER X Z + 1TRPC + 2TRXC TRXA +C +C transformer capacitance to ground and ph - ph 10000pF + TRXA 0.01 + TRXB 0.01 + TRXC 0.01 +C capacitance between phases + TRXA TRXB 0.01 + TRXB TRXC 0.01 + TRXC TRXA 0.01 +C +C *********** HARMONIC FILTERS *************** +C +C 5th harmonic filter 20 MVAR + TRSA TF5 2.38 44.5 + TRSB TF5 2.38 44.5 + TRSC TF5 2.38 44.5 +C 7th harmonic filter 20 MVAR + TRSA TF7 1.21 44.5 + TRSB TF7 1.21 44.5 + TRUC TF7 1.21 44.5 +C +C ******** TRANSFORMER SECONDARY LOAD *************** +C 75 MW, 30 MVAR + TRSA ND 13.67 5.47 + TRSB ND 13.67 5.47 + TRSC ND 13.67 5.47 +C +C shunt capacitor 20 MVAR + TRSA 44.5 + TRSB 44.5 + TRSC 44.5 +C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* +C +C switched reactor .1 sec. on .1 sec. off +C see switch type 13 below and type 23 source in TACS +C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load + XLA NSR 34.00 34.00 + XLB NSR 34.00 34.00 + XLC NSR 34.00 34.00 +C +C +C ************** SNUBBERS ************** +C +C the snubber parameters shown below are not necessarily the +C values a manufacturer would choose for a 34.5 kV valve. +C The parameters were selected so that only a small currrent flows +C through the control reactor with the valves non conducting, +C and overvoltages and spikes interfering with the firing control +C are prevented. It is quite possible that a better combination +C than that shown exists. +C +C in series with valves +C + CATAB RXAB .1 + ANOAB RXAB .1 + CATAB RXAB 4.0 + ANOAB RXAB 4.0 +C + CATBC RXBC .1 + ANOBC RXBC .1 + CATBC RXBC 4.0 + ANOBC RXBC 4.0 +C + CATCA RXCA .1 + ANOCA RXCA .1 + CATCA RECA 4.0 + ANOCA RXCA 4.0 +C +C across valves +C + CATAB TRSA 2000. .1 + ANOAB TRSA 2000. .1 +C + CATBC TRSB 2000. .1 + ANOBC TRSB 2000. .1 +C + CATCA TRSC 2000. .1 + ANOCA TRSC 2000. .1 +C +C ************* SVC CONTROLLED REACTOR ************* +C +C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm + RXAB TRSB 0.1 35.71 1 + RXBC TRSC 0.1 35.71 + RXCA TRSA 0.1 35.71 +C +C *************** REACTOR FOR FIRING PULSE GENERATION ****** +C +C Fire angle reference measurement using delta connected reactors +C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus + TRSA RMXA 0.01 1 + TRSB RMXB 0.01 + TRSC RMXC 0.01 +C The reactors are delta connected through measuring switches below + RMAB RMXB 200. 20000. + RMBC RMXC 200. 20000. + RMCA RMXA 200. 20000. +C +BLANK end of branch data +C *************** SWITCH DATA ***************8 +C +C current measurement in the auxiliary reactor for firing pulse generation +C these switches complete the delta connection of the reactors +C (Rule Book p.6A-9) + RMXA RMAB MEASURING + RMXB RMBC MEASURING + RMXC RMCA MEASURING +C +C current measurement in the main transformer secondary + TRXA TRSA MEASURING 1 + TRXB TRSB MEASURING 0 + TRXC TRSC MEASURING 0 +C current measurement in the main transformer primary + TRFA TRPA MEASURING 1 + TRFB TRPB MEASURING 0 + TRFC TRPC MEASURING 0 +C +C switch for on/off switching the 17.5 MVAR resistive-reactive load +C (Rule Book p. 6C-1) +12TRSA XLA FRLA 11 +12TRSB XLB FRLB 10 +12TRSC XLC FRLC 10 +C +C VALVES +C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR +C Rule Book p. 6B-1 +11TRSA CATAB 00. 15.0 FIAB1 1 +11ANOAB TRSA 00. 15.0 FIAB2 1 +11TRSB CATBC 0000. 15.0 FIBC1 1 +11ANOBC TRSB 000. 15.0 FIBC2 1 +11TRSC CATCA 0000. 15.0 FICA1 1 +11ANOCA TRSC 000. 15.0 FICA2 1 +C +BLANK end of switch data +C +C AC sources +C 230 kV supply +14GENA 187794. 60. 0. -1. +14GENB 187794. 60. 240. -1. +14GENC 187794. 60. 120. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GENA |TRFA * +C TRFA |GENA *TRPA * +C GENB |TRFB * +C TRFB |GENB *TRPB * +C GENC |TRFC * +C TRFC |GENC *TRPC * +C X |TERRA *TERRA *TRPA * +C TRPA |TRFA * X* +C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA * +C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB * +BLANK end of source cards +C Total network loss P-loss by summing injections = 9.766831747973E+07 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04 +C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04 +C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04 +C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07 +C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07 +C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06 +C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07 +C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06 +C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06 +C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8 +C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951 + TRSA TRFA { Names of nodes for which voltage is to