1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
|
BEGIN NEW DATA CASE
C BENCHMARK DC-38
C ZnO simulation similar to DC-37, only here a 3-phase network is used.
C The same arrester having characteristic i = 2500 * ( v / V-ref ) ** 26
C is used, only here the coefficient has been cut in four (to COEF =625)
C so that the column multiplier COL = 4.0 can be used: 4 * 625 = 2500.
C Also, the usual, recommended (and more accurate) exponential modeling
C (Type-92 nonlinear R(i) requested by "5555.") is only used for two of
C the three phases. In order to illustrate the piecewise-linear alter-
C native (requested by "4444."), such less-accurate modeling (for the
C highly-nonlinear ZnO, anyway) has been placed in the 3rd phase ("c").
C There are a total of 11 subcases.
ZO, 20, , , , 0.9, ,{ To improve ZnO convergence,control Newton ZnO iteration
.000050 .020000
1 1 1 0 1 -1
5 5 20 1 30 5 50 50
-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant-
-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase
-3SENDC RECC { transmission line.
92RECA 5555. { 1st card of 1st of 3 ZnO arresters
C VREF VFLASH VZERO COL
778000. -1.0 0.0 4.0
C COEF EXPON VMIN
625. 26. 0.5
9999.
92RECB RECA 5555. { Phase "b" ZnO is copy of "a"
92RECC 4444. { Phase "c" ZnO is piecewise-linear
C VREF VFLASH VZERO
0.0 -1.0 0.0
1.0 582400. { First point of i-v curve.
2.0 590800. { Data is copied from DC-39
5.0 599200. { which was used to create
10. 604800. { the ZnO branch cards that
20. 616000. { are used in phases "a" &
50. 630000. { "b". But there is some
100. 644000. { distortion due to the use
200. 661920. { of linear rather than the
500. 694400. { more accurate exponential
1000. 721280. { modeling, of course.
2000. 756000.
3000. 778400. { Last point of i-v curve.
9999. { Terminator for piecewise-linear characteristic
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation
14SENDC 408000. 60. 120. { with no phasor solution.
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C SENDA |RECA *
C RECA |TERRA *SENDA *
C SENDB |RECB *
C RECB |TERRA *SENDB *
C SENDC |RECC *
C RECC |TERRA *SENDC *
C TERRA |RECA *RECB *RECC *
C --------------+------------------------------
BLANK card follows the last source card
C Step Time RECC RECB RECA SENDA SENDB SENDC
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-4 .47358E-13 .15692E-13 .15692E-13 407927.52 -197303.88 -210623.64
C 2 .1E-3 -.4736E-13 -.1569E-13 -.1569E-13 407710.105 -190537.66 -217172.44
C 3 .15E-3 .47358E-13 .15692E-13 .15692E-13 407347.832 -183703.75 -223644.08
1
C Last step: 400 .02 -601371.07 152342.824 295692.924 126078.934 273005.287
C Variable maxima : 651691.033 676288.521 709562.656 407991.946 407999.105
C Times of maxima : .00985 .00455 .00115 .01665 .00555
C Variable minima : -669507.52 -663771. -717417.08 -407991.95 -407996.42
C Times of minima : .00325 .01435 .0085 .00835 .0139
C To appreciate the distortion that is involved in the use of piecewise-linear
C representation for phase "c", I also show the result for exponential "c".
C The following are derived from a simulation where RECC is a copy of RECA:
C Last step: 400 .02 -600972.73 179505.6 299541.296 126078.934 273005.287
C Variable maxima : 680201.783 671644.425 709538.839 407991.946 407999.105
C Times of maxima : .0098 .00455 .00115 .01665 .00555
C Variable minima : -704350.77 -664092.88 -718634.71 -407991.95 -407996.42
C Times of minima : .00325 .01435 .00855 .00835 .0139
PRINTER PLOT
144 3. 0.0 20. RECA { Axis limits: (-7.174, 7.096)
CALCOMP PLOT
144 2. 0.0 20. RECB
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 2nd of 11 subcases. This one uses the same ZnO arrester as the second
C of DC-37, only here the gap has been omitted by V-flash < 0. The line
C is the same as the 1st subcase, too, although here we illustrate the
C specialized request for modal output. The first six branches are very
C large resistors that have been added to reserve outputs for this usage.
STEP ZERO COUPLE { No reason for this, other than illustration of the feature
MODE VOLTAGE OUTPUT
ZO { Needed to restore default values that were upset by first subcase?
.000050 .020000
1 1 1 0 1 -1
5 5 20 1 30 5 50 50
SENDA 1.E18 { 1st of 6 high-R branches that serve } 1
SENDB 1.E18 { only to reserve output variables in } 1
SENDC 1.E18 { the output vector for modal voltages } 1
RECA 1.E18 1
RECB 1.E18 1
RECC 1.E18 { 6th of 6 high-R branches } 1
92RECA 5555. 1
C VREF VFLASH VZERO COL
0.778000000000000E+06 -0.100000000000000E+03
C COEF EXPON VMIN
0.294795442961157E+05 0.265302624185338E+02 0.545050636122854E+00
9999
92RECB RECA 5555. { Phase "b" ZnO is copy of "a"
92RECC RECA 5555. { Phase "c" ZnO is copy of "a"
-1SENDA RECA .305515.8187.01210 200. 0
-2SENDB RECB .031991.5559.01937 200. 0
-3SENDC RECC
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 408000. 60. 0.0
14SENDB 408000. 60. -120.
14SENDC 408000. 60. 120.
BLANK card follows the last source card
C Step Time RECC RECB RECA SENDA SENDB SENDC
C
C RECA RECB RECC
C TERRA TERRA TERRA
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0
C 1 .5E-4 0.0 0.0 0.0 407927.52 -197303.88 -210623.64
C 0.0 0.0 0.0
1
C Last step: 400 .02 -592984.99 209476.019 234551.89 126078.934 273005.287
C Last step: -86000.409 17731.3181 665443.85
C Maxima: 639771.795 647447.415 658163.048 407991.946 407999.105 407996.421
C Maxima: 181518.845 784118.005 883946.319
C Associated times: .00985 .00455 .00115 .01665 .00555 .0111
C Associated times: .00995 .01435 .00325
PRINTER PLOT
194 1. 0.0 10. RECA { Axis limits: (-3.030, 3.485)
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 3rd of 11 subcases. This one uses the same ZnO arrester as subcase three
C of DC-37 -- a single characteristic (no gap, since V-flash < 0) that
C consists of two exponentials. 3-phase line, sources remain unchanged.
