summaryrefslogtreecommitdiffstats
path: root/benchmarks/dcn13.dat
blob: 76ba7632ff1a072a3abf182a1e95b360664446a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
BEGIN NEW DATA CASE
C     BENCHMARK DCNEW-13
C       1st of 6 test cases that generate data for Noda F-dependence of DCN-14
C     Like TAKU12,  only here 200 miles long for DC-38  (not 180 as for DC-3). 
C     Use only 1 phase of 3-phase, 500-kV line  ---  Phase 1,  plus closest 
C     ground wire.  This gives Noda approximation for use with DC-37.
C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter.  1 ==> F-scan printout
NODA SETUP     { Request Taku Noda's ARMA model fitter.  No printout of F-scan
DCN14A.CCC    { Output file name (blank requests use of default  TAKUNODA.CCC)
C =============================================================================
HOMOGENEOUS LINE  { declares that this case is for a homogeneous line
C * This time, only "HOMOGENEOUS LINE" is available.  This means
C   homogeneous, frequency-dependent transmission line.
C * More options will be add in the future, for example, "CORONA LINE"
C   with nonlinear corona branches inside the line model, and
C   "CREAT LINE" with creat capacitances inside the line model.
C == Fitting Parameters =======================================================
   50.0E-6  { time step (if negative, optimum time step request) <<<<<<<<<<<<<
    4   12  { min and max orders for voltage deformation matrix [H]
    1    6  { min and max orders for characteristic admittance matrix [Y0]
C  3.0  0.5  2.0  { error constants: EpsA, EpsM1, EpsM2 in percent
  1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<<
NO SYMMETRY  { pair(s) of phases having symmetry (here, none)
C -----------------------------------------------------------------------------
C * The fitting parameter part consists of 4 lines.
C * ARMAfit will determin the best order for each phase in the range
C   specified in the above.  The recommended values are :
C     4, 12  for voltage deformation matrix [H]
C     1,  6  for characteristic admittance matrix [Y0]
C   Too big order does not give accurate fitting and stability.
C * The meaning of the error constants above is as follows :
C     EpsA  : permitted error in the stage of Least-Square fitting
C     EpsM1 : error determining modal traveling timings
C     EpsM2 : error detecting dominant modes in each phase response
C   The recommended values are :
C     EpsA = 3.0 %,  EpsM1 = 0.5 %,  EpsM2 = 2.0 %
C   Too small value does not give accurate fitting, because the line
C   parameters given by CABLE PARAMETERS, CABLE CONSTANTS, or LINE
C   CONSTANTS include errors due to many approximations, assumptions,
C   and numerical calculations.  An ARMA model does not reproduce
C   a frequency characteristic which cannot exist physically.
C * If phase #1 and #3 have symmetry regarding to the center line of
C   the line configuration, we can specify as the above, and then
C   ARMAfit will take care of the symmetry to reduce the fitting time.
C   If more than 2 pairs of phases have symmetry, we can specify as
C   follows : 1, 4  2, 5  3, 6  { three pairs.
C * The next part will be the frequency scan from CABLE PARAMETERS,
C   CABLE CONSTANTS, or LINE CONSTANTS.
C =============================================================================
NODA SETUP END    { Bound of fitter data;  begin CABLE PARAMETERS data
LINE CONSTANTS
BRANCH  GEN-A 18-A  GEN-B 18-B  GEN-C 18-C
C   LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE.
  1.3636 .05215  4         1.602  -20.75   50.     50.
  1.3636 .05215  4         1.602  -19.25   50.     50.
