summaryrefslogtreecommitdiffstats
path: root/benchmarks/dcn16.dat
blob: badc616ebc01c6af42af62c73c9fad528d3d32ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
BEGIN NEW DATA CASE
C     BENCHMARK DCNEW-16
C        1st of 12 subcases that confirm various aspects of switches that
C        touch compensation-based elements (bugs removed 17 December 1995).
C  E-mail from Laurent Dube on  Date: Sat, 15 Jul 1995 13:14:55 -0700 (PDT)
C  "Here is a trimmed-down version of Janko Kosmac's data case showing
C  wrong switch current values (which in his case were picked up by
C  MODELS to drive some other logic)."  Test here is even more simplified:
C                             
C         SRCE          N1    Type-91    N2    1.0     
C          o------_------o----/\/\/\----o----/\/\/\-----------
C                 ^       |              |                   |
C              closed     |              |<-- switch         |
C              switch     |              |    closed         |
C                         |----/\/\/\----o                   |
C                               1.E-6     N12                |
C                                                           ___
C                                                            _
   1.E-5   1.E-5                   
       1       1       1       1 
TACS HYBRID
99RESIS   =  1.E-6
77RESIS        1.E-6
33RESIS
BLANK card ending TACS
91N1    N2    TACS  RESIS                                                      1
  N1    N12                1.E-6                                               
  N2                          1.                                        
BLANK card ending branches
  N12   N2                                            MEASURING
  SRCE  N1                                            MEASURING                1
BLANK card ending switches
14SRCE          100.       60.       0.0        0.                 -1.
BLANK card ending sources
C Output for steady-state phasor switch currents.
C  Node-K   Node-M     I-real            I-imag            I-magn        Degrees
C  N12      N2     9.99999000E+01    0.00000000E+00    9.99999000E+01     0.0000
C  SRCE     N1     9.99999000E+01    0.00000000E+00    9.99999000E+01     0.0000
  N1    N12   N2
C  Step    Time      N1         N12        N2         SRCE       N1         TACS
C                                                     N1         N2        RESIS
C  Phasor I(0) = 9.999990E1  Switch  "N12   "  to  "N2    "  closed in steady-st
C  Phasor I(0) = 9.999990E1  Switch  "SRCE  "  to  "N1    "  closed in steady-st
C    0     0.0        100.    99.9999    99.9999    99.9999        0.0     1.E-6
C    1   .1E-4  99.9992894 99.9992394 99.9992394 99.9992394 49.9996197     1.E-6
BLANK card ending voltage printout
BLANK card ending plot
BEGIN NEW DATA CASE
C    2nd of 12 subcases began as the big, 7th subcase of DC-16.  Eventually,
C    nearly everything could be thrown away.  After closing,  the switch
C    voltage had better be zero (one of the improvements of 17 Dec 95).  This
C    was not a problem 2 or more days earlier,  however.  This problem resulted  
C    after making just the single  OVER16  correction.  Correction of it 
C    resulted in the two changes of  SUBTS3  (see  WSM95DEC  idents).
 .000100   .0004     60.  
       1      -1       1       1
  CR20A CR30A                         93.40                                    1 
92CR30A CR20A                          5555.                                   3
                  147500.                      -1.                             
                      1.0                      40.                      .80
                    9999.
  RAVBA CR30A               0.5  14.0                                          
  GRCBA CR20A               0.4   9.0                                          1
BLANK card ending program branch cards.
  CR20A          0.00015       10.   { Fault switch, phase "a" to ground }     3
BLANK card terminating program switch cards
14RAVBA    440000.   60.       -20.0                               -1.
14GRCBA    440000.   60.         0.0                               -1.
BLANK card terminating program source cards.
C       Total network loss  P-loss  by summing injections =   3.505855948763E+08
C   Node             Source  node  voltage             Injected  source  current
C   name       Rectangular           Polar          Rectangular            Polar
C  RAVBA    413464.7531458         440000.      26317.186674075  27911.988458816
C          -150488.8630633     -20.0000000      -9299.719634859      -19.4619099
BLANK card ending output variables requests (none here, since all column 80)
C  First  2     output variables are electric-network voltage differences (upper
C  Next   4     output variables are branch currents (flowing from the upper nod
C Step    Time      CR30A      CR20A      CR20A      CR30A      CR20A      GRCBA
C                   CR20A      TERRA      TERRA      CR20A      CR30A      CR20A
C   0     0.0  -264114.27 534224.351        0.0        0.0 -26317.187 -26317.187
C   1   .1E-3  -195321.89 509234.084        0.0  -75571.13 -102186.97 -26615.843
C ***          Close switch  "CR20A "  to  "      "  after  2.00000000E-04  sec.
C   2   .2E-3  -126265.42 483522.274        0.0 -.00199387 -26810.516 -26810.514
C   3   .3E-3  -97153.756        0.0 1625.62684 -.10944E-3 -27570.069 -25944.443
C   4   .4E-3  -66918.302        0.0  4833.9446 -.75381E-4  -28909.76 -24075.815
BLANK card ending plot cards
BEGIN NEW DATA CASE
C        3rd of 12 subcases that confirm various aspects of switches that
C        touch compensation-based elements.
C     IMTESTA3.DAT  ---  Name used by Prof. Juan Martinez of Barcelona, Spain
C     Based on I. Bonfanti's case : EMTP News, Vol. 2, no. 3, September 1989
C     Steady State Initialization
C     Wye-connected ungrounded armature - Resistor between neutral and ground
C     Switches permanently closed are connected to the armature terminals
C     Until correction on  26 Jan 96,  TQGEN  was completely wrong on step 2.
POWER FREQUENCY, 50
   1.E-4   .0002                  1.E-15
       1       1       1       1
C ----- Network description
  FEMR  CBR               .37024 1.196                                         1
  FEMS  CBS               .37024 1.196                                         1
  FEMT  CBT               .37024 1.196                                         1
C ----- Grounding resistor
  CSMT                    1000.
C ----- Motor parasitic capacitances
  M1.R                                .02                                      1
  M1.S                                .02                                      1
  M1.T                                .02                                      1
C ----- Mechanical network
  ROTORD                  1.E-08            
  ROTORQ                  1.E-08
  COPPIA                              9.16E6                                   2
  COPPI2COPPIA            1.0E-6
BLANK ENDING BRANCHES
  CBR   M1.R         -1.     15.00                                             1
  CBS   M1.S         -1.     15.00                                             1
  CBT   M1.T         -1.     15.00                                             1
BLANK ENDING SWITCHES
14FEMR        4899.        50.        0.                         -1.0    9999.
