1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
|
BEGIN NEW DATA CASE
C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC).
C Contributed to ATP materials of the Can/Am user group February 1992 by:
C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant
C #203 - 1745 Martin Drive 705 Westtown Circle
C White Rock/ South Surrey B.C. West Chester, PA 19382
C CANADA V4A 6Z1 USA
C Phone: 604-535-6540 Phone: 610-344-0432
C FAX: 604-535-6548
C In July of 1993, Mr. Furst revised it again in preparation for his use
C of it at Prof. Ned Mohan's University of Minnesota short course there.
C Size 1-10: 43 63 56 3 230 18 167 0 0 0
C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0
C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999
NEW LIST SIZES
0 0 68 8 450 35 285 0 0 0
0 0 4700 0 0 0 0 0 12000 0
0 0 220
240000
C *********** A GENERIC 6 PULSE SVC MODEL ************************************
C
C This is a conceptual model only, it must be refined
C for any specific system; the control algorithm can be greatly improved.
C
C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer;
C TCR's connected in delta.
C
C Thyristor gating pulses are phase locked to the current zero transition
C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT;
C individual phase open loop VAR control is used, with a superimposed.
C slow voltage control.
C
C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV
C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s
C value of the 34.5 kV phase to phase voltages, which are the TACS variables
C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC,
C the thyristors have to be blocked. One way of doing this is to punch
C 1000000. in col. 17-24 of the thyristor switches 11.
C
C To get the SVC overall response plot the transformer ph-ph r.m.s secondary
C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three
C ph-ph r.m.s. voltages
C
C To get the VAR import/phase through the transformer secondary
C plot QINA (TACS)
C
C To get the transformer secondary voltage (instant.) plot TRSA
C
C TRSA-XLA shows the switching of the phase to phase load
C
C RXAB-TRSB plots the current through one AB arm of the thyristor bridge
C
C For sake of simplicity, some of the TACS variables have not been
C initialized, so ignore the first 25 ms of the plots.
C
C If in the "Superimposed Voltage Control Section the gain
C of DVQ is set to zero, the model reverts to open loop VAR control
PRINTED NUMBER WIDTH, 13, 2,
C For best results, do not use a time step more than 1/2 Degree (23.148
C microsec for 60 Hz). Here, to speed the illustration, we use twice that,
C & only simulate for half as long (extend to 0.5 sec for more transients).
C Free-format data input is used in order to specify DELTAT precisely:
C DELTAT TMAX XOPT COPT EPSILN TOLMAT
.0000462962962962963, 0.25, 60., , , , , , , , ,
1 -3 1 2 1 -1
5 5 20 20 100 100 500 500
TACS HYBRID
C
C Firing pulses are derived from the current through the measuring inductances
C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into
C TACS from the measuring switches connecting the RM's in delta,
C corresponding to the delta connected thyristor valves.
C
C The current lags the voltage 90 deg. and its zero transition produces
C the firing signal at an alpha of 90 deg.
C This is done by TACS level triggered switches Device 52.
C The firing pulse delay is calculated by the variables DELAB/BC/CA
C and implemented by TACS transport device Device 54;
C
C For convenience, the firing angle is initialized to alpha = 180 deg.
C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system.
C The required firing angle is then calculated backwards from the
C 180 deg. point, by using the variable DELYA(B,C).
C The actual firing angle is then DELAB = DELIN -DELYA etc.
C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms.
C Then DELAB= DELIN - DELYA =0.0 (90 deg.)
C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees.
C For 50 Hz, DELIN = 5.0 ms.
C
C *********** VOLTAGE AND REACTIVE REFERENCE *************
11VREFD 1.0
C VAR reference
C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.;
C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase;
C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV;
C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u.
88QTCR = 33.3*10**6
C The VAR reference QREF should be determined so that the superimposed
C voltage control changes the VAR flow as little as possible
88QREF = 0.30
C
C *********** VOLTAGES TRANSFERRED FROM NETWORK *************
C
C ******* Import 34.5 kV phase voltages, get phase to phase and normalize *****
C TRSA/B/C are the transformer secondary ph-g voltages
C 90 - TACS voltage source driven by an EMTP network node voltage
C (Rule Book p. 3-15)
90TRSA
90TRSB
90TRSC
C the phase to phase voltages
99TRAB = TRSA - TRSB
99TRBC = TRSB - TRSC
99TRCA = TRSC - TRSA
C normalize to get one p.u. for the phase to phase rms value
99TABX = TRAB/34500
99TBCX = TRBC/34500
99TCAX = TRCA/34500
C get the rms value of the A-B phase to phase voltage
C Device 66 (Rule Book p. 3-32)
99TXNAB 66+TABX 60.