  0.5    2.61    4         0.386  -12.9    98.5    98.5
C 0.5    2.61    4         0.386   12.9    98.5    98.5
BLANK card ending conductor cards of imbedded  "LINE CONSTANTS"  data
C 100.         5000.                            180.       1           1
C 100.         60.00                            180.       1           1
C 100.           .01                            180.       1   9 10    1
100.           10.                            200.       1   3 10    1
100.          1.E6                            200.       1           1
BLANK card ending frequency cards of inbedded  "LINE CONSTANTS"  data
C   At this point,  disk file  DCN14A.CCC  has been created.  This is input 
C   to Taku Noda's fitter  ---  a separate Salford DBOS program that will
C   produce data (disk file  DCN14A.DAT)  for branch cards of  DCN14.DAT
BLANK card ending  "LINE CONSTANTS"  cases
BEGIN NEW DATA CASE
C      2nd of 6 subcases 
C    1994-1995,  this was at end of DC-27.   This is for a single-phase
C    cable (core and sheath).  Cable data came from CESI (see DCNEW-6).
C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter.  1 ==> F-scan printout
NODA SETUP     { Request Taku Noda's ARMA model fitter.  No printout of F-scan
DCN14B.CCC    { Output file name (blank requests use of default  TAKUNODA.CCC)
HOMOGENEOUS LINE  { declares that this case is for a homogeneous line
C  -1.       { time step (if negative, optimum time step request) <<<<<<<<<<<<<
    3.0E-6  { time step (if negative, optimum time step request) <<<<<<<<<<<<<
    4   12  { min and max orders for voltage deformation matrix [H]
    1    6  { min and max orders for characteristic admittance matrix [Y0]
C 3.0  0.5  3.0  { error constants: EpsA, EpsM1, EpsM2 in percent ---  out 3 Dec 95
  1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<<
NO SYMMETRY  { pair(s) of phases having symmetry (here, none)
NODA SETUP END    { Bound of fitter data;  begin CABLE PARAMETERS data
CABLE CONSTANTS
CABLE PARAMETERS           { Transfer to new (August, 1994) cable constants code
C MISCELLANEOUS DATA CARD
    2   -1    1    0    1    0    0         0
C CARDS INDICATING NUMBER OF CONDUCTORS PER SC COAXIAL CABLE  
    2
C GEOMETRICAL AND PHYSICAL DATA CARDS
     .0206    .02865    .06395     .0689     .0775
  1.775E-8        1.        1.       3.5    9.1E-8        1.        1.      2.25
C CROSS-SECTION LOCATION CARD    
      1.05        0.
C EARTH RESISTIVITY AND FREQUENCY CARDS
           300.             1.    6   10    600.
           300.           1.E8              600.
BLANK card ending frequency cards within  CABLE PARAMETERS
C   At this point,  disk file  DCN14B.CCC  has been created.  This is input 
C   to Taku Noda's fitter  ---  a separate Salford DBOS program that will
C   produce data (disk file  DCN14B.DAT)  for branch cards of  DCN14.DAT
BLANK card ending  "CABLE CONSTANTS"  data cases
BEGIN NEW DATA CASE
C     BENCHMARK DCNEW-13
C      3rd of 6 subcases 
C   Generate data to represent 180-miles of BPA 500-kV overhead line as studied
C   in  DC-3.  Output is used within  DCNEW-14  which repeats the
C   simulation using Taku Noda's frequency dependence rather than 18 Pi-circuits
C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter.  1 ==> F-scan printout
NODA SETUP     { Request Taku Noda's ARMA model fitter.  No printout of F-scan
DCN14C.CCC    { Output file name (blank requests use of default  TAKUNODA.CCC)
C =============================================================================
HOMOGENEOUS LINE  { declares that this case is for a homogeneous line
   50.0E-6  { time step (if negative, optimum time step request) <<<<<<<<<<<<<
    4   12  { min and max orders for voltage deformation matrix [H]
    1    6  { min and max orders for characteristic admittance matrix [Y0]
C  3.0  0.5  2.0  { error constants: EpsA, EpsM1, EpsM2 in percent
  1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<<
  1, 3  { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
NODA SETUP END    { Bound of fitter data;  begin CABLE PARAMETERS data
C  ---  1st,  look at the  LINE CONSTANTS  data for John Day to Lower Monumental
C       This is 500-kV,  so use for DC-3  (close enough for government work):
C  1.3636 .05215  4         1.602  -20.75   50.     50.
