summaryrefslogtreecommitdiffstats
path: root/benchmarks/dc43.dat
blob: 63fcea5ccf33f67021bc6fdaa74162c42362f911 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
BEGIN NEW DATA CASE
C     BENCHMARK DC-43
C          Dynamic arc modeling donated to ATP by Mustafa Kizilcay,  Universitat
C          Hannover Institut fur Elektrische Energieversorgung,  Welfengarten 1,
C          3000 Hannover 1,  WEST GERMANY.   This data file consists of two data
C          cases that were adapted to ATP from Hannover's  "M28." CDC by WSM and
C          Mustafa on October 23rd, 1986.   Results were explained by Mustafa to
C          the  1986 LEC meeting that was held in Leuven on October 27th,  1986.
C          The 1st of 2 subcases illustrates current interruption in an inductiv
C          circuit consisting of a voltage source  in  series with an inductance
C          and the circuit breaker arc (a Type-91, TACS-controlled, time-varying
C          resistor).   Only  thermal behavior of circuit breaker is considered.
C          The time-step size  DELTAT has been increased from .2E-7 sec in order
C          to speed the simulation.   This introduces substantial error, but the
C          shapes of curves remain valid.   See  comments preceding plot  cards.
PRINTED NUMBER WIDTH, 13, 2,  { Request maximum precision (for 8 output columns)
C  .2E-7  .25E-3  { Original card.  Note increase of DELTAT to speed simulation.
   .6E-7  .24E-3              { Decrease TMAX slightly, and triple the step size
       1       3       1       1       1      -1
       5       5      20      20     100     100     500     500
TACS HYBRID
  GALT    +G
90SCHLT
99STROM   = 1.E6 * ABS(SCHLT)
99GSTAT   = STROM * STROM / (170000. + 890. * STROM)
99GKOR    = 1.003 * GSTAT
99SSGNL   = ISTEP - 9.
99G'    58+GSTAT                                         1.0  .29E-6SSGNL GKOR
88LSGNL   = G' .LE. 1.E-6 .OR. GALT .LE. 1.E-6
88G       = 1.E-6 * LSGNL + G' * NOT(LSGNL)
98RB      = INVRS(G)
33RB    G     GSTAT STROM SCHLT SSGNL LSGNL G'    GALT  GKOR
77RB       1.
77G'       1.
77G        1.
77GALT     1.
BLANK card ending all TACS cards
  GEN   IND                     31.8
  SCHLT                    1.E-6                                               1
  IND   SCHLT              1.E10
91IND   SCHLT TACS  RB      { R(t) controlled by TACS variable "RB" }          2
BLANK card ending branch cards
  IND   SCHLT    -1.                   1.E20
BLANK card ending switch cards
14GEN      141421.4     1.     179.928                         -1.
BLANK card ending source cards
C       Total network loss  P-loss  by summing injections =   2.504876348524E+05
C   GEN      -141421.2883382      141421.4      885.90010697039  707796.06505328
C            177.71532574734   179.9280000      707795.51064266       89.9282868
C  Step    Time        IND          SCHLT        IND          GEN          SCHLT
C                      SCHLT                                               TERRA
C
C                       TACS         TACS         TACS         TACS         TACS
C                       STROM        SCHLT        SSGNL        LSGNL          G'
C  ***      Phasor I(0) =  8.8590011E+02  Switch  "IND   "  to  "SCHLT "  closed
C     0    0.0           0.0  .8859001E-3  .8859001E-3  -141421.288   885.900107
C                        0.0          0.0          0.0          0.0          1.0
C ***          Open  switch  "IND   "  to  "SCHLT "  after  6.00000000E-08  sec.
C     1  .6E-7           0.0  .8856333E-3  .8856333E-3  -141421.288  885.6332743
C                885.6332743  .8856333E-3          -8.          0.0  .8210062181
C     2 .12E-6   1078.390644  .8853654E-3  1078.391529  -141421.288  885.3654244
C                885.3654244  .8853654E-3          -7.          0.0  .8207138637
 1
C  4000 .24E-3   -141421.396  -.141436E-6  -141421.396  -141421.396  -.141435538
C                .1414355377  -.141436E-6        3991.          1.0  .1175836E-6
C Variable max : 21435.85382  .8859001E-3  21435.85383  -141421.288   885.900107
C                885.6332743  .8856333E-3        3991.          1.0          1.0
C Times of max :   .19614E-3          0.0    .19614E-3          0.0          0.0
C                      .6E-7        .6E-7       .24E-3    .20172E-3          0.0
C Variable min : -164752.212  -.120238E-5  -164752.212    -141421.4  -1.20237999
C                        0.0  -.120238E-5          -8.          0.0  .1175836E-6
C Times of min :   .20136E-3    .19752E-3    .20136E-3    .19998E-3    .19752E-3
C                        0.0    .19752E-3        .6E-7          0.0       .24E-3
  PRINTER PLOT
C   Original Hannover simulation with DELTAT = .2E-7 sec has limits for this 1st
C   plot variable (IND, SCHLT) of: minimum = -167207.752  at time  0.19952 msec;
C                                  maximum = 23261.09003  at time  0.19618 msec.
