1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
BEGIN NEW DATA CASE
C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC).
C This is very similar to the preceding 4th case except that here newer
C MODELS replaces TACS for the control system modeling. The same
C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed
C this during February of 1995 (see January and April newsletters). To
C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec.
NEW LIST SIZES
0 0 68 8 450 35 285 0 0 0
0 0 4700 0 64800 0 0 0 0 0
0 0 220 126000
240000 742
PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations
C DELTAT TMAX XOPT COPT EPSILN TOLMAT
C 46.296-6 0.600 60. ---- Gabor Furst's original data card
.0000462962962962963, 0.250, 60., , , , , , , , ,
C the time step is the cycle time 1/60 sec. divided by 360 degrees
C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP
C 9999 1 0 1 1
1 -3 1 2 1 -1
5 5 20 20 100 100 500 500
C The running of this MODELS file requires the latest version of TPbig
C with the increased list sizes for MODELS
C
C The example demonstrates a generic SVC connected to a 230/34.5 kV
C step-down transformer, with an SVC reactor rating of 100 MVA.
C The SVC is tested by switching on and off a 25 MVA 0.7 p.f.
C load on the 34.5 kV bus
C plot vatiable 'vllavg' for SVC response
C ==============================================================================
MODELS
INPUT trma {v(TRSA)} -- transf. sec. voltage
trmb {v(TRSB)}
trmc {v(TRSC)}
--
irab {i(RMAB)} -- aux. reactor delata current
irbc {i(RMBC)}
irca {i(RMCA)}
--
itra {i(TRXA)} -- transf. sec. current
itrb {i(TRXB)}
itrc {i(TRXC)}
--
rxab {i(TRXA)} -- main reactor current
rxbc {i(TRXB)}
rxca {i(TRXC)}
--
OUTPUT -- firing signals
FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals
FRLA, FRLB, FRLC -- reactor switching
--
MODEL svcmod -- MODELS version of DC 22 subcase 4
--
--
DATA omega {dflt: 2*pi*freq}
dt {dflt :0.25/freq}
--
CONST freq {val: 60}
tper {val: 1/freq}
qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase
qref {val: 0.00} -- set 0 for this example
delin {val: 0.25/freq} -- initialization for firing delay (60Hz)
tpimp {val: 0.200} -- test reactor switching cycle
ton {val: 0.100} -- reactor on time
tstart {val: 0.3} -- start of switching reactors
--
VAR
tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3
dvq, error, fdb, vref, verr, inreact, delyi
vtrsec[1..3], vtrff[1..3]
f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3]
vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3]
errq[1..3], qincr[1..3]
--
HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages
vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages
--
dvq {dflt: 0} -- forward block output
error {dflt: 0} -- error signal
fdb {dflt: 0} -- feedback
--
ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current
itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current
del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles
--
INPUT trma {dflt: trma} -- trsf sec. voltage ph-g
trmb {dflt: trmb}
trmc {dflt: trmc}
--
irab {dflt: irab} -- svc reactor currents
irbc {dflt: irbc}
irca {dflt: irca}
--
itra {dflt: itra} -- transf. sec. current
itrb {dflt: itrb}
itrc {dflt: itrc}
--
rxab {dflt: 0} -- main reactor delta current
rxbc {dflt: 0}
rxca {dflt: 0}
--
OUTPUT
ficat[1..3], fian[1..3] -- firing signals to thyristors
ttt1, ttt2, ttt3 -- control signal to switch reactors
--
INIT
vref:= 1.0 -- reference voltage
verr:= 0 -- voltage error
tt := timestep/tper -- integration multiplier
vrms[1..3] := 0
ficat[1..3]:= 0 -- firing pulse to cathode
fian[1..3]:= 0 -- firing pulse to anode
qin[1..3]:= 0.3 -- rective power
ttt1:= 0 -- test rector breaker control
--
ENDINIT
--
DELAY CELLS DFLT: 100
CELLS(vtrsec[1..3]):500
CELLS(vtrff[1..3]):500
--
-- liearization of angel versus p.u. current through thyristors
FUNCTION dely POINTLIST
-- angle current
( 0.0, 0.0)
( 0.0022, 0.111)
( 0.0176, 0.222)
( 0.0575, 0.333)
( 0.1306, 0.444)
( 0.2414, 0.555)
( 0.3900, 0.666)
( 0.5718, 0.777)
( 0.7783, 0.888)
( 1.0000 1.000)
--
-- ************** EXEC ****************
EXEC
-- convert to arrays
ir[1..3] := [irab, irbc, irca]
vtrsec[1..3] := [trma, trmb, trmc]
--
-- control signals for the type 12 switches in EMTP
-- to switch test reactors
-- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s
ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart)
ttt2 := ttt1
ttt3 := ttt1
--
-- form phase to phase voltages and normalize
vtrff[1] :=(trma - trmb)/34500
vtrff[2] :=(trmb - trmc)/34500
vtrff[3] :=(trmc - trma)/34500
--