14FEMS        4899.        50.     -120.                         -1.0    9999.
14FEMT        4899.        50.      120.                         -1.0    9999.
14COPPI2-1      -1.      1.E-9        0.                         -1.0    9999.
C ----- UM specification
19 UM
01            0   - Compensation;  change 0 to 1 if prediction is wanted
BLANK
 3 1 1111COPPIA       1                            
           0.0       0.3964
           0.0       0.3964
            4.                    COPPI2
         .1674       .001   M1.R  CSMT        1
         .1674       .01    M1.S  CSMT        1
         .1674       .01    M1.T  CSMT        1
         .7819       .00453 ROTORD            1
         .7819       .00453 ROTORQ            1
BLANK card ending U.M. data
BLANK card ending sources
C     Total network loss  P-loss  by summing injections =   5.005262005074E-01
C     Total network loss  P-loss  by summing injections =   2.721172542328E+04
C     Total network loss  P-loss  by summing injections =   3.083034016021E+04
C     Total network loss  P-loss  by summing injections =   3.209218252624E+04
C Output for steady-state phasor switch currents.
C      Node-K    Node-M            I-real            I-imag            I-magn          Degrees        Power            Reactive
C      CBR       M1.R          2.18879785E+02   -8.91358682E+01    2.36333585E+02     -22.1580    5.25806422E+05    2.07845254E+05
C      CBS       M1.S         -1.86633819E+02   -1.44987520E+02    2.36333585E+02    -142.1580    5.25806422E+05    2.07845254E+05
C      CBT       M1.T         -3.22459663E+01    2.34123388E+02    2.36333585E+02      97.8420    5.25806422E+05    2.07845254E+05
C 1st gen:  COPPIA  301.59289474462  301.59289474462          4868.1875        4868.1875      734105.38014229  734105.38014229
C                               0.0              0.0    .17357870652E-4        0.0000002      -.0026175052283        1.0000000
C
C 2nd gen:    FEMR            4899.            4899.    218.87978507236  236.33358480802      536146.03353474  578899.11598725
C                              0.0              0.0     -89.13586817262      -22.1579539      218338.30908884        0.9261476
BLANK card ending node voltage output requests (none here)
C   Step      Time      COPPIA     CBR        CBS        CBT        FEMR       FEMS       FEMT       M1.R       M1.S       M1.T
C                       TERRA      M1.R       M1.S       M1.T       CBR        CBS        CBT        TERRA      TERRA      TERRA
C
C                       UM-1       UM-1       UM-1       UM-1       UM-1       UM-1       UM-1       UM-1
C                       TQGEN      OMEGM      THETAM     IPA        IPB        IPC        IE1        IE2
C ***      Phasor I(0) =  2.1887979E+02                     Switch  "CBR   "  to  "M1.R  "  closed in the steady-state.
C ***      Phasor I(0) = -1.8663382E+02                     Switch  "CBS   "  to  "M1.S  "  closed in the steady-state.
C ***      Phasor I(0) = -3.2245966E+01                     Switch  "CBT   "  to  "M1.T  "  closed in the steady-state.
C      0       0.0  301.592895 218.879785 -186.63382 -32.245966 218.879785 -186.63382 -32.245966 .309378E-3  .02587952  -.0261889
C                   -4976.4349 301.592895 1.57079633 -218.87948 186.659698 32.2197774  65.266856 -275.17162
C      1     .1E-3  301.593554 221.571447 -181.98783 -39.583621 221.571447 -181.98783 -39.583621 -.63563E-3 .026350533 -.02571491
C                   -4976.4333 301.592895 1.60095562 -221.57208 182.014176 39.5579061 64.9214972 -275.25321
C      2     .2E-3  301.594872 224.044463 -177.16225 -46.882216 224.044463 -177.16225 -46.882216 -.00157782 .026791347 -.02521353
C                   -4976.4315 301.592895 1.63111491 -224.04604 177.189039 46.8570021 64.5760272 -275.33436
BLANK card ending plot cards
BEGIN NEW DATA CASE
C        4th of 12 subcases that confirm various aspects of switches that
C        touch compensation-based elements.
C     Ivano Bonfanti  of CESI in Milano, Italy,  published this troublesome data
C     in LEC's  EMTP News,  Vol. 2, no. 3, September, 1989.  Although the answer
C     here is slightly different than the published "M39." EMTP  answer shown by
C     Bonfanti,  either is believed to be correct for engineering purposes.  The
C     machine obviously is in the steady state as it should we.  WSM, 28 Jan 96.
C     Note  EPSILN = 1.E-8  a few lines below is needed to restore default value 
C     of  STARTUP following distortion of the 3rd subcase.  Without restoration, 
C     the answer will be quite different because U.M. uses this to build network
C     during the 4 phasor solutions.
PRINTED NUMBER WIDTH, 10, 1,   { 10-digit col width including 1 blank separators
POWER FREQUENCY, 50
   2.E-4    .020     50.     0.0   1.E-8 
       1       1       1       1       1      -1
       5       5      20      20     100     100
TACS HYBRID  
11CARICO      -4797.                                               -1.        1.   
91COPPI1                                                           -1.        1.   
99COPPIA  =CARICO+COPPI1  
33COPPIA  
BLANK card ending TACS
  FEMR  CBR               .37024 1.196                                         1
  FEMS  CBS               .37024 1.196                                         1
  FEMT  CBT               .37024 1.196                                         1
C ----- Motor parasitic capacitances
  M1.R                                .02                                      1
  M1.S                                .02                                      1
  M1.T                                .02                                      1
  CSMT                     1000.  { Motor neutral grounding resistance
C ----- Mechanical network
  ROTORD                  1.E-08            
  ROTORQ                  1.E-08
  COPPIA                              9.16E6                                   2
  COPPI1COPPIA            1.0E-6
BLANK ENDING BRANCHES
  COPPI1COPPI2                                        MEASURING                1
  CBR   M1.R         -1.     15.00                                             1
  CBS   M1.S         -1.     15.00                                             1
  CBT   M1.T         -1.     15.00                                             1
BLANK ENDING SWITCHES
14FEMR   1   4898.98       50.        0.                          -1.0        1.
14FEMS   1   4898.98       50.     -120.                          -1.0        1.
14FEMT   1   4898.98       50.      120.                          -1.0        1.
14COPPI2-1       -1.     1.E-9        0.                          -1.0        1.