C An important addition is a 4th nonlinear element, a TACS-controlled R(t)
C that is practically disconnected from the 3 ZnO surge arresters and the
C line that they terminate. But to test the logic, we couple the TACS-
C controlled R(t) with the ZnO by means of the high resistance R = 1.E8.
C The TACS control and electrical use is copied from the second subcase of
C DC-22. Note the small EPSILN to ensure all 4 NL elements are coupled.
PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns)
.000050 .020000 1.E-10 { Small EPSILN to couple 2 subnetworks
1 1 1 0 1 -1
5 5 21 -1 30 -5 50 50
TACS HYBRID { In a real case, arcs are on electric side, and equations in TACS
99RESIS = 1.0 + SIN ( 300 * TIMEX ) { 1st R(t) signal -- constant + sine wave
33RESIS { Output the only TACS variable: the resistance function R(t)
77RESIS 1.0 { Initial condition on 1st R(t) insures smooth start
BLANK card ending all TACS data
BUS1 BUS2 1.0 { Master copy of two 1-ohm resistors } 1
BUS2 BUS1 BUS2 { 2nd of 2 linear branches in second subnetwork
91BUS2 TACS RESIS { R(t) controlled by TACS variable "RESIS" } 1
RECA BUS1 1.E+8 { Near-infinite R couples ZnO and TACS R(t)
-1SENDA RECA .305515.8187.01210 200. 0
-2SENDB RECB .031991.5559.01937 200. 0
-3SENDC RECC
92RECA 5555. 1
C VREF VFLASH VZERO COL
0.778000000000000E+06 -1.0
C COEF EXPON VMIN
0.505584788677197E+07 0.464199973324622E+02 0.632754084797274E+00
0.122767153039007E+05 0.166775903445228E+02 0.816748018907843E+00
9999
92RECB RECA 5555. { Phase "b" ZnO is copy of "a"
92RECC RECA 5555. { Phase "c" ZnO is copy of "a"
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 408000. 60. 0.0 { 1st of 3 sources for transmission
14SENDB 408000. 60. -120. { line that is terminated by the ZnO
14SENDC 408000. 60. 120.
11BUS1 1.0 { 1-volt battery excites ladder network of TACS R(t)
BLANK card follows the last source card
RECC RECB RECA SENDA BUS2
C Note immediate voltage at RECC, RECB, RECA, due to near-infinite R coupling:
C Step Time RECC RECB RECA SENDA BUS2
C 0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-4 .141238E-5 .141238E-5 .426252E-5 407927.52 .333333333
C 2 .1E-3 .141238E-5 .141238E-5 .426252E-5 407710.105 .334983437
BLANK card terminating selective output variables
C Last step: 400 .02 -600366.6 218884.325 220028.774 126078.934 .292739915
C Variable maxima : 625666.843 631501.662 634878.442 407991.946 .399999647
C Times of maxima : .00985 .00455 .00115 .01665 .0053
C Variable minima : -633451.49 -613164.81 -630265.01 -407991.95 0.0
C Times of minima : .0032 .01435 .0088 .00835 0.0
PRINTER PLOT
144 3. 0.0 20. RECA { Axis limits: (-6.303, 6.349)
194 3. 0.0 20. BUS2 TACS RESIS { Axis limits: (0.000, 2.000)
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 4th of 11 subcases is unrelated to the preceding, although it does use
C a Type-91 TACS-defined R(t) as the preceding subcase does. But the
C subject is quite different as should be explained in the April, 2003,
C newsletter: corona modeling by TACS control of series R-L-C branches.
C 27 December 2002, combine 3 separate, disconnected demonstrations of
C TACS CONTROL of series R-L-C branches. The 3 disconnected subnetworks are:
C 1) Series R-L with L fixed; R is ramped to a limiting value;
C 2) Series R-L with R fixed; L is ramped to a limiting value;
C 3) Series R-C with R fixed; C is is stepped (cut in half);
C In each case, unit current at radian frequency 1.0 will be forced through
C the branch, and voltage will be measured. There are 3 disconnected
C networks, and there will be 3 screen plots to demonstrate reasonableness
C of the answers.
PRINTED NUMBER WIDTH, 10, 2, { Limited precision (not needed) & good separation
TACS POCKET CALCULATOR { Required for use of IF-THEN-ELSE-ENDIF below
.10 20.0 { 200 steps over 3 cycles at radian frequency equal to unity
1 1 1 1 1 -1
5 5
TACS HYBRID { TACS is required to define R of the series R-L branch
C The first 2 of 3 problems each can use a discontinuity at T = 15 seconds:
IF( TIMEX .LE. 15.0 ) THEN { If simulation time T does not exceed 15 sec:
88OHMS = 0.5 + TIMEX / 2.5 { R is ramped linearly from 0.5 to 6.5 at end
88HENRY = 0.5 + TIMEX / 10.0 { L increases linearly from 0.5 through 2.0
ELSE { Alternatively (if simulation time T does exceed 15 sec):
88OHMS = 6.5 { Limiting R in ohms for 15 or more seconds.
88HENRY = 2.0 { Limiting L in Henries for 15 or more seconds.