-- calculation of voltage rms values
FOR i := 1 TO 3 DO
vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2))
ENDFOR
--
-- calculate reactive through transformer
-- qina, qinb, qinc
-- see DC22-3 for explanation
itr[1..3] := [itra, itrb, itrc]
FOR i:= 1 TO 3 DO
tri[i]:= delay(itr[i],tper/4)
trv[i]:= delay(vtrsec[i],tper/4)
qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr
ENDFOR
--
-- generate firing pulses 500 microsec wide
--
if t> timestep then
--
FOR i := 1 TO 3 DO
f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 )
f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 )
ENDFOR
-- delayed pulses caclulated
-- by var and voltage control
FOR i:= 1 TO 3 DO
ficat[i] := delay(f1[i],del[i]) -- cathode
fian[i] := delay(f2[i],del[i]) -- anode
ENDFOR
endif
-- average ph-ph voltage normalized
vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85}
--
-- alternative to above but not used in this model
-- 12 pulse rectfication with output smoothed alternative to rms signal
-- smoothing rough, should be done with 120 c/s filter, not used here
-- shown as possible alternative only
-- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41
-- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 )
--
-- voltage error forward and feedback loop
verr:= vllavg - vref
-- combine endcombine used because forward - feedback loop
COMBINE AS first_group
error := sum( 1|vllavg - 1|vref - 1|fdb)
-- forward gain . 1/1+stdelay
laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1)
-- derivative feedback
claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 )
ENDCOMBINE
--
FOR i := 1 TO 3 DO
-- total error the qref - qin[i] component may be omitted
-- it is usefull for unbalanced loads
errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0}
ENDFOR
-- calculate new firing angles
-- phase A
FOR i:= 1 TO 3 DO
k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B
l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C
-- apply phase unbalance correction
inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0}
-- linearize and convert from firing angle to time delay
delyi := delin - dely(inreact ) * dt
claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:=
1.0|s0/(1.0|s0 + 0.005|s1)
ENDFOR
--
ENDEXEC
ENDMODEL
USE svcmod AS test
INPUT trma:= trma trmb:= trmb trmc:= trmc
irab:= irab irbc:= irbc irca:= irca
itra:= itra itrb:= itrb itrc:= itrc
--
OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2]
FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3]
FRLA := ttt1 FRLB := ttt2 FRLC := ttt3
ENDUSE
C
RECORD test.vrms[1] AS vrmsab
test.vrms[2] AS vrmsbc
test.vrms[3] AS vrmsca
test.vllavg AS vllavg
test.error AS error
test.dvq AS dvq
test.fdb AS fdb
test.verr AS verr
ENDMODELS
C ************** NETWORK DATA *********************
C
C ********* LINE TO SOURCE ***********
C
C transmission line (equivalent) from GEN source to transformer
GENA TRFA 4.5 25.0
GENB TRFB 4.5 25.0
GENC TRFC 4.5 25.0
C fault level at trsf. 230 kV approx. 2083 MVA
C
C ************** MAIN TRANSFORMER **************
C
C transformer capacitance to ground 10000pF
C a very simple model, can be replaced with any more complex model
C transformer 230000/34500 Y/D 100 MVA; In=250 A
C x = 7.2% on 100 MVA
C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
C TRANSFORMER busref imag flux busin rmag empty
C ------------______------______------______------_____________________________-
C
C no saturation
TRANSFORMER 0.7 700.0 X
0.7 700.0 { 100%
9999
1TRPA 0.80 36.0 1330
2TRXA TRXB 1.00 375 {385
TRANSFORMER X Y
1TRPB
2TRXB TRXC
TRANSFORMER X Z
1TRPC
2TRXC TRXA
C
C transformer capacitance to ground and ph - ph 10000pF
TRXA 0.01
TRXB 0.01
TRXC 0.01
C capacitance between phases
TRXA TRXB 0.01
TRXB TRXC 0.01
TRXC TRXA 0.01
C
C *********** HARMONIC FILTERS ***************
C
C 5th harmonic filter 20 MVAR
TRSA TF5 2.38 44.6 1
TRSB TF5 2.38 44.6
TRSC TF5 2.38 44.6
C 7th harmonic filter 10 MVAR
TRSA TF7 2.43 22.3 1
TRSB TF7 2.43 22.3
TRUC TF7 2.43 22.3
C
C ******** TRANSFORMER SECONDARY LOAD ***************
C 70 MW, 30 MVAR
TRSA ND 13.67 5.47
TRSB ND 13.67 5.47
TRSC ND 13.67 5.47
C
C shunt capacitor 20 MVAR
TRSA 44.5
TRSB 44.5
TRSC 44.5
C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
C
C switched .1 sec. on .1 sec. off
C see switch type 13 below and type 23 source in TACS
C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
C
XLA NSR 34.0 34.0
XLB NSR 34.0 34.0
XLC NSR 34.0 34.0
C
C ************** SNUBBERS **************
C
C the snubber parameters shown below are not necessarily the
C values a manufacturer would choose for a 34.5 kV valve.