be outputted +C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS +C TRSA TRPA XLA TRSB RMXA TXNAB +C +C TACS TACS TACS TACS TACS TACS TACS +C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA +C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state. +C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state. +C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state. +C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state. +C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state. +C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state. +C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state. +C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state. +C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state. +C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% +C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = +C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN +C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. +C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0 +C 0.0 0.0 0.0 1.0 0.3 0.0 0.3 +C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562 +C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0 +C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec. +C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949 +C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0 +BLANK end of output requests +C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec. +C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec. +C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec. +C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec. +C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec. +C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec. +C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec. +C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec. +C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036 +C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946 +C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099 +C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066 +C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259 +C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481 +C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0 +C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0 +C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0 +C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4 + PRINTER PLOT + 193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient +BLANK end of plot requests +BEGIN NEW DATA CASE +C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC). +C This is very similar to the preceding 4th case except that here newer +C MODELS replaces TACS for the control system modeling. The same +C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed +C this during February of 1995 (see January and April newsletters). To +C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec. +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 + 0 0 4700 0 64800 0 0 0 0 0 +C 0 0 220 126000 + 0 0 220 30 126000 { 16 March 2007 +C About the preceding 2 lines, List 27 default = 26 resulted in TACS1 overflow +C Since year 1 (1995), this went undetected until Orlando Hevia's G95 testing + 240000 742 +PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations +C DELTAT TMAX XOPT COPT EPSILN TOLMAT +C 46.296-6 0.600 60. ---- Gabor Furst's original data card +.0000462962962962963, 0.100, 60., , , , , , , , , +C the time step is the cycle time 1/60 sec. divided by 360 degrees +C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP +C 9999 1 0 1 1 + 1 3 1 2 1 -1 + 5 5 20 20 100 100 500 500 +C The running of this MODELS file requires the latest version of TPbig +C with the increased list sizes for MODELS +C +C The example demonstrates a generic SVC connected to a 230/34.5 kV +C step-down transformer, with an SVC reactor rating of 100 MVA. +C The SVC is tested by switching on and off a 25 MVA 0.7 p.f. +C load on the 34.5 kV bus +C plot vatiable 'vllavg' for SVC response +C ============================================================================== +MODELS + INPUT trma {v(TRSA)} -- transf. sec. voltage + trmb {v(TRSB)} + trmc {v(TRSC)} +-- + irab {i(RMAB)} -- aux. reactor delata current + irbc {i(RMBC)} + irca {i(RMCA)} +-- + itra {i(TRXA)} -- transf. sec. current + itrb {i(TRXB)} + itrc {i(TRXC)} +-- + rxab {i(TRXA)} -- main reactor current + rxbc {i(TRXB)} + rxca {i(TRXC)} +-- + OUTPUT -- firing signals + FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals + FRLA, FRLB, FRLC -- reactor switching +-- +MODEL svcmod -- MODELS