99TXNBC 66+TBCX 60.
99TXNCA 66+TCAX 60.
C
C ************** PHASE A FIRING PULSES **************************************
C
C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15)
91RMAB
C send square impulse at current zero Device 52 (Rule B. p. 3-21)
88FAB1 52+UNITY 1. 0. 0 RMAB
88FAB2 52+UNITY 1. 0. -1 RMAB
C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23)
98FIAB1 54+FAB1 .0000 DELAB
98FIAB2 54+FAB2 .0000 DELAB
C for a 50 Hz system the constant .004167 below should be changed to 0.005
88DELIN = .004167 { to initialize alpha to 180 deg.
C
C ************* PHASE B FIRING PULSES *************************************
C
91RMBC
88FBC1 52+UNITY 1. 0. 0 RMBC
88FBC2 52+UNITY 1. 0. -1 RMBC
98FIBC1 54+FBC1 .0000 DELBC
98FIBC2 54+FBC2 .0000 DELBC
C
C ************ PHASE C FIRING PULSES *************************************
C
91RMCA
88FCA1 52+UNITY 1. 0. 0 RMCA
88FCA2 52+UNITY 1. 0. -1 RMCA
98FICA1 54+FCA1 .0000 DELCA
98FICA2 54+FCA2 .0000 DELCA
C
C ************* OPEN LOOP VAR CONTROL **************************
C **** WITH SUPERIMPOSED VOLTAGE CONTROL ***********
C
C the following will be repeated for all three phases as the SVC
C
C ************ RACTIVE POWER FLOWS *********
C
C calclate VAR transfer at transf. secondary
91TRXA { 34.5 kV side current through transformer
C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22)
88TRIA 53+TRXA .00417 .0043
88TRVA 53+TRSA .00417 .0043
C the following equation for calculating VAR flow is from
C Miller: Reactive power Control etc. (text book) p. 321
88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR
C
91TRXB
88TRIB 53+TRXB .00417 .0043
88TRVB 53+TRSB .00417 .0043
88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR
C
91TRXC
88TRIC 53+TRXC .00417 .0043
88TRVC 53+TRSC .00417 .0043
88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR
C
C ******************** SUPERIMPOSED VOLTAGE CONTROL ********************
C
C ******** DELTA Q TO ADJUST VOLTAGE ************
C the average value of phase to phase voltage is
0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15
C the difference between ref. and actual voltage is
C slow down the response by a (1/1+st) block
1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0
1.0
1.0 0.500
C the required VAR import taking voltage correction into account
0QRNEW +QREF +DVQ
C ***************** PHASE A ERROR ******************************************
C
C error in VAR import
0ERRQA +QRNEW -QINA
0QINCRA +ERRQA
C the new reactor output is then given by the Steinmetz Algorithm as
C the output at T-delT + QINCRA + QINCRB - QINCRC;
C as shown below in calculating the new SVC VAR's
C ****************** PHASE B ERROR ****************************************
C
0ERRQB +QRNEW -QINB
0QINCRB +ERRQB
C
C ****************** PHASE C ERROR *****************************************
C
0ERRQC +QRNEW -QINC
C
0QINCRC +ERRQC
C
C
C **************** PHASE A PULSE DELAY CONTROL ****************************
C the current firing angle is DELAB, this corresponds to an old reactor
C p.u. current given by the following non linear relation corresponding
C to the x = sigma-sin(sigma) function
99DLA1 = 1 - DELAB/.004167
C where DLA1 is the normalized conduction angle sigma between firing
C angle alpha 90 and 180 degrees.
C
99REOAB 56+DLA1
0.0 0.0
0.111 0.0022
0.222 0.0176
0.333 0.0575
0.444 0.1306
0.555 0.2414
0.666 0.3900
0.777 0.5718
0.888 0.7783
1.000 1.0000
9999.
C the new reactor current demanded is the increment plus the old
C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0
C this is applying the Steinmetz algorithm
0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00
C this is now reconverted into an angle, using the inverse of the
C above relation, and becomes the new DELAB; (Rule Book p. 3-25 )
99DELYAA56+INREAB
0.0 0.0
0.0022 0.111
0.0176 0.222
0.0575 0.333
0.1306 0.444
0.2414 0.555
0.3900 0.666
0.5718 0.777
0.7783 0.888
1.0000 1.000
9999.
