1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
|
BEGIN NEW DATA CASE
C BENCHMARK DCNEW-16
C 1st of 12 subcases that confirm various aspects of switches that
C touch compensation-based elements (bugs removed 17 December 1995).
C E-mail from Laurent Dube on Date: Sat, 15 Jul 1995 13:14:55 -0700 (PDT)
C "Here is a trimmed-down version of Janko Kosmac's data case showing
C wrong switch current values (which in his case were picked up by
C MODELS to drive some other logic)." Test here is even more simplified:
C
C SRCE N1 Type-91 N2 1.0
C o------_------o----/\/\/\----o----/\/\/\-----------
C ^ | | |
C closed | |<-- switch |
C switch | | closed |
C |----/\/\/\----o |
C 1.E-6 N12 |
C ___
C _
1.E-5 1.E-5
1 1 1 1
TACS HYBRID
99RESIS = 1.E-6
77RESIS 1.E-6
33RESIS
BLANK card ending TACS
91N1 N2 TACS RESIS 1
N1 N12 1.E-6
N2 1.
BLANK card ending branches
N12 N2 MEASURING
SRCE N1 MEASURING 1
BLANK card ending switches
14SRCE 100. 60. 0.0 0. -1.
BLANK card ending sources
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees
C N12 N2 9.99999000E+01 0.00000000E+00 9.99999000E+01 0.0000
C SRCE N1 9.99999000E+01 0.00000000E+00 9.99999000E+01 0.0000
N1 N12 N2
C Step Time N1 N12 N2 SRCE N1 TACS
C N1 N2 RESIS
C Phasor I(0) = 9.999990E1 Switch "N12 " to "N2 " closed in steady-st
C Phasor I(0) = 9.999990E1 Switch "SRCE " to "N1 " closed in steady-st
C 0 0.0 100. 99.9999 99.9999 99.9999 0.0 1.E-6
C 1 .1E-4 99.9992894 99.9992394 99.9992394 99.9992394 49.9996197 1.E-6
BLANK card ending voltage printout
BLANK card ending plot
BEGIN NEW DATA CASE
C 2nd of 12 subcases began as the big, 7th subcase of DC-16. Eventually,
C nearly everything could be thrown away. After closing, the switch
C voltage had better be zero (one of the improvements of 17 Dec 95). This
C was not a problem 2 or more days earlier, however. This problem resulted
C after making just the single OVER16 correction. Correction of it
C resulted in the two changes of SUBTS3 (see WSM95DEC idents).
.000100 .0004 60.
1 -1 1 1
CR20A CR30A 93.40 1
92CR30A CR20A 5555. 3
147500. -1.
1.0 40. .80
9999.
RAVBA CR30A 0.5 14.0
GRCBA CR20A 0.4 9.0 1
BLANK card ending program branch cards.
CR20A 0.00015 10. { Fault switch, phase "a" to ground } 3
BLANK card terminating program switch cards
14RAVBA 440000. 60. -20.0 -1.
14GRCBA 440000. 60. 0.0 -1.
BLANK card terminating program source cards.
C Total network loss P-loss by summing injections = 3.505855948763E+08
C Node Source node voltage Injected source current
C name Rectangular Polar Rectangular Polar
C RAVBA 413464.7531458 440000. 26317.186674075 27911.988458816
C -150488.8630633 -20.0000000 -9299.719634859 -19.4619099
BLANK card ending output variables requests (none here, since all column 80)
C First 2 output variables are electric-network voltage differences (upper
C Next 4 output variables are branch currents (flowing from the upper nod
C Step Time CR30A CR20A CR20A CR30A CR20A GRCBA
C CR20A TERRA TERRA CR20A CR30A CR20A
C 0 0.0 -264114.27 534224.351 0.0 0.0 -26317.187 -26317.187
C 1 .1E-3 -195321.89 509234.084 0.0 -75571.13 -102186.97 -26615.843
C *** Close switch "CR20A " to " " after 2.00000000E-04 sec.
C 2 .2E-3 -126265.42 483522.274 0.0 -.00199387 -26810.516 -26810.514
C 3 .3E-3 -97153.756 0.0 1625.62684 -.10944E-3 -27570.069 -25944.443
C 4 .4E-3 -66918.302 0.0 4833.9446 -.75381E-4 -28909.76 -24075.815
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 3rd of 12 subcases that confirm various aspects of switches that
C touch compensation-based elements.
C IMTESTA3.DAT --- Name used by Prof. Juan Martinez of Barcelona, Spain
C Based on I. Bonfanti's case : EMTP News, Vol. 2, no. 3, September 1989
C Steady State Initialization
C Wye-connected ungrounded armature - Resistor between neutral and ground
C Switches permanently closed are connected to the armature terminals
C Until correction on 26 Jan 96, TQGEN was completely wrong on step 2.
POWER FREQUENCY, 50
1.E-4 .0002 1.E-15
1 1 1 1
C ----- Network description
FEMR CBR .37024 1.196 1
FEMS CBS .37024 1.196 1
FEMT CBT .37024 1.196 1
C ----- Grounding resistor
CSMT 1000.
C ----- Motor parasitic capacitances
M1.R .02 1
M1.S .02 1
M1.T .02 1
C ----- Mechanical network
ROTORD 1.E-08
ROTORQ 1.E-08
COPPIA 9.16E6 2
COPPI2COPPIA 1.0E-6
BLANK ENDING BRANCHES
CBR M1.R -1. 15.00 1
CBS M1.S -1. 15.00 1
CBT M1.T -1. 15.00 1
BLANK ENDING SWITCHES
14FEMR 4899. 50. 0. -1.0 9999.
14FEMS 4899. 50. -120. -1.0 9999.
14FEMT 4899. 50. 120. -1.0 9999.
14COPPI2-1 -1. 1.E-9 0. -1.0 9999.