ENDIF { Terminate 5-line block that chooses among 2 formula for inductance HENRY
C The 3rd of 3 problems requires discontinuity at T = 11 seconds:
IF( TIMEX .LE. 11.05 ) THEN { If simulation time T is 11 sec or less:
88FARAD = 2.0 { C is fixed for first 11 of 20 seconds of simulation
ELSE { Alternatively (if simulation time T is 11 or more):
88FARAD = 1.0 { Half the capacitance corresponds to switch being open
ENDIF { Terminate 5-line block that chooses among 2 formulas for supplemental X1
33HENRY { Bring out just 1 of 3 TACS signals to show it is not necessary
77HENRY 0.5 { Initial condition on L(t) avoids jump from 0 on step 1
77OHMS 0.5 { Initial condition on R(t) avoids jump from 0 on step 1
77FARAD 2.0 { Initial condition on C(t) avoids jump from 0 on step 1
BLANK card ending all TACS data
C First comes the R-L test where R is varied and L is held fixed. We have
C 3 signals of interest: a) old Type-91 model; b) new TACS CONTROL;
C and c) limiting value (for large times, this agrees with a and b):
TYP91 COMP 1000. { Inductance of 1 Henry is fixed half
91COMP TACS OHMS { TACS-defined R(t) is the variable half
COMP 1.E+7 { Leakage path avoids floating subnetwork
RAMPR 0.5 1000. { New modeling begins with R-L branch
TACS CONTROL OHMS { TACS signal "OHMS" will define R of series R-L
C A TOLERANCE= tag could be added to any TACS CONTROL card such as
C the preceding if the tolerance EPSRLC for the application of parameter
C changes should be different from EPSILN of the miscellaneous data card.
C Location is arbitrary, so typically will be to the right of column 44
C (end of the 3rd of 3 TACS names). For example, TOLERANCE=1.E-5 will
C serve to define EPSRLC = 1.E-5 In that case, any relative parameter
C change in excess of this value will order re-triangularization whereas
C any smaller change will not. For this data, there would be no change,
C however, since all changes are large. dT is artificially large.
C The phasor solution of the Type-91 branch is wrong because Type-91 content
C is ignored prior the the dT loop. Using SSONLY of STARTUP, we can add
C a branch that will correct this problem. The following branch will be
C present only during the phasor solution; it will draw the current that
C really should be going through the Type-91 branch. This will avoid a very
C high voltage spike (e.g., 1.E7) at time zero. It also demonstrates that
C use of SSONLY is compatible with TACS CONTROL of a series R-L-C:
COMP NAME PHASOR 0.5 { Branch that will be erased as dT loop begins
LIMIT 6.5 1000.
C Next comes R-L test where L is varied and R is held fixed. We have 2
C signals of interest: a) assumptote (for large T): b) new TACS CONTROL:
ASSYM 0.5 2000. { Assymptote (where variation will end)
RAMPL 0.5 500. { Branch to be varied begins at 1/2 Henry
TACS CONTROL HENRY { TACS signal will define L of series R-L
C Finally (3rd of 3), we have an R-C test where R fixed and C is is stepped
C to correspond exactly to electric network switching (breaker opening). The
C answer seems believable; it agrees by eyeball with switching.
GEN CAP 1.0 { Inductance of 1 Henry is fixed half
CAP 1.0E6 { This capacitance always is used
CAP2 1.0E6 { This capacitance is switched
NEWRC 1.0 2.0E6 { For comparison, begin with R-C 1
TACS CONTROL FARAD { TACS defines C of series R-C
BLANK card ending electric network branches
CAP CAP2 -1. 8.0 { Switch will open on current 0 at T = 11.0
BLANK card ending switches
C Each of the branches is to be driven by the same current source having
C radian frequency equal to unity. I.e., 1 / frequency = 2 * Pi. Excite
C the three networks in order:
C 1) Series R-L with L fixed; R is ramped to a limiting value;
14TYP91 -1 1.0 .1591549 -1.
14RAMPR -1 1.0 .1591549 -1.
14LIMIT -1 1.0 .1591549 -1.
C 2) Series R-L with R fixed; L is ramped to a limiting value;
14ASSYM -1 1.0 .1591549 -1.
14RAMPL -1 1.0 .1591549 -1.
C 3) Series R-C with R fixed; C is is stepped (cut in half);
14GEN -1 1.0 .1591549 -1.
14NEWRC -1 1.0 .1591549 -1.
BLANK card ending electric network source cards.
C Total network loss P-loss by summing injections = 5.249999987500E+00
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C CAP CAP2 5.00000000E-01 0.00000000E+00 5.00000000E-01 0.0000 0.00000000E+00 -1.25000034E-01
C Node voltage outputs will be grouped by network for easy visual comparison:
C <---- Test a ---->< Test b ><---- Test c ---->
TYP91 RAMPR LIMIT COMP RAMPL ASSYM GEN NEWRC CAP CAP2
C First 10 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time TYP91 RAMPR LIMIT COMP RAMPL ASSYM GEN NEWRC CAP CAP2 TACS
C HENRY
C *** Phasor I(0) = 5.0000000E-01 Switch "CAP " to "CAP2 " closed in the steady-state.
C 0 0.0 0.5 0.5 6.5 0.5 0.5 0.5 1.0 1.0 0.0 0.0 0.5
C 1 0.1 .3975854 .3975854 6.36761 .4975021 .4475438 .2976688 1.044879 1.044879 .0498751 .0498751 .51
C 2 0.2 .330401 .3709362 6.171598 .5292359 .3953563 .0923634 1.079318 1.079318 .0992519 .0992519 .52
C 3 0.3 .2583286 .2576778 5.913921 .5540951 .3218644 -.113865 1.102973 1.102973 .147637 .147637 .53
C *** Open switch "CAP " to "CAP2 " after 1.10000000E+01 sec.
BLANK card ending names of nodes for node voltage output
C 200 20. 1.738859 1.773888 1.738861 2.652564 -1.6153 -1.62337 1.819737 1.833053 1.41165 -.499468 2.0
C Variable maxima: 6.576562 6.580848 6.576566 6.492014 2.065211 2.062599 1.912249 1.925565 1.497945 .4993704 2.0
C Times of maxima: 18.7 18.6 18.7 18.8 17.6 17.5 19.6 19.6 14.1 1.6 15.1
C Variable minima: -6.57 -6.60161 -6.57619 -6.49979 -2.00396 -2.06317 -1.11783 -1.11783 -.499579 -.499579 0.5
C Times of minima: 15.6 15.5 3.0 15.7 14.4 8.1 3.6 3.6 11. 11. 0.0
CALCOMP PLOT { Switch to screen plot from printer plot of preceding subcase
C 1) Series R-L with L fixed; R is ramped to a limiting value;
C Plot the 3 branch voltages that result from 1 amp of current being driven
C through each branch. Note TYP91 should lie on top of with RAMPR, and
C this common signal should be close to the limiting value LIMIT for times
C in excess of 12 seconds :
143 2. 0.0 20. TYP91 RAMPR LIMIT Ramp R of R-L
C 2) Series R-L with R fixed; L is ramped to a limiting value;
C Plot the 2 branch voltages that result from 1 amp of current being driven
C through each branch. Note RAMPL should be close to the limiting value
C ASSYM for times in excess of 12 seconds :
143 2. 0.0 20. RAMPL ASSYM Ramp L of R-L
C 3) Series R-C with R fixed; C is is stepped (cut in half);
C Plot the 2 branch voltages that result from 1 amp of current being driven
C through each branch. Note NEWRC should agree with GEN for all time.
