1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
BEGIN NEW DATA CASE
C BENCHMARK DCNEW-23
C Illustrate modeling of Type-51,52 elements to model unsymmetric series
C connection of [R] and [L] as described in the October, 1997, newsletter
C Begin with uncoupled branches of 1 ohm resistance and just 2 phases (no
C Type-53). The answer is obvious by inspection: the sinusoidal source
C voltage is exactly split in half. Very low frequency and small time
C step means that this varies very slowly --- in the 7th decimal place.
.00001 .00005 { Note just 5 very small time steps T-max = 5 * DELTAT
1 -1 1 0
SENDA RECA 1.0 1
SENDB RECB SENDA RECA 1
51RECA MODEL [R][L] { Note special request in cols. 15-26
52RECB { Cols. 27-44 of preceding card is blank
1.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 2 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
BLANK card follows the last source card
SENDA RECA SENDB RECB
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 2nd of 15. Identical to preceding except that more compact alternative
C for 2-phase (Type-51,52 with no 53) is illustrated. Nonblank col 27-44
C distinguishes this case, which has no following, separate cards for the
C [R] and [L] matrices.
.00001 .00005
1 -1 1 0
SENDA RECA 1.0 1
SENDB RECB SENDA RECA 1
C 789012345678901234 890123456789012
51RECA MODEL [R][L] 1.0 0.0 0.0 0.0
52RECB 0.0 0.0 1.0 0.0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
BLANK card follows the last source card
SENDA RECA SENDB RECB
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 3rd of 15. Identical to 1st except that here the Type-51,52 branch is
C inputted before rather than after the two series R-L-C branches. Also,
C current output using column-80 punches is illustrated. This replaces
C the current output of the Type-0 branches in series
.00001 .00005
1 -1 1 0
51RECA MODEL [R][L] 1
52RECB 1
1.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
SENDA RECA 1.0 0
SENDB RECB SENDA RECA 0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 2 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
BLANK card follows the last source card
SENDA RECA SENDB RECB
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 4th of 15 subcases progresses from preceding 2-phase to 3-phase. Begin
C with special Z0Z1Z2 model that assumes decoupled symmetrical component
C impedances Zo for the zero sequence, Z1 for the positive sequence,
C and finally Z2 for the negative sequence. Otherwise, the problem is
C the same: 5 very small steps of uncoupled, resistive voltage dividers.
C About current outputs, this subcases introduces selective use of col.
C 80 punches. Note phase C output of the series R-L-C is missing, and
C that this is supplied by the punch on the Type-53 card. Switching the
C zero and the 1 of these two phase-C cards does not change the numbers
C (it only changes the heading names). That was for the 3rd of 3. One
C can change the 2nd (phase B) in comparable fashion without changing
C numbers of the time-step loop output. This illustrates selective
C branch current output.
C diagnostic 0 0 9 9 9 9
.00001 .00005
1 -1 1 0
SENDA ENDA 1.0 1
SENDB ENDB SENDA ENDA 1
SENDC ENDC SENDA ENDA 0
51ENDA MODEL Z0Z1Z2 1.0 { Ro, Lo right-adjusted in cols. 32 & 44
52ENDB 1.0 { R1 and L1 .... }
53ENDC 1.0 { R2 and L2 .... } 1
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
14SENDC 2.0 0.001 120. { with no phasor solution.
BLANK card follows the last source card
SENDA ENDA SENDB ENDB SENDC ENDC
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 5th of 15. Identical to 1st except that here the Type-51,52,53 branch
C is inputted before rather than after the three series R-L-C branches.
.00001 .00005
1 -1 1 0
51ENDA MODEL Z0Z1Z2 1.0
52ENDB 1.0
53ENDC 1.0
SENDA ENDA 1.0 0
SENDB ENDB SENDA ENDA 0
SENDC ENDC SENDA ENDA 0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
14SENDC 2.0 0.001 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 6th of 15. Identical to case before preceding subcase except that here
C MODEL [R][L] is used in place of MODEL Z0Z1Z2 for the Type-51,52,53.
C Also, column-80 requests for branch current output have been added.
.00001 .00005
1 -1 1 0
SENDA RECA 1.0 0
SENDB RECB SENDA RECA 0
SENDC RECC SENDA RECA 0
51RECA MODEL [R][L] { Cols. 27-44 of this card is blank } 1
52RECB { This is signal for separate, later } 1
53RECC { matrices [R] and [L]. } 1
1.0 0.0 0.0 { R(1,1), R(1,2), R(1,3)
0.0 0.0 0.0 { L(1,1), L(1,2), L(1,3)
0.0 1.0 0.0 { Etc. row 2
0.0 0.0 0.0
0.0 0.0 1.0 { Etc. row 3
0.0 0.0 0.0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
14SENDC 2.0 0.001 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 7th of 15. Identical to 1st except that here the Type-51,52,53 branch
C is inputted before rather than after the three series R-L-C branches.
