1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
BEGIN NEW DATA CASE
$BEGIN PL4 COMMENTS
C BENCHMARK DC-3
C Energization of 180-mile 3-phase line represented by 18 identical
C Pi-sections. Transposed at 60 and 120 miles, note. XOPT = 3000.
c Note nice DELTAT. For exact "M39." agreement, use 0.4630E-4
c It is test case DC-54 that uses the plot file for "REPLOT" usage.
c Note this and preceding 2 comment cards illustrate lower-case "$$
C c" (the third letter of the alphabet). End comment text.
$END PL4 COMMENTS
CHANGE PLOT FREQUENCY
C Beginning 21 March 2010, the ten integers that define either plotting or
C printing frequency may be keyed as a mixture of I8 and E8.0 FORMAT. There
C exist several special cases, however, for large values. Interpretation will
C continue to use 6I6 integers if all can be encoded this way. Examples follow:
5 5 10 1 { The original alternative has all integers
C Interpretation of this: Plot out : 5 5 10 1 0 0 | ...
C 5 5.E0 10 1 1.E4 9.E5 { Near the limit of interpret
C Interpretation of this: Plot out : 5 5 10 1 10000900000 | ...
C 5 5.E0 10 1 1.E4 1.E9 { Too big a value for interpret
C Interpretation of this: 5 pairs. But a value is too big for I6 display. | ...
C 5 5.E0 10 1 1.E4 2.E9 { Verify largest 32-bit integer
C Interpretation of this: 5 pairs. But a value is too big for I6 display. | ...
C 5 5.E0 10 1 1.E4 2.1E9 { Too big a value for 32 bits
C rejection of this: === Error defining one or more integers of printing or
C plotting frequency. Too big for 32-bit integer storage. Halt in SUBR1.
CUSTOM PLOT FILE { Request for REAL*8 .PL4 file (see July, 1995, newsletter)
$MONITOR { Request time (no other special effect, since not LUNIT6 to disk)
C DISK PLOT DATA { Toggle the Apollo default of LUNIT4 = -4 to +4 (use disk)
C $CLOSE, UNIT=4 STATUS=DELETE { Destroy empty date/time plot file of "SYSDEP"
C $OPEN, UNIT=4 FILE=dc3to54.pl4 FORM=UNFORMATTED STATUS=UNKNOWN RECL=8000 !
C$ text Beginning 31 August 1994, "C$" in columns 1-2 is taken to be a comment
PRINTED NUMBER WIDTH, 13, 2,
.000050 .010 3000. { XOPT = 3 KHz means reactance in ohms at this freq.
C 1 1 1 1 1 -1 0 2
1.E0 1.E0 1 1 1 -1 0 2
C The preceding integer misc. data card illustrates that either the number
C of steps for printing (cols. 1-8) or the number of steps for plotting
C (cols. 9-16) may be E-field. This is to accomodate values > 1.E8.
C See previous explanation of CHANGE PLOT FREQUENCY. The same procedure is
C applicable to the following card, which modifies printout frequency:
C 5 5 10 10 20 20 { Escalating printout frequency
5 5.E0 1.E1 10 2.E1 20 { Illustrate some E-field use
$COMMENT { Begin discarding (making invisible) all comment cards
C Ok, immediately we have a comment card, which should not be seen on LUNIT6
1GEN-A 1-A 34.372457.68.15781
2GEN-B 1-B 35.735164.43-.031538.002451.79.16587
3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587
C 2nd comment card. This, too, should not be seen on LUNIT6
$COMMENT { End discarding of comment cards. Once again such cards are visible
C Is this comment card visible? It should be seen on LUNIT6
11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first
21-B 2-B { which has just been inputted.