C The parameters were selected so that only a small currrent flows
C through the control reactor with the valves non conducting,
C and overvoltages and spikes interfering with the firing control
C are prevented. It is quite possible that a better combination
C than that shown exists.
C
C in series with valves
C
CATAB RXAB .1
ANOAB RXAB .1
CATAB RXAB 4.0
ANOAB RXAB 4.0
C
CATBC RXBC .1
ANOBC RXBC .1
CATBC RXBC 4.0
ANOBC RXBC 4.0
C
CATCA RXCA .1
ANOCA RXCA .1
CATCA RECA 4.0
ANOCA RXCA 4.0
C
C across valves
C
CATAB TRSA 2000. .1
ANOAB TRSA 2000. .1
C
CATBC TRSB 2000. .1
ANOBC TRSB 2000. .1
C
CATCA TRSC 2000. .1
ANOCA TRSC 2000. .1
C
C ************* SVC CONTROLLED REACTOR *************
C
C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
RXAB TRSB 0.1 35.71 1
RXBC TRSC 0.1 35.71
RXCA TRSA 0.1 35.71
C
C *************** REACTOR FOR FIRING PULSE GENERATION ******
C
C Fire angle reference measurement using delta connected reactors
C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
TRSA RMXA 0.01 1
TRSB RMXB 0.01
TRSC RMXC 0.01
C The reactors are delta connected through measuring switches below
RMAB RMXB 200. 20000.
RMBC RMXC 200. 20000.
RMCA RMXA 200. 20000.
C
BLANK end of branch data
C *************** SWITCH DATA ***************8
C
C current measurement in the auxiliary reactor for firing pulse generation
C these switches complete the delta connection of the reactors
C (Rule Book p.6A-9)
RMXA RMAB MEASURING 1
RMXB RMBC MEASURING 1
RMXC RMCA MEASURING 1
C
C current measurement in the main transformer secondary
TRXA TRSA MEASURING
TRXB TRSB MEASURING
TRXC TRSC MEASURING
C current measurement in the main transformer prinmary
TRFA TRPA MEASURING
TRFB TRPB MEASURING
TRFC TRPC MEASURING
C
C switch for on/off switching the 36.6 MVAR resistive-reactive load
C (Rule Book p. 6C-1)
12TRSA XLA FRLA 1
12TRSB XLB FRLB 1
12TRSC XLC FRLC 1
C
C VALVES
C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
C Rule Book p. 6B-1
11TRSA CATAB 100. 35.0 FIAB1 1
11ANOAB TRSA 100. 35.0 FIAB2 1
11TRSB CATBC 100. 35.0 FIBC1 1
11ANOBC TRSB 100. 35.0 FIBC2 1
11TRSC CATCA 100. 35.0 FICA1 1
11ANOCA TRSC 100. 35.0 FICA2 1
C
BLANK end of switch data
C
C AC sources
C 230 kV supply
14GENA 187794. 60. 0. -1.
14GENB 187794. 60. 240. -1.
14GENC 187794. 60. 120. -1.
C --------------+------------------------------
BLANK end of source cards
C Output for steady-state phasor switch currents.
C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04
C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04
C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04
C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06
C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06
C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06
C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06
C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06
C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06
C TRSA XLA Open Open .... Etc. (all remaining switches)
C
C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8
C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739
TRSA TRFA { Node voltage output requests
C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB
C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA
C
C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS
C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC
C
C MODELS MODELS MODELS MODELS MODELS MODELS
C VRMSCA VLLAVG ERROR DVQ FDB VERR
C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491
C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15
C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865
C .046333037 .85 .007233288 -.37886586 -.15723329 -.15
C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142
C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15
BLANK end of output requests
C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0
C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633
C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629
C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119
C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273
C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165
C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625
C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407
C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111
PRINTER PLOT
193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930)
BLANK end of plot requests
BEGIN NEW DATA CASE
BLANK
|