1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
BEGIN NEW DATA CASE
C BENCHMARK DCNEW-9
C Test of U.M. for the option of data that is nearly compatible with the
C Type-59 S.M. Compare with DC-53 (source of the original data). Mass 6
C is no longer an exciter (the U.M. has no such feature). Compensation
C will be used for armature currents. See DCNEW-10 for solution without it
C Note: WSM and Yin change comment cards in Leuven, October 22, 1990,
C following modifications of code that change answers in 3rd or 4th
C decimal place (peak values of PRINTER PLOTs are barely affected).
PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (if 8 output columns)
.000200 .150 60. 60.
1 1 1 1 1 -1
5 5 20 20 100 100 500 500
51NAVH AMCC1 A 162.67 507.51
52NAVH BMCC1 B 6.51 162.97
53NAVH CMCC1 C
MCC1 AMCC2 A 8285.
MCC1 BMCC2 B 8285.
MCC1 CMCC2 C 8285.
MCC2 AEQV A 19.52
MCC2 BEQV B 19.52
MCC2 CEQV C 19.52
TRANSFORMER TRAN A
9999
1NAVL ANAVL C .1 26.
2NAVH A 31.23 311.09
TRANSFORMER TRAN A TRAN B
1NAVL BNAVL A
2NAVH B
TRANSFORMER TRAN A TRAN C
1NAVL CNAVL B
2NAVH C
NAVL A 2500. 1.13
NAVL B 2500. 1.13
NAVL C 2500. 1.13
SWT AMCC2 A 4830.
SWT BMCC2 B 4830.
SWT CMCC2 C 4830.
MCC2 ASWT A 13.01
MCC2 BSWT B 13.01
MCC2 CSWT C 13.01
$UNITS, 0.0, 0.0 { Turn off XOPT = COPT = 60 of miscellaneous data card
BLANK card ending branch cards
SWT A .01661667 .09161667
SWT B .01661667 .09161667
SWT C .01661667 .09161667
BLANK card ending switch cards
14EQV A 389997. 60. -93.81293 -1.
14EQV B 389997. 60. -213.81293 -1.
14EQV C 389997. 60. 26.18707 -1.
19 UM
SMDATA 0 { Column-15 zero is a request for compensation of armature
BLANK card ending Class-1 U.M. data cards
59NAVL A 21229. 60. -44.896562
NAVL B
NAVL C
PARAMETER FITTING 1.
6 5 2 1. 1. 892.4 26. +1800. 1907. 3050.
.13 1.79 1.71 .169 .228 .13504 .20029
4.3 .85 .032 .05 .13
1 .3 .027691 33.68813 BUSM1
2 .26 .046379 60.9591 BUSM2
3 .22 .255958 90.81823 BUSM3
4 .22 .263573 123.6634 BUSM4
5 .258887 4.925036 BUSM5
6 .0101995 BUSM6
11111111 333333
FINISH
BLANK card ending all U.M. data cards
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C NAVH A |TERRA *MCC1 A*
C MCC1 A |NAVH A*MCC2 A*
C NAVH B |TERRA *MCC1 B*
C MCC1 B |NAVH B*MCC2 B*
C NAVH C |TERRA *MCC1 C*
C MCC1 C |NAVH C*MCC2 C*
C MCC2 A |MCC1 A*EQV A*SWT A*SWT A*
C MCC2 B |MCC1 B*EQV B*SWT B*SWT B*
C MCC2 C |MCC1 C*EQV C*SWT C*SWT C*
C EQV A |MCC2 A*
C EQV B |MCC2 B*
C EQV C |MCC2 C*
C < < Etc. (many more not shown) > >
BLANK card ending all source cards (including the U.M.)