version of DC 22 subcase 4 +-- +-- +DATA omega {dflt: 2*pi*freq} + dt {dflt :0.25/freq} +-- +CONST freq {val: 60} + tper {val: 1/freq} + qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase + qref {val: 0.00} -- set 0 for this example + delin {val: 0.25/freq} -- initialization for firing delay (60Hz) + tpimp {val: 0.200} -- test reactor switching cycle + ton {val: 0.100} -- reactor on time + tstart {val: 0.3} -- start of switching reactors +-- +VAR + tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3 + dvq, error, fdb, vref, verr, inreact, delyi + vtrsec[1..3], vtrff[1..3] + f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3] + vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3] + errq[1..3], qincr[1..3] +-- + HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages + vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages +-- + dvq {dflt: 0} -- forward block output + error {dflt: 0} -- error signal + fdb {dflt: 0} -- feedback +-- + ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current + itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current + del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles +-- + INPUT trma {dflt: trma} -- trsf sec. voltage ph-g + trmb {dflt: trmb} + trmc {dflt: trmc} +-- + irab {dflt: irab} -- svc reactor currents + irbc {dflt: irbc} + irca {dflt: irca} +-- + itra {dflt: itra} -- transf. sec. current + itrb {dflt: itrb} + itrc {dflt: itrc} +-- + rxab {dflt: 0} -- main reactor delta current + rxbc {dflt: 0} + rxca {dflt: 0} +-- + OUTPUT + ficat[1..3], fian[1..3] -- firing signals to thyristors + ttt1, ttt2, ttt3 -- control signal to switch reactors +-- + INIT + vref:= 1.0 -- reference voltage + verr:= 0 -- voltage error + tt := timestep/tper -- integration multiplier + vrms[1..3] := 0 + ficat[1..3]:= 0 -- firing pulse to cathode + fian[1..3]:= 0 -- firing pulse to anode + qin[1..3]:= 0.3 -- rective power + ttt1:= 0 -- test rector breaker control +-- + ENDINIT +-- +DELAY CELLS DFLT: 100 + CELLS(vtrsec[1..3]):500 + CELLS(vtrff[1..3]):500 +-- +-- liearization of angel versus p.u. current through thyristors + FUNCTION dely POINTLIST +-- angle current + ( 0.0, 0.0) + ( 0.0022, 0.111) + ( 0.0176, 0.222) + ( 0.0575, 0.333) + ( 0.1306, 0.444) + ( 0.2414, 0.555) + ( 0.3900, 0.666) + ( 0.5718, 0.777) + ( 0.7783, 0.888) + ( 1.0000 1.000) +-- +-- ************** EXEC **************** +EXEC +-- convert to arrays + ir[1..3] := [irab, irbc, irca] + vtrsec[1..3] := [trma, trmb, trmc] +-- +-- control signals for the type 12 switches in EMTP +-- to switch test reactors +-- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s + ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart) + ttt2 := ttt1 + ttt3 := ttt1 +-- +-- form phase to phase voltages and normalize + vtrff[1] :=(trma - trmb)/34500 + vtrff[2] :=(trmb - trmc)/34500 + vtrff[3] :=(trmc - trma)/34500 +-- +-- calculation of voltage rms values + FOR i := 1 TO 3 DO + vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2)) + ENDFOR +-- +-- calculate reactive through transformer +-- qina, qinb, qinc +-- see DC22-3 for explanation + itr[1..3] := [itra, itrb, itrc] + FOR i:= 1 TO 3 DO + tri[i]:= delay(itr[i],tper/4) + trv[i]:= delay(vtrsec[i],tper/4) + qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr + ENDFOR +-- +-- generate firing pulses 500 microsec wide +-- + if t> timestep then +-- + FOR i := 1 TO 3 DO + f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 ) + f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 ) + ENDFOR +-- delayed pulses caclulated +-- by var and voltage control + FOR i:= 1 TO 3 DO + ficat[i] := delay(f1[i],del[i]) -- cathode + fian[i] := delay(f2[i],del[i]) -- anode + ENDFOR + endif +-- average ph-ph voltage normalized + vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85} +-- +-- alternative to above but not used in this model +-- 12 pulse rectfication with output smoothed alternative to rms signal +-- smoothing rough, should be done with 120 c/s filter, not used here +-- shown as possible alternative only +-- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41 +-- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 ) +-- +-- voltage error forward and feedback loop + verr:= vllavg - vref +-- combine endcombine used because forward - feedback loop + COMBINE AS first_group + error := sum( 1|vllavg - 1|vref - 1|fdb) +-- forward gain . 