summaryrefslogtreecommitdiffstats
path: root/benchmarks/dc22e.dat
blob: 13935e0c49a83f0c311cd47fd2f0dfbb54ee41ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
BEGIN NEW DATA CASE
C        5th of 5 subcases illustrates the modeling of Static Var Control (SVC).
C        This is very similar to the preceding 4th case except that here newer
C        MODELS  replaces  TACS  for the control system modeling.   The same
C        Gabor Furst of suburban Vancouver, British Columbia, Canada contributed
C        this during February of 1995 (see January and April newsletters).  To
C        speed the simulation,  TMAX = 0.6  has been reduced to  0.10 sec.
NEW LIST SIZES
       0       0      68       8     450      35     285       0       0       0
       0       0    4700       0   64800       0       0       0       0       0
       0       0     220                                  126000
  240000     742
PRINTED NUMBER WIDTH, 11, 1,   { Restore defaults after preceding aberations
C DELTAT    TMAX    XOPT    COPT  EPSILN  TOLMAT
C 46.296-6   0.600     60.  ----  Gabor Furst's original data card
.0000462962962962963,  0.250,  60.,     ,       ,       ,              , , , , ,
C   the time step is the cycle time 1/60 sec. divided by 360 degrees
C   IOUT   IPLOT  IDOUBL  KSSOUT  MAXOUT    IPUN  MEMSAV    ICAT  NENERG  IPRSUP
C   9999       1       0       1       1                       
       1      -3       1       2       1      -1
       5       5      20      20     100     100     500     500
C    The running of this MODELS file requires the latest version of TPbig
C    with the increased list sizes for MODELS
C
C    The example demonstrates a generic SVC connected to  a 230/34.5 kV
C    step-down transformer, with an SVC reactor rating of 100 MVA.
C    The SVC is tested by switching on and off a 25 MVA 0.7 p.f.
C    load on the 34.5 kV bus
C           plot vatiable 'vllavg' for SVC response
C ==============================================================================
MODELS
  INPUT trma {v(TRSA)}  -- transf. sec. voltage
        trmb {v(TRSB)}
        trmc {v(TRSC)}
--
        irab {i(RMAB)} --  aux. reactor delata current
        irbc {i(RMBC)}
        irca {i(RMCA)}
--
        itra {i(TRXA)}  -- transf. sec. current
        itrb {i(TRXB)}
        itrc {i(TRXC)}
--
        rxab {i(TRXA)}  -- main reactor current
        rxbc {i(TRXB)}
        rxca {i(TRXC)}
--
   OUTPUT             --  firing signals
        FIAB1, FIAB2,  FIBC1,  FIBC2,  FICA1, FICA2   -- firing signals
        FRLA,   FRLB,  FRLC  --  reactor switching
--
MODEL svcmod    -- MODELS version of DC 22 subcase 4
--
--
DATA  omega {dflt: 2*pi*freq}
      dt {dflt :0.25/freq}
--
CONST freq {val: 60}
      tper {val: 1/freq}
      qtcr {val: 33.3*1E+6}       -- p.u. SVC reactor rating/phase
      qref {val: 0.00}            -- set 0 for this example
      delin {val: 0.25/freq}      -- initialization for firing delay (60Hz)
      tpimp {val: 0.200}          --  test reactor switching cycle
       ton  {val: 0.100}           -- reactor on time
       tstart {val: 0.3}           -- start of switching reactors
--
VAR
  tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3
   dvq, error, fdb,  vref, verr, inreact, delyi
   vtrsec[1..3], vtrff[1..3]
   f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3]
   vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3]
   errq[1..3], qincr[1..3]
--
  HISTORY    vtrsec[1..3] {dflt:[0,0,0]}   -- transf. ph-g voltages
             vtrff[1..3] {dflt:[0,0,0]}    -- transf. ph-ph voltages
--
             dvq {dflt: 0}      -- forward block output
             error {dflt: 0}    -- error signal
             fdb {dflt: 0}      -- feedback
--
             ir[1..3] {dflt :[0,0,0]}   -- aux. reactor delata current
            itr[1..3] {dflt :[0,0,0]}   -- trsf. sec. current
            del[1..3] {dflt :[0,0,0]}   --  firing pulse delay angles
--
   INPUT  trma  {dflt: trma}   -- trsf sec. voltage ph-g
          trmb  {dflt: trmb}
          trmc  {dflt: trmc}
--
          irab {dflt: irab}    --  svc reactor currents
          irbc {dflt: irbc}
          irca {dflt: irca}
--
          itra {dflt: itra}    -- transf. sec. current
          itrb {dflt: itrb}