C Total network loss P-loss by summing injections = 1.775797462495E+07
C Total network loss P-loss by summing injections = 7.638165973267E+16
C Total network loss P-loss by summing injections = 7.637910322914E+16
C Total network loss P-loss by summing injections = 7.638932292935E+16
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn
C SWT A Open Open Open
C SWT B Open Open Open
C SWT C Open Open Open
C BUSM2 BUSM1 -6.37300009E+05 2.76386719E+01 6.37300009E+05
C BUSM3 BUSM2 -1.18962668E+06 7.40189819E+01 1.18962668E+06
C BUSM4 BUSM3 -1.65698002E+06 3.29398010E+02 1.65698005E+06
C BUSM5 BUSM4 -2.12433336E+06 5.92635864E+02 2.12433344E+06
C BUSM6 BUSM5 0.00000000E+00 -1.01809349E+01 1.01809349E+01
C
C EQV C 349966.92087687 389997. -1273.107108882 1348.5187481048
C 172106.98504408 26.1870700 -444.6359221929 -160.7481140
NAVH ANAVH BNAVH C
C Step Time BUSM1 BUSM2 BUSM3 BUSM4 BUSM5 BUSM6 NAVH A NAVH B
C TERRA TERRA TERRA TERRA TERRA TERRA
C
C NAVH C BUSM2 BUSM3 BUSM4 BUSM5 BUSM6 UM-1 UM-1
C BUSM1 BUSM2 BUSM3 BUSM4 BUSM5 TQGEN IPA
C
C UM-1 UM-1 UM-1 UM-1 UM-1 UM-1
C IPB IPC IE1 IE2 IE3 IE4
C *** Phasor I(0) = -6.3730001E+05 Switch "BUSM2 " to "BUSM1 " closed
C *** Phasor I(0) = -1.1896267E+06 Switch "BUSM3 " to "BUSM2 " closed
C *** Phasor I(0) = -1.6569800E+06 Switch "BUSM4 " to "BUSM3 " closed
C *** Phasor I(0) = -2.1243334E+06 Switch "BUSM5 " to "BUSM4 " closed
C *** Phasor I(0) = 0.0000000E+00 Switch "BUSM6 " to "BUSM5 " closed
C 0 0.0 376.9911184 376.9911184 376.9911184 376.9911184 376.9911184 376.9911184 54291.46171 -385072.283
C 330780.8214 -637300.009 -.1189627E7 -.165698E7 -.2124333E7 0.0 .21243334E7 9214.545301
C -27456.1144 18241.56909 4313.224999 0.0 0.0 0.0
C 1 .2E-3 376.9911184 376.9911184 376.9911184 376.9911184 376.9911186 376.9911184 85318.78796 -396024.762
C 310705.9745 -637300.009 -.1189627E7 -.165698E7 -.2124333E7 -.138837E-3 .21243107E7 11175.13477
C -27770.8437 16595.70895 4313.232183 .556544506 .5177532216 .2174144099
C 2 .4E-3 376.9911184 376.9911184 376.9911184 376.9911184 376.9911194 376.9911184 115764.6332 -404689.207
C 288924.5743 -637300.009 -.1189627E7 -.165698E7 -.2124333E7 -.952727E-3 .21242684E7 13072.19218
C -27927.6403 14855.44814 4313.236387 .8570545884 1.111579264 .4663873197
BLANK card ending output requests (here, just node voltages)
C *** Open switch "SWT C" to " " after 1.00200000E-01 sec.
