1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
|
BEGIN NEW DATA CASE
C 1st of 19 subcases that illustrate POCKET CALCULATOR VARIES PARAMETERS (the
C same as introduced at the end of DCNEW-25) without simulation. The previous
C illustration involved simulation. Here, TMAX < 0 ===> none. Although
C one could save the .PL4 file, there is nothing new to illustrate in this
C usage, so it will not be done. Variable IOPCVP controls output for the
C 2nd or later pass of loop. The zero illustrated here minimizes output. If
C it is toggled to value 1, all output of the 1st subcase should be repeated
C during the 2nd or later pass. This is useful for debugging.
C Controls of following request card: MAXKNT IOPCVP { Loop 8 times with
POCKET CALCULATOR VARIES PARAMETERS 8 1 { minimum printout
PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns)
.0001 -1. 50. 50.
1 1 1 0 1 2
$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b
MHENRY = 1.2 - ( KNT - 1.0 ) * .05 { L =1.2, 1.15, 1.1, etc.
FREQUENCY = 25. * KNT { Here we vary the frequency for use on source card
BLANK card ends $PARAMETER definitions that are processed just b4 branch card
TRAN 1.0 1.E+5 3
GEN TRAN 1.0MHENRY
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 70. FREQUENCY -1.
BLANK card terminating program source cards.
GEN TRAN
BLANK card ending program output-variable requests.
PRINTER PLOT
19660. 0.0200. TRAN
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 2nd of 19 subcases that illustrate PCVP will superimpose the PCVP loop on
C top of a normal FREQUENCY SCAN loop. In fact, the latter controls the
C loop, so MAXKNT is arbitrary and can be ignored. By design, the
C solution to this 2nd subcase is the same as the first. As for subcase one,
C the .PL4 file will not be saved, although it could be.
FREQUENCY SCAN, 25., 25., 200., 0, { 25 < f < 200 Hz in 25-Hz increments
C Controls of following request card: MAXKNT IOPCVP { Ignore MAXKNT value
POCKET CALCULATOR VARIES PARAMETERS 0 1 { since also FS loop
PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns)
.0001 -1. 50. 50.
1 1 1 0 1
$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b
MHENRY = 1.2 - ( KNT - 1.0 ) * .05 { L =1.2, 1.15, 1.1, ....
BLANK card ends $PARAMETER definitions that are processed just b4 branch card
TRAN 1.0 1.E+5 3
GEN TRAN 1.0MHENRY
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 70. 25. -1.
BLANK card terminating program source cards.
GEN TRAN
BLANK card ending program output-variable requests.
PRINTER PLOT
19660. 0.0200. TRAN
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 3rd of 19 subcases that illustrate PCVP will superimpose the PCVP loop on
C top of a normal HARMONIC FREQUENCY SCAN loop. In fact, the latter controls
C the loop, so MAXKNT is arbitrary and can be ignored. By design,
C solution to this 3rd subcase is the same as the preceding two. This is an
C abnormal, special case (normally, HFS data will skip harmonics, and source
C amplitudes will be varied).
C 27 December 2000, MODELS data is added. Nothing else is changed. This
C use of MODELS is imagined as an alternative to $POCKET as illustrated
C in the following (4th) subcase. Automatically, MODELS is called at the
C end of the phasor solution so the user need do nothing more than add his
C MODELS data in the usual place. 28 December 2000, add a switch, too, to
C prove that phasor switch current also can be viewed using MODELS.
POWER FREQUENCY, 25., ! Needed so minimum frequency is recognized as fundamental
HARMONIC FREQUENCY SCAN { Non-negative DELFFS in 25-32 means F in Hz (not log F)
C Controls of following request card: MAXKNT IOPCVP { Ignore MAXKNT value
POCKET CALCULATOR VARIES PARAMETERS 0 1 { since also HFS loop
PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns)
.0001 -1. 50. 50.
1 1 1 0 1
MODELS
INPUT v_Re_tran {v(tran)} -- real part of voltage at node TRAN
v_Im_tran {imssv(tran)} -- imag part of voltage at node TRAN
i_Re_swit {i(swit)} -- real part of current at switch SWIT
i_Im_swit {imssi(swit)} -- imag part of current at switch SWIT
MODEL m1 -----------------------------------------------------------------------
VAR pass, ampl, angle, sum -- list of all local variables
INPUT v_Re_1 {dflt: 0} -- to verify that real part of node voltage and the
v_Im_1 {dflt: 0} -- imaginary part of node voltage are accessed correctly
i_Re_1 {dflt: 0} -- to verify the real part of switch current
i_Im_1 {dflt: 0} -- to verify the imaginary part of switch current
INIT pass:=0
sum:=0 ENDINIT
EXEC
pass:=pass+1
ampl:= sqrt( v_Re_1 **2 + v_Im_1 ** 2 ) -- Magnitude of the node voltage
angle:= atan2( v_Im_1 , v_Re_1 ) -- Angle in radians of the node voltage
sum:= sum + ampl -- Sum the voltage amplitudes for different harmonics
write(' ************** In MODELS, pass = ', pass, ' freq = ', t )
write(' Re{i1}, Im{i1} = ', i_Re_1, ', ', i_Im_1 )
write(' Re{v1}, Im{v1} = ', v_Re_1, ', ', v_Im_1 )
write(' Polar =', ampl, angle )
write(' Sum of amplitudes =', sum )
ENDEXEC
ENDMODEL
USE m1 as m1
INPUT v_Re_1 := v_Re_tran
v_Im_1 := v_Im_tran
i_Re_1 := i_Re_swit
i_Im_1 := i_Im_swit
ENDUSE
ENDMODELS
$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b
MHENRY = 1.2 - ( KNT - 1.0 ) * .05 { L =1.2, 1.15, 1.1, ....
BLANK card ends $PARAMETER definitions that are processed just b4 branch card
TRAN SWIT 1.0 1.E+5 3
GEN TRAN 1.0MHENRY
BLANK card ending program branch cards.
SWIT -1. 1.0 1
BLANK card terminating program switch cards (none, for this case)
14GEN 70. 25. 0.0 { Note comment and no negative T-start
14GEN 70. 50. 0.0 { This is normal HFS source data. It
14GEN 70. 75. 0.0 { is unusual, however, because of our
14GEN 70. 100. 0.0 { match preceding subases. Unusual
14GEN 70. 125. 0.0 { for HFS usage, the amplitude is not
14GEN 70. 150. 0.0 { varied and all harmonics are present
14GEN 70. 175. 0.0
14GEN 70. 200. 0.0
BLANK card ending source cards
BLANK card ending F-dependent series R-L-C branches (none, for this subcase)
GEN TRAN
BLANK card ending program output-variable requests.
CALCOMP PLOT { Use BOTH rather than DISK to see a bar chart of harmonics
19680. 0.0200. TRAN SWIT { Units/inch of 5-7 are ingored since bar chart
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 4th of 19 subcases that illustrate PCVP comes from Gabor Furst. As can be
C read in the January, 1999, newsletter, this is "a semi-realistic HFS file
C .... This resistance is varied by the Funk-Hantel formula." Note harmonic
C source amplitudes vary (unlike 3rd subcase), and some harmonics are missing.
C 27 December 2000, modify existing case by addition of SAVE and $POCKET
C to illustrate operation of these new features. Included is WRITE( for
C output that is part of regular ATP output.
POWER FREQUENCY, 50., ! Needed so minimum frequency is recognized as fundamental
HARMONIC FREQUENCY SCAN { Non-negative DELFFS in 25-32 means F in Hz (not log F)
C Controls of following request card: MAXKNT IOPCVP { Ignore MAXKNT value
POCKET CALCULATOR VARIES PARAMETERS 0 1 { since also HFS loop
PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns)
.0001 -1. 50.
1 1 1 0 1
$PARAMETER { This will be serviced by CIMAGE just as any other $-card would be
C SAVE ALL { Until selective SAVEs work better, make all variables non-volatile
C The preceding should be necessary. Instead, it results in KILL
C code because following resistance is not encoded right. So,
C remove temporarily. Amazingly, variable SUM seems believable.
RESISTANCE = 2.0 * (1.0 + 0.2 * (KNT - 1.0) ** 1.5)) { Funk-Hantel freq. dependence
BLANK card ends $PARAMETER definitions that are processed just b4 branch cards
$VINTAGE, 1, { Wide: RRRRRRRRRRRRRRRRLLL ....
TRAN RESISTANCE 3
$VINTAGE, 0, { Narrow: RRRRRRLLLLLLCCCCCC
GEN TRAN 2.0 6.1
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
POLAR OUTPUT VARIABLES { 2nd of 3 alternatives gives mag, angle (not mag only)
14GEN 10200. 1. 0.0 { Power freq source has harmonic # 1
14GEN 500. 3. 0.0 { 3rd harmonic source has harmonic # 3
14GEN 3000. 5. 0.0
14GEN 2000. 7. 0.0
14GEN 600. 11. 0.0
BLANK card ending source cards
BLANK card ending F-dependent series R-L-C branches (none, for this subcase)
GEN TRAN
$POCKET { This will be serviced by CIMAGE just as any other $-card would be
C This is a comment within $POCKET. It shows they are ignored. Note placement
C of this block as part of node-voltage outputs, which ensures that it will be
C processed after each phasor solution. If one wanted to perform mathematics
C on the solution, this would be the appropriate location. About summation,
C values should be as follows: Harmonic # KNT: 1 3 5 7 11
C Summation: 1 4 9 16 27
STEP = KNT { Output is allowed only for local variables, so copy KNT to local
SUM = SUM + KNT { Preceding SAVE is for SUM, to accumulate sum of loop numbers
WRITE( ' -----------------------' ) { Statement can not go beyond column 40
WRITE( ' >> Step KNT =', STEP ) $$ { The double dollar => continue on next
WRITE( ' Value of SUM =', SUM ) { No double dollar ===> end of out line
WRITE( ' =======================' ) { This separator line goes on new line
C There is a limit on the $$ concatensation. ATP output line length is
C 132 bytes maximum. It is the user's responsibility not to exceed this.
BLANK card ends $POCKET definitions to be processed after each phasor solution
BLANK card ending program output-variable requests.
CALCOMP PLOT { Use BOTH rather than DISK to see a bar chart of harmonics
19680. 0.0600. TRAN { Units/inch of 5-7 are ingored since bar chart
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 5th of 19 subcases is unrelated to the preceding. Rather, it illustrates the
C first use of superposition of phasor solutions. Success occurred 8 Nov 98.