60COPPIA-1
19 UM
01            0   { Compensation;  use  "1"  rather than  "0"  for prediction
BLANK card ends Class-1 cards
 3 1 1111COPPIA       1                            
           0.0       0.3964
           0.0       0.3964
            4.                    COPPI2
         .1674       .001   M1.R  CSMT        1
         .1674       .01    M1.S  CSMT        1
         .1674       .01    M1.T  CSMT        1
        .78187       .00453 ROTORD            1
        .78187       .00453 ROTORQ            1
BLANK card ending  U.M. coils
BLANK ENDING SOURCES
C     Total network loss  P-loss  by summing injections =   5.005262016348E-01
C     Total network loss  P-loss  by summing injections =   3.007635104268E+04
C     Total network loss  P-loss  by summing injections =   3.007585104268E+04
C     Total network loss  P-loss  by summing injections =   3.008749127839E+04
C      Node-K    Node-M            I-real            I-imag            I-magn          Degrees        Power            Reactive
C      COPPI1    COPPI2        4.82497291E+03    0.00000000E+00    4.82497291E+03       0.0000    7.27577133E+05    0.00000000E+00
C      CBR       M1.R          2.12219079E+02   -9.54916543E+01    2.32713544E+02     -24.2262    5.09803228E+05    2.01520807E+05
C      CBS       M1.S         -1.88807738E+02   -1.36041286E+02    2.32713544E+02    -144.2262    5.09803228E+05    2.01520807E+05
C      CBT       M1.T         -2.34113411E+01    2.31532941E+02    2.32713544E+02      95.7738    5.09803228E+05    2.01520807E+05
C 1 of 4 gen: COPPIA  301.59289474462  301.59289474462      4824.9729075506  4824.9729075506      727588.77312628  727588.77312628
C                                 0.0              0.0      .17357870652E-4        0.0000002      -.0026175052283        1.0000000
C
C 2 of 4 gen: FEMR            4898.98          4898.98      212.21907905668  232.71354399216      519828.51195855  570029.49887335
C                                 0.0              0.0      -95.49165430404      -24.2261891      233905.85230121        0.9119327
C
C             FEMS           -2449.49          4898.98       -188.807738005  232.71354399216      519828.51195855  570029.49887335
C                     -4242.641132632     -120.0000000      -136.0412864788     -144.2261891      233905.85230121        0.9119327
C
C             FEMT           -2449.49          4898.98      -23.41134105164  232.71354399216      519828.51195855  570029.49887335
C                     4242.6411326319      120.0000000      231.53294078285       95.7738109      233905.85230121        0.9119327
C
C   Step      Time     COPPIA    COPPI1    CBR       CBS       CBT       FEMR      FEMS      FEMT      M1.R      M1.S      M1.T
C                      TERRA     COPPI2    M1.R      M1.S      M1.T      CBR       CBS       CBT       TERRA     TERRA     TERRA
C
C                      TACS      UM-1      UM-1      UM-1      UM-1      UM-1      UM-1      UM-1      UM-1
C                      COPPIA    TQGEN     OMEGM     THETAM    IPA       IPB       IPC       IE1       IE2
C ***      Phasor I(0) =  4.8249729E+03                     Switch  "COPPI1"  to  "COPPI2"  closed in the steady-state.
C ***      Phasor I(0) =  2.1221908E+02                     Switch  "CBR   "  to  "M1.R  "  closed in the steady-state.
C ***      Phasor I(0) = -1.8880774E+02                     Switch  "CBS   "  to  "M1.S  "  closed in the steady-state.
C ***      Phasor I(0) = -2.3411341E+01                     Switch  "CBT   "  to  "M1.T  "  closed in the steady-state.
C      0       0.0  301.59289 4824.9729 212.21908 -188.8077 -23.41134 212.21908 -188.8077 -23.41134 .00137262   .024922 -.0262946
C                         0.0 -4824.973 301.59289 1.5707963 -212.2177 188.83266 23.385046 74.005629 -268.4606
C      1     .2E-3  301.59289 4824.9729 217.79488 -179.8952 -37.89965 217.79488 -179.8952 -37.89965 -.4897E-3 .02588688 -.0253972
C                   27.972911 -4824.959 301.59289 1.6311149 -217.7954 179.92112 37.874249 73.334597 -268.6438
C      2     .4E-3   301.5932 4824.9729 222.51143  -170.273 -52.23846 222.51143  -170.273 -52.23846  -.002339 .02673945 -.0244004
C                   27.972911 -4824.941 301.59289 1.6914335 -222.5138 170.29971  52.21406 72.662955 -268.8252
BLANK ENDING OUTPUT REQUEST
C    100       .02  301.64888 4824.9729 211.99353 -188.6458 -23.34774 211.99353 -188.6458 -23.34774 .00136234 .02495568  -.026318
C                   27.972911 -4819.913 301.64979 7.6030487 -211.9922 188.67075 23.321418 5.0277011 -278.1347
C Variable maxima :  301.64888 4824.9729 232.67504 232.63158 232.51922 232.67504 232.63158 232.51922 .02962796 .02960618 .02960763
C                   27.972911 -4819.913 301.65916 7.6030487  232.6071 232.54547 232.60707 74.005629 -268.4606
C Times of maxima :        .02     .0118     .0014      .008     .0146     .0014      .008     .0146     .0152      .002     .0084
C                       .0118       .02     .0122       .02     .0114      .018     .0046       0.0       0.0
C Variable minima :  301.59289 4824.9729 -232.5957 -232.5347 -232.5969 -232.5957 -232.5347 -232.5969  -.029647 -.0296246 -.0296779
C                         0.0 -4824.973 301.59289 1.5707963 -232.6864 -232.6424 -232.5295 5.0277011 -278.1347
C Times of minima :      .2E-3       0.0     .0114      .018     .0046     .0114      .018     .0046     .0052     .0118     .0184
C                         0.0       0.0       0.0       0.0     .0014      .008     .0146       .02       .02
  PRINTER PLOT
 194 5. 0.0 20.         UM-1  TQGEN COPPI2COPPI1    { Limits:  (-4.825,  0.000)
 194 5. 0.0 20.         TACS  COPPIAUM-1  THETAM    { Limits:  (0.000,  2.797)
 194 4. 0.0 20.         BRANCH                      { Limits:  (-2.327,  3.017)
                        M1.R  CBR   M1.S  CBS   M1.T  CBT   UM-1  OMEGM
 194 4. 0.0 20.         BRANCH                      { Limits:  (-2.327,  2.326)
                        UM-1  IPA   UM-1  IPB   UM-1  IPC
BLANK card ending plot cards
BEGIN NEW DATA CASE
C        5th of 12 subcases that confirm various aspects of switches that
C        touch compensation-based elements.  This is like the 1st except
C        that here we have 3 phases.  As explained in the July, 1996,
C        newsletter,  Marjan Popov in Macedonia first complained of trouble.