C 750 .15 378.9802147 378.8066705 378.5631922 378.0587633 377.9216436 362.5597378 153822.7526 -282349.318
C 178476.3341 -.1750083E7 -.3711689E7 -.8145995E7 -.3608856E7 -369190.836 -429002.914 -21330.627
C -16304.4988 37635.12584 5406.705235 -7773.4811 26655.00106 10976.10311
C maxima : 387.5919106 384.6511841 381.1764335 380.9022734 381.7530779 390.8917952 688961.4857 512761.0191
C 483186.0844 661792.7005 .13554233E7 .28091795E7 .10610433E7 767578.4255 .72538035E7 75502.19563
C 60315.4182 76573.63775 6524.504755 46325.70396 40735.63276 15991.19325
C Times of max : .136 .1368 .1382 .116 .1126 .12 .1202 .1092
C .1152 .1228 .1234 .1258 .0582 .1342 .1276 .137
C .0444 .1298 .0908 .1384 .0436 .0434
C minima : 370.1557803 373.9716939 376.015633 375.3288512 375.0977997 361.0545505 -514378.088 -653956.984
C -620927.877 -.1831477E7 -.3711689E7 -.8145995E7 -.4021296E7 -501320.871 -.183589E7 -76972.3829
C -68080.9903 -74122.2189 3582.557198 -55611.1978 -44273.1329 -18983.9688
C Times of min : .111 .1108 .0518 .1402 .1382 .1466 .112 .1174
C .123 0.1 .15 .15 .1406 .1078 .1026 .127
C .0356 .1396 .1156 .1132 .1262 .126
PRINTER PLOT
19415. 150. UM-1 TQGEN { Axis limits : (-1.836, 7.254)
18415. 150. BUSM6 { Axis limits : (0.000, 3.909)
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C BENCHMARK DCNEW-9
C 2nd of 2 subcases is identical to the first. Prior to its correction
C in mid-May, 1993, this was incorrect as demonstrated by Juan Martinez.
C WSM added 0 initialization at the top of SMDATA to solve the problem.
PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (if 8 output columns)
.000200 .0002 60. 60. { We only need look at step 1 (previously bad)
1 1
51NAVH AMCC1 A 162.67 507.51
52NAVH BMCC1 B 6.51 162.97
53NAVH CMCC1 C
MCC1 AMCC2 A 8285.
MCC1 BMCC2 B 8285.
MCC1 CMCC2 C 8285.
MCC2 AEQV A 19.52
MCC2 BEQV B 19.52
MCC2 CEQV C 19.52
TRANSFORMER TRAN A
9999
1NAVL ANAVL C .1 26.
2NAVH A 31.23 311.09
TRANSFORMER TRAN A TRAN B
1NAVL BNAVL A
2NAVH B
TRANSFORMER TRAN A TRAN C
1NAVL CNAVL B
2NAVH C
NAVL A 2500. 1.13
NAVL B 2500. 1.13
NAVL C 2500. 1.13
SWT AMCC2 A 4830.
SWT BMCC2 B 4830.
SWT CMCC2 C 4830.
MCC2 ASWT A 13.01
MCC2 BSWT B 13.01
MCC2 CSWT C 13.01
$UNITS, 0.0, 0.0 { Turn off XOPT = COPT = 60 of miscellaneous data card
BLANK card ending branch cards
SWT A .01661667 .09161667
SWT B .01661667 .09161667
SWT C .01661667 .09161667
BLANK card ending switch cards
14EQV A 389997. 60. -93.81293 -1.
14EQV B 389997. 60. -213.81293 -1.
14EQV C 389997. 60. 26.18707 -1.
19 UM
SMDATA 0 { Column-15 zero is a request for compensation of armature
BLANK card ending Class-1 U.M. data cards
59NAVL A 21229. 60. -44.896562
NAVL B
NAVL C
PARAMETER FITTING 1.
6 5 2 1. 1. 892.4 26. +1800. 1907. 3050.
.13 1.79 1.71 .169 .228 .13504 .20029
4.3 .85 .032 .05 .13
1 .3 .027691 33.68813 BUSM1
2 .26 .046379 60.9591 BUSM2
3 .22 .255958 90.81823 BUSM3
4 .22 .263573 123.6634 BUSM4
5 .258887 4.925036 BUSM5
6 .0101995 BUSM6
11111111 333333
FINISH
BLANK card ending all U.M. data cards
BLANK card ending all source cards (including the U.M.)