C  1.3636 .05215  4         1.602  -19.25   50.     50.
C  2.3636 .05215  4         1.602   -0.75   77.5    77.5
C  2.3636 .05215  4         1.602    0.75   77.5    77.5
C  3.3636 .05215  4         1.602   19.25   50.     50.
C  3.3636 .05215  4         1.602   20.75   50.     50.
C  0.5    2.61    4         0.386  -12.9    98.5    98.5
C  0.5    2.61    4         0.386   12.9    98.5    98.5
C
C  27.        60.           1                  138.
C  27.        6.0           1                  138.           7 20
CABLE CONSTANTS
CABLE PARAMETERS  { Use for overhead line because of  LINE CONSTANTS  trouble
    1    2    1    0    1    0    0    0    0    0    0    0  { transposed line
    3    2    2    1
2.03454E-2  .5550E-2 .49022E-2       0.0     .4572      0.0
   3.90E-8       1.0  12.24E-8       1.0    { rho = cross-sec. area * Rdc / l
     15.24     15.24    -6.096    23.622    23.622      0.
     15.24     15.24     6.096   30.0228   30.0228  -3.93192
   30.0228   30.0228   3.93192
C  Next come 2 frequency cards.  The first loops over meaningful frequencies for            
C  the line length  (here 1 Hz through 100 kHz:  10 points/decade for 5 decades)
C  The second is for a single nearly-infinite frequency (here 100 MHz):            
            27.            1.0    5   10 289682.     { 180 miles is about 290 Km
            27.           1.E8           289682.     { 2nd of 2 is for high freq
BLANK card ending frequency cards within  CABLE PARAMETERS
C   At this point,  disk file  DCN14C.CCC  has been created.  This is input 
C   to Taku Noda's fitter  ---  a separate Salford DBOS program that will
C   produce data (disk file  DCN14C.DAT)  for branch cards used by DCN14.DAT
BLANK card ending  CABLE CONSTANTS  data subcases
BEGIN NEW DATA CASE
C      4th of 6 subcases 
C   Generate data to represent 138-miles of BPA 500-kV overhead line as studied
C   in  DC-31  and  DC-41.  Output is used within  DCNEW-14  which repeats the
C   simulation using Taku Noda's frequency dependence rather than Hauer (DC-41)
C   or Semlyen (DC-31).
C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter.  1 ==> F-scan printout
NODA SETUP     { Request Taku Noda's ARMA model fitter.  No printout of F-scan
DCN14D.CCC    { Output file name (blank requests use of default  TAKUNODA.CCC)
HOMOGENEOUS LINE  { declares that this case is for a homogeneous line
   20.0E-6  { time step (if negative, optimum time step request) <<<<<<<<<<<<<
    4   12  { min and max orders for voltage deformation matrix [H]
    1    6  { min and max orders for characteristic admittance matrix [Y0]
C  3.0  0.5  2.0  { error constants: EpsA, EpsM1, EpsM2 in percent
  1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<<
  1, 3  { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
NODA SETUP END    { Bound of fitter data;  begin CABLE PARAMETERS data
C  ---  1st,  look at the  LINE CONSTANTS  data for John Day to Lower Monumental
C  1.3636 .05215  4         1.602  -20.75   50.     50.
C  1.3636 .05215  4         1.602  -19.25   50.     50.
C  2.3636 .05215  4         1.602   -0.75   77.5    77.5
C  2.3636 .05215  4         1.602    0.75   77.5    77.5
C  3.3636 .05215  4         1.602   19.25   50.     50.
C  3.3636 .05215  4         1.602   20.75   50.     50.
C  0.5    2.61    4         0.386  -12.9    98.5    98.5
C  0.5    2.61    4         0.386   12.9    98.5    98.5
C
C  27.        60.           1                  138.