.00001 .00005
1 -1 1 0
51RECA MODEL [R][L]
52RECB
53RECC
1.0 0.0 0.0
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 1.0
0.0 0.0 0.0
SENDA RECA 1.0 0
SENDB RECB SENDA RECA 0
SENDC RECC SENDA RECA 0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
14SENDC 2.0 0.001 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 8th of 15. Combination of preceding subcases involves Type-51,52,53
C branch specified with both MODEL [R][L] and MODEL Z0Z1Z2. This is
C a double-size problem; each half has the same solution as previously.
.00001 .00005
1 -1 1 0
SENDA ENDA 1.0 0
SENDB ENDB SENDA ENDA 0
SENDC ENDC SENDA ENDA 0
51ENDA MODEL Z0Z1Z2 1.0
52ENDB 1.0
53ENDC 1.0
SENDA RECA 1.0 0
SENDB RECB SENDA RECA 0
SENDC RECC SENDA RECA 0
51RECA MODEL [R][L]
52RECB
53RECC
1.0 0.0 0.0
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 1.0
0.0 0.0 0.0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.001 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 0.001 -120. { three-phase, sinusoidal excitation
14SENDC 2.0 0.001 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 9th of 15. Mix new Type-51,52,53 with the old. With diagonal matrices,
C the data can be represented either way, of course (it is symmetric).
C Z1 = Zo (actually, Z1 = Z0) so the answer can be shown to be
C identical to that using Type-51,52,53 modeling with sequence impedances.
C In fact, there are 2 identical, uncoupled networks driven from the same
C balanced 3-phase sources at SENDA, SENDB, and SENDC. Another first:
C switch from resistance to inductance.
.0001 .0005
1 1 1 0 1 -1
5 5 20 20 100 100
51ENDA MODEL Z0Z1Z2 0.0 1.0 { Sequence Ro, Lo in [ohms, mHenry]
52ENDB 0.0 1.0 { Sequence R1, L1 in [ohms, mHenry]
53ENDC 0.0 1.0 { Note Z2 = Z1 so [Z] is symmetric
SENDA ENDA 0.0 1.0 0
SENDB ENDB SENDA ENDA 0
SENDC ENDC SENDA ENDA 0
C Next, build a copy of this, but using the old (Type-51,52,53) modeling:
51RECA 0.0 1.0 { Ro, Lo in [ohms, mHenry]
52RECB 0.0 1.0 { Ro, Lo in [ohms, mHenry]
53RECC { Blank 27-44 on this 3rd card ==> sequence data
SENDA RECA 0.0 1.0 0
SENDB RECB SENDA RECA 0
SENDC RECC SENDA RECA 0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 50. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 50. -120. { three-phase, sinusoidal excitation
14SENDC 2.0 50. 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
CALCOMP PLOT
BLANK termination to plot cards
BEGIN NEW DATA CASE
C diagnostic 0 0 9 9 9 9 0 9 0 0 0 9 9 9 9 9 9 9 9
C 10th of 15 subcases. Generalize preceding by changing from R only to
C both R and L. Also, the data order has been shuffled, to illustrate
C that the answer is unaffected.
.0001 .0005
1 1 1 0 1 -1
5 5 20 20 100 100
C 22 Feb 2000, switch the following 3 data cards from narrow to wide format to
C illustrate that this works following correction a few days earlier:
C 51RECA 0.3 1.0 { Ro, Lo in [ohms, mHenry]
C 52RECB 0.3 1.0 { R1, L1 in [ohms, mHenry]
C 53RECC
$VINTAGE, 1,
C 34567890123456789012345678901234567890123456789012345678
51RECA 0.3 1.0 { Ro, Lo in [ohms, mHenry]
52RECB 0.3 1.0 { R1, L1 in [ohms, mHenry]
0.0 0.0 { Unused cell 2,2
53RECC 0.0 0.0 { Unused cell 3,1
0.0 0.0 { Unused cell 3,2
0.0 0.0 { Unused cell 3,3
$VINTAGE, 0, { Done with wide format for 51, 52, 53, so return to narrow
51ENDA MODEL Z0Z1Z2 0.3 1.0 { Sequence Ro, Lo in [ohms, mHenry]
52ENDB 0.3 1.0 { Sequence R1, L1 in [ohms, mHenry]
53ENDC 0.3 1.0 { Note Z2 = Z1 so [Z] is symmetric
SENDA ENDA 0.3 1.0 0
SENDB ENDB SENDA ENDA 0
SENDC ENDC SENDA ENDA 0
C Next, build a copy of this, but using the old (Type-51,52,53) modeling:
SENDA RECA 0.3 1.0 0
SENDB RECB SENDA RECA 0
SENDC RECC SENDA RECA 0
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 50. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 50. -120. { three-phase, sinusoidal excitation
14SENDC 2.0 50. 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
CALCOMP PLOT
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 11th of 15 subcases. Generalize preceding by adding inter-phase coupling
C for the first time. The negative-sequence impedance still is equal to
C the positive, so both old and new Type-51,52,53 branches can be used.