C This is a brand new type of frequency scan. It is fundamentally different
C because of the superposition and continuation into the time-step loop. In
C the following, only the minimum of 2 phasor solutions are superimposed. The
C more general case will involve repeated sets of excitation. Each such set
C begins with the request word SUPERIMPOSE MORE SOURCES: and ends with the
C blank card ending sources. The final set of excitation is the one actually
C used in the time-step loop, so must include all sources of the preceding
C sets, if this is what the user wants. Note T-start is not negative for
C such additions, however. Initial restriction: series R-L-C branches only.
PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns)
.01 2.0
1 1 1 1 1 -1
5 5 20 20
GEN TRAN 1.0 10. 3
TRAN 0.20E6 1
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 1.0 1.0 -1.
BLANK card terminating source cards for 1st phasor solution.
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GEN 1.0 1.0 { Source of 1st solution represented in dT-loop
14GEN -1.0 2.0 { 2nd harmonic source } -1.
BLANK card terminating source cards for 2nd (and final) phasor solution.
GEN TRAN
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 2 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GEN GEN TRAN GEN TRAN
C TRAN TRAN TERRA
C 0 0.0 -.278585723 0.0 .2785857231 -.280475835 -.280475835
C 1 .01 -.258845905 .0059120271 .2647579317 -.272635821 -.272635821
C 2 .02 -.228080808 .0235315402 .2516123484 -.253187511 -.253187511
C 3 .03 -.187201315 .0525107648 .2397120803 -.222823212 -.222823212
BLANK card ending program output-variable requests.
C 100 1.0 -.278768592 0.0 .2787685919 -.280624596 -.280624596
C 120 1.2 .6447560418 1.118033989 .473277947 .6497741745 .6497741745
C 140 1.4 -1.4363837 -1.11803399 .3183497136 -1.33496603 -1.33496603
C 160 1.6 -.123925906 -1.11803399 -.994108083 -.293493889 -.293493889
C 180 1.8 1.194323606 1.118033989 -.076289617 1.259311865 1.259311865
C 200 2.0 -.278769536 0.0 .2787695359 -.280625592 -.280625592
C Variable max: 1.417160223 1.124996567 .6739357604 1.408960752 1.408960752
C Times of max: .75 .79 1.3 .76 .76
C Variable min: -1.69650701 -2. -1.00648406 -1.68753921 -1.68753921
C Times of min: 1.46 0.5 .62 1.47 1.47
CALCOMP PLOT
143 .2 0.0 2.0 GEN TRAN { Screen plot is perfectly smooth & periodic
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C 6th of 19 subcases extends uncoupled R-L-C elements of the 5th to multiphase
C lumped elements. Take a real 10-mile, 3-phase Pi-circuit from DC-3. But we
C want a longer line, so increase frequency to 400 Hz. Of course, single phase
C becomes 3-phase. Line section is terminated by balanced R-L load to ground.
C This solution was verified by comparing with one that omitted the second
C harmonic during the phasor solution, and extended T-max to 20 msec. The
C final 5 msec of voltages at TRANA, TRANB, and TRANC are very close to the
C solution about to be demonstrated. Also, in output below, compare step 0
C with step 100. They are very close. But step 200 is even closer to 100 (a
C little settling has occurred; this is discretization error).
PRINTED NUMBER WIDTH, 10, 2,
.0000250 .005 3000.
1 1 1 1 1 -1
5 5 20 20
1GENA TRANA 34.372457.68.15781
2GENB TRANB 35.735164.43-.031538.002451.79.16587
3GENC TRANC 35.735164.43-.031537.455151.72-.021938.002451.79.16587
TRANA 20. 100. 1
TRANB TRANA 1
TRANC TRANA 1
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GENA 1.0 400. 0.0 -1.
14GENB 1.0 400. -120. -1.
14GENC 1.0 400. +120. -1.
BLANK card terminating source cards for 1st phasor solution.
C .... or "Q". The first solution frequency = 4.00000000E+02 Hertz.
C GENA 1.0 1.0 .00651879225127 .01786478870371 .00325939612564 -.3270376674E-4
C 0.0 0.0 -.0166329799799 -68.5988095 .00831648998997 0.0061218
C Total network loss P-loss by summing injections = 9.742991063317E-03
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GENA 1.0 400. 0.0
14GENB 1.0 400. -120.
14GENC 1.0 400. +120.
14GENA 1.0 800. 0.0 -1.
14GENB 1.0 800. -120. -1.
14GENC 1.0 800. +120. -1.
C .... or "Q". The first solution frequency = 8.00000000E+02 Hertz.
C GENA 1.0 1.0 .00179922688615 .00899257899614 .89961344308E-3 -.1832029691E-4
C 0.0 0.0 -.008810746825 -78.4584168 .00440537341249 0.0031815
C Total network loss P-loss by summing injections = 2.746542759765E-03
BLANK card terminating source cards for 2nd (and final) phasor solution.
GENA TRANA GENB TRANB GENC TRANC
C First 6 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GENA TRANA GENB TRANB GENC TRANC TRANA TRANB TRANC
C TERRA TERRA TERRA
C 0 0.0 2.0 .6411782 -1. -.655262 -1. .0054071 .0081912 -.026551 .0176749
C 1 .25E-4 1.990141 .6719155 -.832151 -.619565 -1.15799 -.059291 .0104086 -.02703 .0159628
C 2 .5E-4 1.960698 .6964416 -.656435 -.578549 -1.30426 -.123014 .0125508 -.027293 .0141158
C 3 .75E-4 1.912064 .7145235 -.47495 -.532698 -1.43711 -.18506 .014596 -.027337 .0121521
C 4 .1E-3 1.84489 .7260175 -.289862 -.482595 -1.55503 -.244721 .0165237 -.027161 .0100912
C 5 .125E-3 1.760074 .7308739 -.103383 -.428865 -1.65669 -.301342 .0183147 -.026767 .0079542
C 10 .25E-3 1.118034 .6596136 .7736591 -.128596 -1.89169 -.520814 .0246777 -.021779 -.003099
C 15 .375E-3 .2787683 .4603086 1.384884 .1607557 -1.66365 -.603533 .0259314 -.013004 -.012782
C 20 .5E-3 -.5 .2026547 1.582676 .3644382 -1.08268 -.546164 .0222562 -.002864 -.018931
BLANK card ending program output-variable requests.
C 40 1.E-3 -.5 -.185466 -.064602 .1746455 .5646021 .0137459 -.003673 .0129232 -.008711
C 60 .0015 -.5 -.212516 .5646021 .2936534 -.064602 -.082817 -.005699 .0101002 -.004403
C 80 .002 -.5 -.445559 -1.08268 -.178062 1.582676 .6101375 -.021055 .0063503 .0143909
C 100 .0025 2.0 .6410699 -1. -.655039 -1. .0052891 .0081836 -.026535 .0176671
C 120 .003 -.5 .2025812 1.582676 .3645686 -1.08268 -.546224 .0222515 -.002854 -.018936
C 140 .0035 -.5 -.185508 -.064602 .1747437 .5646021 .0136866 -.003676 .0129291 -.008714
C 160 .004 -.5 -.212542 .5646021 .2937035 -.064602 -.082843 -.005701 .0101038 -.004405
C 180 .0045 -.5 -.445576 -1.08268 -.17803 1.582676 .6101221 -.021056 .0063525 .0143897
C 200 .005 2.0 .6410606 -1. -.655017 -1. .005275 .008183 -.026534 .0176664
C Variable maxima : 2.0 .7308739 1.582676 .443335 1.582676 .660407 .0261033 .013903 .0249648
C Times of maxima : 0.0 .125E-3 .003 .00315 .002 .0021 .35E-3 .0034 .002275
C Variable minima : -1.125 -.540524 -1.89169 -.742149 -1.89169 -.603595 -.021087 -.027337 -.020627
C Times of minima : .004275 .00435 .00225 .002375 .25E-3 .002875 .004525 .75E-4 .0031
CALCOMP PLOT
144 .5 0.0 5.0 GENA GENB GENC
144 .5 0.0 5.0 TRANA TRANB TRANC
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C 7th of 19 subcases demonstrates proper working of superposition of phasor
C solutions for a constant-parameter, distributed line. This first was made
C to work around sunset on 15 Nov 1998. Two hours later, the switch was made
C to work. It had a bug of its own. The switch is permanently closed, and
C does not change the answer. Its addition merely demonstrates that switches
C now are tolerated. Still no frequency-dependent line, however. That will
C be left for the expert (BPA's Dr. Tsu-huei Liu), if she thinks it is doable.
POWER FREQUENCY, 50., { Unnecessary. This merely avoids warning about 50 Hz.
PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns)
.000100 .040 50. 50. { Note L in ohms and C in micromhos at 50 Hz
1 1 1 1 1 -1
2 -1 5 5 20 20
-1SEND REC 0.3 0.4 12.6 80. { 1-phase distributed line
REC 68. 1.2E4 { Series L-C load on line } 1
GEN 10. 40. { Series R-L at source has no effect } 1
BLANK card ending branch cards
GEN SEND -1.0 1.0 { Permanently close switch at sending end } 1
BLANK card ending switch cards
14GEN 1.0 50. { 60-Hz phasor solution } -1.
BLANK card ending source cards
C Total network loss P-loss by summing injections = 1.702540183859E-02
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GEN SEND 2.81684507E-02 -1.93583035E-02 3.41790218E-02 -34.4982 1.40842254E-02 9.67915173E-03
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GEN 1.0 100. { 60-Hz phasor solution } -1.
14GEN 1.0 50.
BLANK card terminating source cards for 2nd (and final) phasor solution.
C Total network loss P-loss by summing injections = 1.174643954145E-03
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GEN SEND 8.10826370E-04 -4.85126124E-03 4.91855416E-03 -80.5114 4.05413185E-04 2.42563062E-03
C Add these 2 I-real parts: i(0) = .0810826370E-02 + 2.81684507E-02 = 2.89792770
GEN SEND REC { Names of nodes for voltage output
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GEN SEND REC GEN REC GEN
C SEND TERRA TERRA
C *** Phasor I(0) = 2.8979277E-02 Switch "GEN " to "SEND " closed in the steady-state.