31-C 2-C
12-A 3-A GEN-A 1-A
22-B 3-B
32-C 3-C
13-A 4-A GEN-A 1-A
23-B 4-B
33-C 4-C
14-A 5-A GEN-A 1-A
24-B 5-B
34-C 5-C
15-A 6-A GEN-A 1-A
25-B 6-B
35-C 6-C
16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C
26-A 7-A
36-B 7-B
17-C 8-C GEN-A 1-A
27-A 8-A
37-B 8-B
18-C 9-C GEN-A 1-A
28-A 9-A
38-B 9-B
19-C 10-C GEN-A 1-A
29-A 10-A
39-B 10-B
110-C 11-C GEN-A 1-A
210-A 11-A
310-B 11-B
111-C 12-C GEN-A 1-A
211-A 12-A
311-B 12-B
112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B
212-C 13-C
312-A 13-A
113-B 14-B GEN-A 1-A
213-C 14-C
313-A 14-A
114-B 15-B GEN-A 1-A
214-C 15-C
314-A 15-A
115-B 16-B GEN-A 1-A
215-C 16-C
315-A 16-A
116-B 17-B GEN-A 1-A
216-C 17-C
316-A 17-A
117-B 18-B GEN-A 1-A
217-C 18-C
317-A 18-A
0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by
0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14
0M-C GEN-C 400.0 { msec, respectively.} 1
0POLE-AM-A 15.0
0POLE-BM-B 15.0
0POLE-CM-C 15.0
BLANK card ending branch cards
E-A POLE-A 0. 20.0 1
E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3
E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1
M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing
M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening
M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening).
BLANK card ending switches
14E-A -1.0 60.0 -90.0
14E-B -1.0 60.0 -210.0
14E-C -1.0 60.0 30.0
BLANK card ending sources
18-C 18-B 18-A
$MONITOR { Request time (no other special effect, since not LUNIT6 to disk)
C Step Time E-B 18-C 18-B 18-A E-A
C POLE-B POLE-A
C *** Switch "E-A " to "POLE-A" closed after 0.00000000E+00 sec.
C 0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-4 .8771390038 .735053E-17 .754138E-17 -.12623E-16 -.277151E-4
C 2 .1E-3 .8898949351 .408898E-15 .419476E-15 -.70276E-15 -.42636E-4
C 3 .15E-3 .9023577997 .111958E-13 .114844E-13 -.19259E-13 -.657706E-4
C 4 .2E-3 .9141912694 .201088E-12 .206252E-12 -.34623E-12 -.902274E-4
C 5 .25E-3 .9254563554 .266406E-11 .273221E-11 -.45918E-11 -.11094E-3
C 10 .5E-3 .9821092355 .5616974E-7 .5757735E-7 -.975638E-7 -.211746E-3
C 20 .001 1.079796132 .0030080496 .0030756136 -.005532677 -.393566E-3
BLANK card ending output variables requests (node voltages, here)
$MONITOR { Request time (no other special effect, since not LUNIT6 to disk)
C Final step: 200 .01 0.0 .7226176276 -.887792385 .0782571591
C Final step continued: .0011948668 -.449544E-3 -.687051E-3 -.687051E-3
C Variable max : 1.188718074 .8796065581 .1512528782 .0782571591 .0012022221
C Times of max : .002 .0085 .00525 .01 .00995
C Variable min : 0.0 -.133205909 -.887792385 -1.27643205 -.79278E-3
C Times of min : 0.0 .0048 .01 .00525 .0041
PRINTER PLOT
144 1. 0.0 10. 18-A 18-B 18-C { Axis limits: (-1.276, 0.880)
194 1. 0.0 10. GEN-C M-C E-A POLE-A { Axis limits: (-1.105, 1.202)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 2nd of 6 subcases illustrates $PI which becomes available 14 July 2001.
C This is for scaling Pi-circuit data -- in effect, varying the length of
C the Pi-circuits. Originator of the idea was Dr. Sven Demmig of Bewag
C (power utility of city of Berlin, Germany) as explained in the October,
C 2001 newsletter. Although a cascade connection of sections is typical,
C in fact there is no mandatory association of $PI and cascading. In this
C illustration, consider 4 different and disconnected cascade connections
C of 2 Pi-circuits. The first is unscaled whereas the following 3 involve
C different combinations of scaling. All 4 disconnected subnetworks give
C exactly the same answer because data is either normal or multiplied by
C 2; and if the later, it subsequently is scaled by 1/2, thereby restoring
C the original values.
