diff options
author | Angelo Rossi <angelo.rossi.homelab@gmail.com> | 2023-06-21 12:04:16 +0000 |
---|---|---|
committer | Angelo Rossi <angelo.rossi.homelab@gmail.com> | 2023-06-21 12:04:16 +0000 |
commit | b18347ffc9db9641e215995edea1c04c363b2bdf (patch) | |
tree | f3908dc911399f1a21e17d950355ee56dc0919ee /benchmarks/dc22d.dat |
Initial commit.
Diffstat (limited to 'benchmarks/dc22d.dat')
-rw-r--r-- | benchmarks/dc22d.dat | 602 |
1 files changed, 602 insertions, 0 deletions
diff --git a/benchmarks/dc22d.dat b/benchmarks/dc22d.dat new file mode 100644 index 0000000..2fb39c3 --- /dev/null +++ b/benchmarks/dc22d.dat @@ -0,0 +1,602 @@ +BEGIN NEW DATA CASE
+C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC).
+C Contributed to ATP materials of the Can/Am user group February 1992 by:
+C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant
+C #203 - 1745 Martin Drive 705 Westtown Circle
+C White Rock/ South Surrey B.C. West Chester, PA 19382
+C CANADA V4A 6Z1 USA
+C Phone: 604-535-6540 Phone: 610-344-0432
+C FAX: 604-535-6548
+C In July of 1993, Mr. Furst revised it again in preparation for his use
+C of it at Prof. Ned Mohan's University of Minnesota short course there.
+C Size 1-10: 43 63 56 3 230 18 167 0 0 0
+C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0
+C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999
+NEW LIST SIZES
+ 0 0 68 8 450 35 285 0 0 0
+ 0 0 4700 0 0 0 0 0 12000 0
+ 0 0 220
+ 240000
+C *********** A GENERIC 6 PULSE SVC MODEL ************************************
+C
+C This is a conceptual model only, it must be refined
+C for any specific system; the control algorithm can be greatly improved.
+C
+C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer;
+C TCR's connected in delta.
+C
+C Thyristor gating pulses are phase locked to the current zero transition
+C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT;
+C individual phase open loop VAR control is used, with a superimposed.
+C slow voltage control.
+C
+C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV
+C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s
+C value of the 34.5 kV phase to phase voltages, which are the TACS variables
+C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC,
+C the thyristors have to be blocked. One way of doing this is to punch
+C 1000000. in col. 17-24 of the thyristor switches 11.
+C
+C To get the SVC overall response plot the transformer ph-ph r.m.s secondary
+C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three
+C ph-ph r.m.s. voltages
+C
+C To get the VAR import/phase through the transformer secondary
+C plot QINA (TACS)
+C
+C To get the transformer secondary voltage (instant.) plot TRSA
+C
+C TRSA-XLA shows the switching of the phase to phase load
+C
+C RXAB-TRSB plots the current through one AB arm of the thyristor bridge
+C
+C For sake of simplicity, some of the TACS variables have not been
+C initialized, so ignore the first 25 ms of the plots.
+C
+C If in the "Superimposed Voltage Control Section the gain
+C of DVQ is set to zero, the model reverts to open loop VAR control
+PRINTED NUMBER WIDTH, 13, 2,
+C For best results, do not use a time step more than 1/2 Degree (23.148
+C microsec for 60 Hz). Here, to speed the illustration, we use twice that,
+C & only simulate for half as long (extend to 0.5 sec for more transients).
+C Free-format data input is used in order to specify DELTAT precisely:
+C DELTAT TMAX XOPT COPT EPSILN TOLMAT
+.0000462962962962963, 0.25, 60., , , , , , , , ,
+ 1 -3 1 2 1 -1
+ 5 5 20 20 100 100 500 500
+TACS HYBRID
+C
+C Firing pulses are derived from the current through the measuring inductances
+C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into
+C TACS from the measuring switches connecting the RM's in delta,
+C corresponding to the delta connected thyristor valves.
+C
+C The current lags the voltage 90 deg. and its zero transition produces
+C the firing signal at an alpha of 90 deg.
+C This is done by TACS level triggered switches Device 52.
+C The firing pulse delay is calculated by the variables DELAB/BC/CA
+C and implemented by TACS transport device Device 54;
+C
+C For convenience, the firing angle is initialized to alpha = 180 deg.