C 0 0.0 2.0 2.0 .3104733 .0289793 .0288367 .0074208
C 1 .1E-3 1.997533 1.997533 .3168525 .0298758 .0298478 .0089264
C 2 .2E-3 1.990141 1.990141 .321957 .03074 .0308254 .0104164
C 3 .3E-3 1.977849 1.977849 .3249705 .0315697 .0317676 .0118871
C 4 .4E-3 1.960698 1.960698 .3259235 .0323632 .0326723 .0133347
BLANK card ending node voltage output requests
C 200 .02 2.0 2.0 .310624 .0289646 .0288207 .0074193
C 220 .022 1.118034 1.118034 .1167098 .0390118 .0406289 .0307644
C 240 .024 -.5 -.5 -.231522 .0292955 .0304699 .0301821
C 260 .026 -1.11803 -1.11803 .0536218 .0061988 .0055751 .0120831
C 280 .028 -.5 -.5 .7647646 -.015757 -.016915 -.002155
C 300 .03 0.0 0.0 .9147476 -.027333 -.027043 -.004344
C 320 .032 -.5 -.5 .1025405 -.029283 -.027728 -.006411
C 340 .034 -1.11803 -1.11803 -.858517 -.02491 -.02427 -.018205
C 360 .036 -.5 -.5 -.946641 -.013213 -.014641 -.029034
C 380 .038 1.118034 1.118034 -.226641 .0070384 .0051148 -.020297
C 400 .04 2.0 2.0 .310915 .0289599 .0288158 .007419
C Variable maxima : 2.0 2.0 .9786535 .0390245 .0406716 .0337317
C Times of maxima : 0.0 0.0 .0093 .002 .0021 .0029
C Variable minima : -1.125 -1.125 -1.04338 -.029475 -.028141 -.029278
C Times of minima : .0342 .0342 .0151 .0115 .0111 .0363
CALCOMP PLOT
144 4. 0.0 40. SEND REC { Show node voltages
194 4. 0.0 40. GEN SEND REC { Show branch currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 8th of 19 subcases is like the preceding, only for 3-phase distributed line
C modeling rather than single phase. For simplicity, the line is taken to be
C continuously transposed. So, to make the solution interesting, the load
C is unbalanced slightly. The effect is substantial (must be near resonance).
C As phasor output is becoming substantial, illustrate lack of phasor output.
C About receiving end voltages (1st plot), phase b is dominated by fundamental
C whereas phase c is dominated by the harmonic. On the other hand, phase a
C is a nice mixture of the two. Done. WSM, 15 November 1998 19:52
POWER FREQUENCY, 50., { Unnecessary. This merely avoids warning about 50 Hz.
PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns)
.000100 .040 50. 50. { Note L in ohms and C in micromhos at 50 Hz
1 1 1 0 1 -1
2 -1 5 5 20 20
-1SENDA RECA 0.3 0.4 12.6 80. { 3-phase distributed line
-2SENDB RECB .03 0.1 6.0 80.
-3SENDC RECC
RECA 68. 1.2E4 { Series L-C load on line } 1
RECB 68. 1.3E4 { Series L-C: note imbalance } 1
RECC 68. 1.4E4 { Series L-C: note imbalance } 1
BLANK card ending branch cards
GENA SENDA -1.0 1.0 { Permanently closed switch at sending end
GENB SENDB -1.0 1.0 { Output 1 of 3 switch currents as demo } 1
GENC SENDC -1.0 1.0
BLANK card ending switch cards
14GENA 1.0 50. 0.0 -1.
14GENB 1.0 50. -120. -1.
14GENC 1.0 50. +120. -1.
BLANK card ending source cards
C Total network loss P-loss by summing injections = 2.454594157981E-01
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GENA 1.0 100. 0.0 -1.
14GENB 1.0 100. -120. -1.
14GENC 1.0 100. +120. -1.
14GENA 1.0 50. 0.0
14GENB 1.0 50. -120.
14GENC 1.0 50. +120.
BLANK card terminating source cards for 2nd (and final) phasor solution.
C Total network loss P-loss by summing injections = 2.573693449262E-04
SENDA SENDB SENDC RECA RECB RECC { Names of nodes for voltage output
C First 6 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time SENDA SENDB SENDC RECA RECB RECC RECA RECB RECC
C TERRA TERRA TERRA
C *** Phasor I(0) = 2.0781091E-04 Switch "GENA " to "SENDA " closed in the steady-state.
C *** Phasor I(0) = -6.9613077E-03 Switch "GENB " to "SENDB " closed in the steady-state.
C *** Phasor I(0) = 6.6629631E-03 Switch "GENC " to "SENDC " closed in the steady-state.
C 0 0.0 2.0 -1. -1. 2.598233 -3.43615 .2464431 .0129326 -.145918 .1293339
C 1 .1E-3 1.997533 -.917186 -1.08035 2.60044 -3.42472 .2130051 .0099301 -.135491 .1225758
C 2 .2E-3 1.990141 -.832151 -1.15799 2.597607 -3.40919 .1810295 .0069154 -.124907 .1156755
C 3 .3E-3 1.977849 -.745147 -1.2327 2.589741 -3.38914 .1502293 .0038899 -.114174 .1086408
BLANK card ending node voltage output requests
C 200 .02 2.0 -1. -1. 2.59818 -3.43448 .2454012 .0129912 -.146066 .1294166
C 220 .022 1.118034 .7736591 -1.89169 1.768526 -2.57608 -.038877 -.047694 .0801733 -.023028
C 240 .024 -.5 1.582676 -1.08268 .0182262 -1.32164 .5410584 -.098873 .2822797 -.164686
C 260 .026 -1.11803 .8736191 .2444149 -1.03326 -.346505 .9871438 -.117453 .3728534 -.234779
C 280 .028 -.5 -.064602 .5646021 -1.00872 .8642096 .2517987 -.08566 .3122374 -.211838
C 300 .03 0.0 -.34E-13 .343E-13 -.883622 2.5928 -1.14969 -.01258 .1306647 -.114579
C 320 .032 -.5 .5646021 -.064602 -1.27837 3.751705 -1.65974 .0650869 -.093075 .0189995
C 340 .034 -1.11803 .2444149 .8736191 -1.43002 2.889824 -.686481 .1091923 -.274776 .1473061
C 360 .036 -.5 -1.08268 1.582676 -.329683 .1403614 .6215637 .1064364 -.355258 .2280163
C 380 .038 1.118034 -1.89169 .7736591 1.57799 -2.55929 .8876828 .0685474 -.308851 .2250084
C 400 .04 2.0 -1. -1. 2.598318 -3.43353 .2448074 .0130473 -.146197 .1294821
CALCOMP PLOT
144 4. 0.0 40. RECA RECB RECC { Show node voltages
194 4. 0.0 40. BRANCH
RECA RECB RECC { Show branch currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 9th of 19 subcases is like 7th, but with a frequency-dependent JMarti line
C replacing the constant-parameter, distributed line. BPA's Dr. Tsu-huei Liu
C and yours truly (WSM) force this through together on December 2, 1998. The
C switch has nothing to do with JMarti, but was corrected at this time (before
C the printed switch current before step 0 was wrong, not being superimposed).
POWER FREQUENCY, 50., { Unnecessary. This merely avoids warning about 50 Hz.
PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns)
.000100 .040 50. 50. { Note L in ohms and C in micromhos at 50 Hz
1 1 1 1 1 -1
2 -1 5 5 20 20
-1SEND REC 1. 0.00 -2 1
25 4.6006674814379022100E+02
-3.53674337977459482E+03 4.74463047336912496E+03 4.19877687667209159E+02
1.20883875640704401E+03 1.37235832926770309E+03 1.76629378124055439E+03
2.57098916005431466E+03 3.78828017768501514E+03 1.42803850501766374E+03
2.65038870126655566E+04 5.80549633718908008E+04 2.89862514502709019E+04
6.76266799893490243E+04 1.75748067781355756E+05 1.15921506756057055E+06
5.68321189666407090E+06 9.19433740923774988E+06 1.70951407206966021E+07
1.81624149219296910E+07 1.63578536348816883E+07 2.07902744942919687E+07
1.63600113702911996E+07 3.05274574257793949E+07 2.82210286690547951E+07
3.72990420164290220E+07
2.77486902230361210E-01 2.68023805044265262E-01 4.15219939750085032E-01
1.00965215217368676E+00 2.08586147641298370E+00 4.31742025828644139E+00
9.38105998645288964E+00 2.16289190303449140E+01 4.71679444226597938E+01
5.00972850164923444E+02 2.19667801322956757E+03 2.86760537318643128E+03
1.14040516604910099E+04 2.97247489619667322E+04 9.91819942418309948E+04
4.96352587435292895E+05 1.62826284096999770E+06 3.10812825436382648E+06
6.60681297691485007E+06 1.23076395640831069E+07 1.54718126469801944E+07
1.14181900748053603E+07 2.33626050734163225E+07 2.05401226659539938E+07
2.89354778735701405E+07
14 3.8038812947515656600E-04
1.91758353605922701E-02 2.66649324474153904E-01 2.54923849247581425E+00
9.46636313120961682E+00 2.85381149799323453E+01 7.38766350382716724E+01
2.49452844472431571E+03 7.01441951080157833E+03 6.88095829884308187E+04
-3.34847951818855899E+06 3.31843503484260664E+06 3.96467674493048249E+10
-7.93497908986478425E+10 3.97029750605793992E+10
3.35859634392794338E+00 4.68146974610416323E+01 4.33602484888353672E+02
1.24257407602821491E+03 1.74575005233975117E+03 1.47765127586259360E+03
1.69531663286821313E+04 2.85574137491229049E+04 7.36636621071784758E+04
5.22749591784824327E+05 5.23272341376608878E+05 1.82407055706939399E+05
1.82589462762646523E+05 1.82772052225409076E+05
0.58951119
0.00000000
REC 68. 1.2E4 { Series L-C load on line } 1
BLANK card ending branch cards
GEN SEND -1.0 1.0 { Permanent closed switch at sending end } 1
BLANK card ending switch cards
14GEN 1.0 50. { 50-Hz phasor solution } -1.
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C SEND |REC *GEN *
C REC |TERRA *SEND *
C GEN |SEND *
C TERRA |REC *
C --------------+------------------------------
C 1st phasor flow: SEND 1.0 1.0 .00104886622776 .00412295654806 .52443311388E-3 .52443311388E-3
C 0.0 0.0 -.0039873111659 -75.2621647 .00199365558294 0.0021265
C Total network loss P-loss by summing injections = 5.244331138815E-04
BLANK card ending source cards
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GEN 1.0 100. { 100-Hz phasor solution } -1.
14GEN 1.0 50. { 50-Hz but without phasor }
C 2nd phasor flow: SEND 1.0 1.0 .28023824311E-3 .00167781755608 .14011912156E-3 .14011912156E-3
C 0.0 0.0 -.001654248554 -80.3850824 .82712427702E-3 0.0006777
C Total network loss P-loss by summing injections = 1.401191215566E-04
BLANK card terminating source cards for 2nd (and final) phasor solution.