          itrc {dflt: itrc}
--
          rxab {dflt: 0}        --  main reactor delta current
          rxbc {dflt: 0}
          rxca {dflt: 0}
--
   OUTPUT
       ficat[1..3], fian[1..3]  -- firing signals to thyristors
       ttt1, ttt2, ttt3         -- control signal to switch reactors
--
   INIT
          vref:= 1.0             -- reference voltage
          verr:= 0               -- voltage error
          tt   := timestep/tper  --  integration multiplier
          vrms[1..3] := 0
          ficat[1..3]:= 0        -- firing pulse to cathode
          fian[1..3]:= 0         --  firing pulse to anode
          qin[1..3]:= 0.3        --  rective power
          ttt1:= 0               --  test rector breaker control
--
  ENDINIT
--
DELAY CELLS DFLT: 100
      CELLS(vtrsec[1..3]):500
      CELLS(vtrff[1..3]):500
--
--    liearization of angel versus p.u. current through thyristors
  FUNCTION dely POINTLIST
--          angle          current
         (    0.0,          0.0)
         ( 0.0022,        0.111)
         ( 0.0176,        0.222)
         ( 0.0575,        0.333)
         ( 0.1306,        0.444)
         ( 0.2414,        0.555)
         ( 0.3900,        0.666)
         ( 0.5718,        0.777)
         ( 0.7783,        0.888)
         ( 1.0000         1.000)
--
--          **************   EXEC ****************
EXEC
--       convert to arrays
       ir[1..3] := [irab, irbc, irca]
       vtrsec[1..3] := [trma, trmb, trmc]
--
--       control signals for the type 12 switches in EMTP
--       to switch test reactors
--        the following is a pulse train  0.1/0.1 on/off  starts at 0.2 s
     ttt1:=  AND((t-tstart) MOD  tpimp < ton , t-tstart)
       ttt2 := ttt1
       ttt3 := ttt1
--
--      form phase to phase voltages and normalize
       vtrff[1] :=(trma - trmb)/34500
       vtrff[2] :=(trmb - trmc)/34500
       vtrff[3] :=(trmc - trma)/34500
--
--      calculation of voltage rms values
   FOR i := 1 TO 3 DO
  vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2))
  ENDFOR
--
--      calculate reactive through transformer
--                qina, qinb, qinc
--     see DC22-3 for explanation
      itr[1..3]  := [itra, itrb, itrc]
      FOR i:= 1 TO 3 DO
      tri[i]:= delay(itr[i],tper/4)
      trv[i]:= delay(vtrsec[i],tper/4)
      qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr
      ENDFOR
--
--      generate firing pulses  500 microsec wide
--
       if t> timestep then
--
       FOR i := 1 TO 3 DO
          f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 )
          f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 )
       ENDFOR
--       delayed pulses caclulated
--       by var and voltage control
      FOR i:= 1 TO 3 DO
      ficat[i] := delay(f1[i],del[i]) -- cathode
      fian[i]  := delay(f2[i],del[i]) -- anode
      ENDFOR
      endif
--          average  ph-ph voltage normalized
    vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85}
--
--      alternative to above but not used in this model
--      12 pulse rectfication with output smoothed  alternative to rms signal
--      smoothing rough, should be done with 120 c/s filter, not used here
--      shown as possible alternative only
--   vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41
--   laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 )
--
--     voltage error forward and feedback loop
      verr:= vllavg - vref
--     combine endcombine used because forward - feedback loop
    COMBINE  AS first_group
       error   := sum( 1|vllavg - 1|vref - 1|fdb)
--                     forward gain . 1/1+stdelay
       laplace(dvq/error)  :=  400.0|s0/(1.0|s0 + 0.003|s1)
--                      derivative feedback
       claplace(fdb/dvq ) :=  0.005|s1 / (1.0|s0 + 0.012|s1 )
    ENDCOMBINE
--
     FOR i := 1 TO 3 DO
--    total error   the qref - qin[i] component may be omitted
--                  it is usefull for unbalanced loads
       errq[i]  := (dvq + qref - qin[i]){ min:0 max:1.0}
     ENDFOR
--           calculate new firing angles
--          phase A
      FOR  i:= 1 TO 3 DO
      k:= (i+4) mod 3   if k=0 then k:=3  endif   -- k is phase B
      l := (i+5) mod 3  if l=0 then l:= 3  endif  -- l is phase C
--    apply phase unbalance correction