NAVH ANAVH BNAVH C
C Step Time BUSM1 BUSM2 BUSM3 BUSM4 BUSM5 BUSM6 NAVH A NAVH B
C TERRA TERRA TERRA TERRA TERRA TERRA
C
C NAVH C BUSM2 BUSM3 BUSM4 BUSM5 BUSM6 UM-1 UM-1
C BUSM1 BUSM2 BUSM3 BUSM4 BUSM5 TQGEN IPA
C
C UM-1 UM-1 UM-1 UM-1 UM-1 UM-1
C IPB IPC IE1 IE2 IE3 IE4
C *** Phasor I(0) = -6.3730001E+05 Switch "BUSM2 " to "BUSM1 " closed in the steady-state.
C *** Phasor I(0) = -1.1896267E+06 Switch "BUSM3 " to "BUSM2 " closed in the steady-state.
C *** Phasor I(0) = -1.6569800E+06 Switch "BUSM4 " to "BUSM3 " closed in the steady-state.
C *** Phasor I(0) = -2.1243334E+06 Switch "BUSM5 " to "BUSM4 " closed in the steady-state.
C *** Phasor I(0) = 0.0000000E+00 Switch "BUSM6 " to "BUSM5 " closed in the steady-state.
BLANK card ending output requests (here, just node voltages)
C 0 0.0 376.9911184 376.9911184 376.9911184 376.9911184 376.9911184 376.9911184 54291.46171 -385072.283
C 330780.8214 -637300.009 -.1189627E7 -.165698E7 -.2124333E7 0.0 .21243334E7 9214.545301
C -27456.1144 18241.56909 4313.224999 0.0 0.0 0.0
C 1 .2E-3 376.9911184 376.9911184 376.9911184 376.9911184 376.9911186 376.9911184 85318.78796 -396024.762
C 310705.9745 -637300.009 -.1189627E7 -.165698E7 -.2124333E7 -.138837E-3 .21243107E7 11175.13477
C -27770.8437 16595.70895 4313.232183 .5565441297 .5177532617
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C 3rd of 3 subcases.
C Test of U.M. as used for servo motor (2-phase induction motor). See Vol.
C XI EMTP Memoranda, 17 July 1981, page IEEO-21. For simplicity, SPY
C is not used here. Instead, we just consider the startup transients as
C documented in the memorandum (plots shown on pages 22 and 23). Shorten
C the simulation to 250 msec (1981 simulation went to 400 msec), which is
C plenty to show decay of angular error. Increase dT from half a msec to
C 1 msec to speed the simulation. Yes, this does introduce some error, but
C overall shapes of curves are surprisingly similar. The general principle
C is as follows. Actual rotor angle is computed in TACS by integrating the
C rotor speed. This is subtracted from the desired rotor angle (1/10 of a
C radian) to generate an error signal that is used to scale the sinusoidal
C excitation of one coil of the motor. Of course, the two coils are excited
C by sinusoidal signals that are 90 degrees apart in phase (a 2-phase motor
C really is just half of a 4-phase motor).
C If one wants a normal, 2-phase induction motor instead of a servo motor,
C the problem can be simplified considerably. Begin by removing all TACS
C data. Also remove the Type-60 source, and replace VCTACS by BUSCON
C in the U.M. data. In words, drive the control coil by a balanced signal
C rather than the control signal, & the starting transient of a balanced,
C 2-phase induction motor will be seen. This will be like DC-35, but with
C the normal 3 phases converted to two.
PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns)
.001 .250
1 1 1 0 1 -1
5 5 20 20
TACS HYBRID
1POS +BUSOM { Integrate input rotor speed BUSOM to produce rotor angle POS
1.0 0.0 { Numerator of transfer function is 1 + 0 * s
0.0 1.0 { Denominator of transfer function is 0 + 1 * s
C The following two TACS sources had T-start < 0 ("-1." in cols. 68-70). But
C this has no effect on the answer, so remove such extra, gratuitous work:
11GAIN 80. { -1.