1/1+stdelay + laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1) +-- derivative feedback + claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 ) + ENDCOMBINE +-- + FOR i := 1 TO 3 DO +-- total error the qref - qin[i] component may be omitted +-- it is usefull for unbalanced loads + errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0} + ENDFOR +-- calculate new firing angles +-- phase A + FOR i:= 1 TO 3 DO + k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B + l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C +-- apply phase unbalance correction + inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0} +-- linearize and convert from firing angle to time delay + delyi := delin - dely(inreact ) * dt + claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:= + 1.0|s0/(1.0|s0 + 0.005|s1) + ENDFOR +-- +ENDEXEC +ENDMODEL +USE svcmod AS test + INPUT trma:= trma trmb:= trmb trmc:= trmc + irab:= irab irbc:= irbc irca:= irca + itra:= itra itrb:= itrb itrc:= itrc +-- + OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2] + FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3] + FRLA := ttt1 FRLB := ttt2 FRLC := ttt3 +ENDUSE +C +RECORD test.vrms[1] AS vrmsab + test.vrms[2] AS vrmsbc + test.vrms[3] AS vrmsca + test.vllavg AS vllavg + test.error AS error + test.dvq AS dvq + test.fdb AS fdb + test.verr AS verr +ENDMODELS +C ************** NETWORK DATA ********************* +C +C ********* LINE TO SOURCE *********** +C +C transmission line (equivalent) from GEN source to transformer + GENA TRFA 4.5 25.0 + GENB TRFB 4.5 25.0 + GENC TRFC 4.5 25.0 +C fault level at trsf. 230 kV approx. 2083 MVA +C +C ************** MAIN TRANSFORMER ************** +C +C transformer capacitance to ground 10000pF +C a very simple model, can be replaced with any more complex model +C transformer 230000/34500 Y/D 100 MVA; In=250 A +C x = 7.2% on 100 MVA +C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance +C TRANSFORMER busref imag flux busin rmag empty +C ------------______------______------______------_____________________________- +C +C no saturation + TRANSFORMER 0.7 700.0 X + 0.7 700.0 { 100% + 9999 + 1TRPA 0.80 36.0 1330 + 2TRXA TRXB 1.00 375 {385 + TRANSFORMER X Y + 1TRPB + 2TRXB TRXC + TRANSFORMER X Z + 1TRPC + 2TRXC TRXA +C +C transformer capacitance to ground and ph - ph 10000pF + TRXA 0.01 + TRXB 0.01 + TRXC 0.01 +C capacitance between phases + TRXA TRXB 0.01 + TRXB TRXC 0.01 + TRXC TRXA 0.01 +C +C *********** HARMONIC FILTERS *************** +C +C 5th harmonic filter 20 MVAR + TRSA TF5 2.38 44.6 1 + TRSB TF5 2.38 44.6 + TRSC TF5 2.38 44.6 +C 7th harmonic filter 10 MVAR + TRSA TF7 2.43 22.3 1 + TRSB TF7 2.43 22.3 + TRUC TF7 2.43 22.3 +C +C ******** TRANSFORMER SECONDARY LOAD *************** +C 70 MW, 30 MVAR + TRSA ND 13.67 5.47 + TRSB ND 13.67 5.47 + TRSC ND 13.67 5.47 +C +C shunt capacitor 20 MVAR + TRSA 44.5 + TRSB 44.5 + TRSC 44.5 +C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* +C +C switched .1 sec. on .1 sec. off +C see switch type 13 below and type 23 source in TACS +C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load +C + XLA NSR 34.0 34.0 + XLB NSR 34.0 34.0 + XLC NSR 34.0 34.0 +C +C ************** SNUBBERS ************** +C +C the snubber parameters shown below are not necessarily the +C values a manufacturer would choose for a 34.5 kV valve. +C The parameters were selected so that only a small currrent flows +C through the control reactor with the valves non conducting, +C and overvoltages and spikes interfering with the firing control +C are prevented. It is quite possible that a better combination +C than that shown exists. +C +C in series with valves +C + CATAB RXAB .1 + ANOAB RXAB .1 + CATAB RXAB 4.0 + ANOAB RXAB 4.0 +C + CATBC RXBC .1 + ANOBC RXBC .1 + CATBC RXBC 4.0 + ANOBC RXBC 4.0 +C + CATCA RXCA .1 + ANOCA RXCA .1 + CATCA RECA 4.0 + ANOCA RXCA 4.0 +C +C across valves +C + CATAB TRSA 2000. .1 + ANOAB TRSA 2000. .1 +C + CATBC TRSB 2000. .1 + ANOBC TRSB 2000. .1 +C + CATCA TRSC 2000. .1 + ANOCA TRSC 2000. .1 +C +C ************* SVC CONTROLLED REACTOR ************* +C +C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm + RXAB TRSB 0.1 35.71 1 + RXBC TRSC 0.1 35.71 + RXCA TRSA 0.1 35.71 +C +C *************** REACTOR FOR FIRING PULSE GENERATION ****** +C +C Fire angle reference measurement using delta connected reactors +C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus + TRSA RMXA 0.01 1 + TRSB RMXB 0.01 + TRSC RMXC 0.01 +C The reactors are delta connected through measuring switches below + RMAB RMXB 200. 20000. + RMBC RMXC 200. 20000. + RMCA RMXA 200. 