      inreact:=  errq[i]  + errq[k] -errq[l] {max: 1.0  min: 0.0}
--    linearize and convert from firing angle to time delay
      delyi  := delin - dely(inreact ) * dt
      claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:=
             1.0|s0/(1.0|s0 + 0.005|s1)
      ENDFOR
--
ENDEXEC
ENDMODEL
USE svcmod AS test
  INPUT trma:= trma   trmb:= trmb    trmc:= trmc
        irab:= irab   irbc:= irbc    irca:= irca
        itra:= itra   itrb:= itrb    itrc:= itrc
--
  OUTPUT  FIAB1 := ficat[1]  FIAB2 := fian[1]   FIBC1 := ficat[2]
          FIBC2 := fian[2]   FICA1 := ficat[3]  FICA2 := fian[3]
          FRLA  := ttt1      FRLB  := ttt2      FRLC  := ttt3
ENDUSE
C
RECORD test.vrms[1] AS vrmsab
       test.vrms[2] AS vrmsbc
       test.vrms[3] AS vrmsca
       test.vllavg AS vllavg
       test.error  AS error
       test.dvq    AS dvq
       test.fdb    AS fdb
       test.verr   AS verr
ENDMODELS
C    **************   NETWORK DATA  *********************
C
C         *********  LINE TO SOURCE ***********
C
C          transmission line (equivalent) from GEN source to transformer
  GENA  TRFA                 4.5  25.0
  GENB  TRFB                 4.5  25.0
  GENC  TRFC                 4.5  25.0
C     fault level at trsf. 230 kV approx. 2083 MVA
C
C      **************   MAIN TRANSFORMER  **************
C
C         transformer capacitance to ground 10000pF
C       a very simple model, can be replaced with any more complex model
C            transformer  230000/34500 Y/D 100 MVA; In=250 A
C             x = 7.2% on 100 MVA
C       230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
C TRANSFORMER busref      imag  flux  busin rmag          empty
C ------------______------______------______------_____________________________-
C
C      no saturation
  TRANSFORMER                0.7 700.0     X
             0.7           700.0        {   100%
            9999
 1TRPA                      0.80  36.0  1330
 2TRXA  TRXB                      1.00   375      {385
  TRANSFORMER      X                       Y
 1TRPB
 2TRXB  TRXC
  TRANSFORMER      X                       Z
 1TRPC
 2TRXC  TRXA
C
C         transformer capacitance to ground and ph - ph 10000pF
  TRXA                                 0.01
  TRXB                                 0.01
  TRXC                                 0.01
C         capacitance between phases
  TRXA  TRXB                           0.01
  TRXB  TRXC                           0.01
  TRXC  TRXA                           0.01
C
C      ***********  HARMONIC FILTERS  ***************
C
C       5th harmonic filter  20 MVAR
  TRSA  TF5                       2.38 44.6                                    1
  TRSB  TF5                       2.38 44.6
  TRSC  TF5                       2.38 44.6
C       7th harmonic filter  10 MVAR
  TRSA  TF7                       2.43 22.3                                    1
  TRSB  TF7                       2.43 22.3
  TRUC  TF7                       2.43 22.3
C
C      ********  TRANSFORMER SECONDARY LOAD ***************
C                       70 MW, 30 MVAR
  TRSA  ND                 13.67  5.47
  TRSB  ND                 13.67  5.47
  TRSC  ND                 13.67  5.47
C
C         shunt capacitor    20 MVAR
  TRSA                                 44.5
  TRSB                                 44.5
  TRSC                                 44.5
C       **********  SWITCHED REACTOR FOR SVC RESPONSE TEST *********
C
C        switched .1 sec. on .1 sec. off
C           see switch type 13 below and type 23 source in TACS
C           25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
C
  XLA   NSR                 34.0  34.0
  XLB   NSR                 34.0  34.0
  XLC   NSR                 34.0  34.0
C
C         **************  SNUBBERS  **************
C
C         the snubber parameters shown below are not necessarily the
C         values a manufacturer would choose for a 34.5 kV valve.
C         The parameters were selected so that only a small currrent flows
C         through the control reactor with the valves non conducting,
C         and overvoltages and spikes interfering with the firing control
C         are prevented.  It is quite possible that a better combination
C         than that shown exists.