POWER FREQUENCY 3000. { Avoid warning about unusual XOPT
PRINTED NUMBER WIDTH, 11, 2,
.000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq.
1 1 1 1 1 -1
5 5 10 10 20 20 { Escalating printout frequency
C Begin cascading of 3-phase Pi-circuits from DC-3. To establish the right
C answer, we define data params using the 1st section, and then use reference
C branch for the second. So, a total of 6 cells are occupied in List 3:
1GENA MIDA 34.372457.68.15781
2GENB MIDB 35.735164.43-.031538.002451.79.16587
3GENC MIDC 35.735164.43-.031537.455151.72-.021938.002451.79.16587
1MIDA ENDA GENA MIDA
2MIDB ENDB
3MIDC ENDC
C Preceding establishes right answer without scaling. Next, scale. There are
C 3 illustrations. Each is a disconnected circuit that should give the same
C answer as the first. Each of the copies uses scaling in a different way.
C Begin with Pi-circuit data that is double what it should be, so will require
C a scaling factor of a half. Like preceding, this occupies 6 cells of List 3:
$PI, 0.5, { Multiply R, L, and C values of Pi-circuits by this factor
1GENA MIDD 68.744915.36.31562
2GENB MIDE 71.470328.86-.063076.004903.58.33174
3GENC MIDF 71.470328.86-.063074.910303.44-.043876.004903.58.33174
$PI, 1.0, { Cancel preceding scaling; return to normal, unscaled use
1MIDD ENDD GENA MIDD
2MIDE ENDE
3MIDF ENDF
C 2nd of 3 alternatives to the original circuit will define but not use the
C doubled data. Nothing else will be connected to far end (MIDG, H, I).
C Instead, the alternative will consist of 2 scaled copies of this data.
C That makes a total of 3 copies of data, so 18 cells of List 3 are occupied:
1GENA MIDG 68.744915.36.31562
2GENB MIDH 71.470328.86-.063076.004903.58.33174
3GENC MIDI 71.470328.86-.063074.910303.44-.043876.004903.58.33174
$PI, 0.5, { Multiply R, L, and C values of Pi-circuits by this factor
1GENA MIDJ GENA MIDG
2GENB MIDK
3GENC MIDL
1MIDJ ENDJ GENA MIDG
2MIDK ENDK
3MIDL ENDL
C 3rd of 3 alternatives begins (1st half) the same as the preceding second,
C but it ends with the 2nd section a copy of this 1st section. This adds 6
C more cells for List 3 (for the 1st section only). So, the total burden on
C List 3 is the sum of the 4 parts: 6 + 6 + 18 + 6 = 36 cells.
1GENA MIDM GENA MIDG
2GENB MIDN
3GENC MIDO
$PI, 1.0, { Cancel preceding scaling; return to normal, unscaled use
1MIDM ENDM GENA MIDM
2MIDN ENDN
3MIDO ENDO
BLANK card ending branch cards
BLANK card ending switches
C 14GENA -1.0 60.0 -90.0
C Note we omit phase "a" (preceding source) to produce great imbalance. Also,
C we will add a steady-state solution, for more generality. As a result, the
C simulation should be pursely sinusoidal. If PRINTER PLOT below is changed
C to CALCOMP PLOT & HPI = 1. msec/inch is changed to .5 (columns 6-7),
C this will be obvious visually.
14GENB -1.0 60.0 -210.0 -1.
14GENC -1.0 60.0 30.0 -1.