C ----- UM specification
19 UM
01 0 - Compensation; change 0 to 1 if prediction is wanted
BLANK
3 1 1111COPPIA 1
0.0 0.3964
0.0 0.3964
4. COPPI2
.1674 .001 M1.R CSMT 1
.1674 .01 M1.S CSMT 1
.1674 .01 M1.T CSMT 1
.7819 .00453 ROTORD 1
.7819 .00453 ROTORQ 1
BLANK card ending U.M. data
BLANK card ending sources
C Total network loss P-loss by summing injections = 5.005262005074E-01
C Total network loss P-loss by summing injections = 2.721172542328E+04
C Total network loss P-loss by summing injections = 3.083034016021E+04
C Total network loss P-loss by summing injections = 3.209218252624E+04
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C CBR M1.R 2.18879785E+02 -8.91358682E+01 2.36333585E+02 -22.1580 5.25806422E+05 2.07845254E+05
C CBS M1.S -1.86633819E+02 -1.44987520E+02 2.36333585E+02 -142.1580 5.25806422E+05 2.07845254E+05
C CBT M1.T -3.22459663E+01 2.34123388E+02 2.36333585E+02 97.8420 5.25806422E+05 2.07845254E+05
C 1st gen: COPPIA 301.59289474462 301.59289474462 4868.1875 4868.1875 734105.38014229 734105.38014229
C 0.0 0.0 .17357870652E-4 0.0000002 -.0026175052283 1.0000000
C
C 2nd gen: FEMR 4899. 4899. 218.87978507236 236.33358480802 536146.03353474 578899.11598725
C 0.0 0.0 -89.13586817262 -22.1579539 218338.30908884 0.9261476
BLANK card ending node voltage output requests (none here)
C Step Time COPPIA CBR CBS CBT FEMR FEMS FEMT M1.R M1.S M1.T
C TERRA M1.R M1.S M1.T CBR CBS CBT TERRA TERRA TERRA
C
C UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1
C TQGEN OMEGM THETAM IPA IPB IPC IE1 IE2
C *** Phasor I(0) = 2.1887979E+02 Switch "CBR " to "M1.R " closed in the steady-state.
C *** Phasor I(0) = -1.8663382E+02 Switch "CBS " to "M1.S " closed in the steady-state.
C *** Phasor I(0) = -3.2245966E+01 Switch "CBT " to "M1.T " closed in the steady-state.
C 0 0.0 301.592895 218.879785 -186.63382 -32.245966 218.879785 -186.63382 -32.245966 .309378E-3 .02587952 -.0261889
C -4976.4349 301.592895 1.57079633 -218.87948 186.659698 32.2197774 65.266856 -275.17162
C 1 .1E-3 301.593554 221.571447 -181.98783 -39.583621 221.571447 -181.98783 -39.583621 -.63563E-3 .026350533 -.02571491
C -4976.4333 301.592895 1.60095562 -221.57208 182.014176 39.5579061 64.9214972 -275.25321
C 2 .2E-3 301.594872 224.044463 -177.16225 -46.882216 224.044463 -177.16225 -46.882216 -.00157782 .026791347 -.02521353
C -4976.4315 301.592895 1.63111491 -224.04604 177.189039 46.8570021 64.5760272 -275.33436
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 4th of 12 subcases that confirm various aspects of switches that
C touch compensation-based elements.
C Ivano Bonfanti of CESI in Milano, Italy, published this troublesome data
C in LEC's EMTP News, Vol. 2, no. 3, September, 1989. Although the answer
C here is slightly different than the published "M39." EMTP answer shown by
C Bonfanti, either is believed to be correct for engineering purposes. The
C machine obviously is in the steady state as it should we. WSM, 28 Jan 96.
C Note EPSILN = 1.E-8 a few lines below is needed to restore default value
C of STARTUP following distortion of the 3rd subcase. Without restoration,
C the answer will be quite different because U.M. uses this to build network
C during the 4 phasor solutions.
PRINTED NUMBER WIDTH, 10, 1, { 10-digit col width including 1 blank separators
POWER FREQUENCY, 50
2.E-4 .020 50. 0.0 1.E-8
1 1 1 1 1 -1
5 5 20 20 100 100
TACS HYBRID
11CARICO -4797. -1. 1.
91COPPI1 -1. 1.
99COPPIA =CARICO+COPPI1
33COPPIA
BLANK card ending TACS
FEMR CBR .37024 1.196 1
FEMS CBS .37024 1.196 1
FEMT CBT .37024 1.196 1
C ----- Motor parasitic capacitances
M1.R .02 1
M1.S .02 1
M1.T .02 1
CSMT 1000. { Motor neutral grounding resistance
C ----- Mechanical network
ROTORD 1.E-08
ROTORQ 1.E-08
COPPIA 9.16E6 2
COPPI1COPPIA 1.0E-6
BLANK ENDING BRANCHES
COPPI1COPPI2 MEASURING 1
CBR M1.R -1. 15.00 1
CBS M1.S -1. 15.00 1
CBT M1.T -1. 15.00 1
BLANK ENDING SWITCHES
14FEMR 1 4898.98 50. 0. -1.0 1.
14FEMS 1 4898.98 50. -120. -1.0 1.
14FEMT 1 4898.98 50. 120. -1.0 1.
14COPPI2-1 -1. 1.E-9 0. -1.0 1.