+C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system.
+C The required firing angle is then calculated backwards from the
+C 180 deg. point, by using the variable DELYA(B,C).
+C The actual firing angle is then DELAB = DELIN -DELYA etc.
+C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms.
+C Then DELAB= DELIN - DELYA =0.0 (90 deg.)
+C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees.
+C For 50 Hz, DELIN = 5.0 ms.
+C
+C *********** VOLTAGE AND REACTIVE REFERENCE *************
+11VREFD 1.0
+C VAR reference
+C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.;
+C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase;
+C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV;
+C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u.
+88QTCR = 33.3*10**6
+C The VAR reference QREF should be determined so that the superimposed
+C voltage control changes the VAR flow as little as possible
+88QREF = 0.30
+C
+C *********** VOLTAGES TRANSFERRED FROM NETWORK *************
+C
+C ******* Import 34.5 kV phase voltages, get phase to phase and normalize *****
+C TRSA/B/C are the transformer secondary ph-g voltages
+C 90 - TACS voltage source driven by an EMTP network node voltage
+C (Rule Book p. 3-15)
+90TRSA
+90TRSB
+90TRSC
+C the phase to phase voltages
+99TRAB = TRSA - TRSB
+99TRBC = TRSB - TRSC
+99TRCA = TRSC - TRSA
+C normalize to get one p.u. for the phase to phase rms value
+99TABX = TRAB/34500
+99TBCX = TRBC/34500
+99TCAX = TRCA/34500
+C get the rms value of the A-B phase to phase voltage
+C Device 66 (Rule Book p. 3-32)
+99TXNAB 66+TABX 60.
+99TXNBC 66+TBCX 60.
+99TXNCA 66+TCAX 60.
+C
+C ************** PHASE A FIRING PULSES **************************************
+C
+C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15)
+91RMAB
+C send square impulse at current zero Device 52 (Rule B. p. 3-21)
+88FAB1 52+UNITY 1. 0. 0 RMAB
+88FAB2 52+UNITY 1. 0. -1 RMAB
+C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23)
+98FIAB1 54+FAB1 .0000 DELAB
+98FIAB2 54+FAB2 .0000 DELAB
+C for a 50 Hz system the constant .004167 below should be changed to 0.005
+88DELIN = .004167 { to initialize alpha to 180 deg.
+C
+C ************* PHASE B FIRING PULSES *************************************
+C
+91RMBC
+88FBC1 52+UNITY 1. 0. 0 RMBC
+88FBC2 52+UNITY 1. 0. -1 RMBC
+98FIBC1 54+FBC1 .0000 DELBC
+98FIBC2 54+FBC2 .0000 DELBC
+C
+C ************ PHASE C FIRING PULSES *************************************
+C
+91RMCA
+88FCA1 52+UNITY 1. 0. 0 RMCA
+88FCA2 52+UNITY 1. 0. -1 RMCA
+98FICA1 54+FCA1 .0000 DELCA
+98FICA2 54+FCA2 .0000 DELCA
+C
+C ************* OPEN LOOP VAR CONTROL **************************
+C **** WITH SUPERIMPOSED VOLTAGE CONTROL ***********
+C
+C the following will be repeated for all three phases as the SVC
+C
+C ************ RACTIVE POWER FLOWS *********
+C
+C calclate VAR transfer at transf. secondary
+91TRXA { 34.5 kV side current through transformer
+C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22)
+88TRIA 53+TRXA .00417 .0043
+88TRVA 53+TRSA .00417 .0043
+C the following equation for calculating VAR flow is from
+C Miller: Reactive power Control etc. (text book) p. 321
+88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR
+C
+91TRXB
+88TRIB 53+TRXB .00417 .0043
+88TRVB 53+TRSB .00417 .0043
+88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR
+C
+91TRXC
+88TRIC 53+TRXC .00417 .0043
+88TRVC 53+TRSC .00417 .0043
+88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR
+C
+C ******************** SUPERIMPOSED VOLTAGE CONTROL ********************
+C
+C ******** DELTA Q TO ADJUST VOLTAGE ************
+C the average value of phase to phase voltage is
+ 0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15
+C the difference between ref. and actual voltage is
+C slow down the response by a (1/1+st) block
+ 1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0
+ 1.0
+ 1.0 0.500
+C the required VAR import taking voltage correction into account
+ 0QRNEW +QREF +DVQ
+C ***************** PHASE A ERROR ******************************************
+C
+C error in VAR import
+ 0ERRQA +QRNEW -QINA
+ 0QINCRA +ERRQA
+C the new reactor output is then given by the Steinmetz Algorithm as
+C the output at T-delT + QINCRA + QINCRB - QINCRC;
+C as shown below in calculating the new SVC VAR's
+C ****************** PHASE B ERROR ****************************************
+C
+ 0ERRQB +QRNEW -QINB
+ 0QINCRB +ERRQB
+C
+C ****************** PHASE C ERROR *****************************************
+C
+ 0ERRQC +QRNEW -QINC
+C
+ 0QINCRC +ERRQC
+C
+C
+C **************** PHASE A PULSE DELAY CONTROL ****************************
+C the current firing angle is DELAB, this corresponds to an old reactor
+C p.u. current given by the following non linear relation corresponding
+C to the x = sigma-sin(sigma) function
+99DLA1 = 1 - DELAB/.004167
+C where DLA1 is the normalized conduction angle sigma between firing
+C angle alpha 90 and 180 degrees.