C Following removal of capacitance, the curves are offset significantly:
143 2. 0.0 20. NEWRC GEN Step C of R-C
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 5th of 11 subcases illustrates a practical (although oversimplied)
C application of the preceding. Data comes from Orlando Hevia of UTN
C in Santa Fe, Argentina, as originally named TACSCAPA.DAT Data is
C being added to this test case on 30 December 2002. Whereas the first
C such example from Mr. Hevia involved 200 cascaded line sections, this
C more manageable illustration involves just 2. TACS is used to vary the
C shunt capacitance of the line as an approximation to corona. Note that
C comment cards below are machine-produced (Mr. Hevia seems to have a
C separate program to create such cascaded data automatically). Numerical
C burden of the simulation has been reduced by a factor of 20 without much
C loss to the plot or extrema. A factor of 2 was gained by shortening
C the simulation from 20 to 10 usec, and a factor of 10 was gained by
C increasing the time step from the original 5 nanoseconds (5.E-9 sec).
C The surge (lightning) is fast, so very high frequencies are involved.
C Note Mr. Hevia's use of JMARTI frequency-dependent line modeling.
C Warning. 7 September 2003, the answer changes substantially following
C the correction of an error in OVER12 (introduce new variable N7).
PRINTED NUMBER WIDTH, 10, 2, { Limited precision (not needed) & good separation
TACS POCKET CALCULATOR OFF { End use of pocket calculator (preceding subcase)
C The preceding probably is necessary because of complex definition of VAR002
5.0E-08 20.E-06 { Hevia's dT increased by a factor of 10; cut Tmax in half
1 1 1 0 1 -1
5 5 10 10 134 1 170 10
C $INCLUDE, CORONA1.PCH
C FIRST STEP CAPACITY 3.000000E-06 uF/KM
C SLOPE 3.000000E-12 uF/KVKM
C CORONA INCEPTION VOLTAGE 3.600000E+05 V
C LENGTH OF LINE SEGMENT 1.000000E+00 KM
C NUMBER OF SEGMENTS 2.000000E+00
TACS HYBRID
90BUS002
88DER00259+BUS002
C DV/DT MUST BE POSITIVE, BUT THIS TEST PRODUCES
C OSCILLATIONS ON CAPACITANCE
88VAR002 = BUS002 .GT. 360000.00 { .AND. DER002 .GT. 0.0
88CAP002 = 1.0E-08+VAR002*((BUS002- 360000.00)*0.3000E-11+0.3000E-05)
33CAP002DER002BUS002VAR002 { Output all TACS signals including control C(t)
BLANK card ending TACS data
-1BUS000BUS001 2. 0.00 -2 1
14 3.9461680140762559000E+02
7.68954468040036890E+02 1.09493340867763940E+03 2.77331232270879630E+03
1.24494695098279860E+04 4.87585677225587210E+04 1.94958822722845510E+05
7.82012894548635460E+05 3.09109899381158690E+06 1.48401963798197680E+07
3.34339104652340860E+07 1.56456366517231150E+07 4.10038300055303800E+07
2.60359793110293930E+07 4.14639643816612140E+07
6.61711924983759210E+00 1.43260235003813180E+01 1.39885566693366850E+02
6.43953575180861780E+02 2.62156097340268890E+03 1.08866830412747530E+04
4.53734562567173710E+04 1.87083684125800150E+05 9.33229189322630060E+05
4.32016631012824080E+06 8.22729460640732390E+06 2.11696813048871940E+07
1.36911740150641220E+07 2.35107210671712680E+07
15 3.3528019962850977000E-06
1.48107642189314750E+01 8.18386897856797330E+01 1.07718234528722760E+02
1.39846901178167800E+02 1.72162896702735680E+02 2.28340646958654700E+02
3.44414362842715720E+02 1.63690212466734790E+04 8.08859081632825200E+03
5.81880629665730960E+04 8.57432646874608240E+05 5.25522742751047830E+05
3.86658063350409460E+06 -1.10174538112164120E+07 1.31615353212200510E+07
7.09885572628100910E+03 3.82889067640842040E+04 5.07666709936286210E+04
6.42506894830861860E+04 7.75796172424984980E+04 1.09484865717845850E+05
8.28324070221879670E+04 4.32415798449636150E+05 4.46749849274677110E+05
8.54778751513758670E+05 3.29015425966867800E+06 4.21774707623910620E+06
1.25365993856300990E+07 2.57506236853497770E+07 2.21885826483384670E+07
1.00000000
0.00000000
-1BUS001BUS002BUS000BUS001
C
C THE OLD FILE HAD THE CAPACITANCE IN AN ISOLATED BUS!
C
BUS002CAP002 0.1 { Capacitance is to be made voltage-dependent
TACS CONTROL CAP002 TOLERANCE=1.E-2
C Note preceding card includes optional definition of the tolerance for use
C of the TACS signal CAP002. Without this declaration, EPSRLC = EPSILN =
C 1.E-8, and this results in 159 triangularizations to [Y] as seen in case-
C summary statistics when KOMPAR = 0 (see STARTUP):
C Size List 5. Storage for [Y] and triangularized [Y]. No. times = 159 ...
C Using 1.E-3, this is reduced slightly to 148. This is the effect of not
C making a change if the change to C is less than 1/10 of 1%. This ignores 11
C of the 159 changes. Using 1.E-2, the "No. times" drops to 29; and using
C 1/10, it drops to 6. So 1.E-2 is practical. Using 29 steps to approximate
C C(t) should be plenty good (see plot of C). Yet 29 of 159 is only 18%, so
C simulation is a lot faster (82% of triangularization is avoided).