C
C       in series with valves
C
  CATAB RXAB                 .1
  ANOAB RXAB                 .1
  CATAB RXAB                       4.0
  ANOAB RXAB                       4.0
C
  CATBC RXBC                 .1
  ANOBC RXBC                 .1
  CATBC RXBC                       4.0
  ANOBC RXBC                       4.0
C
  CATCA RXCA                 .1
  ANOCA RXCA                 .1
  CATCA RECA                       4.0
  ANOCA RXCA                       4.0
C
C   across valves
C
  CATAB TRSA               2000.         .1
  ANOAB TRSA               2000.         .1
C
  CATBC TRSB               2000.         .1
  ANOBC TRSB               2000.         .1
C
  CATCA TRSC               2000.         .1
  ANOCA TRSC               2000.         .1
C
C      *************   SVC CONTROLLED REACTOR   *************
C
C     reactor in  TCR  appr. 100.0 MVA   Xr = 3 * 34.5^2/100 =35.71 ohm
  RXAB  TRSB                 0.1 35.71                                         1
  RXBC  TRSC                 0.1 35.71
  RXCA  TRSA                 0.1 35.71
C
C       ***************   REACTOR FOR FIRING PULSE GENERATION ******
C
C      Fire angle reference measurement using delta connected reactors
C       TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
  TRSA  RMXA                0.01                                               1
  TRSB  RMXB                0.01
  TRSC  RMXC                0.01
C    The reactors are delta connected through measuring switches below
  RMAB  RMXB               200. 20000.
  RMBC  RMXC               200. 20000.
  RMCA  RMXA               200. 20000.
C
BLANK    end of branch data
C      ***************   SWITCH  DATA ***************8
C
C  current measurement in the auxiliary reactor for firing pulse generation
C   these switches complete the delta connection of the reactors
C   (Rule Book p.6A-9)
  RMXA  RMAB                                          MEASURING                1
  RMXB  RMBC                                          MEASURING                1
  RMXC  RMCA                                          MEASURING                1
C
C       current measurement in the main transformer secondary
  TRXA  TRSA                                          MEASURING
  TRXB  TRSB                                          MEASURING
  TRXC  TRSC                                          MEASURING
C       current measurement in the main transformer prinmary
  TRFA  TRPA                                          MEASURING
  TRFB  TRPB                                          MEASURING
  TRFC  TRPC                                          MEASURING
C
C    switch for on/off switching the 36.6 MVAR resistive-reactive load
C   (Rule Book p. 6C-1)
12TRSA  XLA                                                     FRLA           1
12TRSB  XLB                                                     FRLB           1
12TRSC  XLC                                                     FRLC           1
C
C   VALVES
C     6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
C    Rule Book p. 6B-1
11TRSA  CATAB       100.   35.0                                 FIAB1          1
11ANOAB TRSA        100.   35.0                                 FIAB2          1
11TRSB  CATBC       100.   35.0                                 FIBC1          1
11ANOBC TRSB        100.   35.0                                 FIBC2          1
11TRSC  CATCA       100.   35.0                                 FICA1          1
11ANOCA TRSC        100.   35.0                                 FICA2          1
C
BLANK    end of switch data
C
C    AC sources
C    230 kV  supply
14GENA       187794.       60.        0.                           -1.
14GENB       187794.       60.      240.                           -1.
14GENC       187794.       60.      120.                           -1.
C --------------+------------------------------
BLANK   end of source cards
C Output for steady-state phasor switch currents.