$WIDTH, 79, { Request narrow, 80-column LUNIT6 output to minimize phasor print
BLANK card ending sources
C Total network loss P-loss by summing injections = 5.813026183430E-07
C GENB 1.0 .6605121612E-3 -.4572787068E-4 .3302560806E-3
C -30.0000000 67.9588504 -.3270749771E-3 -0.1384619
$WIDTH, 132, { Done with 80 columns, so return to wide, 132-column LUNIT6 output
ENDA ENDD ENDJ ENDM ENDB ENDE ENDK ENDN ENDC
C Step Time ENDA ENDD ENDJ ENDM ENDB ENDE ENDK ENDN ENDC
C 0 0.0 -.0023158 -.0023158 -.0023158 -.0023158 .86301625 .86301625 .86301625 .86301625 -.8705073
C 1 .5E-4 .00145168 .00145168 .00145168 .00145168 .87229895 .87229895 .87229895 .87229895 -.8609192
C 2 .1E-3 .00521861 .00521861 .00521861 .00521861 .88127179 .88127179 .88127179 .88127179 -.8510252
C 3 .15E-3 .00898371 .00898371 .00898371 .00898371 .88993164 .88993164 .88993164 .88993164 -.8408287
BLANK card ending output variables requests (node voltages, here)
C 100 .005 .19079849 .19079849 .19079849 .19079849 .20945009 .20945009 .20945009 .20945009 .74501057
C Variable maxima: .19987826 .19987826 .19987826 .19987826 .99771368 .99771368 .99771368 .99771368 .74501057
C Times of maxima: .0042 .0042 .0042 .0042 .0014 .0014 .0014 .0014 .005
C Variable minima: -.0023158 -.0023158 -.0023158 -.0023158 .20945009 .20945009 .20945009 .20945009 -.8705073
C Times of minima: 0.0 0.0 0.0 0.0 .005 .005 .005 .005 0.0
PRINTER PLOT { Conversion to CALCOMP PLOT would show that curves are smooth
144 1. 0.0 5.0 -1. 1.0 ENDA ENDB ENDC
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 3rd of 6 subcases illustrates HIGH ORDER PI CIRCUIT as first mentioned
C in the April, 1998, newsletter. Prior to addition on 22 November 2001,
C this data was stored at home as f:\data\highpi.dat Data of this
C subcase is identical to the first; the solution should be identical.
C But instead of data for the 1st Pi-circuit being read from in-line card
C images, it is to be read from a separate disk file. Of course, for 3
C phases, this is artificially complicated. But for really high order
C (e.g., 400), there should be a big saving when the C-like alternative is
C used. But here, initially, we just illustrate the universal, FORMATTED
C alternative, which stores Pi-circuit data in separate DC3HIGH.DAT The
C use is artificial. Practical use almost always will be C-like.
PRINTED NUMBER WIDTH, 13, 2,
.000050 .010 3000. { XOPT = 3 KHz means reactance in ohms at this freq.
1 1 0 0 0 -1
5 5 10 10 20 20 { Escalating printout frequency
C 1GEN-A 1-A 34.372457.68.15781
C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587
C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587
C The following is FORMATTED. For the C-like alternative, see the 4th subcase.
C HIGH ORDER PI CIRCUIT 3 File=[]dc3high.dat FORM=FORMATTED C-LIKE OUTPUT
C Preceding single card is replaced by following 2-card alternative on
C 9 September 2003. Not only was C-LIKE OUTPUT being chopped on the
C right, there was no space for additional attributes such as REAL*4
C for single-precision data and $UNITS to apply XOPT and COPT. So now
C 2 or more cards are allowed. Only the last is to carry the file name
C after the File= tag. Tags on the optional preface card are free-
C format but they must be to the right of column 32 (for # of phases):
HIGH ORDER PI CIRCUIT FORM=FORMATTED C-LIKE OUTPUT { Optional card
HIGH ORDER PI CIRCUIT 3 File=[]dc3high.dat
C Note that preceding creates REAL*8 output file dc3high.clk by default.
C The alternative single-precision file dc3high.444 which will be used in
C the following subcase # 5 was created by adding REAL*4 anywhere to the
C right of the input data file name (separate by 1 or more blanks). The
C resulting file then will be 108 bytes in size rather than 180. The
C difference is 3 arrays * 6 elements/array * 4 bytes/element = 72 bytes.