+C
+99REOAB 56+DLA1
+ 0.0 0.0
+ 0.111 0.0022
+ 0.222 0.0176
+ 0.333 0.0575
+ 0.444 0.1306
+ 0.555 0.2414
+ 0.666 0.3900
+ 0.777 0.5718
+ 0.888 0.7783
+ 1.000 1.0000
+ 9999.
+C the new reactor current demanded is the increment plus the old
+C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0
+C this is applying the Steinmetz algorithm
+ 0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00
+C this is now reconverted into an angle, using the inverse of the
+C above relation, and becomes the new DELAB; (Rule Book p. 3-25 )
+99DELYAA56+INREAB
+ 0.0 0.0
+ 0.0022 0.111
+ 0.0176 0.222
+ 0.0575 0.333
+ 0.1306 0.444
+ 0.2414 0.555
+ 0.3900 0.666
+ 0.5718 0.777
+ 0.7783 0.888
+ 1.0000 1.000
+ 9999.
+99DELYA =DELYAA * 0.004167
+C now smooth it out a bit
+ 1DELAB +DELIN -DELYA 1.0 .0040
+ 1.0
+ 1.0 0.015
+C
+C ****************** PHASE B PULSE DELAY CONTROL **************************
+C
+99DLB1 = 1 - DELBC/.004167
+C
+99REOBC 56+DLB1
+ 0.0 0.0
+ 0.111 0.0022
+ 0.222 0.0176
+ 0.333 0.0575
+ 0.444 0.1306
+ 0.555 0.2414
+ 0.666 0.3900
+ 0.777 0.5718
+ 0.888 0.7783
+ 1.000 1.000
+ 9999.
+C
+ 0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00
+C
+99DELYBB56+INREBC
+ 0.0 0.0
+ 0.0022 0.111
+ 0.0176 0.222
+ 0.0575 0.333
+ 0.1306 0.444
+ 0.2414 0.555
+ 0.3900 0.666
+ 0.5718 0.777
+ 0.7783 0.888
+ 1.000 1.000
+ 9999.
+99DELYB =DELYBB * 0.004167
+C
+ 1DELBC +DELIN -DELYB 1.0 0.0040
+ 1.0
+ 1.0 0.015
+C
+C *************** PHASE C PULSE DELAY CONTROL ******************************
+C
+99DLC1 = 1 - DELCA/.004167
+C
+99REOCA 56+DLC1
+ 0.0 0.0
+ 0.111 0.0022
+ 0.222 0.0176
+ 0.333 0.0575
+ 0.444 0.1306
+ 0.555 0.2414
+ 0.666 0.3900
+ 0.777 0.5718
+ 0.888 0.7783
+ 1.000 1.000
+ 9999.
+C
+ 0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00
+C
+99DELYCC56+INRECA
+ 0.0 0.0
+ 0.0022 0.111
+ 0.0176 0.222
+ 0.0575 0.333
+ 0.1306 0.444
+ 0.2414 0.555
+ 0.3900 0.666
+ 0.5718 0.777
+ 0.7783 0.888
+ 1.000 1.000
+ 9999.