60COPPIA-1
19 UM
01 0 { Compensation; use "1" rather than "0" for prediction
BLANK card ends Class-1 cards
3 1 1111COPPIA 1
0.0 0.3964
0.0 0.3964
4. COPPI2
.1674 .001 M1.R CSMT 1
.1674 .01 M1.S CSMT 1
.1674 .01 M1.T CSMT 1
.78187 .00453 ROTORD 1
.78187 .00453 ROTORQ 1
BLANK card ending U.M. coils
BLANK ENDING SOURCES
C Total network loss P-loss by summing injections = 5.005262016348E-01
C Total network loss P-loss by summing injections = 3.007635104268E+04
C Total network loss P-loss by summing injections = 3.007585104268E+04
C Total network loss P-loss by summing injections = 3.008749127839E+04
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C COPPI1 COPPI2 4.82497291E+03 0.00000000E+00 4.82497291E+03 0.0000 7.27577133E+05 0.00000000E+00
C CBR M1.R 2.12219079E+02 -9.54916543E+01 2.32713544E+02 -24.2262 5.09803228E+05 2.01520807E+05
C CBS M1.S -1.88807738E+02 -1.36041286E+02 2.32713544E+02 -144.2262 5.09803228E+05 2.01520807E+05
C CBT M1.T -2.34113411E+01 2.31532941E+02 2.32713544E+02 95.7738 5.09803228E+05 2.01520807E+05
C 1 of 4 gen: COPPIA 301.59289474462 301.59289474462 4824.9729075506 4824.9729075506 727588.77312628 727588.77312628
C 0.0 0.0 .17357870652E-4 0.0000002 -.0026175052283 1.0000000
C
C 2 of 4 gen: FEMR 4898.98 4898.98 212.21907905668 232.71354399216 519828.51195855 570029.49887335
C 0.0 0.0 -95.49165430404 -24.2261891 233905.85230121 0.9119327
C
C FEMS -2449.49 4898.98 -188.807738005 232.71354399216 519828.51195855 570029.49887335
C -4242.641132632 -120.0000000 -136.0412864788 -144.2261891 233905.85230121 0.9119327
C
C FEMT -2449.49 4898.98 -23.41134105164 232.71354399216 519828.51195855 570029.49887335
C 4242.6411326319 120.0000000 231.53294078285 95.7738109 233905.85230121 0.9119327
C
C Step Time COPPIA COPPI1 CBR CBS CBT FEMR FEMS FEMT M1.R M1.S M1.T
C TERRA COPPI2 M1.R M1.S M1.T CBR CBS CBT TERRA TERRA TERRA
C
C TACS UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1
C COPPIA TQGEN OMEGM THETAM IPA IPB IPC IE1 IE2
C *** Phasor I(0) = 4.8249729E+03 Switch "COPPI1" to "COPPI2" closed in the steady-state.
C *** Phasor I(0) = 2.1221908E+02 Switch "CBR " to "M1.R " closed in the steady-state.
C *** Phasor I(0) = -1.8880774E+02 Switch "CBS " to "M1.S " closed in the steady-state.
C *** Phasor I(0) = -2.3411341E+01 Switch "CBT " to "M1.T " closed in the steady-state.
C 0 0.0 301.59289 4824.9729 212.21908 -188.8077 -23.41134 212.21908 -188.8077 -23.41134 .00137262 .024922 -.0262946
C 0.0 -4824.973 301.59289 1.5707963 -212.2177 188.83266 23.385046 74.005629 -268.4606
C 1 .2E-3 301.59289 4824.9729 217.79488 -179.8952 -37.89965 217.79488 -179.8952 -37.89965 -.4897E-3 .02588688 -.0253972
C 27.972911 -4824.959 301.59289 1.6311149 -217.7954 179.92112 37.874249 73.334597 -268.6438
C 2 .4E-3 301.5932 4824.9729 222.51143 -170.273 -52.23846 222.51143 -170.273 -52.23846 -.002339 .02673945 -.0244004
C 27.972911 -4824.941 301.59289 1.6914335 -222.5138 170.29971 52.21406 72.662955 -268.8252
BLANK ENDING OUTPUT REQUEST
C 100 .02 301.64888 4824.9729 211.99353 -188.6458 -23.34774 211.99353 -188.6458 -23.34774 .00136234 .02495568 -.026318
C 27.972911 -4819.913 301.64979 7.6030487 -211.9922 188.67075 23.321418 5.0277011 -278.1347
C Variable maxima : 301.64888 4824.9729 232.67504 232.63158 232.51922 232.67504 232.63158 232.51922 .02962796 .02960618 .02960763
C 27.972911 -4819.913 301.65916 7.6030487 232.6071 232.54547 232.60707 74.005629 -268.4606
C Times of maxima : .02 .0118 .0014 .008 .0146 .0014 .008 .0146 .0152 .002 .0084
C .0118 .02 .0122 .02 .0114 .018 .0046 0.0 0.0
C Variable minima : 301.59289 4824.9729 -232.5957 -232.5347 -232.5969 -232.5957 -232.5347 -232.5969 -.029647 -.0296246 -.0296779
C 0.0 -4824.973 301.59289 1.5707963 -232.6864 -232.6424 -232.5295 5.0277011 -278.1347
C Times of minima : .2E-3 0.0 .0114 .018 .0046 .0114 .018 .0046 .0052 .0118 .0184
C 0.0 0.0 0.0 0.0 .0014 .008 .0146 .02 .02
PRINTER PLOT
194 5. 0.0 20. UM-1 TQGEN COPPI2COPPI1 { Limits: (-4.825, 0.000)
194 5. 0.0 20. TACS COPPIAUM-1 THETAM { Limits: (0.000, 2.797)
194 4. 0.0 20. BRANCH { Limits: (-2.327, 3.017)
M1.R CBR M1.S CBS M1.T CBT UM-1 OMEGM
194 4. 0.0 20. BRANCH { Limits: (-2.327, 2.326)
UM-1 IPA UM-1 IPB UM-1 IPC
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 5th of 12 subcases that confirm various aspects of switches that
C touch compensation-based elements. This is like the 1st except
C that here we have 3 phases. As explained in the July, 1996,
C newsletter, Marjan Popov in Macedonia first complained of trouble.