11POSREF 0.1 { -1.
C 90BUSREF { 1981 data involved this variable. But since unused, delete it here
90BUSCON { Bring into TACS unscaled value of voltage of control coil of motor
90BUSOM { Bring into TACS the speed of rotor (voltage across the capacitance)
98AMPERR = GAIN * ( POSREF - POS ) { Error signal = gain * (error in position)
98VCTACS = BUSCON * AMPERR { Sinusoidal valu: voltage for control coil of motor
33POS AMPERR { TACS outputs will be rotor angle & signal proportional to error
BLANK card ending TACS data
BUSRD 1.E-10 { 1st of 2 rotor coils is shorted (almost)
BUSRQ 1.E-10 { 2nd of 2 rotor coils ...
BUSREF 1.0 { Dummy branch connects electric network node
BUSCON 1.0 { Dummy branch connects electric network node
VCTACS 1.0 { Dummy branch connects electric network node
BUSOM 6.0E+5 { Capacitor represents rotor mass
BUSOM .03 { Parallel resistance adds losses
BLANK card terminating branch cards
BLANK card ends non-existent switch cards
C Note about following 2 source cards. The 1981 data shows T-start < 0,
C which will involve at least one phasor solution. But since this affects
C the solution only at the roundoff level, it here is being omitted. Note
C the lack of influence is believable since VCTACS is the amplitude of the
C signal applied to the control coil, and this, as a Type-60 source, is
C ignored during the phasor solution. So, only one of the two power coils
C is excited, and this has negligible effect on the subsequent transients.
C Name Amplitude Hz Degrees T-start
14BUSREF 100.0 60.0 -90.0 -0.
14BUSCON 100.0 60.0 0.0 -0.
60VCTACS { Signal for control coil must be electric network node, so use Type 60
C The preceding Type-60 source was not involved in the 1981 data. It seems
C that earlier, rules allowed the direct connection of a TACS signal to a
C power coil. But, as tested 2 Nov 2000, such direct connection resulted
C in an error message that suggested indirect connection. Well, this is it.
C TACS passes the signal to an electric network node (VCTACS), and the power
C coil of the U.M. is connected to this. The effect should be the same.
19 UM { U.M. data cards begin with declaration of Type-19 source
0 { Use compensation (not prediction)
BLANK card ending Class-1 U.M. data
5 1 1111BUSOM 2 0.01
C E14 -----><---- E14 --->1<---- E14
0.0 0.020292 0
0.0 0.020292 0
BLANK card begins coil data (reserve space for missing coil of 3-phase storage)
C E14 -----><---- E14 ---><BUS1><BUS2>
0.063 0.0003926 BUSREF 1 0.0 { 1st power coil has fixed V
0.063 0.0003926 VCTACS 1 0.0 { 2nd power coil uses TACS V
0.83 0.0003926 BUSRD 1 0.0 { 1st rotor coil is shorted
0.83 0.0003926 BUSRQ 1 0.0 { 2nd rotor coil is shorted
BLANK card ending all U.M. data
C The preceding data cards are tricky. Document the interpretation, which
C is quite unusual (note coil card 1):
C U.M. data begins. List-25 allocation = 347. |19 UM { U.M. data cards begin with declaration of Type-19 source
C Compensation is used by the U.M. power coils. |0 { Use compensation (not prediction)
C Blank card terminating Class-1 U.M. data cards. |BLANK card ending Class-1 U.M. data
C U.M. 1, machine card 1. Type = 5. | 5 1 1111BUSOM 2 0.01
C U.M. 1, machine card 2. 0.000E+00 2.029E-02 |0.0 0.020292 0
C U.M. 1, machine card 3. 0.000E+00 2.029E-02 |0.0 0.020292 0
C U.M. 1, coil card 1. 0.000E+00 0.000E+00 |BLANK card begins coil data (reserve space for missing coil of 3-phase storage)
C U.M. 1, coil card 2. 6.300E-02 3.926E-04 |0.063 0.0003926 BUSREF 1 0.0 { 1st winding card
C U.M. 1, coil card 3. 6.300E-02 3.926E-04 |0.063 0.0003926 VCTACS 1 0.0
C U.M. 1, coil card 4. 8.300E-01 3.926E-04 |0.83 0.0003926 BUSRD 1 0.0
C U.M. 1, coil card 5. 8.300E-01 3.926E-04 |0.83 0.0003926 BUSRQ 1 0.0
C Blank card terminating all U.M. data. |BLANK card ending all U.M. data
BLANK card ending electric network source cards
C Note that the following comment cards document the solution using the 1981
C dT = 1/2 msec. By comparing these with the solution using dT = 1 msec, it
C is easy to see that the solution has not changed much. For example, take
C the peak torque. THETAM = .1359 is the old value and .1324 is the new.