C        Prior to  1 June 1996,  step 2 would never be reached because the
C        error occurred following opening on step 1.  Here, we go 3 steps:
 .000050 .000150     50.     50.   1.E-9
       1       1
TACS HYBRID
C      Note.  Mr. Popov used MODELS,  and he had complicated dynamics.  But
C             none of that complexity was required to demonstrate the trouble
C             (KILL = 209).  So, instead use simpler TACS model of 1st subcase:
99RESIS   =  1.E-6
77RESIS        1.E-6
33RESIS
BLANK card ending TACS
$DEPOSIT, MATFUL=1 { Internal conversion of Type-51, 52, ... to unsymmetric data
C  Add preceding definition of MATFUL  on  6 August 2008  as the update to allow
C  unsymmetric branch [R], [L] is being packaged. Of course, the following three
C  coupled branches are symmetric,  so by pretending that they are not we merely
C  waste both storage (the size of List 3 will increase by 3 cells) and computer
C  time (the unsymmetric phasor solution requires more work).   As for location,
C  there is no magic.  If  MATFUL has value unity at the start of a Type-51, 52,
C  ... branch group,  ATP will convert the R-L data to unsymmetric (full matrix)
C  storage.  To turn off this "service,"  use  $DEPOSIT, MATFUL=0  which will be
C  found near the start of the following subcase (it could be moved to this one,
C  to any point below the Type-53 branch card, just as well).  WSM.
51SRCR  BUSR                           21.07       { ZERO SEQUENCE
52SRCS  BUSS                            2.39       { POSITIVE SEQUENCE
53SRCT  BUST 
$VINTAGE, 1
 1LINBR LINER               3.98507949E+00  1.16971333E+01  5.00880327E+01
 2LINBS LINES               1.64595110E+00  3.84463816E+00 -7.10131829E+00
                            3.81191239E+00  1.21114617E+01  4.86330090E+01
 3LINBT LINET               1.57601253E+00  4.21324332E+00 -8.66201631E+00
                            1.50186508E+00  4.04356685E+00 -6.51737363E+00
                            3.69294935E+00  1.24065061E+01  4.91034827E+01
$VINTAGE, 0
91ARCR  LINBR TACS  RESIS                                                     2
91ARCS  LINBS TACS  RESIS                                                     2
91ARCT  LINBT TACS  RESIS                                                     2
C NAME  NAME  REFERENCE   R(OHM)X(OHM)C(miF)
  BUSR                                0.314 { Bus bar capacitances
  BUSS                                0.314
  BUST                                0.314 
C    Provide linear elements connected to  ARCR, ARCS, ARCT (leakage to ground):
  ARCR                      1.E8
  ARCS                      1.E8
  ARCT                      1.E8
BLANK Card ending branch cards
  BUSR  ARCR        -0.1     2.60                                              1
  BUSS  ARCS        -0.1     2.60                                              1
  BUST  ARCT        -0.1     2.60                                              1
  ARCR  LINBR       -0.1    0.000      50.E3                                         
  ARCS  LINBS       -0.1    0.001      50.E3                                         
  ARCT  LINBT       -0.1    0.001      50.E3                                        
BLANK  Card ending switch cards
14SRCR        89814.       50.        0.        0.                 -1.
14SRCS        89814.       50.      120.        0.                 -1.
14SRCT        89814.       50.     -120.        0.                 -1.
BLANK Card ending source cards
  LINER LINES LINET BUSR  BUSS  BUST
BLANK  Card ending output cards 
C   Step    Time      LINER      LINES      LINET      BUSR       BUSS       BUST       BUSR       BUSS       BUST       TACS
C                                                                                         ARCR       ARCS       ARCT       RESIS
C ***    Phasor I(0) = -1.2037996E-01    Switch  "BUSR  "  to  "ARCR  "  closed in the steady-state.
C ***    Phasor I(0) = -4.2912571E+00    Switch  "BUSS  "  to  "ARCS  "  closed in the steady-state.
C ***    Phasor I(0) =  4.3267803E+00    Switch  "BUST  "  to  "ARCT  "  closed in the steady-state.
C ***    Phasor I(0) = -1.2127823E-01    Switch  "ARCR  "  to  "LINBR "  closed in the steady-state.
C ***    Phasor I(0) = -4.2908080E+00    Switch  "ARCS  "  to  "LINBS "  closed in the steady-state.
C ***    Phasor I(0) =  4.3272295E+00    Switch  "ARCT  "  to  "LINBT "  closed in the steady-state.
C      0     0.0  89846.7243 -44918.879 -44929.061 89826.4331 -44913.159 -44913.549 -.12037996 -4.2912571 4.32678032      1.E-6
C ***      Open  switch  "ARCR  "  to  "LINBR "  after  5.00000000E-05  sec.
C      1   .5E-4  89835.7272 -46135.534 -43701.414 89815.3391 -46129.508 -43686.133 -.20216547 -4.2510535 4.36857684      1.E-6
C      2   .1E-3  89802.5653 -47340.817 -42462.973  89782.085 -47334.497 -42447.917 -.28390448 -4.2098234 4.40932077      1.E-6
C      3  .15E-3  89747.2461 -48534.443 -41214.032 89726.6777 -48527.808 -41199.225  -.3655754 -4.1675019 4.44892539      1.E-6
BLANK CARD ending plot
BEGIN NEW DATA CASE
C        6th of 12 subcases illustrates trouble with compensation-based elements
C        even though no switch is involved.  The data came from Gabor Furst on
C        14 Sept 2000 as mentioned in the January, 2001, newsletter.  Execution
C        should be stopped in overlay 16 because the Type-91 element R(t) is not
C        isolated in a separate subnetwork from the U.M. Case-summary statistics
C        show  List 24 = 4  as the number of phases of compensation.  This is
C        entirely wrong:  Size 21-30:     0     0     9     4   337  ...
C STEP ZERO COUPLE    { If activated, the correct KILL = 9 of overlay 15 results
C          20 May 2001, the answer changes following correction to SOLVUM to
C          solve a problem from Dr. Michael Steurer of CAPS at Florida State.