C But 5th subcase also used $UNITS and this requires a change in the code
C see comments near the bottom of SUBR3.SPL
11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first
21-B 2-B { which has just been inputted.
31-C 2-C
12-A 3-A GEN-A 1-A
22-B 3-B
32-C 3-C
13-A 4-A GEN-A 1-A
23-B 4-B
33-C 4-C
14-A 5-A GEN-A 1-A
24-B 5-B
34-C 5-C
15-A 6-A GEN-A 1-A
25-B 6-B
35-C 6-C
16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C
26-A 7-A
36-B 7-B
17-C 8-C GEN-A 1-A
27-A 8-A
37-B 8-B
18-C 9-C GEN-A 1-A
28-A 9-A
38-B 9-B
19-C 10-C GEN-A 1-A
29-A 10-A
39-B 10-B
110-C 11-C GEN-A 1-A
210-A 11-A
310-B 11-B
111-C 12-C GEN-A 1-A
211-A 12-A
311-B 12-B
112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B
212-C 13-C
312-A 13-A
113-B 14-B GEN-A 1-A
213-C 14-C
313-A 14-A
114-B 15-B GEN-A 1-A
214-C 15-C
314-A 15-A
115-B 16-B GEN-A 1-A
215-C 16-C
315-A 16-A
116-B 17-B GEN-A 1-A
216-C 17-C
316-A 17-A
117-B 18-B GEN-A 1-A
217-C 18-C
317-A 18-A
0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by
0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14
0M-C GEN-C 400.0 { msec, respectively.} 1
0POLE-AM-A 15.0
0POLE-BM-B 15.0
0POLE-CM-C 15.0
BLANK card ending branch cards
E-A POLE-A 0. 20.0 1
E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3
E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1
M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing
M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening
M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening).
BLANK card ending switches
14E-A -1.0 60.0 -90.0
14E-B -1.0 60.0 -210.0
14E-C -1.0 60.0 30.0
BLANK card ending sources
18-C 18-B 18-A
BLANK card ending output variables requests (node voltages, here)
C 100 .005 0.0 -.084110964 -.076310793 -.92825821 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3
C 120 .006 0.0 .4539217657 .0096691741 -1.01404035 -.10259E-3 -.52007E-3 .0010499755 .0010499755
C 140 .007 0.0 .6915082663 -.20985407 -.843083014 .6173076E-3 -.951807E-3 .5938305E-3 .5938305E-3
C 160 .008 0.0 .8512280695 -.465621295 -.605281204 .9350157E-3 -.96575E-3 .1846072E-3 .1846072E-3
C 180 .009 0.0 .8583902573 -.70840222 -.288190483 .0011711805 -.794874E-3 -.285103E-3 -.285103E-3
C *** Close switch "M-A " to "GEN-A " after 1.00000000E-02 sec.
C 200 .01 0.0 .7226176276 -.887792385 .0782571591 .0011948668 -.449544E-3 -.687051E-3 -.687051E-3
PRINTER PLOT
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 4th of 6 subcases is the same as the preceding 3rd subcase except for
C two changes. First and most importantly, the C-like alternative is used
C for the data rather than the FORMATTED alternative. Second, the ending
C time T-max has been halved. Solution through T = T-max is identical.
PRINTED NUMBER WIDTH, 13, 2,
.000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq.
1 1 0 0 0 -1
5 5 10 10 20 20 { Escalating printout frequency
C 1GEN-A 1-A 34.372457.68.15781
C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587
C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587
HIGH ORDER PI CIRCUIT 3 File=[]dc3high.clk { Use default type: C-like
11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first
21-B 2-B { which has just been inputted.