 185 2.186.204.         IND   SCHLT             { Plot limits : (-1.645,  0.214)
C   Original Hannover simulation with  DELTAT = .2E-7 sec  has identical minimum
C   and maximum for 2nd plot, since R varies between model limits of 1.0 & 1.E6:
 195 2.192.204.         TACS  RB                { Plot limits : (0.000,   1.000)
BLANK card ending plot cards
BEGIN NEW DATA CASE
C     Second of two subcases.   Here the dynamic arc model is imbedded in a more
C     complicated problem.   A short transmission line (modeled by single-phase,
C     cascaded Pi-circuits)  produces arc reignition.  Arc model has conductance
C     dependent parameters P(G) & TAU(G).  TACS solution according to A. Gruetz.
PRINTED NUMBER WIDTH, 13, 2,
C  0.1E-6 400.E-6
   .2E-6 400.E-6
       1       3       1       1       1      -1
       5       5      20      20     100     100
TACS HYBRID
  GA      +G
90IND
90SCHLT
99STRM    = 1.E6 * ABS(IND - SCHLT)
99GST     = STRM**1.351 / 81686.
99GKOR    = 1.0134 * GST
88G"      = GST - (GST-GA)*EXP(-DELTAT*INVRS(1.95E-6*GA**(-0.2)))
88G'    60+GKOR   +GKOR   +G"                      19.              ISTEP
88LSGNL   = G' .LE. 1.E-6 .OR. GA .LE. 1.E-6
88G       = 1.E-6*LSGNL + G'*NOT(LSGNL)
98RB      = INVRS(G)
33RB    STRM  GST   G     GA    G'    G"    LSGNL GKOR
77G        1.
77G'       1.
77RB       1.
77GA       1.
BLANK CARD ending TACS data
  GEN   IND                      8.0
  IND                      15.         20.
 1LANF  LPI2                     0.15  0.003
 1LPI2  LPI3  LANF  LPI2
 1LPI3  LPI4  LANF  LPI2
 1LPI4  LPI5  LANF  LPI2
 1LPI5  LPI6  LANF  LPI2
 1LPI6        LANF  LPI2
  IND   SCHLT              1.E-6                                               1
  SCHLT LANF               1.E10
91SCHLT LANF  TACS  RB      { R(t) controlled by TACS variable "RB" }          2
BLANK card ending branch cards
  SCHLT LANF     -1.                   1.E20
BLANK card ending switch cards
14GEN      177720.     50.       -3.6                          -1.
BLANK card ending source cards
C       Total network loss  P-loss  by summing injections =   9.711630317140E+04
C
C    GEN      177369.31017627      177720.      -3989.277855594  63550.495266844
C             -11159.13113075   -3.6000000      -63425.16149646      -93.5990147
  GEN   IND   SCHLT LANF
C  Step     Time        SCHLT        GEN          IND          SCHLT        LANF
C                        LANF
C
C                       TACS         TACS         TACS         TACS         TACS
C                        GST          G            GA           G'            G"
C  ***      Phasor I(0) = -4.0068784E+03  Switch  "SCHLT "  to  "LANF  "  closed
C     0    0.0           0.0  177369.3102  17964.49305  17964.49706  17964.49706
C                        0.0          1.0          1.0          1.0          0.0
C  ***         Open  switch  "SCHLT "  to  "LANF  "  after  2.00000000E-07  sec.
C     1  .2E-6           0.0   177370.011  17964.56422  17964.56822  17964.56822
C                .9008627603  .9129343213          1.0  .9129343213   .990336131
C     2  .4E-6   -4320.27872  177370.7111  17143.06414  17143.06808   21463.3468
C                .8830444741  .8948772701  .9129343213  .8948772701  .9100706638
C     3  .6E-6   -4491.59677  177371.4105  18332.40835  18332.41237  22824.00913
C                .9058958171   .918034821  .8948772701   .918034821  .8959289226
BLANK card ending selective node voltage outputs
C  2000  .4E-3   4723.577299  177369.3102  26328.99868  26328.99512  21605.41783
C                .7689432041  .7551157337  .7537084043  .7551157337  .7551157337
C Variable max : 34213.83832      177720.   39750.9701  39750.96985  28499.88741
C                .9058958171          1.0          1.0          1.0   .990336131
C Times of max :    .2624E-3        .2E-3      .282E-3      .282E-3     .3062E-3
C                      .6E-6          0.0          0.0          0.0        .2E-6
C Variable min : -7935.82748  177369.3102  11591.62848  11591.62859  -3236.73514
C                        0.0  .6352189E-3  .6352189E-3  .6352189E-3          0.0
C Times of min :    .1686E-3        .4E-3     .1754E-3     .1754E-3     .1916E-3
C                        0.0     .2392E-3     .2394E-3     .2392E-3          0.0
  PRINTER PLOT
C     Original Hannover simulation with  DELTAT = .1E-6 sec  has limits for this
C     plot that are very close:                   Plot limits : (-0.328,  3.991)
C                                  maximum =  at time   msec.
 14535.    350.         SCHLT LANF                Plot limits : (-0.323,  3.975)
BLANK card ending plot cards
BEGIN NEW DATA CASE
BLANK CARD