C Next 2 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Final 7 output variables pertain to Type-19 U.M. components (names are generated internally);
C Step Time TACS TACS UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1
C POS AMPERR TQGEN OMEGM THETAM IPB IPC IE1 IE2
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-3 0.0 8.0 0.0 0.0 0.0 -4.7260614 0.0 -4.5903111 0.0
C 2 .1E-2 -.75353E-7 8.00000603 .733439918 0.0 0.0 -16.719968 -198.19905 -16.148526 -192.50603
C 3 .0015 -.64027E-6 8.00005122 3.31829481 0.0 0.0 -32.420897 -499.42028 -31.077691 -481.25111
C 4 .002 -.19544E-5 8.00015635 .073317462 0.0 0.0 -49.532565 -645.81451 -47.080521 -613.88079
C 5 .0025 -.21756E-5 8.00017405 -13.753032 0.0 0.0 -66.48314 -693.10732 -62.609005 -647.62106
C 10 .005 .386893E-3 7.96904856 -260.62871 .465868681 .388535E-3 -116.85358 -231.93464 -102.90808 -149.60859
C 15 .0075 .003387352 7.72901186 -609.56002 2.13312674 .003389103 -78.090821 517.50938 -59.76177 562.701656
C 20 .01 .011749416 7.06004672 -725.13071 4.5810072 .011751262 12.2543295 801.605716 15.9654148 769.441724
BLANK card ends requests for program output (none here)
C 500 .25 .099742144 .020628514 -9.4006317 .124190097 .099757723 38.1853818 3.29866531 32.3978989 3.21713744
C Variable maxima : .135902117 8.00017405 267.526078 6.72779235 .135917916 101.917228 803.241795 139.090132 786.335864
C Times of maxima : .0415 .0025 .0415 .0145 .0415 .247 .0095 .045 .0095
C Variable minima : -.21756E-5 -2.8721694 -735.50088 -2.0425339 0.0 -120.32142 -693.10732 -128.8745 -647.62106
C Times of minima : .0025 .0415 .0095 .06 0.0 .0385 .0025 .037 .0025
PRINTER PLOT
19450. 0.0250. UM-1 THETAM { Axis limits : (0.000, 1.324)
C 5 of the 6 vector plots shown on pages IEEO-22 and 23 will be produced by
C the following batch-mode plot requests. Activate if interested.
$DISABLE { To speed execution, ignore the 5 batch-mode plot cards that follow
CALCOMP PLOT
19425. 0.0250. 0.0 .2 UM-1 THETAM
19425. 0.0250. UM-1 TQGEN
19425. 0.0250. UM-1 IPC
19425. 0.0250. UM-1 IE2
19425. 0.0250. TACS AMPERR
C $ENABLE { End block of plot cards being ignored.
$EnabLE { 3 May 2003, add some lower case to demonstrate case insensitivity
BLANK card ends the last plot card
BEGIN NEW DATA CASE
BLANK
|