BUSXXXBUS000 0.0001
BUSXXX 394.61
BUS002 394.61
BLANK
C TACS CONTROLLED SWITCH TO CONNECT/DISCONNECT THE SOURCE
13CAP002CP1002 VAR002
BLANK
C DC SOURCE
11CP1002 360000.0
15BUSXXX 9.0 USRFUN { Hevia's own user-supplied so
C Recall USRFUN sources are a family of user-supplied sources as first
C described in the October, 2002, newsletter. Alternative sources that might
C interest the reader include the following:
C 15BUSXXX 8.0 usrfun
C 15BUSXXX 1 0.3E-6 7.00E-6 10.01.000E06Heidler in-line 5
C 15BUSXXX-1 0.3E-6 7.0E-6 30.05.000E03Heidler in-line 5
C 15BUSXXX 1 1.2E-6 10.0E-6 10.01.000E06TWO EXP in-line
BLANK card ending electric-network source cards
BUSXXXBUS000BUS001BUS002 { List of nodes for node-voltage output
C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair).
C Step Time BUSXXX BUS000 BUS001 BUS002 TACS TACS TACS TACS
C CAP002 DER002 BUS002 VAR002
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-7 144899.2 72286.18 0.0 0.0 .1E-7 0.0 0.0 0.0
C 2 .1E-6 523890.1 334255.7 0.0 0.0 .1E-7 0.0 0.0 0.0
C 3 .15E-6 922280. 724128.3 0.0 0.0 .1E-7 0.0 0.0 0.0
C 4 .2E-6 .1199E7 .10635E7 0.0 0.0 .1E-7 0.0 0.0 0.0
C 5 .25E-6 .13008E7 .1254E7 0.0 0.0 .1E-7 0.0 0.0 0.0
BLANK card ending output variable requests
C 400 .2E-4 83987.68 85044.93 222821.1 191231.3 .1E-7 -.237E11 191231.3 0.0
C Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output.
C Variable maxima : .13008E7 .128E7 839549.4 588280.4 .3695E-5 .2214E13 588280.4 1.0
C Times of maxima : .25E-6 .3E-6 .375E-5 .815E-5 .815E-5 .7E-5 .815E-5 .705E-5
C Variable minima : 0.0 0.0 0.0 0.0 0.0 -.567E11 0.0 0.0
C Times of minima : 0.0 0.0 0.0 0.0 0.0 .149E-4 0.0 0.0
C 145 2. 0.0 20. BUS000BUS001BUS002 { Not enough space for Y-max
C Replace the preceding normal plot card by following alternative wide format:
145 BUS000BUS001BUS002 Voltage on line Volts
C Zero units/inch in columns 5-7 means that another card carries the info:
C Units/inch Minimum time Maximum time Bottom Y-axis Top of Y-axis
2.0 0.0 20.0 0.0 1.4E6
195 2. 0.0 20. TACS CAP002 Capacitance C(t)Farads
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 6th of 11 subcases illustrates a practical (although oversimplied)
C application of the preceding. Data comes from Orlando Hevia of UTN
C in Santa Fe, Argentina, as originally named TIDDHHC.DAT Data is
C being added to this test case on 10 September 2003.
C A SAMPLE OF CORONA WITH TACS CONTROLLED CAPACITORS
C THE OUTPUT LOOKS BELIEVABLE
C AN AVERAGE CAPACITANCE IS CALCULATED BETWEEN TIME STEPS
PRINTED NUMBER WIDTH, 11, 1, { Restore default settings as if no declaration
2.0E-08 40.E-06 { Orlando used dT = 1.E-8 for more realistic looking plots
1 1 0 0 1 -1
5 5 20 20 100 100 500 500
TACS HYBRID
90BUS001
90BUS002
88DER00159+BUS001
88DER00259+BUS002
88VOLTA1 = BUS001.GT.270000.0
88VOLTA2 = BUS002.GT.270000.0
88DELTA1 = (BUS001-270000.0)*1.0E-5
88DELTA2 = (BUS002-270000.0)*1.0E-5
88CAP011 = 1.0E-08+(DER001.GT.0.0)*1.0E-8*VOLTA1*DELTA1
88CAP02153+CAP011 1.0E-8
88CAP001 =(CAP021+CAP011)/2.0
88CAP012 = 1.0E-08+(DER002.GT.0.0)*1.0E-8*VOLTA2*DELTA2
88CAP02253+CAP012 1.0E-8
88CAP002 =(CAP022+CAP012)/2.0
33CAP001CAP002
BLANK
$VINTAGE, 1
-1BUS000BUS001 7.88076E+01 4.80104E+02 2.93720E+05 1.00000E+00 1
$VINTAGE, -1,
-1BUS001BUS002BUS000BUS001
-1BUS002BUS003BUS000BUS001
C TACS CONTROLLED CAPACITANCES
BUS001 10.0 1
TACS CONTROL CAP001
BUS002 10.0 1
TACS CONTROL CAP002
BUSXXXBUS000 1.0 1
BUS003 468.82
C
C CONSTANT CAPACITANCES
C
-1VUS000VUS001BUS000BUS001
-1VUS001VUS002BUS000BUS001
-1VUS002VUS003BUS000BUS001
VUS003 468.82
C
BUSXXXVUS000 1.0 1
C CONSTANT CAPACITANCES
VUS001 10.0 1.0E-2 1
VUS002 10.0 1.0E-2 1
C
C NO CAPACITANCES
C
C CONSTANT CAPACITANCES
C
-1XUS000XUS001BUS000BUS001
-1XUS001XUS002BUS000BUS001
-1XUS002XUS003BUS000BUS001
XUS003 468.82
C
BUSXXXXUS000 1.0 1
C
BLANK
BLANK
C ------==--------========--------========
15BUSXXX 1 1.0E-6 7.0E-6 0.01.770E06TWO EXP in-line
C ------==----------==========----------
BLANK
BUS000
BUS001
BUS002
BUS003
VUS000
VUS001
VUS002
VUS003
XUS000
XUS001
XUS002
XUS003
C Step Time BUS000 BUS001 BUS002 BUS003 VUS000 VUS001 VUS002 VUS003 XUS000 XUS001
C
C
C XUS002 XUS003 BUS001 BUS002 BUSXXX BUSXXX VUS001 VUS002 BUSXXX TACS
C TERRA TERRA BUS000 VUS000 TERRA TERRA XUS000 CAP001
C
C TACS
C CAP002
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0
C 1 .2E-7 133766.113 0.0 0.0 0.0 133766.113 0.0 0.0 0.0 133766.113 0.0