99DELYA =DELYAA * 0.004167
C now smooth it out a bit
1DELAB +DELIN -DELYA 1.0 .0040
1.0
1.0 0.015
C
C ****************** PHASE B PULSE DELAY CONTROL **************************
C
99DLB1 = 1 - DELBC/.004167
C
99REOBC 56+DLB1
0.0 0.0
0.111 0.0022
0.222 0.0176
0.333 0.0575
0.444 0.1306
0.555 0.2414
0.666 0.3900
0.777 0.5718
0.888 0.7783
1.000 1.000
9999.
C
0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00
C
99DELYBB56+INREBC
0.0 0.0
0.0022 0.111
0.0176 0.222
0.0575 0.333
0.1306 0.444
0.2414 0.555
0.3900 0.666
0.5718 0.777
0.7783 0.888
1.000 1.000
9999.
99DELYB =DELYBB * 0.004167
C
1DELBC +DELIN -DELYB 1.0 0.0040
1.0
1.0 0.015
C
C *************** PHASE C PULSE DELAY CONTROL ******************************
C
99DLC1 = 1 - DELCA/.004167
C
99REOCA 56+DLC1
0.0 0.0
0.111 0.0022
0.222 0.0176
0.333 0.0575
0.444 0.1306
0.555 0.2414
0.666 0.3900
0.777 0.5718
0.888 0.7783
1.000 1.000
9999.
C
0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00
C
99DELYCC56+INRECA
0.0 0.0
0.0022 0.111
0.0176 0.222
0.0575 0.333
0.1306 0.444
0.2414 0.555
0.3900 0.666
0.5718 0.777
0.7783 0.888
1.000 1.000
9999.
99DELYC =DELYCC * 0.004167
C
1DELCA +DELIN -DELYC 1.0 0.0040
1.0
1.0 0.015
C
C ***************** REACTOR SWITCHING ***************************************
C
C control signals to switch reactive load 'XLA/B/C' on and off
C see TYPE 12 switches in power network.
C TACS source (Rule Book p. 3-14)
23FRLA 1000. 0.200 0.100 0.2
23FRLB 1000. 0.200 0.100 0.2
23FRLC 1000. 0.200 0.100 10.0
C
C initializations
77VLLAVG 1.0
77TXNAB 1.0
77QRNEW .30
77QINA .30
77QINB .30
77QINC .30
C
C ********* TACS OUTPUTS ************
C
33TXNAB TXNBC TXNCA ERRQA VLLAVG
33QRNEW DVQ QINA
BLANK end of TACS
C
C ************** NETWORK DATA *********************
C
C ********* LINE TO SOURCE ***********
C
C transmission line (equivalent) from GEN source to transformer
GENA TRFA 4.5 25.0
GENB TRFB 4.5 25.0
GENC TRFC 4.5 25.0
C fault level at trsf. 230 kV approx. 2083 MVA
C
C ************** MAIN TRANSFORMER **************
C
C transformer capacitance to ground 10000pF
C a very simple model, can be replaced with any more complex model
C transformer 230000/34500 Y/D 100 MVA; In=250 A
C x = 7.0% on 100 MVA
C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
C TRANSFORMER busref imag flux busin rmag empty
C ------------______------______------______------_____________________________-
C
C no saturation
TRANSFORMER 0.7 700.0 X
0.7 700.0 { 100%
9999
1TRPA 0.80 36.0 1330
2TRXA TRXB 1.00 385 {372
TRANSFORMER X Y
1TRPB
2TRXB TRXC
TRANSFORMER X Z
1TRPC
2TRXC TRXA
C
C transformer capacitance to ground and ph - ph 10000pF
TRXA 0.01
TRXB 0.01
TRXC 0.01
C capacitance between phases
TRXA TRXB 0.01
TRXB TRXC 0.01
TRXC TRXA 0.01
C
C *********** HARMONIC FILTERS ***************
C
C 5th harmonic filter 20 MVAR
TRSA TF5 2.38 44.5
TRSB TF5 2.38 44.5
TRSC TF5 2.38 44.5
C 7th harmonic filter 20 MVAR
TRSA TF7 1.21 44.5
TRSB TF7 1.21 44.5
TRUC TF7 1.21 44.5
C
C ******** TRANSFORMER SECONDARY LOAD ***************
C 75 MW, 30 MVAR
TRSA ND 13.67 5.47
TRSB ND 13.67 5.47
TRSC ND 13.67 5.47
C
C shunt capacitor 20 MVAR
TRSA 44.5
TRSB 44.5
TRSC 44.5
C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
C
C switched reactor .1 sec. on .1 sec. off
C see switch type 13 below and type 23 source in TACS
C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
XLA NSR 34.00 34.00
XLB NSR 34.00 34.00
XLC NSR 34.00 34.00
C
C
C ************** SNUBBERS **************
C
C the snubber parameters shown below are not necessarily the
C values a manufacturer would choose for a 34.5 kV valve.