+99DELYC =DELYCC * 0.004167
+C
+ 1DELCA +DELIN -DELYC 1.0 0.0040
+ 1.0
+ 1.0 0.015
+C
+C ***************** REACTOR SWITCHING ***************************************
+C
+C control signals to switch reactive load 'XLA/B/C' on and off
+C see TYPE 12 switches in power network.
+C TACS source (Rule Book p. 3-14)
+23FRLA 1000. 0.200 0.100 0.2
+23FRLB 1000. 0.200 0.100 0.2
+23FRLC 1000. 0.200 0.100 10.0
+C
+C initializations
+77VLLAVG 1.0
+77TXNAB 1.0
+77QRNEW .30
+77QINA .30
+77QINB .30
+77QINC .30
+C
+C ********* TACS OUTPUTS ************
+C
+33TXNAB TXNBC TXNCA ERRQA VLLAVG
+33QRNEW DVQ QINA
+BLANK end of TACS
+C
+C ************** NETWORK DATA *********************
+C
+C ********* LINE TO SOURCE ***********
+C
+C transmission line (equivalent) from GEN source to transformer
+ GENA TRFA 4.5 25.0
+ GENB TRFB 4.5 25.0
+ GENC TRFC 4.5 25.0
+C fault level at trsf. 230 kV approx. 2083 MVA
+C
+C ************** MAIN TRANSFORMER **************
+C
+C transformer capacitance to ground 10000pF
+C a very simple model, can be replaced with any more complex model
+C transformer 230000/34500 Y/D 100 MVA; In=250 A
+C x = 7.0% on 100 MVA
+C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
+C TRANSFORMER busref imag flux busin rmag empty
+C ------------______------______------______------_____________________________-
+C
+C no saturation
+ TRANSFORMER 0.7 700.0 X
+ 0.7 700.0 { 100%
+ 9999
+ 1TRPA 0.80 36.0 1330
+ 2TRXA TRXB 1.00 385 {372
+ TRANSFORMER X Y
+ 1TRPB
+ 2TRXB TRXC
+ TRANSFORMER X Z
+ 1TRPC
+ 2TRXC TRXA
+C
+C transformer capacitance to ground and ph - ph 10000pF
+ TRXA 0.01
+ TRXB 0.01
+ TRXC 0.01
+C capacitance between phases
+ TRXA TRXB 0.01
+ TRXB TRXC 0.01
+ TRXC TRXA 0.01
+C
+C *********** HARMONIC FILTERS ***************
+C
+C 5th harmonic filter 20 MVAR
+ TRSA TF5 2.38 44.5
+ TRSB TF5 2.38 44.5
+ TRSC TF5 2.38 44.5
+C 7th harmonic filter 20 MVAR
+ TRSA TF7 1.21 44.5
+ TRSB TF7 1.21 44.5
+ TRUC TF7 1.21 44.5
+C
+C ******** TRANSFORMER SECONDARY LOAD ***************
+C 75 MW, 30 MVAR
+ TRSA ND 13.67 5.47
+ TRSB ND 13.67 5.47
+ TRSC ND 13.67 5.47
+C
+C shunt capacitor 20 MVAR
+ TRSA 44.5
+ TRSB 44.5
+ TRSC 44.5
+C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
+C
+C switched reactor .1 sec. on .1 sec. off
+C see switch type 13 below and type 23 source in TACS
+C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
+ XLA NSR 34.00 34.00
+ XLB NSR 34.00 34.00
+ XLC NSR 34.00 34.00
+C
+C
+C ************** SNUBBERS **************
+C
+C the snubber parameters shown below are not necessarily the
+C values a manufacturer would choose for a 34.5 kV valve.
+C The parameters were selected so that only a small currrent flows
+C through the control reactor with the valves non conducting,
+C and overvoltages and spikes interfering with the firing control
+C are prevented. It is quite possible that a better combination
+C than that shown exists.