C Prior to 1 June 1996, step 2 would never be reached because the
C error occurred following opening on step 1. Here, we go 3 steps:
.000050 .000150 50. 50. 1.E-9
1 1
TACS HYBRID
C Note. Mr. Popov used MODELS, and he had complicated dynamics. But
C none of that complexity was required to demonstrate the trouble
C (KILL = 209). So, instead use simpler TACS model of 1st subcase:
99RESIS = 1.E-6
77RESIS 1.E-6
33RESIS
BLANK card ending TACS
$DEPOSIT, MATFUL=1 { Internal conversion of Type-51, 52, ... to unsymmetric data
C Add preceding definition of MATFUL on 6 August 2008 as the update to allow
C unsymmetric branch [R], [L] is being packaged. Of course, the following three
C coupled branches are symmetric, so by pretending that they are not we merely
C waste both storage (the size of List 3 will increase by 3 cells) and computer
C time (the unsymmetric phasor solution requires more work). As for location,
C there is no magic. If MATFUL has value unity at the start of a Type-51, 52,
C ... branch group, ATP will convert the R-L data to unsymmetric (full matrix)
C storage. To turn off this "service," use $DEPOSIT, MATFUL=0 which will be
C found near the start of the following subcase (it could be moved to this one,
C to any point below the Type-53 branch card, just as well). WSM.
51SRCR BUSR 21.07 { ZERO SEQUENCE
52SRCS BUSS 2.39 { POSITIVE SEQUENCE
53SRCT BUST
$VINTAGE, 1
1LINBR LINER 3.98507949E+00 1.16971333E+01 5.00880327E+01
2LINBS LINES 1.64595110E+00 3.84463816E+00 -7.10131829E+00
3.81191239E+00 1.21114617E+01 4.86330090E+01
3LINBT LINET 1.57601253E+00 4.21324332E+00 -8.66201631E+00
1.50186508E+00 4.04356685E+00 -6.51737363E+00
3.69294935E+00 1.24065061E+01 4.91034827E+01
$VINTAGE, 0
91ARCR LINBR TACS RESIS 2
91ARCS LINBS TACS RESIS 2
91ARCT LINBT TACS RESIS 2
C NAME NAME REFERENCE R(OHM)X(OHM)C(miF)
BUSR 0.314 { Bus bar capacitances
BUSS 0.314
BUST 0.314
C Provide linear elements connected to ARCR, ARCS, ARCT (leakage to ground):
ARCR 1.E8
ARCS 1.E8
ARCT 1.E8
BLANK Card ending branch cards
BUSR ARCR -0.1 2.60 1
BUSS ARCS -0.1 2.60 1
BUST ARCT -0.1 2.60 1
ARCR LINBR -0.1 0.000 50.E3
ARCS LINBS -0.1 0.001 50.E3
ARCT LINBT -0.1 0.001 50.E3
BLANK Card ending switch cards
14SRCR 89814. 50. 0. 0. -1.
14SRCS 89814. 50. 120. 0. -1.
14SRCT 89814. 50. -120. 0. -1.
BLANK Card ending source cards
LINER LINES LINET BUSR BUSS BUST
BLANK Card ending output cards
C Step Time LINER LINES LINET BUSR BUSS BUST BUSR BUSS BUST TACS
C ARCR ARCS ARCT RESIS
C *** Phasor I(0) = -1.2037996E-01 Switch "BUSR " to "ARCR " closed in the steady-state.
C *** Phasor I(0) = -4.2912571E+00 Switch "BUSS " to "ARCS " closed in the steady-state.
C *** Phasor I(0) = 4.3267803E+00 Switch "BUST " to "ARCT " closed in the steady-state.
C *** Phasor I(0) = -1.2127823E-01 Switch "ARCR " to "LINBR " closed in the steady-state.
C *** Phasor I(0) = -4.2908080E+00 Switch "ARCS " to "LINBS " closed in the steady-state.
C *** Phasor I(0) = 4.3272295E+00 Switch "ARCT " to "LINBT " closed in the steady-state.
C 0 0.0 89846.7243 -44918.879 -44929.061 89826.4331 -44913.159 -44913.549 -.12037996 -4.2912571 4.32678032 1.E-6
C *** Open switch "ARCR " to "LINBR " after 5.00000000E-05 sec.
C 1 .5E-4 89835.7272 -46135.534 -43701.414 89815.3391 -46129.508 -43686.133 -.20216547 -4.2510535 4.36857684 1.E-6
C 2 .1E-3 89802.5653 -47340.817 -42462.973 89782.085 -47334.497 -42447.917 -.28390448 -4.2098234 4.40932077 1.E-6
C 3 .15E-3 89747.2461 -48534.443 -41214.032 89726.6777 -48527.808 -41199.225 -.3655754 -4.1675019 4.44892539 1.E-6
BLANK CARD ending plot
BEGIN NEW DATA CASE
C 6th of 12 subcases illustrates trouble with compensation-based elements
C even though no switch is involved. The data came from Gabor Furst on
C 14 Sept 2000 as mentioned in the January, 2001, newsletter. Execution
C should be stopped in overlay 16 because the Type-91 element R(t) is not
C isolated in a separate subnetwork from the U.M. Case-summary statistics
C show List 24 = 4 as the number of phases of compensation. This is
C entirely wrong: Size 21-30: 0 0 9 4 337 ...
C STEP ZERO COUPLE { If activated, the correct KILL = 9 of overlay 15 results
C 20 May 2001, the answer changes following correction to SOLVUM to
C solve a problem from Dr. Michael Steurer of CAPS at Florida State.
C No, answer is not right. It remains wrong, but is a different wrong
C because compensation logic has been modified.