20000. +C +BLANK end of branch data +C *************** SWITCH DATA ***************8 +C +C current measurement in the auxiliary reactor for firing pulse generation +C these switches complete the delta connection of the reactors +C (Rule Book p.6A-9) + RMXA RMAB MEASURING 1 + RMXB RMBC MEASURING 1 + RMXC RMCA MEASURING 1 +C +C current measurement in the main transformer secondary + TRXA TRSA MEASURING + TRXB TRSB MEASURING + TRXC TRSC MEASURING +C current measurement in the main transformer prinmary + TRFA TRPA MEASURING + TRFB TRPB MEASURING + TRFC TRPC MEASURING +C +C switch for on/off switching the 36.6 MVAR resistive-reactive load +C (Rule Book p. 6C-1) +12TRSA XLA FRLA 1 +12TRSB XLB FRLB 1 +12TRSC XLC FRLC 1 +C +C VALVES +C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR +C Rule Book p. 6B-1 +11TRSA CATAB 100. 35.0 FIAB1 1 +11ANOAB TRSA 100. 35.0 FIAB2 1 +11TRSB CATBC 100. 35.0 FIBC1 1 +11ANOBC TRSB 100. 35.0 FIBC2 1 +11TRSC CATCA 100. 35.0 FICA1 1 +11ANOCA TRSC 100. 35.0 FICA2 1 +C +BLANK end of switch data +C +C AC sources +C 230 kV supply +14GENA 187794. 60. 0. -1. +14GENB 187794. 60. 240. -1. +14GENC 187794. 60. 120. -1. +C --------------+------------------------------ +BLANK end of source cards +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04 +C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04 +C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04 +C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06 +C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06 +C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06 +C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06 +C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06 +C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06 +C TRSA XLA Open Open .... Etc. (all remaining switches) +C +C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8 +C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739 + TRSA TRFA { Node voltage output requests +C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB +C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA +C +C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS +C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC +C +C MODELS MODELS MODELS MODELS MODELS MODELS +C VRMSCA VLLAVG ERROR DVQ FDB VERR +C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state. +C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state. +C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state. +C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state. +C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state. +C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state. +C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state. +C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state. +C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state. +C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% +C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = +C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN +C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. +C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491 +C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15 +C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865 +C .046333037 .85 .007233288 -.37886586 -.15723329 -.15 +C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142 +C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15 +BLANK end of output requests +C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0 +C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633 +C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629 +C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119 +C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273 +C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165 +C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625 +C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407 +C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111 + PRINTER PLOT + 193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930) +BLANK end of plot requests +BEGIN NEW DATA CASE +BLANK +EOF + + 10 June 2002, WSM adds output to the screen in case of DISK use. +Without any EATS, this is simple as should be illustrated in the October +(or later) newsletter. But with EATS, there are variations depending upon: +1) the subcase number; and 2) whether NEW LIST SIZES (NLS) is being +used. The subject is mentioned here because the preceding data _does_ +involve NLS. So, if EATS is requested from STARTUP (FLZERO < 0), +expect the following new output to the screen: + ---- Begin EATS for subcase number KNTSUB = 1 + ---- Begin EATS for subcase number KNTSUB = 2 + ---- Begin EATS for subcase number KNTSUB = 3 + ---- Begin next subcase number KNTSUB = 4 + ---- Begin next subcase number KNTSUB = 5 +The NLS requests in the 4th and 5th subcases conflict with EATS, +and NLS takes precedence. -- cgit v1.2.3