C          No, answer is not right.  It remains wrong,  but is a different wrong
C          because compensation logic has been modified.
C        23 May 2001,  introduce request for special verification of possible
C        overlap between U.M. compensation and that of List-9 elements.  This is
C        in OVER16 (to find the code, search for KOMPUM).  Add new request:
VERIFY U.M. COMPENSATION { If removed, KILL = 9 error termination will disappear
$DEPOSIT, MATFUL=0   { Cancel conversion of Type-51, 52, ... to unsymmetric data
UM TO TACS
  5.0E-4   5.E-4    50.0  { Only 1 time step is needed to demonstrate the error
       1       1 
TACS { The Rule Book recommends TACS HYBRID or TACS STAND ALONE, but this works
92TQGEN
98TPER    =  1/FREQHZ
 1TAVG1   +TQGEN 1
       1.0
       1.0     0.020
 1TAVG    +TAVG1                                    1.0
       1.0
       1.0     0.020
98ROTRES  = 1000.0*(1.0 - TIMEX/8.0)
33IM    TAVG  TQGEN ROTRES
BLANK card ending TACS data
  SRA   MOTA                      1.00   {  source impedance  ohm         }    1
  SRB   MOTB                      1.00                                         1
  SRC   MOTC                      1.00                                         1
C    Tops of 3 rotor coils are grounded through 1/2-ohm resistors:
  XOTA                      0.50  { Fixed resistance for rotor phase a }       1
  XOTB                      0.50  { Fixed resistance for rotor phase b }       1
  XOTC                      0.50  { Fixed resistance for rotor phase c }       1
C    Bottoms of 3 rotor coils are connected to neutral NEUT, which then is
C    grounded by the following TACS-defined, time-varying resistor:
91NEUT        TACS  ROTRES   { Variable resistance in rotor circuit }          1
C    But node NEUT is connected to no linear branch.  To avoid a warning
C    message,  parallel the preceding R(t) by fixed high reistance:
  NEUT                      1.E6
C  the anlogue network records follow
C  the separator from the 14 source
  INERS INER               1.E-6
  INER                                 3.3E7          {inertia  uF}
C   the damping term in ohms
        INER                2.26                        {damping  1/mho}
BLANK ending BRANCHes
BLANK ending SWITCHes
14SRA        3400.00      50.0       0.0                            -1
14SRB        3400.00      50.0     240.0                            -1
14SRC        3400.00      50.0     120.0                            -1
C  the source for the analogue network
14INERS -1  0.000001  .0000001                                      -1
C   the source of any additional load applied
14INERS -1 -0.000001 0.0000001                                    5.00
19         { Begin U.M. data for single 3-phase induction motor with wound rotor
 0            0     { Note no auto-initialization (no multiple phasor solutions)
BLANK
 4    111INER         2                             0.15700
                  0.465131
                  0.465131
C   armature coils
                            MOTA              1
    0.3393571     0.0109180 MOTB              1
    0.3393571     0.0109180 MOTC              1
C    rotor coils
    0.5785651     0.0109180 XOTB  NEUT        1
    0.5785651     0.0109180 XOTC  NEUT        1
                            XOTA  NEUT        1
BLANK card ending U.M. data
BLANK card ending sources
BLANK card ending output variables requests (none here, since all column 80)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C        7th of 12 subcases illustrates new  TACS R-thev  option on rotor coil
C        cards to define connected resistance using a TACS variable.  It does
C        not solve the preceding problem,  but it avoids it,  and is superior
C        for cases of common interest.  See January, 2000, newsletter.  Data is
C        from preceding subcase,  although here we energize the motor.  To speed
C        the simulation, double Gabor Furst's dT and shorten his T-max (was 8):
    .001     2.0    50.0
       1       3       1       0       1      -1
       5       5      20      20     100     100     200     200
TACS HYBRID
98ROTRES  = 10. * ( 1.0 - TIMEX / 2.0 )  { Linear ramp of R from 10 ohms to zero
33ROTRES              { Output this one and only TACS variable of interest
77ROTRES         10.  { Initial condition is needed for smooth start (not R=0)
BLANK card ending TACS cards
  SRA   MOTA                      1.00     { Source impedance =  1 ohm reactive. 
  SRB   MOTB                      1.00     { This separates the machine armature
  SRC   MOTC                      1.00     { MOT from the infinite bus SR.
  XOTA                      100.      { Resistance across each rotor coil is
  XOTB                      100.      { arbitrary since it will be replaced 
  XOTC                      100.      { by value of TACS signal ROTRES, anyway
C  the anlogue network records follow
C  the separator from the 14 source
  INERS INER               1.E-6
  INER                                 3.3E7          {inertia  uF}
C   the damping term in ohms
        INER                2.26                        {damping  1/mho}
BLANK card ending BRANCH cards
BLANK card ending SWITCH cards
14SRA        3400.00      50.0       0.0                           -1.
14SRB        3400.00      50.0     240.0                           -1.
14SRC        3400.00      50.0     120.0                           -1.
C  the source for the analogue network
14INERS -1  0.000001  .0000001                                     -1.
C   the source of any additional load applied
14INERS -1 -0.000001 0.0000001                                    5.00
19  { Begin U.M. data, which will consist of a single 3-phase induction motor
C  No autoinitialization.  Also, this data does use compensation on both sides.
 0            0
BLANK
 4    111INER         2                             0.15700
                  0.465131
                  0.465131
C     3 armature coils come first:
                            MOTA              1
    0.3393571     0.0109180 MOTB              1
    0.3393571     0.0109180 MOTC              1
C     3 rotor coils follow:
    0.5785651     0.0109180 XOTB              1               TACS R-thev ROTRES
    0.5785651     0.0109180 XOTC              1               TACS R-thev ROTRES
                            XOTA              1               TACS R-thev ROTRES
C      Note about preceding.  The request word is  "TACS R-thev "  in columns 63
C      through 74.  It is to be followed by the A6 name of a TACS variable in
C      columns 75-80.  Each coil can have a different TACS variable (the three
C      being the same means that the 3-phase resistance is balanced.