C The parameters were selected so that only a small currrent flows
C through the control reactor with the valves non conducting,
C and overvoltages and spikes interfering with the firing control
C are prevented. It is quite possible that a better combination
C than that shown exists.
C
C in series with valves
C
CATAB RXAB .1
ANOAB RXAB .1
CATAB RXAB 4.0
ANOAB RXAB 4.0
C
CATBC RXBC .1
ANOBC RXBC .1
CATBC RXBC 4.0
ANOBC RXBC 4.0
C
CATCA RXCA .1
ANOCA RXCA .1
CATCA RECA 4.0
ANOCA RXCA 4.0
C
C across valves
C
CATAB TRSA 2000. .1
ANOAB TRSA 2000. .1
C
CATBC TRSB 2000. .1
ANOBC TRSB 2000. .1
C
CATCA TRSC 2000. .1
ANOCA TRSC 2000. .1
C
C ************* SVC CONTROLLED REACTOR *************
C
C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
RXAB TRSB 0.1 35.71 1
RXBC TRSC 0.1 35.71
RXCA TRSA 0.1 35.71
C
C *************** REACTOR FOR FIRING PULSE GENERATION ******
C
C Fire angle reference measurement using delta connected reactors
C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
TRSA RMXA 0.01 1
TRSB RMXB 0.01
TRSC RMXC 0.01
C The reactors are delta connected through measuring switches below
RMAB RMXB 200. 20000.
RMBC RMXC 200. 20000.
RMCA RMXA 200. 20000.
C
BLANK end of branch data
C *************** SWITCH DATA ***************8
C
C current measurement in the auxiliary reactor for firing pulse generation
C these switches complete the delta connection of the reactors
C (Rule Book p.6A-9)
RMXA RMAB MEASURING
RMXB RMBC MEASURING
RMXC RMCA MEASURING
C
C current measurement in the main transformer secondary
TRXA TRSA MEASURING 1
TRXB TRSB MEASURING 0
TRXC TRSC MEASURING 0
C current measurement in the main transformer primary
TRFA TRPA MEASURING 1
TRFB TRPB MEASURING 0
TRFC TRPC MEASURING 0
C
C switch for on/off switching the 17.5 MVAR resistive-reactive load
C (Rule Book p. 6C-1)
12TRSA XLA FRLA 11
12TRSB XLB FRLB 10
12TRSC XLC FRLC 10
C
C VALVES
C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
C Rule Book p. 6B-1
11TRSA CATAB 00. 15.0 FIAB1 1
11ANOAB TRSA 00. 15.0 FIAB2 1
11TRSB CATBC 0000. 15.0 FIBC1 1
11ANOBC TRSB 000. 15.0 FIBC2 1
11TRSC CATCA 0000. 15.0 FICA1 1
11ANOCA TRSC 000. 15.0 FICA2 1
C
BLANK end of switch data
C
C AC sources
C 230 kV supply
14GENA 187794. 60. 0. -1.
14GENB 187794. 60. 240. -1.
14GENC 187794. 60. 120. -1.
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C GENA |TRFA *
C TRFA |GENA *TRPA *
C GENB |TRFB *
C TRFB |GENB *TRPB *
C GENC |TRFC *
C TRFC |GENC *TRPC *
C X |TERRA *TERRA *TRPA *
C TRPA |TRFA * X*
C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA *
C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB *
BLANK end of source cards
C Total network loss P-loss by summing injections = 9.766831747973E+07
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04
C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04
C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04
C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07
C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07
C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06
C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07
C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06
C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06
C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8
C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951
TRSA TRFA { Names of nodes for which voltage is to be outputted
C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS
C TRSA TRPA XLA TRSB RMXA TXNAB
C
C TACS TACS TACS TACS TACS TACS TACS
C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA
C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0
C 0.0 0.0 0.0 1.0 0.3 0.0 0.3
C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562
C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0
C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec.
C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949
C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0
BLANK end of output requests
C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec.
C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec.
C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec.
C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec.
C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec.
C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec.
C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec.
C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec.
C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036
C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946
C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099
C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066
C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259
C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481
C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0
C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0
C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0
C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4
PRINTER PLOT
193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient
BLANK end of plot requests
BEGIN NEW DATA CASE
BLANK
|