C 23 May 2001, introduce request for special verification of possible
C overlap between U.M. compensation and that of List-9 elements. This is
C in OVER16 (to find the code, search for KOMPUM). Add new request:
VERIFY U.M. COMPENSATION { If removed, KILL = 9 error termination will disappear
$DEPOSIT, MATFUL=0 { Cancel conversion of Type-51, 52, ... to unsymmetric data
UM TO TACS
5.0E-4 5.E-4 50.0 { Only 1 time step is needed to demonstrate the error
1 1
TACS { The Rule Book recommends TACS HYBRID or TACS STAND ALONE, but this works
92TQGEN
98TPER = 1/FREQHZ
1TAVG1 +TQGEN 1
1.0
1.0 0.020
1TAVG +TAVG1 1.0
1.0
1.0 0.020
98ROTRES = 1000.0*(1.0 - TIMEX/8.0)
33IM TAVG TQGEN ROTRES
BLANK card ending TACS data
SRA MOTA 1.00 { source impedance ohm } 1
SRB MOTB 1.00 1
SRC MOTC 1.00 1
C Tops of 3 rotor coils are grounded through 1/2-ohm resistors:
XOTA 0.50 { Fixed resistance for rotor phase a } 1
XOTB 0.50 { Fixed resistance for rotor phase b } 1
XOTC 0.50 { Fixed resistance for rotor phase c } 1
C Bottoms of 3 rotor coils are connected to neutral NEUT, which then is
C grounded by the following TACS-defined, time-varying resistor:
91NEUT TACS ROTRES { Variable resistance in rotor circuit } 1
C But node NEUT is connected to no linear branch. To avoid a warning
C message, parallel the preceding R(t) by fixed high reistance:
NEUT 1.E6
C the anlogue network records follow
C the separator from the 14 source
INERS INER 1.E-6
INER 3.3E7 {inertia uF}
C the damping term in ohms
INER 2.26 {damping 1/mho}
BLANK ending BRANCHes
BLANK ending SWITCHes
14SRA 3400.00 50.0 0.0 -1
14SRB 3400.00 50.0 240.0 -1
14SRC 3400.00 50.0 120.0 -1
C the source for the analogue network
14INERS -1 0.000001 .0000001 -1
C the source of any additional load applied
14INERS -1 -0.000001 0.0000001 5.00
19 { Begin U.M. data for single 3-phase induction motor with wound rotor
0 0 { Note no auto-initialization (no multiple phasor solutions)
BLANK
4 111INER 2 0.15700
0.465131
0.465131
C armature coils
MOTA 1
0.3393571 0.0109180 MOTB 1
0.3393571 0.0109180 MOTC 1
C rotor coils
0.5785651 0.0109180 XOTB NEUT 1
0.5785651 0.0109180 XOTC NEUT 1
XOTA NEUT 1
BLANK card ending U.M. data
BLANK card ending sources
BLANK card ending output variables requests (none here, since all column 80)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 7th of 12 subcases illustrates new TACS R-thev option on rotor coil
C cards to define connected resistance using a TACS variable. It does
C not solve the preceding problem, but it avoids it, and is superior
C for cases of common interest. See January, 2000, newsletter. Data is
C from preceding subcase, although here we energize the motor. To speed
C the simulation, double Gabor Furst's dT and shorten his T-max (was 8):
.001 2.0 50.0
1 3 1 0 1 -1
5 5 20 20 100 100 200 200
TACS HYBRID
98ROTRES = 10. * ( 1.0 - TIMEX / 2.0 ) { Linear ramp of R from 10 ohms to zero
33ROTRES { Output this one and only TACS variable of interest
77ROTRES 10. { Initial condition is needed for smooth start (not R=0)
BLANK card ending TACS cards
SRA MOTA 1.00 { Source impedance = 1 ohm reactive.
SRB MOTB 1.00 { This separates the machine armature
SRC MOTC 1.00 { MOT from the infinite bus SR.
XOTA 100. { Resistance across each rotor coil is
XOTB 100. { arbitrary since it will be replaced
XOTC 100. { by value of TACS signal ROTRES, anyway
C the anlogue network records follow
C the separator from the 14 source
INERS INER 1.E-6
INER 3.3E7 {inertia uF}
C the damping term in ohms
INER 2.26 {damping 1/mho}
BLANK card ending BRANCH cards
BLANK card ending SWITCH cards
14SRA 3400.00 50.0 0.0 -1.
14SRB 3400.00 50.0 240.0 -1.
14SRC 3400.00 50.0 120.0 -1.
C the source for the analogue network
14INERS -1 0.000001 .0000001 -1.
C the source of any additional load applied
14INERS -1 -0.000001 0.0000001 5.00
19 { Begin U.M. data, which will consist of a single 3-phase induction motor
C No autoinitialization. Also, this data does use compensation on both sides.
0 0
BLANK
4 111INER 2 0.15700
0.465131
0.465131
C 3 armature coils come first:
MOTA 1
0.3393571 0.0109180 MOTB 1
0.3393571 0.0109180 MOTC 1
C 3 rotor coils follow:
0.5785651 0.0109180 XOTB 1 TACS R-thev ROTRES
0.5785651 0.0109180 XOTC 1 TACS R-thev ROTRES
XOTA 1 TACS R-thev ROTRES
C Note about preceding. The request word is "TACS R-thev " in columns 63
C through 74. It is to be followed by the A6 name of a TACS variable in
C columns 75-80. Each coil can have a different TACS variable (the three
C being the same means that the 3-phase resistance is balanced.