31-C 2-C
12-A 3-A GEN-A 1-A
22-B 3-B
32-C 3-C
13-A 4-A GEN-A 1-A
23-B 4-B
33-C 4-C
14-A 5-A GEN-A 1-A
24-B 5-B
34-C 5-C
15-A 6-A GEN-A 1-A
25-B 6-B
35-C 6-C
16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C
26-A 7-A
36-B 7-B
17-C 8-C GEN-A 1-A
27-A 8-A
37-B 8-B
18-C 9-C GEN-A 1-A
28-A 9-A
38-B 9-B
19-C 10-C GEN-A 1-A
29-A 10-A
39-B 10-B
110-C 11-C GEN-A 1-A
210-A 11-A
310-B 11-B
111-C 12-C GEN-A 1-A
211-A 12-A
311-B 12-B
112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B
212-C 13-C
312-A 13-A
113-B 14-B GEN-A 1-A
213-C 14-C
313-A 14-A
114-B 15-B GEN-A 1-A
214-C 15-C
314-A 15-A
115-B 16-B GEN-A 1-A
215-C 16-C
315-A 16-A
116-B 17-B GEN-A 1-A
216-C 17-C
316-A 17-A
117-B 18-B GEN-A 1-A
217-C 18-C
317-A 18-A
0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by
0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14
0M-C GEN-C 400.0 { msec, respectively.} 1
0POLE-AM-A 15.0
0POLE-BM-B 15.0
0POLE-CM-C 15.0
BLANK card ending branch cards
E-A POLE-A 0. 20.0 1
E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3
E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1
M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing
M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening
M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening).
BLANK card ending switches
14E-A -1.0 60.0 -90.0
14E-B -1.0 60.0 -210.0
14E-C -1.0 60.0 30.0
BLANK card ending sources
18-C 18-B 18-A
BLANK card ending output variables requests (node voltages, here)
C 80 .004 .8173610312 -.086429015 -.083753604 -.67093214 -.487946E-3 0.0 0.0 .555112E-18
C 100 .005 0.0 -.084110964 -.076310793 -.92825821 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 5th of 6 subcases is the same as the preceding 4th subcase except for
C two changes. First, single precision is used for the C-like Pi-circuit
C data rather than the default REAL*8 alternative. Second, XOPT and COPT
C are to be applied to control units just as for any other branch. Answers
C are very close (REAL*4 input data change 7th or 8 digit of some numbers).
PRINTED NUMBER WIDTH, 13, 2,
.000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq.
1 1 0 0 0 -1
5 5 10 10 20 20 { Escalating printout frequency
C 1GEN-A 1-A 34.372457.68.15781
C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587
C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587
HIGH ORDER PI CIRCUIT REAL*4 $UNITS { Optional card of attributes
C HIGH ORDER PI CIRCUIT REAL*4 { Optional card of attributes
C HIGH ORDER PI CIRCUIT 3 File=[]dc3high.444
HIGH ORDER PI CIRCUIT 3 File=[]dc3high.opt
11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first
21-B 2-B { which has just been inputted.
31-C 2-C
12-A 3-A GEN-A 1-A
22-B 3-B
32-C 3-C
13-A 4-A GEN-A 1-A
23-B 4-B
33-C 4-C
14-A 5-A GEN-A 1-A
24-B 5-B
34-C 5-C
15-A 6-A GEN-A 1-A
25-B 6-B
35-C 6-C
16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C
26-A 7-A
36-B 7-B
17-C 8-C GEN-A 1-A
27-A 8-A
37-B 8-B
18-C 9-C GEN-A 1-A
28-A 9-A
38-B 9-B
19-C 10-C GEN-A 1-A
29-A 10-A
39-B 10-B
110-C 11-C GEN-A 1-A
210-A 11-A
310-B 11-B
111-C 12-C GEN-A 1-A
211-A 12-A
311-B 12-B
112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B
212-C 13-C
312-A 13-A
113-B 14-B GEN-A 1-A
213-C 14-C
313-A 14-A
114-B 15-B GEN-A 1-A
214-C 15-C
314-A 15-A
115-B 16-B GEN-A 1-A
215-C 16-C
315-A 16-A
116-B 17-B GEN-A 1-A
216-C 17-C
316-A 17-A
117-B 18-B GEN-A 1-A
217-C 18-C
317-A 18-A
0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by
0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14
0M-C GEN-C 400.0 { msec, respectively.} 1
0POLE-AM-A 15.0
0POLE-BM-B 15.0
0POLE-CM-C 15.0
BLANK card ending branch cards
E-A POLE-A 0. 20.0 1
E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3
E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1
M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing
M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening
M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening).