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 2 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GEN SEND REC GEN REC
C SEND TERRA
C *** Phasor I(0) = 1.3291045E-03 Switch "GEN " to "SEND " closed in the steady-state.
C 0 0.0 2.0 2.0 .103985185 .001329104 .001331291
C 1 .1E-3 1.99753329 1.99753329 .102188523 .001557337 .001566943
C 2 .2E-3 1.99014143 1.99014143 .100246634 .001782631 .001799837
C 3 .3E-3 1.97784922 1.97784922 .097684893 .002004723 .002029515
C 4 .4E-3 1.96069786 1.96069786 .09455166 .002223115 .002255424
C 5 .5E-3 1.93874486 1.93874486 .090914028 .002437299 .002477041
C 10 .1E-2 1.76007351 1.76007351 .064262337 .003427592 .003502327
C 15 .0015 1.47879178 1.47879178 .027694976 .00424585 .004348298
C 20 .002 1.11803399 1.11803399 -.01526506 .004848781 .004971008
C 40 .004 -.5 -.5 -.15428049 .004854478 .004951474
GEN SEND REC { Names of nodes for voltage output
BLANK card ending node voltage output requests
C 360 .036 -.5 -.5 -.15242702 -.00466918 -.00477064
C 380 .038 1.11803399 1.11803399 .017604346 -.00297868 -.00310013
C 400 .04 2.0 2.0 .104051169 .001333593 .001335541
C Variable max: 2.0 2.0 .231329745 .005331241 .005460826
C Times of max: 0.0 0.0 .0297 .023 .023
C Variable min: -1.1249966 -1.1249966 -.1823352 -.00466918 -.00477457
C Times of min: .0342 .0342 .015 .036 .0361
CALCOMP PLOT
144 4. 0.0 40. SEND REC { Show node voltages
194 4. 0.0 40. REC GEN SEND { Show branch currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 10th of 19 subcases is like 8th, but with a frequency-dependent JMarti line
C replacing the constant-parameter, distributed line. Without difficulty,
C this was demonstrated to be believable early in the morning of 4 Dec 1998.
C The JMarti branch cards are copied from DCNEW-27 (in turn, from DCNEW-4).
POWER FREQUENCY, 50., { Unnecessary. This merely avoids warning about 50 Hz.
PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns)
.000100 .040 50. 50. { Note L in ohms and C in micromhos at 50 Hz
C .000100 .0002 50. 50. { Note L in ohms and C in micromhos at 50 Hz
1 1 1 1 1 -1
2 -1 5 5 20 20
C PUNCHED CARD OUTPUT OF "JMARTI SETUP" WHICH BEGAN AT 14.32.51 09/14/82
C 1.3636 .05215 4 1.602 -20.75 50. 50.
C 1.3636 .05215 4 1.602 -19.25 50. 50.
C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5
C 2.3636 .05215 4 1.602 0.75 77.5 77.5
C 3.3636 .05215 4 1.602 19.25 50. 50.
C 3.3636 .05215 4 1.602 20.75 50. 50.
C 0.5 2.61 4 0.386 -12.9 98.5 98.5
C 0.5 2.61 4 0.386 12.9 98.5 98.5
C
C 100. 5000. 1 138. 1 3-2
C 100. 60.00 1 138. 1 3
C 100. .01 1 138. 1 9 10 3
C
-1SENDA RECA 1. -2 3 1
18 0.47487144790587633736E+03
-0.117967342612603676E+01 -0.316671345021416945E+01 0.255662317832426673E+02
-0.601654631032706213E+02 -0.118825306534453652E+03 0.128169142098635430E+04
0.589610442538186533E+04 0.292891488173549769E+05 0.115665757459954655E+06
0.456394278488149546E+06 0.153681652821077613E+07 0.681848054466802243E+07
0.155477562610202006E+08 0.231789897204889809E+08 0.143827766961221036E+08
0.241524708800130989E+08 0.245049034784953832E+08 0.476808364145524129E+08
0.321645453133055891E+00 0.897616891499021768E+00 0.165632367032913183E+01
0.166669419493737986E+01 0.253073682990780913E+01 0.200014655383098283E+02
0.124257951002701473E+03 0.657345842950598183E+03 0.278623017775457413E+04
0.117145310573639467E+05 0.427410884649070877E+05 0.202553264108715757E+06
0.968789502295299084E+06 0.296908522006270138E+07 0.737968316276072920E+07
0.121009167337626640E+08 0.132891445947112725E+08 0.252097199908134253E+08
14 0.86849922355034181931E-03
0.580543547692016874E-01 0.269744993210885436E+00 0.358646519088149721E+00
0.775351125410302933E+00 0.512138885239557462E+01 0.838265420474258915E+01
0.700229782114550385E+02 0.393084113996385128E+03 0.138208543918962840E+04
0.706160326497018531E+03 0.527246586822120662E+04 0.528343251309079615E+05
0.178307801042203880E+08 -0.178914532139174500E+08
0.228360173022402533E+02 0.102750699821169636E+03 0.139222638455845377E+03
0.269608322018776320E+03 0.389220463867018722E+03 0.427793721751318500E+03
0.132148883486994549E+04 0.277178340638843952E+04 0.449341296469570784E+04
0.596603161966094024E+04 0.114714152641659587E+05 0.268314807408425590E+05
0.204027813729699328E+05 0.204231841543429041E+05
-2SENDB RECB 1. -2 3 1
13 0.28580875773089406522E+03
0.381761604345214016E+04 -0.269529222495194318E+04 0.445018224900628539E+03
0.214658130219351907E+03 0.897325461203551775E+02 0.130480129629523390E+03
0.683037485206990933E+02 0.746626715384045969E+02 0.133938729387751110E+04
0.249954495902361043E+04 0.187764116219525090E+05 0.391031620802855759E+06
0.562668431190421223E+07
0.358668999787749571E+01 0.376679186833120605E+01 0.706439034439901437E+01
0.109721634064781350E+02 0.140506334140286961E+02 0.234292596911152251E+02
0.407686998675834982E+02 0.797598814775078289E+02 0.129106739969348078E+04
0.242138030939135859E+04 0.182362646041542116E+05 0.379814243183306855E+06
0.548808385606378759E+07
13 0.74123751236187229426E-03
0.192189595814863363E+02 0.210970481418782463E+01 0.383406546226866283E+02
0.307999912886148377E+02 0.634013410317139090E+03 -0.253243195247046863E+03
0.210540381301789816E+05 0.755533947306502050E+05 0.229576557459444489E+07
0.607777584135737231E+13 -0.156620677810598129E+13 0.153143851607186420E+13
-0.604300997216751013E+13
0.325736126030671755E+04 0.366694913707514260E+03 0.675727697588602189E+04
0.516024976370228876E+04 0.249456113770459378E+05 0.115067772934717399E+06
0.105205466546493019E+06 0.240930799961836921E+06 0.633276538663731131E+06
0.975820481990592802E+06 0.976796302472583498E+06 0.974176721795814519E+06
0.975150898517610403E+06
-3SENDC RECC 1. -2 3 1
13 0.27248404992352924125E+03
0.928429573805075023E+03 0.205756155237142632E+03 0.538106630554037608E+03
0.105199818376817531E+03 0.821382476778671116E+02 0.133356875032521778E+03
0.654774478488469374E+02 0.612546121562179922E+02 0.905544916173387175E+02
0.973244316091135204E+03 0.267481871266201051E+04 0.138566411938941123E+05
0.646075558955914967E+06
0.297277477955690506E+01 0.413177069940672514E+01 0.739410817322770197E+01
0.103072536754267949E+02 0.135874091964585515E+02 0.234792992956042887E+02
0.384075708508238121E+02 0.692539345057236435E+02 0.997101922255402791E+02
0.941460937860312015E+03 0.259295974388396348E+04 0.134538093446956691E+05
0.628668738677182439E+06
20 0.74871165651714274120E-03
0.249456855794677017E-01 0.516637614002139312E+01 0.435227595525510835E+01
0.696293545843379624E+01 0.113102519337405665E+02 0.107077756312168120E+02
0.136526319661978881E+02 0.103057494642840792E+03 0.647491597081196815E+03
0.221213037293261823E+04 0.164010494681972204E+05 0.517776934139508076E+05
0.393233870054795443E+06 -0.101893253559274247E+05 -0.173413454816459129E+06
0.524218185885897590E+06 0.711044562955687729E+12 -0.559640645251973480E+12
0.582892127161358521E+12 -0.734296849907947113E+12
0.887741958857318814E+01 0.183177145564733675E+04 0.151655674045953921E+04
0.245910936284398730E+04 0.383273362703089043E+04 0.399285585783856465E+04
0.496339281485561617E+04 0.253464455063045348E+05 0.272156609769823021E+05
0.475215596432249440E+05 0.149791320991727040E+06 0.333884409922466803E+06
0.541583000670874084E+06 0.670984155731562481E+06 0.569769858667429973E+06
0.132622344670840449E+07 0.440534234233555838E+07 0.440974768467789434E+07
0.436787151891064062E+07 0.437223939042955148E+07
0.57154434 0.70710678 -0.41761362
0.00000000 0.00000000 0.00000000
0.58879039 0.00000000 0.80696823
0.00000000 0.00000000 0.00000000
0.57154434 -0.70710678 -0.41761362
0.00000000 0.00000000 0.00000000
RECA 68. 1.2E4 { Series L-C load on line }
RECB 68. 1.3E4 { Series L-C: note imbalance }
RECC 68. 1.4E4 { Series L-C: note imbalance }
BLANK card ending branch cards
GENA SENDA -1.0 1.0 { Permanently closed switch at sending end
GENB SENDB -1.0 1.0 { Output 1 of 3 switch currents as demo } 1
GENC SENDC -1.0 1.0
BLANK card ending switch cards
14GENA 1.0 50. 0.0 -1.
14GENB 1.0 50. -120. -1.
14GENC 1.0 50. +120. -1.
BLANK card ending source cards
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GENA 1.0 100. 0.0 -1.
14GENB 1.0 100. -120. -1.
14GENC 1.0 100. +120. -1.
14GENA 1.0 50. 0.0
14GENB 1.0 50. -120.
14GENC 1.0 50. +120.
BLANK card terminating source cards for 2nd (and final) phasor solution.
SENDA SENDB SENDC RECA RECB RECC { Names of nodes for voltage output
BLANK card ending node voltage output requests
CALCOMP PLOT
144 4. 0.0 40. RECA RECB RECC { Show node voltages
194 4. 0.0 40. BRANCH
SENDA RECA SENDB RECB SENDC RECC { Show branch currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 11th of 19 subcases is like 9th, only with the single-phase JMarti line
C replaced by a Semlyen line. BPA's Dr. Tsu-huei Liu and WSM force this
C through together on December 8, 1998. The same line data was used to
C produce the Semlyen branch cards as was used to produce the Marti branch
C cards, according to Dr. Liu.