C 0.0 0.0 0.0 0.0 267.636123 267.636123 0.0 0.0 267.636123 .75E-8
C .75E-8
C 2 .4E-7 258225.657 0.0 0.0 0.0 258225.657 0.0 0.0 0.0 258225.657 0.0
C 0.0 0.0 0.0 0.0 516.651878 516.651878 0.0 0.0 516.651878 .1E-7
C .1E-7
BLANK card ending nodes for node-voltage outputs
C 2000 .4E-4 17081.5133 -23694.238 -37514.031 75051.7774 16473.2675 -93546.663 -101202.23 51712.6484 16072.4173 18461.1635
C 21456.0213 25168.3439 -430.45364 -154.33355 -1000.651 -392.40513 507.97555 -115.34624 8.44498556 .1E-7
C .1E-7
C Variable maxima : .1766463E7 814156.947 655233.802 577911.165 .1766463E7 .1131763E7 .1118349E7 967992.864 .1766463E7 .1629911E7
C .15039E7 .1343678E7 6074.55465 4854.86191 5930.26754 5930.26754 5072.07156 1967.01281 3534.29804 .640067E-7
C .479668E-7
C Times of maxima : .1E-5 .1322E-4 .2316E-4 .2692E-4 .1E-5 .1142E-4 .1676E-4 .2012E-4 .1E-5 .44E-5
C .78E-5 .1118E-4 .132E-4 .1668E-4 .742E-5 .742E-5 .404E-5 .908E-5 .1E-5 .1322E-4
C .2304E-4
C Variable minima : 0.0 -23694.238 -38329.779 0.0 0.0 -166322.75 -101202.23 0.0 0.0 0.0
C 0.0 0.0 -3733.6936 -2735.0324 -1337.4272 -1647.1189 -2170.2496 -1613.5916 -331.24485 0.0
C 0.0
C Times of minima : 0.0 .4E-4 .3998E-4 0.0 0.0 .3744E-4 .4E-4 0.0 0.0 0.0
C 0.0 0.0 .14E-4 .2642E-4 .3788E-4 .3112E-4 .1392E-4 .2462E-4 .205E-4 0.0
C 0.0
145 2. 0.0 40. 0.02.E6VUS000VUS001VUS002VUS003 Constant C
145 2. 0.0 40. 0.02.E6BUS000BUS001BUS002BUS003 TACS CONTROL
145 2. 0.0 40. 0.02.E6BUS001BUS002VUS001VUS002 Both
145 2. 0.0 40. 0.02.E6XUS000XUS001XUS002XUS003 No capacitors
195 2. 0.0 40.-2.E36.E3BUSXXXBUS000BUSXXXVUS000 Currents
BLANK card ending plot cards
BEGIN NEW DATA CASE
C 7th of 11 subcases illustrates a true delta connection of nonlinear
C elements that use compensation. Prior to November of 2006, ATP would
C have halted with a complaint that the Thevenin impedance matrix [Z-thev]
C was singular as follows:
C KILL code number Overlay number Nearby statement number
C 209 18 3471
C KILL = 209. ZnO solution by Newton`s method of 3 coupled ...
C Order is critical. For the delta to be recognized, the 3 N.L. elements
C must be contiguous and must have triplets of (BUS1, BUS2) names ordered
C as NAMEA to NAMEB first, then NAMEB to NAMEC 2nd, and finally
C NAMEC to NAMEA. Data appended 15 December 2006. WSM.
PRINTED NUMBER WIDTH, 11, 2, { Deliberately reduce 9 output columns by 1 digit
ZO, 20, , , , 0.9, ,{ To improve ZnO convergence,control Newton ZnO iteration
.000050 .020000
1 1 1 0 1 -1
5 5 20 1 30 5 50 50
-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant-
-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase
-3SENDC RECC { transmission line.
92RECA RECB 5555. { 1st card of 1st of 3 ZnO arrest} 3
C VREF VFLASH VZERO COL
778000. -1.0 0.0 4.0
C COEF EXPON VMIN
625. 26. 0.5
9999.
92RECB RECC RECA RECB 5555. { Phase "bc" ZnO is copy of "ab" } 3
92RECC RECA RECA RECB 5555. { Phase "ca" ZnO is copy of "ab" } 3
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 236000. 60. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 236000. 60. -120. { three-phase, sinusoidal excitation
14SENDC 236000. 60. 120. { with no phasor solution.
BLANK card follows the last source card
BLANK card ending node voltage outputs
PRINTER PLOT
194 2. 0.0 20. BRANCH { Axis limits (-1.829, 0.525)
RECA RECB RECB RECC RECC RECA
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 8th of 11 subcases unites the 1st with the 7th. Both the Y & the delta
C connections are present with the Y of the 1st subcase having node names
C as follows: SEND ---> LINE REC ---> END The two subnetworks
C are physically disconnected but mathematically coupled by one very high
C resistance branch (see comment cards) that makes the difference between
C two 3x3 matrices [Z-thev] and one 6x6 matrix. See (RECA, ENDA). Data
C is added 15 December 2006. WSM.
PRINTED NUMBER WIDTH, 11, 2, { Deliberately reduce 9 output columns by 1 digit
ZO, 20, , , , 0.9, ,{ To improve ZnO convergence,control Newton ZnO iteration
.000050 .020000
1 1 1 0 1 -1
5 5 20 1 30 5 50 50
C Begin with branches of the 1st subcase:
-1LINEA ENDA .305515.8187.01210 200. 0 { 200-mile, constant-
-2LINEB ENDB .031991.5559.01937 200. 0 { parameter, 3-phase
-3LINEC ENDC { transmission line.
92ENDA 5555. { 1st card of 1st of 3 ZnO arresters
C VREF VFLASH VZERO COL
778000. -1.0 0.0 4.0
C COEF EXPON VMIN
625. 26. 0.5
9999.