BLANK card ending U.M. data cards
BLANK card ending source cards
BLANK card ending output specifications (none here)
 193 .4 0.0 2.0 0.0 200.UM-1  OMEGM
C 193 .2 0.0 2.0         UM-1  IE1  { A vector plot really is needed for this
BLANK card ending plot cards
BEGIN NEW DATA CASE
C        8th of 12 subcases is similar to 1st (Janko's data),  but is slightly
C        different.  Prior to correction on  14 October 2000,  the solution was
C        wrong following closure of the switch to ground.  Data was contributed
C        by Steve Nurse of Reyrolle in England on  11 Oct 2000.  The following
C        data is a smaller, simpler illustration of the problem: 
C
C         GEN           SEND      Type-91     LOAD       1.0
C          o------_-------||------/\/\/\-------||------/\/\/\-------|| E
C                 ^       ||       R = 1       ||       R = 1       || a
C             MEASURING   ||                   ||                   || r
C              switch     ||                   ||                   || t
C             (always     ||--------/----------||--------/----------|| h
C              closed)          1st, switch           2nd, switch            
C                               will open             will close             
C
C        There are 3 switches,  with one permanently closed.  All 3 touch the
C        compensation-based Type-91 element.  Simulation begins with the Type-91
C        element shorted,  so the source  GEN  feeds the 1-ohm resistor from
C        LOAD  to ground.  The current is 6 volts / 1 ohm = 6 amps.  But then
C        the switch from  SEND  to  LOAD  opens,  inserting the Type-91, adding
C        another ohm.  This drops the current to 3 amps.  Finally, the ordinary
C        1-ohm resistor from  LOAD  to ground is shorted,  restoring the current
C        to 6 amps.  Prior to correction, the final change did not happen.  See
C        also the 8th (final) subcase of DC-68, for which answers changed
C        slightly as a result of this change to OVER16.
PRINTED NUMBER WIDTH, 10, 1,  { Request maximum precision (for 8 output columns)
    .001    .009
       1      -1       1  
91SEND  LOAD                           3333.                                   1
C  -------R(tr)---------><-----tr---------------->
                    0.001     { V of flashover gap
                      1.0                      0.0
                      1.0                     .020
                     9999
  SEND                     10.E8  { Avoid ATP warning and such internal addition
  LOAD                       1.0                                               1
BLANK card ending branch cards
C Switch data:    T-close   T-open  I-epsiln
  LOAD  SEND        -1.0     .0025      1.E8                                   1
  LOAD             .0065       1.0                                             1
  GEN   SEND                                          MEASURING                1
BLANK card ending switch cards
11GEN         6.0 
BLANK card ending source cards
  GEN   SEND  LOAD
C  First  3     output variables are electric-network voltage differences (upper voltage minus lower voltage);
C  Next   5     output variables are branch currents (flowing from the upper node to the lower node);
C   Step      Time     GEN       SEND      LOAD      LOAD      LOAD      GEN       SEND      LOAD
C                                                    SEND      TERRA     SEND      LOAD      TERRA
C ***                    Switch  "LOAD  "  to  "SEND  "  closed before  0.00000000E+00  sec.
C ***                    Switch  "GEN   "  to  "SEND  "  closed before  0.00000000E+00  sec.
C      0       0.0        0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0
C      1     .1E-2        6.0       6.0       6.0       -6.       0.0       6.0       0.0       6.0
C      2      .002        6.0       6.0       6.0       -6.       0.0       6.0       0.0       6.0
C ***                                                             Open  switch  "LOAD  "  to  "SEND  "  after  3.00000000E-03  sec.
C      3      .003        6.0       6.0       6.0       0.0       0.0       6.0       0.0       6.0
C      4      .004        6.0       6.0       0.0       0.0       0.0     .6E-8       0.0       0.0
C      5      .005        6.0       6.0       3.0       0.0       0.0       3.0       3.0       3.0
C      6      .006        6.0       6.0       3.0       0.0       0.0       3.0       3.0       3.0
C ***                                                             Close switch  "LOAD  "  to  "      "  after  7.00000000E-03  sec.
C      7      .007        6.0       6.0       3.0       0.0       0.0       3.0       3.0       3.0
C      8      .008        6.0       6.0       0.0       0.0       6.0       6.0       6.0       0.0
C      9      .009        6.0       6.0       0.0       0.0       6.0       6.0       6.0       0.0
BLANK card ending output variables requests (just node voltages, here)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C      9th of 12 subcases is unrelated to preceding subcases. 
C     Illustrate that the 3-phase compensation of DC-34 can coexist with single-
C     phase compensation of a disconnected Type-93 nonlinear reactor.  Prior to
C     correction to  SOLVUM  on  20 May 2001,  the solution was obviously wrong.
C     The first report of such trouble came from Dr. Michael Steurer of CAPS at
C     Florida State University  in  Tallahassee.   His data involved a  Type-91
C     TACS-controlled resistor,  but in fact TACS had nothing to do with the
C     trouble,  so is not being involved in the present illustration.
C       Comment about 6th subcase:  It, too, involves both 3-phase compensation
C       of the U.M. and 1-phase compensation of a separate element.  But that
C       data was illegal because the two were not isolated in disconnected
C       subnetworks.
POWER FREQUENCY, 60.0, { Europeans need this (LEC letter dated 6 Jan 89, page 2)
PRINTED NUMBER WIDTH, 11, 1,  { Restore default STARTUP column width, separation
    .001    .500
       1       1       1       1       1      -1       
       5       5      20      20     100     100
 0      BUS-F0            1.0 
 0      BUS-A0            1.0 
 0      BUS-B0            1.0 
 0      BUS-C0            1.0 
 0BUS-A1BUS-A0            0.02  1.0610                                          
 0BUS-B1BUS-B0BUS-A1BUS-A0                                                      
 0BUS-C1BUS-C0BUS-A1BUS-A0                                                      
 0BUS-M1                              2.00E6                                   1
 0BUS-M0                              2.00E6                                   1
 0BUS-M0BUS-M1                      1.                                         1
C   End of  DC-34  branches;  begin branches from  DC-45b.  Note that these
C   involve different names,  so are completely disconnected from the machine.
C   This single-phase subnetwork will illustrate an energization transient:
  GEN   TRAN                 2.0                                               1
93TRAN                       1.0   1.0                                         1
             0.0             0.0
             0.9             0.9
             2.0             1.1
             10.             1.2
            9999
BLANK card ends the last branch card
BLANK card ends (in this case nonexistent) switch cards
11BUS-F0  0.002091      { 18 Oct 90, remove ineffective T-start = -1.0 from card        
11BUS-M0-1      1.02                                        
11BUS-M0-1       -.4                                           .019500
14BUS-A0  1.41421356 60.0      0.0                        
14BUS-B0  1.41421356 60.0     -120.0                      
14BUS-C0  1.41421356 60.0      120.0                      
C   End of DC-34 static sources.  B4 the U.M., insert the source from DC-45b:
14GEN           377.       60.