BLANK card ending U.M. data cards
BLANK card ending source cards
BLANK card ending output specifications (none here)
193 .4 0.0 2.0 0.0 200.UM-1 OMEGM
C 193 .2 0.0 2.0 UM-1 IE1 { A vector plot really is needed for this
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 8th of 12 subcases is similar to 1st (Janko's data), but is slightly
C different. Prior to correction on 14 October 2000, the solution was
C wrong following closure of the switch to ground. Data was contributed
C by Steve Nurse of Reyrolle in England on 11 Oct 2000. The following
C data is a smaller, simpler illustration of the problem:
C
C GEN SEND Type-91 LOAD 1.0
C o------_-------||------/\/\/\-------||------/\/\/\-------|| E
C ^ || R = 1 || R = 1 || a
C MEASURING || || || r
C switch || || || t
C (always ||--------/----------||--------/----------|| h
C closed) 1st, switch 2nd, switch
C will open will close
C
C There are 3 switches, with one permanently closed. All 3 touch the
C compensation-based Type-91 element. Simulation begins with the Type-91
C element shorted, so the source GEN feeds the 1-ohm resistor from
C LOAD to ground. The current is 6 volts / 1 ohm = 6 amps. But then
C the switch from SEND to LOAD opens, inserting the Type-91, adding
C another ohm. This drops the current to 3 amps. Finally, the ordinary
C 1-ohm resistor from LOAD to ground is shorted, restoring the current
C to 6 amps. Prior to correction, the final change did not happen. See
C also the 8th (final) subcase of DC-68, for which answers changed
C slightly as a result of this change to OVER16.
PRINTED NUMBER WIDTH, 10, 1, { Request maximum precision (for 8 output columns)
.001 .009
1 -1 1
91SEND LOAD 3333. 1
C -------R(tr)---------><-----tr---------------->
0.001 { V of flashover gap
1.0 0.0
1.0 .020
9999
SEND 10.E8 { Avoid ATP warning and such internal addition
LOAD 1.0 1
BLANK card ending branch cards
C Switch data: T-close T-open I-epsiln
LOAD SEND -1.0 .0025 1.E8 1
LOAD .0065 1.0 1
GEN SEND MEASURING 1
BLANK card ending switch cards
11GEN 6.0
BLANK card ending source cards
GEN SEND LOAD
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 5 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time GEN SEND LOAD LOAD LOAD GEN SEND LOAD
C SEND TERRA SEND LOAD TERRA
C *** Switch "LOAD " to "SEND " closed before 0.00000000E+00 sec.
C *** Switch "GEN " to "SEND " closed before 0.00000000E+00 sec.
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .1E-2 6.0 6.0 6.0 -6. 0.0 6.0 0.0 6.0
C 2 .002 6.0 6.0 6.0 -6. 0.0 6.0 0.0 6.0
C *** Open switch "LOAD " to "SEND " after 3.00000000E-03 sec.
C 3 .003 6.0 6.0 6.0 0.0 0.0 6.0 0.0 6.0
C 4 .004 6.0 6.0 0.0 0.0 0.0 .6E-8 0.0 0.0
C 5 .005 6.0 6.0 3.0 0.0 0.0 3.0 3.0 3.0
C 6 .006 6.0 6.0 3.0 0.0 0.0 3.0 3.0 3.0
C *** Close switch "LOAD " to " " after 7.00000000E-03 sec.
C 7 .007 6.0 6.0 3.0 0.0 0.0 3.0 3.0 3.0
C 8 .008 6.0 6.0 0.0 0.0 6.0 6.0 6.0 0.0
C 9 .009 6.0 6.0 0.0 0.0 6.0 6.0 6.0 0.0
BLANK card ending output variables requests (just node voltages, here)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 9th of 12 subcases is unrelated to preceding subcases.
C Illustrate that the 3-phase compensation of DC-34 can coexist with single-
C phase compensation of a disconnected Type-93 nonlinear reactor. Prior to
C correction to SOLVUM on 20 May 2001, the solution was obviously wrong.
C The first report of such trouble came from Dr. Michael Steurer of CAPS at
C Florida State University in Tallahassee. His data involved a Type-91
C TACS-controlled resistor, but in fact TACS had nothing to do with the
C trouble, so is not being involved in the present illustration.
C Comment about 6th subcase: It, too, involves both 3-phase compensation
C of the U.M. and 1-phase compensation of a separate element. But that
C data was illegal because the two were not isolated in disconnected
C subnetworks.
POWER FREQUENCY, 60.0, { Europeans need this (LEC letter dated 6 Jan 89, page 2)
PRINTED NUMBER WIDTH, 11, 1, { Restore default STARTUP column width, separation
.001 .500
1 1 1 1 1 -1
5 5 20 20 100 100
0 BUS-F0 1.0
0 BUS-A0 1.0
0 BUS-B0 1.0
0 BUS-C0 1.0
0BUS-A1BUS-A0 0.02 1.0610
0BUS-B1BUS-B0BUS-A1BUS-A0
0BUS-C1BUS-C0BUS-A1BUS-A0
0BUS-M1 2.00E6 1
0BUS-M0 2.00E6 1
0BUS-M0BUS-M1 1. 1
C End of DC-34 branches; begin branches from DC-45b. Note that these
C involve different names, so are completely disconnected from the machine.
C This single-phase subnetwork will illustrate an energization transient:
GEN TRAN 2.0 1
93TRAN 1.0 1.0 1
0.0 0.0
0.9 0.9
2.0 1.1
10. 1.2
9999
BLANK card ends the last branch card
BLANK card ends (in this case nonexistent) switch cards
11BUS-F0 0.002091 { 18 Oct 90, remove ineffective T-start = -1.0 from card
11BUS-M0-1 1.02
11BUS-M0-1 -.4 .019500
14BUS-A0 1.41421356 60.0 0.0
14BUS-B0 1.41421356 60.0 -120.0
14BUS-C0 1.41421356 60.0 120.0
C End of DC-34 static sources. B4 the U.M., insert the source from DC-45b:
14GEN 377. 60.