POWER FREQUENCY, 50., { Unnecessary. This merely avoids warning about 50 Hz.
PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns)
.000100 .040 50. 50. { Note L in ohms and C in micromhos at 50 Hz
1 1 1 1 1 -1
5 5 20 20
C <++++++> Cards punched by support routine on 11-Nov-18 11.00.00 <++++++>
C SEMLYEN SETUP
C $ERASE
C TOLERANCES 10 5000. { Illustration only; value of FMED actually unchang
C 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous da
C LINE CONSTANTS
C METRIC
C 1.3161 .1151 4 2.355 -6.5 22. 8.0
C 0.5 4.189 4 0.914 4.5 27.3 15.7
C BLANK card ending conductor cards within "LINE CONSTANTS" data
C 1500. 5000. 108.7
C 1500. 60.00 108.7 { Phasor solution frequen
C 1500. 6.00 108.7 6 20 { log loopi
C BLANK card ending frequency cards of "LINE CONSTANTS" data
C BLANK card ending "LINE CONSTANTS" data
C L= 67.5 miles, rho= 1500.0, ss freq= 60.00, NSS=0, KFIT=10, KPS=2, KYC=30
-1SEND REC 2.16583E-03 3.86702E-04 1 1 2 2 1
1.58360657E+01 9.71198911E+01-4.13400101E-05 2.87567721E-04 6.00000000E+01
0.00000E+00 4.76151E+04 8.46981E-01 0.00000E+00 3.44533E+03 1.53019E-01
0.00000E+00 5.15658E+04-3.35305E-04 0.00000E+00 1.93051E+02-6.36116E-04
1.00000E+00 0.00000E+00
1.00000E+00 0.00000E+00
REC 68. 1.2E4 { Series L-C load on line } 1
BLANK card ending branch cards
GEN SEND -1.0 1.0 { Permanent closed switch at sending end } 1
BLANK card ending switch cards
14GEN 1.0 50. { 50-Hz phasor solution } -1.
BLANK card ending source cards
C Total network loss P-loss by summing injections = 1.734151791008E-03
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GEN SEND 3.46830358E-03 -1.43381118E-02 1.47516298E-02 -76.4017 1.73415179E-03 7.16905591E-03
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
C 14GEN 1.0 100. { 100-Hz phasor solution } -1.
14GEN 1.0 100. { 50-Hz but without phasor } -1.
14GEN 1.0 50.
BLANK card terminating source cards for 2nd (and final) phasor solution.
C Total network loss P-loss by summing injections = 1.065011729272E-04
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GEN SEND 2.13002346E-04 -3.64646410E-03 3.65267990E-03 -86.6570 1.06501173E-04 1.82323205E-03
GEN SEND REC { Names of nodes for voltage output
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 2 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GEN SEND REC GEN REC
C SEND TERRA
C *** Phasor I(0) = 3.6813059E-03 Switch "GEN " to "SEND " closed in the steady-state.
C 0 0.0 2.0 2.0 .153929313 .003681306 .003725237
C 1 .1E-3 1.99753329 1.99753329 .1522527 .00435802 .004425728
C 2 .2E-3 1.99014143 1.99014143 .149645253 .005027418 .005119878
C 3 .3E-3 1.97784922 1.97784922 .145951055 .00568938 .005806382
C 4 .4E-3 1.96069786 1.96069786 .141287156 .00634313 .006483935
C 5 .5E-3 1.93874486 1.93874486 .136275468 .006989792 .007151414
BLANK card ending node voltage output requests
C 10 .1E-2 1.76007351 1.76007351 .092891975 .010026854 .010291731
C 15 .0015 1.47879178 1.47879178 .023317891 .012640295 .012991794
C 20 .002 1.11803399 1.11803399 -.06174101 .014720636 .015118963
C 40 .004 -.5 -.5 -.34443045 .016575341 .016838847
C 60 .006 -1.118034 -1.118034 -.17058748 .010182945 .010031014
C 80 .008 -.5 -.5 .362487911 .002326162 .002053321
C 100 .01 0.0 0.0 .612908752 -.00296002 -.00293285
C 120 .012 -.5 -.5 .248154876 -.00738972 -.00710881
C 140 .014 -1.118034 -1.118034 -.30076592 -.01262818 -.01254386
C 160 .016 -.5 -.5 -.40730556 -.01503915 -.01535767
C 180 .018 1.11803399 1.11803399 -.06530854 -.00934344 -.00970902
C 200 .02 2.0 2.0 .154986325 .00333684 .003383348
C 220 .022 1.11803399 1.11803399 -.06853358 .01445717 .014861049
C 240 .024 -.5 -.5 -.35906038 .016441167 .016706006
C 260 .026 -1.118034 -1.118034 -.18786425 .010191471 .010041491
C 280 .028 -.5 -.5 .346320129 .002467142 .002193761
C 300 .03 0.0 0.0 .601636815 -.002726 -.00269921
C 320 .032 -.5 -.5 .244116524 -.00711585 -.00683621
C 340 .034 -1.118034 -1.118034 -.29695787 -.01237389 -.01229047
C 360 .036 -.5 -.5 -.39659111 -.01485549 -.01517475
C 380 .038 1.11803399 1.11803399 -.05015223 -.00926464 -.00963034
C 400 .04 2.0 2.0 .171432693 .003300084 .003347
C Variable maxima : 2.0 2.0 .616129386 .017112417 .017478995
C Times of maxima : 0.0 0.0 .0098 .0033 .0033
C Variable minima : -1.1249966 -1.1249966 -.43847067 -.01510408 -.01538971
C Times of minima : .0342 .0342 .0153 .0157 .0158
CALCOMP PLOT
144 4. 0.0 40. SEND REC { Show node voltages
194 4. 0.0 40. REC GEN SEND { Show branch currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 12th of 19 subcases is like 10th, only with the three-phase JMarti line
C replaced by a 3-phase Semlyen line. The Semlyen branch cards are copied
C from DC-31. Note XOPT and COPT have been set to 60 Hz to match the
C branch cards at the 1st of 2 frequencies. Unlike the high-order JMarti
C model, 2nd-order Semlyen involves substantial error, & is more biased
C toward a match at power frequency. So, the switch to 60 favors smoother
C Semlyen operation at the dominant frequency. Of course, the second freq
C of 120 Hz is not well fitted, but it does not dominate, so error is of
C less importance. The resulting plots are reasonably smooth. If really
C smooth plots are wanted, change the 2nd frequency to the 1st, so that
C the superposition has the effect of doubling power-frequency excitation.
C This is an independent, separate way to verify the superposition while
C avoiding error that is associated with the constant-inductance phasor
C representation of Semlyen modeling.
POWER FREQUENCY, 60., { Ensure that 60. two cards below does not produce warning
PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns)
C Steps/cycle Cycles --- Alternate to DELTAT and TMAX ensures full accuracy
200 2 60. 60. { Note L in ohms and C in micromhos at 60 Hz
1 1 1 1 1 -1
2 -1 5 5 20 20
C L= 138.0MILES, RHO= 27.0, SS FREQ= 60.00, NSS=0, KFIT= 0, KPS=2, KYC=10
C 1.3636 .05215 4 1.602 -20.75 50. 50.
C 1.3636 .05215 4 1.602 -19.25 50. 50.
C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5
C 2.3636 .05215 4 1.602 0.75 77.5 77.5
C 3.3636 .05215 4 1.602 19.25 50. 50.
C 3.3636 .05215 4 1.602 20.75 50. 50.
C 0.5 2.61 4 0.386 -12.9 98.5 98.5
C 0.5 2.61 4 0.386 12.9 98.5 98.5
C
C 27. 5000. 1 138.
C 27. 60.00 1 138.
C 27. 6.00 1 138. 6 20
C
-1SENDA RECA 0.55456E-02 0.77998E-03 1 1 2 2 3 1
0.14938602E+02 0.90516313E+02-0.16261865E-03 0.14500324E-02 0.60000000E+02
0.00000E+00 0.15161E+05 0.75119E+00 0.00000E+00 0.17105E+04 0.24881E+00
0.00000E+00 0.59584E+03-0.11954E-02 0.00000E+00 0.39933E+05-0.74162E-03
-1SENDB RECB 0.74392E-02 0.74149E-03 2 2 2 2 3 1
0.83801231E+00 0.38634735E+02-0.44536501E-04 0.20637999E-02 0.60000000E+02
0.00000E+00 0.26608E+06 0.83767E+00 0.00000E+00 0.35627E+05 0.16233E+00
0.00000E+00 0.13630E+03-0.49171E-03 0.00000E+00 0.32940E+05-0.75349E-04
-1SENDC RECC 0.42823E-02 0.74017E-03 3 3 2 2 3 1
0.26535168E+01 0.67894100E+02-0.45225808E-04 0.11682248E-02 0.60000000E+02
0.00000E+00 0.61698E+06 0.90903E+00 0.00000E+00 0.15239E+05 0.90969E-01
0.00000E+00 0.25667E+03-0.34465E-03 0.00000E+00 0.11831E+05-0.28233E-04
0.10000E+01 0.00000E+00 0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00
0.71114E+00 0.00000E+00-0.41983E-15 0.00000E+00 0.10000E+01 0.00000E+00
0.10000E+01 0.00000E+00-0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00
0.42027E+00 0.00000E+00 0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00
0.22471E+00 0.00000E+00-0.27373E-15 0.00000E+00 0.84054E+00 0.00000E+00
0.42027E+00 0.00000E+00-0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00
RECA 68. 1.2E4 { Series L-C load on line }
RECB 68. 1.3E4 { Series L-C: note imbalance }
RECC 68. 1.4E4 { Series L-C: note imbalance }
BLANK card ending branch cards
GENA SENDA -1.0 1.0 { Permanently closed switch at sending end
GENB SENDB -1.0 1.0 { Output 1 of 3 switch currents as demo } 1
GENC SENDC -1.0 1.0
BLANK card ending switch cards
14GENA 1.0 60. 0.0 -1.
14GENB 1.0 60. -120. -1.
14GENC 1.0 60. +120. -1.