19 UM                                  { Beginning of U.M. data (Type-19 source)
1
BLANK card ending class-1 U.M. data
 1 2 1111BUS-M1       1 1786.98                 { 1st card of U.M. machine table
1.0           1.550         0 0.3          1.5           1.0
0.93787       1.490         0
0.0           0.0           BUS-A1            1  1.3860 { 1st card of coil table
0.001096      0.150         BUS-B1            1 -0.95877
0.001096      0.150         BUS-C1            1 -0.42721
0.00074       0.101         BUS-F0            1 -2.826
0.0131        0.055                           1
0.0540        0.036                           1   
BLANK card ending all U.M. data
BLANK card ending EMTP source cards
C       Total network loss  P-loss  by summing injections =   2.999999989932E+00
 2BUS-A1 1.56413                 { First of many initial condition cards for the
 2BUS-B1 -0.30745                { electric network.  Since  the  U.M.  is not a
 2BUS-C1 -1.25677                { part of the phasor solution (see DCNEW-1  for
 2BUS-A0 1.41421356              { such  a  more  modern  problem),  synchronous      
 2BUS-B0 -0.70710678             { operation  can  begin  smoothly  only  if the 
 2BUS-C0 -0.70710678             { initially conditions are manually applied.
 2BUS-F0 0.002091                 
 2BUS-M0 1.0
 2BUS-M1 1.0                     { Final card of node voltage initial conditions
 3BUS-A1BUS-A0 1.38494           { 1st card of branch current initial conditions
 3BUS-B1BUS-B0 -0.95793
 3BUS-C1BUS-C0 -0.42701
 3      BUS-A0 -1.41421356
 3      BUS-B0 +0.70710678
 3      BUS-C0 +0.70710678
 3      BUS-F0 -0.002091
 3BUS-M0BUS-M1 +1.01
 3BUS-M0                       +1.0
 3BUS-M1                       +1.0  { Last card of branch current init. condit.
  TRAN  BUS-M1BUS-M0     { Request for selective node voltage output
C  First  3     output variables are electric-network voltage differences (upper voltage minus lower voltage);
C  Next   5     output variables are branch currents (flowing from the upper node to the lower node);
C  Final  9     output variables pertain to Type-19 U.M. components (names are generated internally);
C Step    Time       TRAN       BUS-M1     BUS-M0     TRAN       BUS-M1     BUS-M0     BUS-M0     GEN        UM-1       UM-1
C                                                     TERRA      TERRA      TERRA      BUS-M1     TRAN       TQGEN      OMEGM
C                    UM-1       UM-1       UM-1       UM-1       UM-1       UM-1       UM-1
C                    THETAM     IPA        IPB        IPC        IE1        IE2        IE3
C    0    0.0          0.0        1.0        1.0        0.0        0.0        0.0       1.01        0.0 1.00124132        1.0
C                   .93787      1.386    -.95877    -.42721     -2.826        0.0        0.0
C    1  .1E-2    350.17556 1.00000302  1.0000025  .17508778 .012094107 .010000262 1.00999974  .17508778 .997905631        1.0
C                   .93787 1.40049668 -.50888659 -.89163009 -2.8259503  .85956E-4 -.00481942
C    2   .002   273.846974 1.00000988  1.0000075 .487099047 .015338089 .010001714 1.00999829 .487099047 .994660197        1.0
C                   .93787 1.22097729 .010653511 -1.2316108 -2.8258183 .309395E-3  -.0092568
C    3   .003   159.111636 1.00001841  1.0000125 .703578352 .018762645 .010005857 1.00999414 .703578352 .991231498        1.0
C                   .93787 .870655506 .528248848 -1.3989244 -2.8248425 .001999525 -.01265851
BLANK card ending the specification of output variables
C  500    0.5   377.026496 1.00472639 1.00854631 -.01324809 -.13068128 .049259392 .570740608 -.01324809 .701421892 1.00469204
C               .660491474 .974954484 -.86183035 -.11310413 -2.4109229 -.04254056 .118833141
C Variable max: 377.260976 1.00779145 1.00854631 1.25309712 .260847165 .297988719       1.01 1.25309712  1.0019948 1.00877611
C                   .93787 1.41537866 1.40559809 1.40738077 -2.0788757 .133544596 .152562874
C Times of max:        .05       .442        0.5       .471       .378       .296        0.0       .471       .015       .439
C                     .064       .034       .056       .045       .358       .176       .471
C Variable min: -376.94611 .989230544 .990404468 -6.3622515 -.29505746  -.3892114 .322011281 -6.3622515  .29918812 .988252614
C               .361026488 -1.4043962 -1.4122326  -1.411928     -2.826 -.04419925 -.18596365
C Times of min:       .475       .158       .217       .012       .102        .02       .296       .012       .346       .159
C                     .358       .059       .031        .02        0.0       .485       .188
  PRINTER PLOT  
 193 .1 0.0 1.0         UM-1  THETAM              { Plot limits: (0.000,  9.379)
C   The preceding plot is identical to DC-34, so provides the simplest way to
C   validate the solution of the U.M.   As for the Type-93 reactor, inrush
C   current is shown by the following vector plot.  It seems believable, and
C   is unchanged by deletion of all data related to DC-34.
  CALCOMP PLOT
 193.05 0.0 0.5 -7.0 1.0TRAN
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C        10th of 12 subcases is derived from 1st to demonstrate that the TACS dc
C        solution in fact represents the superposition of the network solution
C        within TACS (driven by Type-11 sources, which are batteries) and the
C        user-supplied initial conditions.
   1.E-5   1.E-5 
       1       1       1       2 
TACS HYBRID
C 99RESIS   =  1.E-6
C 77RESIS        1.E-6
C    Replace the preceding 2 lines (see 1st subcase) in attempt to demonstrate 
C    that the TACS dc solution printout is the sum of the TACS network solution 
C    value and the initial condition value: -37.E-6 + 38.E-6 = 1.E-6 (same as 
C    the 1st subcase).  Unfortunately,  this has not yet been accomplished.  But
C    different treatment of the initial condition is easily demonstrated.  The
C    following shows 4 different ways to define a TACS variable.  All will be
C    given the same initial condition value 38.E-6.  But two of the four will
C    have one value for dc printout,  and the remaining two will have another.
11SOURCE     -37.E-6   { Note T-start < 0 so TACS phasor solve }   -1.        1.