C  27.        6.0           1                  138.           7 20
CABLE CONSTANTS
CABLE PARAMETERS  { Use for overhead line because of  LINE CONSTANTS  trouble
    1    2    1    0    1    0    0    0    0    0    0    0  { transposed line
    3    2    2    1
2.03454E-2  .5550E-2 .49022E-2       0.0     .4572      0.0
   3.90E-8       1.0  12.24E-8       1.0    { rho = cross-sec. area * Rdc / l
     15.24     15.24    -6.096    23.622    23.622      0.00
     15.24     15.24     6.096   30.0228   30.0228  -3.93192
   30.0228   30.0228   3.93192
C  Next come 2 frequency cards.  The first loops over meaningful frequencies for            
C  the line length  (here 1 Hz through 100 kHz:  10 points/decade for 5 decades)
C  The second is for a single nearly-infinite frequency (here 100 MHz):            
            27.            1.0    5   10 222089.     { 138 miles is about 222 Km
            27.           1.E8           222089.     { 2nd of 2 is for high freq
BLANK card ending frequency cards within  CABLE PARAMETERS
C   At this point,  disk file  DCN14D.CCC  has been created.  This is input 
C   to Taku Noda's fitter  ---  a separate Salford DBOS program that will
C   produce data (disk file  DCN14D.DAT)  for branch cards used by DCN14.DAT
BLANK card ending  CABLE CONSTANTS  data subcases
BEGIN NEW DATA CASE
C      5th of 6 subcases 
C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter.  1 ==> F-scan printout
NODA SETUP      { Request Taku Noda's fitter,  for which data follows
DCN14E.CCC    { Output file name (blank requests use of default  TAKUNODA.CCC)
HOMOGENEOUS LINE  { declares that this case is for a homogeneous line
   10.0E-6  { time step (if negative, optimum time step request) <<<<<<<<<<<<<
    4   12  { min and max orders for voltage deformation matrix [H]
    1    6  { min and max orders for characteristic admittance matrix [Y0]
C  3.0  0.5  2.0  { error constants: EpsA, EpsM1, EpsM2 in percent
  1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<<
  1, 6, 2, 5, 3, 4  { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
NODA SETUP END    { Bound of fitter data;  begin CABLE PARAMETERS data
C    At this point,  we have  LINE CONSTANTS  data,  so would like to use this. 
C    But,  it is not smooth enough for Noda,  so use  CABLE PARAMETERS  
C    approximate equivalent of the following:
C COULEE-RAVER 500-KV                                                         
C   1.3636 .05215  4         1.602  -17.1875 49.06                              
C   1.3636 .05215  4         1.602  -18.25   48.0                               
C   1.3636 .05215  4         1.602  -19.3125 49.06                              
C   2.3636 .05215  4         1.602  -27.1875 85.06                              
C   2.3636 .05215  4         1.602  -28.25   84.0                               
C   2.3636 .05215  4         1.602  -29.3125 85.06                              
C   3.3636 .05215  4         1.602  -17.1875 121.06                             
C   3.3636 .05215  4         1.602  -18.25   120.0                              
C   3.3636 .05215  4         1.602  -19.3125 121.06                             
C   4.3636 .05215  4         1.602   17.1875 121.06                             
C   4.3636 .05215  4         1.602   18.25   120.0                              
C   4.3636 .05215  4         1.602   19.3125 121.06                             
C   5.3636 .05215  4         1.602   27.1875  85.06                             
C   5.3636 .05215  4         1.602   28.25    84.0                              
C   5.3636 .05215  4         1.602   29.3125  85.06                             
C   6.3636 .05215  4         1.602   17.1875  49.06                             
C   6.3636 .05215  4         1.602   18.25    48.0                              
C   6.3636 .05215  4         1.602   19.3125  49.06                             
C   0.5    2.61    4          .386  -9.0     163.96                             