BLANK card ending switches
14E-A -1.0 60.0 -90.0
14E-B -1.0 60.0 -210.0
14E-C -1.0 60.0 30.0
BLANK card ending sources
18-C 18-B 18-A
BLANK card ending output variables requests (node voltages, here)
C 80 .004 .8173610397 -.08642902 -.083753607 -.670932147 -.487946E-3 0.0 0.0 .555112E-18
C 100 .005 0.0 -.084110972 -.076310803 -.928258207 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 6th of 6 subcases is the same as the preceding except that the master
C Pi-circuit is defined in user-supplied SUBROUTINE HOPCOD rather than
C in the HOPC disk file. The file name must be "File=HOPCOD." where the
C following file type (001) thus far is being ignored. Later, if 2 or more
C different definitions might be provided in SUBROUTINE HOPCOD, the file
C type will allow selection among 999 of them. Since 5th subcase uses
C REAL*4 data whereas here we use REAL*8 data, expect about 7 digits of
C agreement in the answers.
PRINTED NUMBER WIDTH, 13, 2,
.000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq.
1 1 0 0 0 -1
5 5 10 10 20 20 { Escalating printout frequency
C 1GEN-A 1-A 34.372457.68.15781
C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587
C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587
HIGH ORDER PI CIRCUIT 3 File=CODE.001 { Define data in code (not disk)
11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first
21-B 2-B { which has just been inputted.
31-C 2-C
12-A 3-A GEN-A 1-A
22-B 3-B
32-C 3-C
13-A 4-A GEN-A 1-A
23-B 4-B
33-C 4-C
14-A 5-A GEN-A 1-A
24-B 5-B
34-C 5-C
15-A 6-A GEN-A 1-A
25-B 6-B
35-C 6-C
16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C
26-A 7-A
36-B 7-B
17-C 8-C GEN-A 1-A
27-A 8-A
37-B 8-B
18-C 9-C GEN-A 1-A
28-A 9-A
38-B 9-B
19-C 10-C GEN-A 1-A
29-A 10-A
39-B 10-B
110-C 11-C GEN-A 1-A
210-A 11-A
310-B 11-B
111-C 12-C GEN-A 1-A
211-A 12-A
311-B 12-B
112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B
212-C 13-C
312-A 13-A
113-B 14-B GEN-A 1-A
213-C 14-C
313-A 14-A
114-B 15-B GEN-A 1-A
214-C 15-C
314-A 15-A
115-B 16-B GEN-A 1-A
215-C 16-C
315-A 16-A
116-B 17-B GEN-A 1-A
216-C 17-C
316-A 17-A
117-B 18-B GEN-A 1-A
217-C 18-C
317-A 18-A
0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by
0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14
0M-C GEN-C 400.0 { msec, respectively.} 1
0POLE-AM-A 15.0
0POLE-BM-B 15.0
0POLE-CM-C 15.0
BLANK card ending branch cards
E-A POLE-A 0. 20.0 1
E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3
E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1
M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing
M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening
M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening).
BLANK card ending switches
14E-A -1.0 60.0 -90.0
14E-B -1.0 60.0 -210.0
14E-C -1.0 60.0 30.0
BLANK card ending sources
18-C 18-B 18-A
BLANK card ending output variables requests (node voltages, here)
C 80 .004 .8173610312 -.086429015 -.083753604 -.67093214 -.487946E-3 0.0 0.0 .555112E-18
C 100 .005 0.0 -.084110964 -.076310793 -.92825821 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3
PRINTER PLOT
BLANK --- extraneous; added here to prove that one or 2 extras are tolerated
BLANK --- extraneous; added here to prove that one or 2 extras are tolerated
BLANK card ending plot cards
BEGIN NEW DATA CASE
BLANK
|