C   Following RESA and RESB will show source value (-37.E-6) in dc printout: 
 0RESA            +SOURCE                   
 1RESB            +SOURCE                  
        1.                                                                      
        1.        1.                                                            
C   Following RESC & RESD will show initial condition valu (+38) in dc printout: 
 1RESC            +SOURCE                  
        1.                                                                      
                  1.                                                            
88RESD    =  1.E-6
77RESA        38.E-6
77RESB        38.E-6
77RESC        38.E-6
77RESD        38.E-6
33RESA  RESB  RESC  RESD
BLANK card ending TACS
91N1    N2    TACS  RESA                                                       1
  N1    N12                1.E-6                                               
  N2                          1.                                        
BLANK card ending branches
  N12   N2                                            MEASURING
  SRCE  N1                                            MEASURING                1
BLANK card ending switches
14SRCE          100.       60.       0.0        0.                 -1.
BLANK card ending sources
C Zero-frequency (dc) steady-state solution for TACS follows.
C   (Name)      TACS value   (Name)    TACS value     (Name)    TACS value     (Name)    TACS value     (Name)    TACS value
C   RESA   -3.70000000E-05   RESB   -3.70000000E-05   RESC    3.80000000E-05   RESD    3.80000000E-05
BLANK card ending output variables (none)
BLANK card ending plot
BEGIN NEW DATA CASE
C        11th of 12 subcases always should be last since it demonstrates a halt
C        to execution using  CALL STOPTP.  This is added  29 August 2002  to
C        illustrate what previously was a tight loop within Z-thev computation
C        of OVER16.  There is similarity to the 6th subcase.  But whereas that
C        data would simulate (giving the wrong answer), this data would die.
C        The original complaint was in E-mail of the EEUG list server dated
C        22 August 2002.  In this, Alejandro Montenegro at the University of
C        Florida asked: "The problem appears when I combine TACS-controlled
C        Type 13 switches, Type 94 components and UM type 3."   But the present
C        data is much simpler.  Only the Type-3 U.M. is used.  No TACS, no
C        MODELS, and no switches at all.  The fundamental problem was an overlap
C        of compensation,  and it led to an unbounded index prior to the trap
C        that this subcase illustrates.
 .000100     .15
       1      -1       1
C    Begin with 3 single-phase nonlinear reactors in the same subnetwork as the
C    U.M.   It is not clear why all 3, rather than just 1, is required for
C    the tight loop.  But this seems to be the case.
93VPA   VA                  .559  300.                                         1
     0.0             0.0
   .5590            300.                                                        
   .9344            400.                                                        
            9999                                                                
93VPB   VB    VPA   VA      .559  300.                                         1
93VPC   VC    VPA   VA      .559  300.                                         1
C   Nodes VA, VB, and VC have no connected linear branch.  To prevent warning
C   messages about floating subnetwork, & automatic additions to ground, add C:
  VA                                     1.0 { Shunt capacitance avoids floating
  VB                                     1.0 { Shunt capacitance avoids floating
  VC                                     1.0 { Shunt capacitance avoids floating
C    The following 2 lines are rotor mass and damping from Bonfanti's motor:
  COPPIA                              9.16E6                                   2
  COPPI2COPPIA            1.0E-6
BLANK card ending branch cards
BLANK card ending switches
14VPA       10777.75       60.                                     -1.       10.
14VPB       10777.75       60.     -120.                           -1.       10.
14VPC       10777.75       60.      120.                           -1.       10.
C    The following is Bonfanti's motor from the 3rd subcase.
14COPPI2-1      -1.      1.E-9        0.                         -1.0    9999.
19 UM
01            0   - Compensation;  change 0 to 1 if prediction is wanted
BLANK general UM specification
 3 1 1111COPPIA       1                            
           0.0       0.3964
           0.0       0.3964
            4.                    COPPI2
         .1674       .001   VA                1
         .1674       .01    VB                1
         .1674       .01    VC                1
         .7819       .00453                   1
         .7819       .00453                   1
BLANK card ending U.M. data
BLANK card ending sources
  VA    VB    VC    VPA   VPB   VPC  { Names of nodes for node voltage output
BLANK card ending output variables
BLANK card ending plot
C  Document the end of output of this 11th data subcase.  This begins
C  exactly as in years past.  An error is recognized after the dT-loop heading:
C                       UM-1       UM-1       UM-1       UM-1       UM-1       UM-1       UM-1       UM-1
C                       TQGEN      OMEGM      THETAM     IPA        IPB        IPC        IE1        IE2
C Error.  Halt execution above S.N. 2322 in  OVER16.  Compensation is in error.  Bad subscript N1.  If U.M. is involved,  try adding
C VERIFY U.M.  COMPENSATION  or  STEP ZERO COUPLE  as illustrated in DCN16.
C Temporary error stop in  ENTRY STOPTP of "WINDOW".     NCHAIN, LASTOV =     16    15
C               12345678901234567890123456789012345678901234567890123456789012345678901234567890
C ABUFF(1:80) =
C
C    So much for the old.  The new adds explanation of the recovery.
C    Before output of the 12th subcase begins,  there is this:
C
C ------------------------------------------------------------------------------------------------------------------------------------
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ------------------------------------------------------------------------------------------------------------------------------------
C
C This is not actually a  KILL  error termination.  But ATP now will try to continue as if it were.  A recursive  CALL  is involved.
C
C ------------------------------------------------------------------------------------------------------------------------------------
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ------------------------------------------------------------------------------------------------------------------------------------
BEGIN NEW DATA CASE
C        12th of 12 subcases demonstrates that the STOPTP termination of the
C        preceding subcase is not fatal.  By means of a recursive  CALL,  ATP
C        can be restarted to continue processing following data subcases such
C        as this one, which is a copy of the 1st subcase.  Output is identical.
C        For brevity,  connectivity and the phasor output have been omitted.
C        This modification is made  23 January 2011.  WSM.
   1.E-5   1.E-5                   
       1       1   
TACS HYBRID
99RESIS   =  1.E-6
77RESIS        1.E-6
33RESIS
BLANK card ending TACS
91N1    N2    TACS  RESIS                                                      1
  N1    N12                1.E-6                                               
  N2                          1.                                        
BLANK card ending branches
  N12   N2                                            MEASURING
  SRCE  N1                                            MEASURING                1
BLANK card ending switches
14SRCE          100.       60.       0.0        0.                 -1.
BLANK card ending sources
  N1    N12   N2
BLANK card ending voltage printout
BLANK card ending plot
BEGIN NEW DATA CASE
BLANK