+C
+C in series with valves
+C
+ CATAB RXAB .1
+ ANOAB RXAB .1
+ CATAB RXAB 4.0
+ ANOAB RXAB 4.0
+C
+ CATBC RXBC .1
+ ANOBC RXBC .1
+ CATBC RXBC 4.0
+ ANOBC RXBC 4.0
+C
+ CATCA RXCA .1
+ ANOCA RXCA .1
+ CATCA RECA 4.0
+ ANOCA RXCA 4.0
+C
+C across valves
+C
+ CATAB TRSA 2000. .1
+ ANOAB TRSA 2000. .1
+C
+ CATBC TRSB 2000. .1
+ ANOBC TRSB 2000. .1
+C
+ CATCA TRSC 2000. .1
+ ANOCA TRSC 2000. .1
+C
+C ************* SVC CONTROLLED REACTOR *************
+C
+C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
+ RXAB TRSB 0.1 35.71 1
+ RXBC TRSC 0.1 35.71
+ RXCA TRSA 0.1 35.71
+C
+C *************** REACTOR FOR FIRING PULSE GENERATION ******
+C
+C Fire angle reference measurement using delta connected reactors
+C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
+ TRSA RMXA 0.01 1
+ TRSB RMXB 0.01
+ TRSC RMXC 0.01
+C The reactors are delta connected through measuring switches below
+ RMAB RMXB 200. 20000.
+ RMBC RMXC 200. 20000.
+ RMCA RMXA 200. 20000.
+C
+BLANK end of branch data
+C *************** SWITCH DATA ***************8
+C
+C current measurement in the auxiliary reactor for firing pulse generation
+C these switches complete the delta connection of the reactors
+C (Rule Book p.6A-9)
+ RMXA RMAB MEASURING
+ RMXB RMBC MEASURING
+ RMXC RMCA MEASURING
+C
+C current measurement in the main transformer secondary
+ TRXA TRSA MEASURING 1
+ TRXB TRSB MEASURING 0
+ TRXC TRSC MEASURING 0
+C current measurement in the main transformer primary
+ TRFA TRPA MEASURING 1
+ TRFB TRPB MEASURING 0
+ TRFC TRPC MEASURING 0
+C
+C switch for on/off switching the 17.5 MVAR resistive-reactive load
+C (Rule Book p. 6C-1)
+12TRSA XLA FRLA 11
+12TRSB XLB FRLB 10
+12TRSC XLC FRLC 10
+C
+C VALVES
+C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
+C Rule Book p. 6B-1
+11TRSA CATAB 00. 15.0 FIAB1 1
+11ANOAB TRSA 00. 15.0 FIAB2 1
+11TRSB CATBC 0000. 15.0 FIBC1 1
+11ANOBC TRSB 000. 15.0 FIBC2 1
+11TRSC CATCA 0000. 15.0 FICA1 1
+11ANOCA TRSC 000. 15.0 FICA2 1
+C
+BLANK end of switch data
+C
+C AC sources
+C 230 kV supply
+14GENA 187794. 60. 0. -1.
+14GENB 187794. 60. 240. -1.
+14GENC 187794. 60. 120. -1.
+C --------------+------------------------------
+C From bus name | Names of all adjacent busses.
+C --------------+------------------------------
+C GENA |TRFA *
+C TRFA |GENA *TRPA *
+C GENB |TRFB *
+C TRFB |GENB *TRPB *
+C GENC |TRFC *
+C TRFC |GENC *TRPC *
+C X |TERRA *TERRA *TRPA *
+C TRPA |TRFA * X*
+C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA *
+C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB *
+BLANK end of source cards
+C Total network loss P-loss by summing injections = 9.766831747973E+07
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04
+C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04
+C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04
+C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07
+C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07
+C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06
+C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07
+C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06
+C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06
+C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8
+C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951
+ TRSA TRFA { Names of nodes for which voltage is to be outputted
+C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS
+C TRSA TRPA XLA TRSB RMXA TXNAB
+C
+C TACS TACS TACS TACS TACS TACS TACS
+C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA
+C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
+C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
+C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
+C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
+C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
+C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
+C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
+C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
+C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
+C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
+C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
+C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
+C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
+C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0
+C 0.0 0.0 0.0 1.0 0.3 0.0 0.3
+C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562
+C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0
+C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec.
+C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949
+C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0
+BLANK end of output requests
+C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec.
+C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec.
+C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec.
+C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec.
+C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec.
+C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec.
+C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec.
+C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec.
+C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036
+C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946
+C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099
+C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066
+C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259
+C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481
+C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0
+C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0
+C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0
+C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4
+ PRINTER PLOT
+ 193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient
+BLANK end of plot requests
+BEGIN NEW DATA CASE
+BLANK
|