92ENDB ENDA 5555. { Phase "b" ZnO is copy of "a"
92ENDC 4444. { Phase "c" ZnO is piecewise-linear
C VREF VFLASH VZERO
0.0 -1.0 0.0
1.0 582400. { First point of i-v curve.
2.0 590800. { Data is copied from DC-39
5.0 599200. { which was used to create
10. 604800. { the ZnO branch cards that
20. 616000. { are used in phases "a" &
50. 630000. { "b". But there is some
100. 644000. { distortion due to the use
200. 661920. { of linear rather than the
500. 694400. { more accurate exponential
1000. 721280. { modeling, of course.
2000. 756000.
3000. 778400. { Last point of i-v curve.
9999. { Terminator for piecewise-linear characteristic
C Done with branches of the 1st subcase; follow by branches of 7th subcase:
-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant-
-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase
-3SENDC RECC { transmission line.
92RECA RECB 5555. { 1st card of 1st of 3 ZnO arrest} 3
C VREF VFLASH VZERO COL
778000. -1.0 0.0 4.0
C COEF EXPON VMIN
625. 26. 0.5
9999.
92RECB RECC RECA RECB 5555. { Phase "bc" ZnO is copy of "ab" } 3
92RECC RECA RECA RECB 5555. { Phase "ca" ZnO is copy of "ab" } 3
C Remove the following large resistance to solve each 3-phase bank of surge
C arresters separately. With this branch present, the 6 N.L. elements all
C are in the same subnetwork, so 6 N.L. equations in 6 unknowns are solved
C by Newton's method at each time step. Without the branch, there will be
C two sequential solutions of 3 N.L. equations each. The difference can be
C seen in Lists 24 and 26 of the case-summary statistics:
C With R : Size 21-30: 9 0 13 6 -9999 36 -9999 ...
C Without: Size 21-30: 9 0 12 3 -9999 9 -9999 ...
C Of course, the latter should simulate faster than the former. Resistance
C is high enough so the solution changes little. For example, the two
C printer plots are identical.
RECA ENDA 1.E+8 { Leakage resistanc ties 2 subnetworks together
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
C Begin with sources of the 1st subcase:
14LINEA 408000. 60. 0.0 { 1st of 3 sources. Note balanced,
14LINEB 408000. 60. -120. { three-phase, sinusoidal excitation
14LINEC 408000. 60. 120. { with no phasor solution.
C Done with sources of the 1st subcase; follow by sources of 7 subcase:
14SENDA 236000. 60. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 236000. 60. -120. { three-phase, sinusoidal excitation
14SENDC 236000. 60. 120. { with no phasor solution.
C --------------+------------------------------
C From bus name | Names of all adjacent busses.
C --------------+------------------------------
C LINEA |ENDA *
C ENDA |TERRA *LINEA *RECA *
C LINEB |ENDB *
C ENDB |TERRA *LINEB *
C LINEC |ENDC *
C ENDC |TERRA *LINEC *
C SENDA |RECA *
C RECA |ENDA *SENDA *RECB *RECC *
C SENDB |RECB *
C RECB |RECA *SENDB *RECC *
C SENDC |RECC *
C RECC |RECA *RECB *SENDC *
C TERRA |ENDA *ENDB *ENDC *
C --------------+------------------------------
BLANK card terminates the last source card
ENDA ENDB ENDC { Arrester voltages of Y-connected 1st subcase
C Column headings for the 9 EMTP output variables follow. These are divided among the 5 possible classes as follows ....
C First 6 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time RECA RECB RECC ENDA ENDB ENDC RECA RECB RECC
C RECB RECC RECA RECB RECC RECA
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-4 .3494E-21 -.47E-37 -.349E-21 .1226E-15 .1226E-15 .37E-15 -.334E-31 .9006E-47 .3341E-31
C 2 .1E-3 -.349E-21 .4702E-37 .3494E-21 -.123E-15 -.123E-15 -.37E-15 .3341E-31 -.135E-46 -.334E-31
C 22 .0011 28277.756 622.32762 -28900.08 32953.961 -15932.9 -17000.47 .2708E-5 .59598E-7 -.2768E-5
C 23 .00115 658750.92 10864.876 -669615.8 709562.41 -421760.1 -448957.3 33.053897 .10405E-5 -50.5753
C 400 .02 94123.287 379306.97 -473430.3 295693.53 152343.78 -601370.3 .90138E-5 .36325E-4 -.0061536
C Variable maxima : 667041.09 609376.16 670599.37 709562.41 676288.65 651690.5 45.754917 4.3600592 52.54267
C Times of maxima : .0152 .0036 .00985 .00115 .00455 .00985 .0152 .0036 .00985
C Variable minima : -694529.7 -467073.7 -703549.2 -717416.9 -663770.9 -669507.6 -130.7469 -.00433 -182.8636
C Times of minima : .00775 .0143 .0025 .0085 .01435 .00325 .00775 .0143 .0025
BLANK card ending node voltage outputs
PRINTER PLOT
144 2. 0.0 20. ENDA { Axis limits: (-7.174, 7.096)
194 2. 0.0 20. BRANCH { Axis limits: (-1.829, 0.525)
RECA RECB RECB RECC RECC RECA
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 9th of 11 subcases is like the 1st except that exponential ZnO modeling
C is used for all 3 surge arresters. The piecewise-linear 3rd arrester of
C the 1st subcase has been replaced by a copy of the 1st arrester. Also,
C the alternative [Z]-based Newton iteration replaces the default choice
C of [Y]-based iteration. The request for [Z] is made by the line that
C immediately follows the first line of the first arrester. Unlike the
C 11th subcase of DC-37, here the request for [Z] is active. Because
C of a lack of NO Y-BASED NEWTON declaration, that request that has
C been added to the first arrester is active and necessary (to obtain Z).
PRINTED NUMBER WIDTH, 11, 2, { Deliberately reduce 9 output columns by 1 digit
.000050 .020000
1 1 1 0 1 -1
5 5 20 1 30 5 50 50
-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant-
-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase
-3SENDC RECC { transmission line.
92RECA 5555. { 1st card of 1st of 3 ZnO arrest} 3
[Z]-based Newton iteration { Column and case matter. Declare not use of [Y]
C VREF VFLASH VZERO COL
778000. -1.0 0.0 4.0
C COEF EXPON VMIN
625. 26. 0.5
9999.