19 UM { Beginning of U.M. data (Type-19 source)
1
BLANK card ending class-1 U.M. data
1 2 1111BUS-M1 1 1786.98 { 1st card of U.M. machine table
1.0 1.550 0 0.3 1.5 1.0
0.93787 1.490 0
0.0 0.0 BUS-A1 1 1.3860 { 1st card of coil table
0.001096 0.150 BUS-B1 1 -0.95877
0.001096 0.150 BUS-C1 1 -0.42721
0.00074 0.101 BUS-F0 1 -2.826
0.0131 0.055 1
0.0540 0.036 1
BLANK card ending all U.M. data
BLANK card ending EMTP source cards
C Total network loss P-loss by summing injections = 2.999999989932E+00
2BUS-A1 1.56413 { First of many initial condition cards for the
2BUS-B1 -0.30745 { electric network. Since the U.M. is not a
2BUS-C1 -1.25677 { part of the phasor solution (see DCNEW-1 for
2BUS-A0 1.41421356 { such a more modern problem), synchronous
2BUS-B0 -0.70710678 { operation can begin smoothly only if the
2BUS-C0 -0.70710678 { initially conditions are manually applied.
2BUS-F0 0.002091
2BUS-M0 1.0
2BUS-M1 1.0 { Final card of node voltage initial conditions
3BUS-A1BUS-A0 1.38494 { 1st card of branch current initial conditions
3BUS-B1BUS-B0 -0.95793
3BUS-C1BUS-C0 -0.42701
3 BUS-A0 -1.41421356
3 BUS-B0 +0.70710678
3 BUS-C0 +0.70710678
3 BUS-F0 -0.002091
3BUS-M0BUS-M1 +1.01
3BUS-M0 +1.0
3BUS-M1 +1.0 { Last card of branch current init. condit.
TRAN BUS-M1BUS-M0 { Request for selective node voltage output
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 5 output variables are branch currents (flowing from the upper node to the lower node);
C Final 9 output variables pertain to Type-19 U.M. components (names are generated internally);
C Step Time TRAN BUS-M1 BUS-M0 TRAN BUS-M1 BUS-M0 BUS-M0 GEN UM-1 UM-1
C TERRA TERRA TERRA BUS-M1 TRAN TQGEN OMEGM
C UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1
C THETAM IPA IPB IPC IE1 IE2 IE3
C 0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.01 0.0 1.00124132 1.0
C .93787 1.386 -.95877 -.42721 -2.826 0.0 0.0
C 1 .1E-2 350.17556 1.00000302 1.0000025 .17508778 .012094107 .010000262 1.00999974 .17508778 .997905631 1.0
C .93787 1.40049668 -.50888659 -.89163009 -2.8259503 .85956E-4 -.00481942
C 2 .002 273.846974 1.00000988 1.0000075 .487099047 .015338089 .010001714 1.00999829 .487099047 .994660197 1.0
C .93787 1.22097729 .010653511 -1.2316108 -2.8258183 .309395E-3 -.0092568
C 3 .003 159.111636 1.00001841 1.0000125 .703578352 .018762645 .010005857 1.00999414 .703578352 .991231498 1.0
C .93787 .870655506 .528248848 -1.3989244 -2.8248425 .001999525 -.01265851
BLANK card ending the specification of output variables
C 500 0.5 377.026496 1.00472639 1.00854631 -.01324809 -.13068128 .049259392 .570740608 -.01324809 .701421892 1.00469204
C .660491474 .974954484 -.86183035 -.11310413 -2.4109229 -.04254056 .118833141
C Variable max: 377.260976 1.00779145 1.00854631 1.25309712 .260847165 .297988719 1.01 1.25309712 1.0019948 1.00877611
C .93787 1.41537866 1.40559809 1.40738077 -2.0788757 .133544596 .152562874
C Times of max: .05 .442 0.5 .471 .378 .296 0.0 .471 .015 .439
C .064 .034 .056 .045 .358 .176 .471
C Variable min: -376.94611 .989230544 .990404468 -6.3622515 -.29505746 -.3892114 .322011281 -6.3622515 .29918812 .988252614
C .361026488 -1.4043962 -1.4122326 -1.411928 -2.826 -.04419925 -.18596365
C Times of min: .475 .158 .217 .012 .102 .02 .296 .012 .346 .159
C .358 .059 .031 .02 0.0 .485 .188
PRINTER PLOT
193 .1 0.0 1.0 UM-1 THETAM { Plot limits: (0.000, 9.379)
C The preceding plot is identical to DC-34, so provides the simplest way to
C validate the solution of the U.M. As for the Type-93 reactor, inrush
C current is shown by the following vector plot. It seems believable, and
C is unchanged by deletion of all data related to DC-34.
CALCOMP PLOT
193.05 0.0 0.5 -7.0 1.0TRAN
BLANK card ending all plot cards
BEGIN NEW DATA CASE
C 10th of 12 subcases is derived from 1st to demonstrate that the TACS dc
C solution in fact represents the superposition of the network solution
C within TACS (driven by Type-11 sources, which are batteries) and the
C user-supplied initial conditions.
1.E-5 1.E-5
1 1 1 2
TACS HYBRID
C 99RESIS = 1.E-6
C 77RESIS 1.E-6
C Replace the preceding 2 lines (see 1st subcase) in attempt to demonstrate
C that the TACS dc solution printout is the sum of the TACS network solution
C value and the initial condition value: -37.E-6 + 38.E-6 = 1.E-6 (same as
C the 1st subcase). Unfortunately, this has not yet been accomplished. But
C different treatment of the initial condition is easily demonstrated. The
C following shows 4 different ways to define a TACS variable. All will be
C given the same initial condition value 38.E-6. But two of the four will
C have one value for dc printout, and the remaining two will have another.
11SOURCE -37.E-6 { Note T-start < 0 so TACS phasor solve } -1. 1.