C But Zo not equal to Z1 means that phase-domain matrices no longer
C are diagonal.
.0001 .0005
1 1 1 0 1 -1
5 5 20 20 100 100
SENDA ENDA 0.3 1.0 0
SENDB ENDB SENDA ENDA 0
SENDC ENDC SENDA ENDA 0
51ENDA MODEL Z0Z1Z2 0.3 1.0 { Sequence Ro, Lo in [ohms, mHenry]
52ENDB 0.1 0.5 { Sequence R1, L1 in [ohms, mHenry]
53ENDC 0.1 0.5 { Note Z2 = Z1 so [Z] is symmetric
C Next, build a copy of this, but using the old (Type-51,52,53) modeling:
SENDA RECA 0.3 1.0 0
SENDB RECB SENDA RECA 0
SENDC RECC SENDA RECA 0
51RECA 0.3 1.0 { Ro, Lo in [ohms, mHenry]
52RECB 0.1 0.5 { Ro, Lo in [ohms, mHenry]
53RECC
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 50. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 50. -120. { three-phase, sinusoidal excitation
14SENDC 2.0 50. 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
CALCOMP PLOT
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 12th of 15 subcases. Generalize preceding by making the negative-sequenc
C impedance different from the positive, so the old Type-51,52,53 branch
C no longer can be used. Instead, both MODEL [R][L] and MODEL Z0Z1Z2
C are illustrated. There are two identical halves with two identical
C solutions. As for the phase-domain matrix data, it was copied from
C near the end of DCN22.DBG with enough precision to make the effect of
C truncation unobservable in the printed output.
.0001 .0005
1 1 1 0 1 -1
5 5 20 20 100 100
SENDA ENDA 0.3 1.0 1
SENDB ENDB SENDA ENDA 1
SENDC ENDC SENDA ENDA 1
ENDA ENDB 1.E7
ENDB ENDC ENDA ENDB
ENDC ENDA ENDA ENDB
51ENDA MODEL Z0Z1Z2 0.3 1.0 { Sequence Ro, Lo in [ohms, mHenry]
52ENDB 0.1 0.5 { Sequence R1, L1 in [ohms, mHenry]
53ENDC .101 0.8
SENDA RECA 0.3 1.0 1
SENDB RECB SENDA RECA 1
SENDC RECC SENDA RECA 1
RECA RECB 1.E7
RECB RECC RECA RECB
RECC RECA RECA RECB
51RECA MODEL [R][L]
52RECB MODEL [R][L]
53RECC MODEL [R][L]
$DISABLE
.1670000000 .0665866025 .0664133975 { R(1,1), R(1,2), R(1,3)
.7666666667-.1720084679 .4053418013 { L(1,1), L(1,2), L(1,3)
.0664133975 .1670000000 .0665866025 { Row 2 of [R]
.4053418013 .7666666667-.1720084679 { Row 2 of [L]
.0665866025 .0664133975 .1670000000 { Row 3 of [R]
-.1720084679 .4053418013 .7666666667 { Row 3 of [L]
$ENABLE
C Preceding disabled data was from years past. Correct this 2 April 2002.
C The following is copied from DCN22c (the compensation alternative):
$UNITS, 60.0, 60.0,
C USERNL begins with Lo, L1, L2 [H] = 1.00000E-03 5.00000E-04 8.00000E-04
C Converted to Xo, X1, X2 = 3.76991E-01 1.88496E-01 3.01593E-01
C 3x3 phase-domain impedance matrix in ohms follow. For each row I, X(I,J) is below R(I,J). w = 3.769911E+02 rad/sec.