92RECB RECA 5555. { Phase "b" ZnO is copy of "a" } 3
92RECC RECA 5555. { Phase "c" ZnO is copy of "a" } 3
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
C SENDA 208000. 60. 0.0 { 1st of 3 sources. Note balanced,
14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation
14SENDC 408000. 60. 120. { with no phasor solution.
BLANK card follows the last source card
SENDA SENDB SENDC
BLANK card ending node voltage outputs
PRINTER PLOT
194 2. 0.0 20. BRANCH
RECA RECB RECC
CALCOMP PLOT
184 2. 0.0 20. BRANCH
RECA RECB RECC
194 2. 0.0 20. BRANCH
RECA RECB RECC
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 10th of 11 subcases is like the 1st except that exponential ZnO modeling
C is replaced by piecewise-linear modeling for all 3 surge arresters. Such
C modeling became available 2 February 2007 for [Z]-based Newton iteration
C which continues to be used in place of the default [Y]-based iteration.
PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns)
C Demonstrate that the following request for [Z]-based Newton iteration is a
C binary toggle. Note that 3 uses has the same effect as a single use:
NO Y-BASED NEWTON { Every subnetwork is to be solved using [Z] rather than [Y]
NO Y-BASED NEWTON { 2nd use cancels the 1st. At this point, use [Y] not [Z]
NO Y-BASED NEWTON { Every subnetwork is to be solved using [Z] rather than [Y]
C ZINC OXIDE STARTUP 20 1.D-8 1.D-3 0.1 1.0 1.5
.000050 .020
1 1 1 0 1 -1
5 5 20 1 30 5 50 50
-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant-
-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase
-3SENDC RECC { transmission line.
92RECA 4444. { 1st card of 1st of 3 ZnO arres } 1
C VREF VFLASH VZERO
0.0 -1.0 0.0
0.0 0.0 { Origin. 3rd quadrant copy
1.0 582400. { First point of i-v curve.
2.0 590800. { Data is copied from DC-39
5.0 599200. { which was used to create
10. 604800. { the ZnO branch cards that
20. 616000. { are used in phases "a" &
50. 630000. { "b". But there is some
100. 644000. { distortion due to the use
200. 661920. { of linear rather than the
500. 694400. { more accurate exponential
1000. 721280. { modeling, of course.
2000. 756000.
3000. 778400. { Last point of i-v curve.
9999. { Terminator for piecewise-linear characteristic
92RECB RECA 4444. { Phase "b" ZnO is copy of "a" } 1
92RECC RECA 4444. { Phase "c" ZnO is copy of "a" } 1
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation
14SENDC 408000. 60. 120. { with no phasor solution.
BLANK card follows the last source card
RECA RECB RECC { Names of nodes for voltage output
C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage);
C Next 3 output variables are branch currents (flowing from the upper node to the lower node);
C Step Time RECA RECB RECC RECA RECB RECC
C TERRA TERRA TERRA
C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 1 .5E-4 .615267E-15 .615327E-15 .615387E-15 -.868E-18 -.86821E-18 -.86842E-18
C 2 .1E-3 -.61527E-15 -.61533E-15 -.61539E-15 .867995E-18 .868206E-18 .868416E-18
C 21 .00105 .615267E-15 .615327E-15 .615387E-15 -.868E-18 -.86821E-18 -.86842E-18
C 22 .0011 32933.78136 -15929.2096 -17004.5718 .0565483883 -.027350978 -.02919741
C 23 .00115 674022.6244 -433252.07 -460655.512 311.7853238 -.743908087 -.790960701
BLANK card ending requests for node voltage output
C 400 .02 248862.4504 197049.3444 -599097.73 .4273050316 .3383402205 -4.96347489
C Variable maxima : 674022.6244 656282.6288 651788.8183 311.7853238 168.5414551 143.4643879
C Times of maxima : .00115 .00455 .0098 .00115 .00455 .0098
C Variable minima : -675779.414 -635023.773 -669662.422 -328.011827 -67.9420472 -271.51252
C Times of minima : .00865 .01435 .00325 .00865 .01435 .00325
PRINTER PLOT
194 3. 0.0 20. BRANCH { Axis limits: ( -3.280, 3.118 )
RECA RECB RECC
BLANK termination to plot cards
BEGIN NEW DATA CASE
C 11th of 11 subcases is like the 1st. But the 1st was solved by [Y]-based
C Newton iteration. Here, use [Z]-based iteration. Answer is the same.
C Note that there is no NO Y-BASED NEWTON request because the one used
C by the preceding subcase remains in effect. The choice was set to [Z].
C NO Y-BASED NEWTON { If data is removed as separate subcase, activate this card
.000050 .020000
1 1 1 0 1 -1
5 5 20 1 30 5 50 50
-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant-
-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase
-3SENDC RECC { transmission line.
92RECA 5555. { 1st card of 1st of 3 ZnO arresters
C VREF VFLASH VZERO COL
778000. -1.0 0.0 4.0
C COEF EXPON VMIN
625. 26. 0.5
9999.
92RECB RECA 5555. { Phase "b" ZnO is copy of "a"
92RECC 4444. { Phase "c" ZnO is piecewise-linear
C VREF VFLASH VZERO
0.0 -1.0 0.0
1.0 582400. { First point of i-v curve.
2.0 590800. { Data is copied from DC-39
5.0 599200. { which was used to create
10. 604800. { the ZnO branch cards that
20. 616000. { are used in phases "a" &
50. 630000. { "b". But there is some
100. 644000. { distortion due to the use
200. 661920. { of linear rather than the
500. 694400. { more accurate exponential
1000. 721280. { modeling, of course.
2000. 756000.
3000. 778400. { Last point of i-v curve.
9999. { Terminator for piecewise-linear characteristic
BLANK card follows the last branch card
BLANK line terminates the last (here, nonexistent) switch
14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced,
14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation
14SENDC 408000. 60. 120. { with no phasor solution.
BLANK card follows the last source card
1
PRINTER PLOT
144 3. 0.0 20. RECA { Axis limits: (-7.174, 7.096)
BLANK termination to plot cards
BEGIN NEW DATA CASE
BLANK
|