C Following RESA and RESB will show source value (-37.E-6) in dc printout:
0RESA +SOURCE
1RESB +SOURCE
1.
1. 1.
C Following RESC & RESD will show initial condition valu (+38) in dc printout:
1RESC +SOURCE
1.
1.
88RESD = 1.E-6
77RESA 38.E-6
77RESB 38.E-6
77RESC 38.E-6
77RESD 38.E-6
33RESA RESB RESC RESD
BLANK card ending TACS
91N1 N2 TACS RESA 1
N1 N12 1.E-6
N2 1.
BLANK card ending branches
N12 N2 MEASURING
SRCE N1 MEASURING 1
BLANK card ending switches
14SRCE 100. 60. 0.0 0. -1.
BLANK card ending sources
C Zero-frequency (dc) steady-state solution for TACS follows.
C (Name) TACS value (Name) TACS value (Name) TACS value (Name) TACS value (Name) TACS value
C RESA -3.70000000E-05 RESB -3.70000000E-05 RESC 3.80000000E-05 RESD 3.80000000E-05
BLANK card ending output variables (none)
BLANK card ending plot
BEGIN NEW DATA CASE
C 11th of 12 subcases always should be last since it demonstrates a halt
C to execution using CALL STOPTP. This is added 29 August 2002 to
C illustrate what previously was a tight loop within Z-thev computation
C of OVER16. There is similarity to the 6th subcase. But whereas that
C data would simulate (giving the wrong answer), this data would die.
C The original complaint was in E-mail of the EEUG list server dated
C 22 August 2002. In this, Alejandro Montenegro at the University of
C Florida asked: "The problem appears when I combine TACS-controlled
C Type 13 switches, Type 94 components and UM type 3." But the present
C data is much simpler. Only the Type-3 U.M. is used. No TACS, no
C MODELS, and no switches at all. The fundamental problem was an overlap
C of compensation, and it led to an unbounded index prior to the trap
C that this subcase illustrates.
.000100 .15
1 -1 1
C Begin with 3 single-phase nonlinear reactors in the same subnetwork as the
C U.M. It is not clear why all 3, rather than just 1, is required for
C the tight loop. But this seems to be the case.
93VPA VA .559 300. 1
0.0 0.0
.5590 300.
.9344 400.
9999
93VPB VB VPA VA .559 300. 1
93VPC VC VPA VA .559 300. 1
C Nodes VA, VB, and VC have no connected linear branch. To prevent warning
C messages about floating subnetwork, & automatic additions to ground, add C:
VA 1.0 { Shunt capacitance avoids floating
VB 1.0 { Shunt capacitance avoids floating
VC 1.0 { Shunt capacitance avoids floating
C The following 2 lines are rotor mass and damping from Bonfanti's motor:
COPPIA 9.16E6 2
COPPI2COPPIA 1.0E-6
BLANK card ending branch cards
BLANK card ending switches
14VPA 10777.75 60. -1. 10.
14VPB 10777.75 60. -120. -1. 10.
14VPC 10777.75 60. 120. -1. 10.
C The following is Bonfanti's motor from the 3rd subcase.
14COPPI2-1 -1. 1.E-9 0. -1.0 9999.
19 UM
01 0 - Compensation; change 0 to 1 if prediction is wanted
BLANK general UM specification
3 1 1111COPPIA 1
0.0 0.3964
0.0 0.3964
4. COPPI2
.1674 .001 VA 1
.1674 .01 VB 1
.1674 .01 VC 1
.7819 .00453 1
.7819 .00453 1
BLANK card ending U.M. data
BLANK card ending sources
VA VB VC VPA VPB VPC { Names of nodes for node voltage output
BLANK card ending output variables
BLANK card ending plot
C Document the end of output of this 11th data subcase. This begins
C exactly as in years past. An error is recognized after the dT-loop heading:
C UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1
C TQGEN OMEGM THETAM IPA IPB IPC IE1 IE2
C Error. Halt execution above S.N. 2322 in OVER16. Compensation is in error. Bad subscript N1. If U.M. is involved, try adding
C VERIFY U.M. COMPENSATION or STEP ZERO COUPLE as illustrated in DCN16.
C Temporary error stop in ENTRY STOPTP of "WINDOW". NCHAIN, LASTOV = 16 15
C 12345678901234567890123456789012345678901234567890123456789012345678901234567890
C ABUFF(1:80) =
C
C So much for the old. The new adds explanation of the recovery.
C Before output of the 12th subcase begins, there is this:
C
C ------------------------------------------------------------------------------------------------------------------------------------
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ------------------------------------------------------------------------------------------------------------------------------------
C
C This is not actually a KILL error termination. But ATP now will try to continue as if it were. A recursive CALL is involved.
C
C ------------------------------------------------------------------------------------------------------------------------------------
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/
C ------------------------------------------------------------------------------------------------------------------------------------
BEGIN NEW DATA CASE
C 12th of 12 subcases demonstrates that the STOPTP termination of the
C preceding subcase is not fatal. By means of a recursive CALL, ATP
C can be restarted to continue processing following data subcases such
C as this one, which is a copy of the 1st subcase. Output is identical.
C For brevity, connectivity and the phasor output have been omitted.
C This modification is made 23 January 2011. WSM.
1.E-5 1.E-5
1 1
TACS HYBRID
99RESIS = 1.E-6
77RESIS 1.E-6
33RESIS
BLANK card ending TACS
91N1 N2 TACS RESIS 1
N1 N12 1.E-6
N2 1.
BLANK card ending branches
N12 N2 MEASURING
SRCE N1 MEASURING 1
BLANK card ending switches
14SRCE 100. 60. 0.0 0. -1.
BLANK card ending sources
N1 N12 N2
BLANK card ending voltage printout
BLANK card ending plot
BEGIN NEW DATA CASE
BLANK
|