C Total network loss P-loss by summing injections = 7.920824547881E-04
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GENA SENDA 2.13684848E-04 -1.46728245E-02 1.46743804E-02 -89.1656 1.06842424E-04 7.33641223E-03
C GENB SENDB -1.32003123E-02 7.47886007E-03 1.51717367E-02 150.4655 6.16366730E-05 7.58561792E-03
C GENC SENDC 1.11079349E-02 7.85331948E-03 1.36037070E-02 35.2603 6.23603358E-04 6.77320678E-03
BLANK card ending source cards
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GENA 1.0 120. 0.0 -1.
14GENB 1.0 120. -120. -1.
14GENC 1.0 120. +120. -1.
14GENA 1.0 60. 0.0
14GENB 1.0 60. -120.
14GENC 1.0 60. +120.
C Total network loss P-loss by summing injections = 2.436936258789E-05
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GENA SENDA -9.06090319E-05 -2.82087453E-03 2.82232937E-03 -91.8398 -4.53045160E-05 1.41043726E-03
C GENB SENDB -2.57770624E-03 1.49235343E-03 2.97853794E-03 149.9315 -1.78143046E-06 1.48926790E-03
C GENC SENDC 2.32482625E-03 1.50725803E-03 2.77067570E-03 32.9566 7.14553090E-05 1.38349380E-03
BLANK card terminating source cards for 2nd (and final) phasor solution.
RECA RECB RECC { Names of nodes for voltage output
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 4 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time RECA RECB RECC GENB SENDA SENDB SENDC
C SENDB RECA RECB RECC
C *** Phasor I(0) = 1.2307582E-04 Switch "GENA " to "SENDA " closed in the steady-state.
C *** Phasor I(0) = -1.5778019E-02 Switch "GENB " to "SENDB " closed in the steady-state.
C *** Phasor I(0) = 1.3432761E-02 Switch "GENC " to "SENDC " closed in the steady-state.
C 0 0.0 .1754598 -.149967 -.202628 -.015778 .128E-3 -.015779 .0134377
C 1 .83333E-4 .19681 -.130782 -.20007 -.016119 .7992E-3 -.016119 .0131218
C 2 .16667E-3 .1936652 -.115517 -.222603 -.016425 .0014416 -.016425 .0127552
C 3 .25E-3 .1874392 -.096275 -.245921 -.016699 .0020782 -.016699 .0123656
C 4 .33333E-3 .1801201 -.074648 -.267768 -.016946 .0027102 -.016946 .0119566
C 5 .41667E-3 .1719231 -.051722 -.287869 -.017166 .0033372 -.017166 .0115298
C 10 .83333E-3 .117421 .0693951 -.362436 -.017776 .0063154 -.017776 .0090996
C 15 .00125 .0387023 .185327 -.393131 -.017831 .0090412 -.017831 .0064327
C 20 .00166667 -.070868 .3086067 -.396284 -.017281 .0114347 -.017281 .0036444
C 40 .00333333 -.388621 .3051482 .0228398 -.009941 .0156904 -.009941 -.006866
C 60 .005 -.253038 -.204985 .4417365 -.778E-4 .0122998 -.778E-4 -.01189
C 80 .00666667 .3044138 -.552418 .274188 .0068829 .0057587 .0068829 -.011409
C 100 .00833333 .6360443 -.274231 -.265214 .0106411 -.3E-3 .0106411 -.008773
BLANK card ending node voltage output requests
C 120 .01 .3181122 .3033606 -.463545 .0128573 -.006125 .0128573 -.005087
C 140 .01166667 -.263527 .4887753 -.075016 .0123479 -.012279 .0123479 .0012662
C 160 .01333333 -.410804 .1013287 .3706173 .0059884 -.015486 .0059884 .0098943
C 180 .015 -.059755 -.30237 .2804666 -.005615 -.011145 -.005615 .0157608
C 200 .01666667 .1817737 -.168327 -.19918 -.015787 .1853E-3 -.015787 .0134703
C 220 .01833333 -.060762 .2780688 -.379241 -.017345 .0114781 -.017345 .0036718
C 240 .02 -.398657 .32646 .0125865 -.009966 .0157061 -.009966 -.006836
C 260 .02166667 -.250486 -.182702 .436643 -.129E-5 .0122619 -.129E-5 -.011919
C 280 .02333333 .3159701 -.576173 .2854261 .0069158 .0057519 .0069158 -.011419
C 300 .025 .6347384 -.288042 -.260816 .0105952 -.293E-3 .0105952 -.008748
C 320 .02666667 .31108 .3297626 -.471975 .0128834 -.006175 .0128834 -.005106
C 340 .02833333 -.257672 .4991878 -.073957 .0124327 -.012327 .0124327 .0012257
C 360 .03 -.405636 .0768886 .3794062 .0059618 -.015473 .0059618 .0098998
C 380 .03166667 -.0677 -.305613 .2785391 -.005706 -.011136 -.005706 .0157771
C 400 .03333333 .1769868 -.142296 -.206482 -.015773 .1537E-3 -.015773 .0134395
C variable max: .6370846 .5329181 .467254 .0132316 .0157061 .0132316 .016083
C Times of max: .00825 .0111667 .0054167 .0105833 .02 .0105833 .0320833
C Variable min: -.431775 -.577185 -.481248 -.017965 -.015486 -.017965 -.012246
C Times of min: .0295 .0234167 .0264167 .01775 .0133333 .01775 .0056667
CALCOMP PLOT
142 .2 0.0 2.0 RECA RECB RECC { Show node voltages
192 .2 0.0 2.0 BRANCH
SENDA RECA SENDB RECB SENDC RECC { Show branch currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 13th of 19 subcases is a generalization of the 5th. Superposition of phasor
C solutions is illustrated for simple series R-L-C elements. But here, we
C add a 3rd harmonic. Use 1, 2, and 3 Hz. The resulting solution has period
C 1 Hz, of course, so simulating and plotting to 2 sec shows 2 cycles. The
C periodicity is seen by comparing step 0 with 100 with 200 (very close).
PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns)
.01 2.0
1 1 1 1 1 -1
5 5 20 20
GEN TRAN 1.0 10. 3
TRAN 0.20E6 1
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 1.0 1.0 -1.
C TRAN .37942714659548 .64183619997635 .65053122009197 .80655515626147 -.752165257E-17 -.752165257E-17
C -.5176762965662 -53.7607135 .47680221452676 36.2392865 -.2588381482831 -0.2588381
C Total network loss P-loss by summing injections = 3.252656100460E-01
BLANK card terminating source cards for 1st phasor solution.
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GEN -1.0 2.0 { 2nd harmonic source } -1.
C TRAN -.1008414235014 .38391636622821 -.931007055129 .96488706858836 -.545150405E-17 -.545150405E-17
C .37043593719304 105.2282576 -.2534421401997 -164.7717424 -.1852179685965 -0.1852180
C Total network loss P-loss by summing injections = 4.655035275645E-01
BLANK card terminating source cards for 2nd (and final) phasor solution.
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GEN -1.0 3.0 { 2nd harmonic source } -1.
14GEN 1.0 1.0 { Source of 1st solution represented in dT-loop
14GEN -1.0 2.0 { Source of 2nd solution represented in dT-loop
C TRAN -.020242653071 .26448015717188 -.9941420093334 .99706670254975 -.575982404E-19 -.575982404E-19
C .26370435820121 94.3895692 -.0763130042124 -175.6104308 -.1318521791006 -0.1318522
C Total network loss P-loss by summing injections = 4.970710046667E-01
BLANK card terminating source cards for 2nd (and final) phasor solution.
GEN TRAN
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 2 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GEN GEN TRAN GEN TRAN
C TRAN TRAN TERRA
C 0 0.0 -1.25834307 -1. .25834307 -1.27461784 -1.27461784
C 1 .01 -1.17197835 -.976375224 .19560313 -1.23497976 -1.23497976
C 2 .02 -1.04223034 -.906244946 .135985399 -1.14972948 -1.14972948
C 3 .03 -.87351371 -.791817161 .081696549 -1.02182451 -1.02182451
C 4 .04 -.671453154 -.636692146 .0347610081 -.855597126 -.855597126
C 5 .05 -.442702206 -.44574573 -.003043524 -.656584162 -.656584162
C 10 0.1 .8252797519 .8090169944 -.016262758 .5778901701 .5778901701
C 15 .15 1.589742247 1.847858763 .2581165163 1.494230406 1.494230406
C 20 0.2 1.283365647 1.927050983 .6436853361 1.410360926 1.410360926
C 40 0.4 -1.48909279 -1.42705098 .0620418032 -1.57083779 -1.57083779
C 60 0.6 -.676894279 -1.42705098 -.750156704 -.672056125 -.672056125
C 80 0.8 2.141878198 1.927050983 -.214827215 2.10784098 2.10784098
C 100 1.0 -1.2589336 -1. .2589336049 -1.27496681 -1.27496681
BLANK card ending program output-variable requests.
C 120 1.2 1.28315489 1.927050983 .6438960933 1.410138424 1.410138424
C 140 1.4 -1.4891661 -1.42705098 .0621151159 -1.57091519 -1.57091519
C 160 1.6 -.676919781 -1.42705098 -.750131202 -.672083048 -.672083048
C 180 1.8 2.141869327 1.927050983 -.214818344 2.107831615 2.107831615
C 200 2.0 -1.25893669 -1. .2589366907 -1.27497007 -1.27497007
C Variable max: 2.141878198 2.031786442 .8934909897 2.120254744 2.120254744
C Times of max: 0.8 1.82 1.26 .81 .81
C Variable min: -1.7217357 -1.43964823 -.935581739 -1.70523806 -1.70523806
C Times of min: 1.36 1.61 .68 1.37 1.37
CALCOMP PLOT
143 .2 0.0 2.0 GEN TRAN { Screen plot is perfectly smooth & periodic
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C 14th of 19 subcases is a combination of the preceding. Use three single-
C phase lines: 1) Constant-parameter from 7th subcase; 2) JMARTI from 9th
C subcase; and 3) Semlyen from the 11th. Connect all 3 in series to verify
C that they all can coexist. Also, use 3 harmonics: 50, 75, and 100 Hz. The
C result is seen to be perfectly smooth. Terminal nodes SEND and REC are
C driven by voltage sources, so voltage here indicates nothing. But interior
C nodes SEM and REC provide a good measure of smoothness. The period is
C equal to 40 msec, note, because 75 Hz has a period of 13.3333 msec. Two
C cycles at 50 Hz, 3 cycles at 75 Hz, and 4 cycles at 100 Hz --- all are
C equal to 40 msec. So, step 400 agrees closely with step 0. Consider the
C two node voltages and 3 line currents:
C Step Time MARTI SEM GEN MARTI CAP
C SEND CAP SEM
C 0 0.0 2.746223 .7338817 -.004095 -.004261 -.006559
C 400 .04 2.745004 .7255618 -.004087 -.004257 -.006555
POWER FREQUENCY, 50., { Unnecessary. This merely avoids warning about 50 Hz.
PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns)
.000100 .040 50. 50. { Note L in ohms and C in micromhos at 50 Hz
1 1 1 1 1 -1
2 -1 5 5 20 20
-1SEND MARTI 0.3 0.4 12.6 80. { 1-phase distributed line
MARTI 2.0 7.E2 { Shunt compensation at end of 1st line
-1MARTI CAP 1. 0.00 -2 1 1
25 4.6006674814379022100E+02
-3.53674337977459482E+03 4.74463047336912496E+03 4.19877687667209159E+02
1.20883875640704401E+03 1.37235832926770309E+03 1.76629378124055439E+03
2.57098916005431466E+03 3.78828017768501514E+03 1.42803850501766374E+03
2.65038870126655566E+04 5.80549633718908008E+04 2.89862514502709019E+04
6.76266799893490243E+04 1.75748067781355756E+05 1.15921506756057055E+06
5.68321189666407090E+06 9.19433740923774988E+06 1.70951407206966021E+07
1.81624149219296910E+07 1.63578536348816883E+07 2.07902744942919687E+07
1.63600113702911996E+07 3.05274574257793949E+07 2.82210286690547951E+07
3.72990420164290220E+07
2.77486902230361210E-01 2.68023805044265262E-01 4.15219939750085032E-01
1.00965215217368676E+00 2.08586147641298370E+00 4.31742025828644139E+00
9.38105998645288964E+00 2.16289190303449140E+01 4.71679444226597938E+01
5.00972850164923444E+02 2.19667801322956757E+03 2.86760537318643128E+03
1.14040516604910099E+04 2.97247489619667322E+04 9.91819942418309948E+04
4.96352587435292895E+05 1.62826284096999770E+06 3.10812825436382648E+06
6.60681297691485007E+06 1.23076395640831069E+07 1.54718126469801944E+07
1.14181900748053603E+07 2.33626050734163225E+07 2.05401226659539938E+07
2.89354778735701405E+07
14 3.8038812947515656600E-04
1.91758353605922701E-02 2.66649324474153904E-01 2.54923849247581425E+00
9.46636313120961682E+00 2.85381149799323453E+01 7.38766350382716724E+01
2.49452844472431571E+03 7.01441951080157833E+03 6.88095829884308187E+04
-3.34847951818855899E+06 3.31843503484260664E+06 3.96467674493048249E+10
-7.93497908986478425E+10 3.97029750605793992E+10
3.35859634392794338E+00 4.68146974610416323E+01 4.33602484888353672E+02
1.24257407602821491E+03 1.74575005233975117E+03 1.47765127586259360E+03
1.69531663286821313E+04 2.85574137491229049E+04 7.36636621071784758E+04
5.22749591784824327E+05 5.23272341376608878E+05 1.82407055706939399E+05
1.82589462762646523E+05 1.82772052225409076E+05
0.58951119
0.00000000
CAP 2.0 7.E2 { Shunt compensation at end of 2nd line
CAP SEM 3.5 2.4E4 { Series capacitor after Marti } 1
-1SEM REC 2.16583E-03 3.86702E-04 1 1 2 2 1
1.58360657E+01 9.71198911E+01-4.13400101E-05 2.87567721E-04 6.00000000E+01
0.00000E+00 4.76151E+04 8.46981E-01 0.00000E+00 3.44533E+03 1.53019E-01
0.00000E+00 5.15658E+04-3.35305E-04 0.00000E+00 1.93051E+02-6.36116E-04
1.00000E+00 0.00000E+00
1.00000E+00 0.00000E+00
BLANK card ending branch cards
GEN SEND -1.0 1.0 { Permanently close switch at sending end } 1
BLANK card ending switch cards
14GEN 1.0 50. 0.0 { 50-Hz phasor } -1.
14REC 1.0 50. 90. -1.
C Total network loss P-loss by summing injections = 9.724220340709E-04
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GEN SEND -1.63570226E-03 -3.98415669E-03 4.30685807E-03 -112.3207 -8.17851130E-04 1.99207835E-03
BLANK card ending source cards for 1st phasor solution
SUPERIMPOSE MORE SOURCES: { Following are sources for 2nd phasor solution
14GEN 1.0 75. 0.0 { 75-Hz phasor } -1.
14REC 1.0 75. 90. -1.
C Total network loss P-loss by summing injections = 4.417836206255E-04
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GEN SEND -1.32752292E-03 -1.70816724E-03 2.16336599E-03 -127.8530 -6.63761459E-04 8.54083619E-04
BLANK card ending source cards for 2nd phasor solution
SUPERIMPOSE MORE SOURCES: { Following are sources for 3rd phasor solution
14GEN 1.0 100. 0.0 { 100-Hz phasor } -1.
14REC 1.0 100. 90. -1.
$DISABLE { Begin block of data cards to be ignored
C Note about preceding, third, excitation set. Because there is no source
C having T-start zero or positive, ATP logic that began 15 December 1998
C will internally copy all sources of all preceding excitation sets, changing
C T-start to zero in order that these sources become effective on the first
C time step. In effect, the following sources are added internally:
14GEN 1.0 50. 0.0 { 50-Hz phasor } 0.0
14REC 1.0 50. 90. 0.0
14GEN 1.0 75. 0.0 { 75-Hz phasor } 0.0
14REC 1.0 75. 90. 0.0
C But note carefully that this helpful feature relies upon lack of any source
C other than phasor excitation. If any source of the final data set has zero
C or positive T-start, there will be no such internal addition. If the user
C specifies one, he must specify all sources having T-start non-negative.
$ENABLE { End block of data cards to be ignored
C Total network loss P-loss by summing injections = 2.720584624880E-04
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C GEN SEND -1.13140476E-03 -3.94389795E-04 1.19817363E-03 -160.7823 -5.65702382E-04 1.97194897E-04
BLANK card terminating source cards for 3rd (and final) phasor solution.
SEND MARTI SEM REC { Names of nodes for voltage output
C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time SEND MARTI SEM REC GEN MARTI CAP
C SEND CAP SEM
C *** Phasor I(0) = -4.0946299E-03 Switch "GEN " to "SEND " closed in the steady-state.
C 0 0.0 3.0 2.746223 .7338817 .184E-15 -.004095 -.004261 -.006559
C 1 .1E-3 2.996423 2.7249 .6273332 -.141308 -.003855 -.003925 -.00623
C 2 .2E-3 2.985703 2.697847 .5194808 -.282232 -.003612 -.003582 -.005889
C 3 .3E-3 2.967873 2.664322 .410436 -.422391 -.00336 -.003232 -.005536
C 4 .4E-3 2.942985 2.624337 .3004596 -.561404 -.003101 -.002874 -.005171
C 5 .5E-3 2.911115 2.57779 .1894443 -.698897 -.002834 -.002509 -.004796
BLANK card ending node voltage output requests
C 400 .04 3.0 2.745004 .7255618 -.17E-12 -.004087 -.004257 -.006555
C Variable max: 3.0 2.766848 2.205032 2.750818 .0072415 .007581 .0081707
C Times of max: 0.0 .0397 .0375 .0369 .0051 .0044 .0049
C Variable min:-2.07381 -2.03357 -2.03363 -2.75082 -.006569 -.008275 -.009585
C Times of min: .0339 .0059 .0037 .0031 .0379 .0378 .0382
CALCOMP PLOT
144 4. 0.0 40. -3.0 3.0SEND MARTI SEM REC { Show node voltages
194 4. 0.0 40. BRANCH
GEN SEND MARTI CAP CAP SEM { Show branch currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 15th of 19 subcases has the same solution as the 5th, which has one series
C R-L-C circuit. Here, the L remains linear, but is represented in the
C form of a Type-93 nonlinear reactor. Since the solution is identical to
C that already shown, only 3 time steps will be taken.
C 18 Nov 98, expand by the addition of Type-98 pseudo-nonlinear element.
C Add a second, independent circuit in parallel with the first. Node
C name TRAN93 will be used for the first and TRAN98 for the second.
C The solutions are identical, of course.
PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns)
.01 .03
1 1 1 1
C GEN TRAN 10. 3
C The preceding 10-mHenry inductor can be replaced by the following equivalent
C nonlinear element. The phasor solution will be identical. Inductance 10 mH
C means that when the current is one amp, the flux is .01 volt-sec, so:
93GEN TRAN93 1.0 .01 3
0.0 0.0 { 1st point being origin is request to reflect
1.0 .01 { i = 1 amp corresponds to flux = .01 volt-sec
2.0 .02 { 2nd segment is, in fact, an extension of 1st
9999
TRAN93 1.0 0.20E6 1
93GEN TRAN98 1.0 .01 3
1.0 .01 { i = 1 amp corresponds to flux = .01 volt-sec
2.0 .02 { 2nd segment is, in fact, an extension of 1st
9999
TRAN98 1.0 0.20E6 1
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 1.0 1.0 -1.
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C GEN |TRAN93*TRAN98*
C TRAN93 |TERRA *GEN *
C TRAN98 |TERRA *GEN *
C TERRA |TRAN93*TRAN98*
C --------------+------------------------------
BLANK card terminating source cards for 1st phasor solution.
C TRAN93 1.0299583666875 1.0307690952352 .65053122009197 .80655515626147 .32526561004599 .32526561004599
C -.0408740820394 -2.2726007 .47680221452676 36.2392865 -.2588381482831 -0.2588381
C Total network loss P-loss by summing injections = 6.505312200920E-01
C ---- Initial flux of coil "GEN " to "TRAN93" = 6.50531220E-03
C ---- Initial flux of coil "GEN " to "TRAN98" = 6.50531220E-03
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GEN -1.0 2.0 { 2nd harmonic source } -1.
14GEN 1.0 1.0 { Source of 1st solution represented in dT-loop
BLANK card terminating source cards for 2nd (and final) phasor solution.