C   0.5    2.61    4          .386   9.0     163.96                             
CABLE CONSTANTS
BRANCH  A1    A2    B1    B2    C1    C2    A'1   A'2   B'1   B'2   C'1   C'2
CABLE PARAMETERS
    1    0    1    0    1    0    0    0    0    0    0    0
    6    2    3    1
2.03454E-2  .5550E-2 .49022E-2       0.0   .521         0.0
C The data ".521 m" above is average separation of phase wires in the bundle
C i.e.,  ( 1.501ft + 1.501ft + 2.125ft ) / 3 = 1.709 ft = .521 m
C Data on the following card are resistivities and relative permeabilities
C of phase wires and ground wires
C 3.8995E-8       1.0  12.24E-8       1.0  { modified rho to match rho in double.dat
   2.92E-8      1.0   9.501E-8      1.0
    14.846    14.846    -5.563    25.819    25.819    -8.611
    36.791    36.791    -5.563    36.791    36.791     5.563
    25.818    25.819     8.611    14.846    14.846     5.563
    49.975    49.975    -2.743    49.975    49.975     2.743
           100.            1.0    6   10  80450.     { 50 miles is about 80 Km
           100.           1.E8            80450.     { 2nd of 2 is for high freq
BLANK card ending frequency cards within  CABLE PARAMETERS
C   At this point,  disk file  DCN14E.CCC  has been created.  This is input 
C   to Taku Noda's fitter  ---  a separate Salford DBOS program that will
C   produce data (disk file  DCN14E.DAT)  for branch cards used by DCN14.DAT
BLANK card ending  CABLE CONSTANTS  data subcases
BEGIN NEW DATA CASE
C     BENCHMARK DCNEW-13
C      6th of 6 subcases 
C   Generate data to represent 180-miles of BPA 500-kV overhead line as studied
C   in  DC-3.  Output is used within  DCNEW-14  which repeats the
C   simulation using Taku Noda's frequency dependence rather than 18 Pi-circuits
C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter.  1 ==> F-scan printout
NODA SETUP     { Request Taku Noda's ARMA model fitter.  No printout of F-scan
DCN14F.CCC    { Output file name (blank requests use of default  TAKUNODA.CCC)
C =============================================================================
HOMOGENEOUS LINE  { declares that this case is for a homogeneous line
   50.0E-6  { time step (if negative, optimum time step request) <<<<<<<<<<<<<
    4   12  { min and max orders for voltage deformation matrix [H]
    1    6  { min and max orders for characteristic admittance matrix [Y0]
C  3.0  0.5  2.0  { error constants: EpsA, EpsM1, EpsM2 in percent
  1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<<
  1, 3  { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
NODA SETUP END    { Bound of fitter data;  begin  LINE CONSTANTS  data
LINE CONSTANTS
UNTRANSPOSED  { Request conventional untransposed representation
C  ---  1st comes line geometry for John Day to Lower Monumental
  1.3636 .05215  4         1.602  -20.75   50.     50.
  1.3636 .05215  4         1.602  -19.25   50.     50.
  2.3636 .05215  4         1.602   -0.75   77.5    77.5
  2.3636 .05215  4         1.602    0.75   77.5    77.5
  3.3636 .05215  4         1.602   19.25   50.     50.
  3.3636 .05215  4         1.602   20.75   50.     50.
  0.5    2.61    4         0.386  -12.9    98.5    98.5
  0.5    2.61    4         0.386   12.9    98.5    98.5
BLANK card ending conductor cards
C  Next come 2 frequency cards.  The first loops over meaningful frequencies for            
C  the line length  (here 1 Hz through 100 kHz:  10 points/decade for 5 decades)
C  The second is for a single nearly-infinite frequency (here 100 MHz):            
  27.        1.0           1                  180.           5 10
  27.       1.E8           1                  180.
BLANK card ending frequency cards
C   At this point,  disk file  DCN14F.CCC  has been created.  This is input 
C   to Taku Noda's fitter  ---  a separate Salford DBOS program that will
C   produce data (disk file  DCN14F.DAT)  for branch cards used by DCN14.DAT
BLANK card ending  LINE CONSTANTS  data subcases