.1670000000 .0991483886 .0338516114 { R(1,1), R(1,2), R(1,3) in ohms
.2890265241 .0436936220 .0442709723 { X(1,1), X(1,2), X(1,3) in ohms
.0338516114 .1670000000 .0991483886 { Row 2 of [R]
.0442709723 .2890265241 .0436936220 { Row 2 of [X]
.0991483886 .0338516114 .1670000000 { Row 3 of [R]
.0436936220 .0442709723 .2890265241 { Row 3 of [X]
$UNITS, -1.0, -1.0, { Done with ohms and micromhos at 60 Hz, so restore original
C Whereas the preceding could not be used in DCN22c, it can be used here
C because the conversion is not delayed until the dT loop. For Type-51,
C 52, 53 branches, the conversion is perfomed at data-input time.
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 50. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 2.0 50. -120. { three-phase, sinusoidal excitation
14SENDC 2.0 50. 120. { with no phasor solution.
BLANK card follows the last source card
SENDA RECA ENDA { SENDB RECB ENDB SENDC RECC ENDC
BLANK card ending node voltage outputs
BLANK termination to plot cards
BEGIN NEW DATA CASE
C diagnostic 0 0 9 9 9 9 0 9 9 9
C 13th of 15. 1st use of USE AR for [A] and [R] input rather than
C the original [R] and [L]. The 2 phases in fact are uncoupled for
C simplicity. Series L of each phase divide the voltage. Series R-L-C
C is 1 mHenry, and A(1,1) = A(2,2) correspond to the inverse of this.
C So, L(1,1) = L(2,2) = 1.E-3 ===> A(1,1) = A(2,2) = 1000. This is
C entered instead of resistance. Instead of inductance, enter R = 0
C (the [R] matrix is zero; no resistance in this problem)
.0001 .0005
1 1 1 0 1 -1
5 5 20 20 100 100
USE AR
51RECA MODEL [R][L]
52RECB
1000. 0.0
0.0 0.0
0.0 1000.
0.0 0.0
USE RL
SENDA RECA 0.0 1.0 0
SENDB RECB SENDA RECA 1
C Next, build a copy of this, but using the old (Type-51,52,53) modeling:
USE AR
51ENDA 1000. 0.0
52ENDB 0.0 0.0 1000. 0.0
USE RL
SENDA ENDA 0.0 1.0 0
SENDB ENDB SENDA ENDA 1
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.1 0.0 { 1st of 2 sources. Note balanced,
14SENDB 2.0 0.1 -120. { three-phase, sinusoidal excitation
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB
BLANK card ending node voltage outputs
CALCOMP PLOT
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 14th of 15. Like preceding, except resistance of 1 ohm is added to
C each series, uncoupled inductance. There still is a voltage divider.
C Another change is use of col-80 output for 2nd phase (Type-52).
.0001 .0005
1 1 1 0 1 -1
5 5 20 20 100 100
USE AR
51RECA MODEL [R][L]
52RECB 1
1000. 0.0
1.0 0.0
0.0 1000.
0.0 1.0
USE RL
SENDA RECA 1.0 1.0 0
SENDB RECB SENDA RECA 1
C Next, build a copy of this, but using the old (Type-51,52,53) modeling:
USE AR
51ENDA 1000. 1.0
52ENDB 0.0 0.0 1000. 1.0
USE RL
SENDA ENDA 1.0 1.0 0
SENDB ENDB SENDA ENDA 1
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.1 0.0 { 1st of 2 sources. Note balanced,
14SENDB 2.0 0.1 -120. { three-phase, sinusoidal excitation
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB
BLANK card ending node voltage outputs
CALCOMP PLOT
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 15th of 15. Like preceding, except coupling is added to [R] and [L]
C matrices. Both halves of problem still should have the same answer
C (note matrices remain symmetric), although voltage division now
C longer will be exactly half and half.
.0001 .0005
1 1 1 0 1 -1
5 5 20 20 100 100
USE AR
51RECA MODEL [R][L]
52RECB
1000. 200.
1.0 0.2
200. 1000.
0.2 1.0
USE RL
SENDA RECA 1.0 1.0 0
SENDB RECB SENDA RECA 1
C Next, build a copy of this, but using the old (Type-51,52,53) modeling:
USE AR
51ENDA 1000. 1.0
52ENDB 200. 0.2 1000. 1.0
USE RL
SENDA ENDA 1.0 1.0 0
SENDB ENDB SENDA ENDA 1
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 2.0 0.1 0.0 { 1st of 2 sources. Note balanced,
14SENDB 2.0 0.1 -120. { three-phase, sinusoidal excitation
BLANK card follows the last source card
SENDA RECA ENDA SENDB RECB ENDB
BLANK card ending node voltage outputs
CALCOMP PLOT
BLANK termination to plot cards
BEGIN NEW DATA CASE
BLANK
|