C TRAN93 -1.03184847863 1.0384598361934 -.931007055129 .96488706858836 .46550352756452 .46550352756452
C .11699379699335 173.5312736 -.2534421401997 -164.7717424 -.1852179685965 -0.1852180
C Total network loss P-loss by summing injections = 9.310070551290E-01
C ---- Initial flux of coil "GEN " to "TRAN93" = -9.31007055E-03
C ---- Initial flux of coil "GEN " to "TRAN98" = -9.31007055E-03
GEN TRAN93TRAN98 { Request for voltage output of these nodes
C First 5 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 4 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GEN GEN GEN TRAN93 TRAN98 GEN GEN TRAN93 TRAN98
C TRAN93 TRAN98 TRAN93 TRAN98 TERRA TERRA
C 0 0.0 .0018901 .0018901 0.0 -.00189 -.00189 -.280476 -.280476 -.280476 -.280476
C 1 .01 .0137899 .0137899 .005912 -.007878 -.007878 -.272636 -.272636 -.272636 -.272636
C 2 .02 .0251067 .0251067 .0235315 -.001575 -.001575 -.253188 -.253188 -.253188 -.253188
C 3 .03 .0356219 .0356219 .0525108 .0168889 .0168889 -.222823 -.222823 -.222823 -.222823
BLANK card ending program output-variable requests.
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C 16th of 19 subcases illustrates KILL = 222 as mentioned in the January,
C 1999, newsletter. The R-L-C connection of the preceding subcase is
C modified to connect to a second generator rather than ground. The 2nd
C generator, GEN2, has a different frequency than the 1st. Prior to
C correction on November 17th, execution continued in spite of the mixing
C of frequencies through a nonlinear element. Now, the error is trapped.
C Note no use of superposition, which is an extraneous complication. A
C single frequency is all that is required to demonstrate the phenomenon.
PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns)
.01 .03
1 1 1 1
93GEN TRAN 1.0 .01 3
0.0 0.0 { 1st point being origin is request to reflect
1.0 .01 { i = 1 amp corresponds to flux = .01 volt-sec
2.0 .02 { 2nd segment is, in fact, an extension of 1st
9999
TRAN GEN2 1.0 0.20E6 1
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 1.0 1.0 -1.
14GEN2 1.0 2.0 -1.
BLANK card terminating source cards for 1st phasor solution.
BLANK card terminating source cards for 2nd (and final) phasor solution.
GEN TRAN
BLANK card ending program output-variable requests.
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C 17th of 19 subcases illustrates IF-THEN-ELSE-ENDIF within HFS data that
C is the same as 3rd subcase. There are 8 frequency steps, and for the
C first five, the solution is identical to that of 3rd subcase. But for
C steps 6 onward, the formula is changed (the ELSE alternative). This
C data is being added by WSM on 3 December 2000.
POWER FREQUENCY, 25., ! Needed so minimum frequency is recognized as fundamental
HARMONIC FREQUENCY SCAN { Non-negative DELFFS in 25-32 means F in Hz (not log F)
C Controls of following request card: MAXKNT IOPCVP { Ignore MAXKNT value
POCKET CALCULATOR VARIES PARAMETERS 0 1 { since also HFS loop
PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns)
.0001 -1. 50. 50.
1 1 1 0 1 2
$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b
IF( KNT .LT. 6.0 ) THEN { If frequency (pass number) is low, use one formula:
C Note: the following formula is identical to that used in the 3rd subcase.
C The present comment card illustrates that these are tolerated within
C an IF-THEN-ELSE-ENDIF block.
MHENRY = 1.2 - ( KNT - 1.0 ) * .05 { L = 1.2, 1.15, 1.1, 1.05, and 1.0
ELSE { Alternatively (if frequency is higher, use another formula:
C Note: the following formula is different from that used in the 3rd subcase.
C As a result, the solution to steps 6, 7, and 8 differ slightly. We
C use the ELSE alternative to illustrate saturation of the previously-
C linear inductance. Slope of L vs. f changes by a factor of 5:
MHENRY = 1.0 - ( KNT - 5.0 ) * .01 { L =.99, .98, .97
ENDIF { Terminate 5-line block that provides two alternatives for MHENRY
C The following variable is not actually used, but it is added to illustrate
C that other variables can follow an IF-THEN-ELSE-ENDIF block. As for the
C formula, it can be found in the 1st subcase. In fact, this addition makes
C the solution comparable to that of the 1st subcase. They are identical
C through step 5.
FREQUENCY = 25. * KNT { This computes the frequency in Hz of the scan
BLANK card ends $PARAMETER definitions that are processed just b4 branch card
TRAN 1.0 1.E+5 3
GEN TRAN 1.0MHENRY
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 70. 25. 0.0 { Note comment and no negative T-start
14GEN 70. 50. 0.0 { This is normal HFS source data. It
14GEN 70. 75. 0.0 { is unusual, however, because of our
14GEN 70. 100. 0.0 { match preceding subases. Unusual
14GEN 70. 125. 0.0 { for HFS usage, the amplitude is not
14GEN 70. 150. 0.0 { varied and all harmonics are present
14GEN 70. 175. 0.0
14GEN 70. 200. 0.0
BLANK card ending source cards
BLANK card ending F-dependent series R-L-C branches (none, for this subcase)
GEN TRAN
BLANK card ending program output-variable requests.
CALCOMP PLOT { Use BOTH rather than DISK to see a bar chart of harmonics
19680. 0.0200. TRAN { Units/inch of 5-7 are ingored since bar chart
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 18th of 19 subcases illustrates ELSEIF use within an IF-THEN-ELSE-ENDIF
C block. It is related to the preceding, but for variety has replaced
C the HFS control of looping by simpler pocket calculator control as was
C seen in the 1st subcase. The first condition, giving 5 steps, has
C been left unchanged. But then the remaining 3 steps would need to be
C split among two formulas. Rather than 8 frequency steps, 9 steps will
C be taken in order that each formula is used at least twice. From top to
C bottom: a) below IF b) below ELSEIF c) below ELSE
C KNT = 1, 2, 3, 4, 5 steps 6 and 7 steps 8 and 9.
C This data is added by WSM on 5 December 2000.
C Controls of following request card: MAXKNT IOPCVP { Loop 9 times with
POCKET CALCULATOR VARIES PARAMETERS 9 1 { minimum printout
PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns)
.0001 -1. 50. 50.
1 1 1 0 1 2
$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b
IF( KNT .LT. 6.0 ) THEN { If frequency (pass number) is low, use one formula:
C Note: the following formula is identical to that used in the 3rd subcase.
C It is used for KNT < 6, so for values KNT = 1, 2, ... through 5:
MHENRY = 1.2 - ( KNT - 1.0 ) * .05 { L = 1.2, 1.15, 1.1, 1.05, and 1.0
C Having evaluated this or any other formula of the block, control
C passes to the end of the block, of course. Control reaches the
C following statement if and only if the previous condition ( KNT < 6 )
C was not satisfied.
ELSEIF( KNT .LT. 8.0 ) THEN { If frequency (pass number) satisfies KNT < 8 :
C Control reaches this point only for 5 < KNT < 8, so for KNT = 6 and 7.
C The slope has been reduced from .05 to .02 and the offset has been
C reduced to ensure continuity of the piecewise-linear segments:
MHENRY = 1.0 - ( KNT - 5.0 ) * .02 { Produces values L = .98 and .96
C Having evaluated this formula, control passes to end of block (ENDIF)
C Etc. The preceding ELSEIF could be repeated an arbitrary number of
C times, providing different formulas for an arbitrary number of ranges
C of KNT. If the condition of the first ELSEIF was not satisfied, the
C second would be checked, etc. in order from top to bottom. If none is
C satisfied when ELSE finally was reached, the formula below ELSE
C would be used.
ELSE { Alternatively (if none of preceding conditions were satisfied), use this:
C Control reaches this point only if no preceding condition is satisfied.
C I.e., for 7 < KNT. The slope and offset will be changed once again,
C to provide a 3rd segment of the piecewise-linear curve:
MHENRY = .96 - ( KNT - 7.0 ) * .01 { L =.95, .94
ENDIF { Terminate 26-line block that provides three alternatives for MHENRY
C Unlike preceding subcase, the following variable is required because HFS
C is not being used. Instead, the pocket calculator must itself provide
C the frequency for any source card (node GEN in this case).
FREQUENCY = 25. * KNT { This computes the frequency in Hz of the scan
BLANK card ends $PARAMETER definitions that are processed just b4 branch card
TRAN 1.0 1.E+5 3
GEN TRAN 1.0MHENRY
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN 70. FREQUENCY -1.
BLANK card ending source cards
GEN TRAN
C Step F [Hz] TRAN GEN TRAN TRAN
C TERRA TERRA
C 1 25. 71.874164 70. 71.874164 3.5892245
C New parameter values follow: 1) 1.15 2) 50.
C 2 50. 77.535296 70. 77.535296 7.7150503
C New parameter values follow: 1) 1.1 2) 75.
C 3 75. 87.376164 70. 87.376164 12.96142
C New parameter values follow: 1) 1.05 2) 100.
C 4 100. 101.32085 70. 101.32085 19.870653
BLANK card ending program output-variable requests.
C New parameter values follow: 1) 1.0 2) 125.
C 5 125. 115.44696 70. 115.44696 28.
C New parameter values follow: 1) .98 2) 150.
C 6 150. 119.51423 70. 119.51423 34.342161
C New parameter values follow: 1) .96 2) 175.
C 7 175. 102.75012 70. 102.75012 33.943547
C New parameter values follow: 1) .95 2) 200.
C 8 200. 79.015248 70. 79.015248 29.345527
C New parameter values follow: 1) .94 2) 225.
C 9 225. 60.191978 70. 60.191978 24.700662
PRINTER PLOT
19650. 0.0250. TRAN Plot limits: ( 0.000, 3.434 )
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 19th of 19 subcases is same as the 5th except that the voltage source used
C previously becomes a current source. Also, as first illustrated by the 14th
C subcase, the final excitation set will involve no preceding harmonics so it
C will be the job of ATP to add these automatically. Prior to correction on
C 13 March 2001, there was an enormous oscillation in dT loop as seen on plot.
C That is, the automatic addition of all preceding harmonics (here, just one)
C did not work properly for a current source. Orlando Hevia in Santa Fe,
C Argentina, first made WSM aware of the problem by E-mail.
PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns)
.01 2.0
1 1 1 1 1 -1
5 5 20 20
GEN TRAN 1.0 10. 3
TRAN 0.20E6 1
BLANK card ending program branch cards.
BLANK card terminating program switch cards (none, for this case)
14GEN -1 1.0 1.0 -1.
BLANK card terminating source cards for 1st phasor solution.
SUPERIMPOSE MORE SOURCES: { Request for superposition produced by more:
14GEN -1 -1.0 2.0 { 2nd harmonic source } -1.
BLANK card terminating source cards for 2nd (and final) phasor solution.
GEN TRAN
BLANK card ending program output-variable requests.
CALCOMP PLOT
143 .2 0.0 2.0 GEN TRAN { Screen plot is perfectly smooth & periodic
BLANK card ending all plot cards
BEGIN NEW DATA CASE
BLANK
|