C      Node-K    Node-M            I-real            I-imag            I-magn          Degrees        Power            Reactive
C      RMXA      RMAB         -3.17345114E-01   -2.67576742E+00    2.69452022E+00     -96.7637    2.09775607E+04    3.61648260E+04
C      RMXB      RMBC         -2.12134217E+00    1.60058257E+00    2.65743432E+00     142.9649    2.09695693E+04    3.53656824E+04
C      RMXC      RMCA          2.43868728E+00    1.07518486E+00    2.66518633E+00      23.7920    2.09657040E+04    3.49791488E+04
C      TRXA      TRSA          1.76533509E+03   -7.18577071E+02    1.90598032E+03     -22.1487    2.86013546E+07   -7.52002129E+06
C      TRXB      TRSB         -1.72807188E+03   -1.23147874E+03    2.12197369E+03    -144.5251    3.19664433E+07   -7.48308730E+06
C      TRXC      TRSC         -3.72632074E+01    1.95005582E+03    1.95041181E+03      91.0947    2.95359580E+07   -4.27738942E+06
C      TRFA      TRPA          3.28283686E+02    4.77795448E+01    3.31742465E+02       8.2809    3.05772339E+07   -5.86201921E+06
C      TRFB      TRPB         -1.59252346E+02   -2.98767203E+02    3.38560410E+02    -118.0590    3.15136653E+07   -2.50950856E+06
C      TRFC      TRPC         -1.69031340E+02    2.50987658E+02    3.02599402E+02     123.9589    2.81393539E+07   -3.10623904E+06
C      TRSA      XLA               Open              Open   ....  Etc.  (all remaining switches)
C
C 1st gen:    GENA            187794.          187794.      328.28368576688  331.74246523436      .308248532425E8  .311496222581E8
C                                 0.0              0.0      47.779544776826        8.2808819      -.44863559159E7        0.9895739
  TRSA  TRFA  { Node voltage output requests
C   Step      Time      TRSA       TRFA       RMXA       RMXB       RMXC       TRSA       TRSB       TRSC       TRSA       ANOAB
C                                             RMAB       RMBC       RMCA       XLA        XLB        XLC        CATAB      TRSA
C
C                       TRSB       ANOBC      TRSC       ANOCA      TRSA       TRSA       RXAB       TRSA       MODELS     MODELS
C                       CATBC      TRSB       CATCA      TRSC       TF5        TF7        TRSB       RMXA       VRMSAB     VRMSBC
C
C                       MODELS     MODELS     MODELS     MODELS     MODELS     MODELS
C                       VRMSCA     VLLAVG     ERROR      DVQ        FDB        VERR
C ***      Phasor I(0) = -3.1734511E-01                     Switch  "RMXA  "  to  "RMAB  "  closed in the steady-state.
C ***      Phasor I(0) = -2.1213422E+00                     Switch  "RMXB  "  to  "RMBC  "  closed in the steady-state.
C ***      Phasor I(0) =  2.4386873E+00                     Switch  "RMXC  "  to  "RMCA  "  closed in the steady-state.
C ***      Phasor I(0) =  1.7653351E+03                     Switch  "TRXA  "  to  "TRSA  "  closed in the steady-state.
C ***      Phasor I(0) = -1.7280719E+03                     Switch  "TRXB  "  to  "TRSB  "  closed in the steady-state.
C ***      Phasor I(0) = -3.7263207E+01                     Switch  "TRXC  "  to  "TRSC  "  closed in the steady-state.
C ***      Phasor I(0) =  3.2828369E+02                     Switch  "TRFA  "  to  "TRPA  "  closed in the steady-state.
C ***      Phasor I(0) = -1.5925235E+02                     Switch  "TRFB  "  to  "TRPB  "  closed in the steady-state.
C ***      Phasor I(0) = -1.6903134E+02                     Switch  "TRFC  "  to  "TRPC  "  closed in the steady-state.
C      %%%%%   Floating subnetwork found!   %%%%%%  %%%%%%  %%%%%%  %%%%%%
C      %%%%%  The elimination of row  "NSR   "  of nodal admittance matrix [Y] has produced a near-zero diagonal value  Ykk =
C             0.00000000E+00   just prior to reciprocation.  The acceptable minimum is  ACHECK = 7.63336829E-12   (equal to EPSILN
C             times the starting Ykk).   This node shall now to shorted to ground with  1/Ykk = FLTINF.
C      0       0.0  24822.5855 187511.212 -.31734511 -2.1213422 2.43868728        0.0        0.0        0.0        0.0        0.0
C                          0.0        0.0        0.0        0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491
C                   .032105347        .85 -.06597164 -.20205709 -.08402836       -.15
C      1 .46296E-4  25143.8244 187629.636 -.27059939 -2.1489524 2.41955179        0.0        0.0        0.0        0.0        0.0
C                          0.0        0.0        0.0        0.0 318.550308 25.5246044 .751598004 -2.6901512  .11560122 .069281865
C                   .046333037        .85 .007233288 -.37886586 -.15723329       -.15
C      2 .92593E-4  25457.4046 187690.907 -.22377124 -2.1759081 2.39967932        0.0        0.0        0.0        0.0        0.0
C                          0.0        0.0        0.0        0.0  310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142
C                    .05788498        .85 -.00219819 -.35764251 -.14780181       -.15
BLANK  end of output requests
C   2160     0.1  25442.1108 187482.902 -.29572787 -2.0263455 2.32207338        0.0        0.0        0.0        0.0        0.0
C                        0.0 446.298599 628.655556        0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633
C                 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629
C Variable max :  32517.4234 188770.564 2.64330646 2.62732109 2.77231282        0.0        0.0        0.0 1348.22398 803.124119
C                 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403  4.4384447 1.11468111 1.09242273
C                 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165
C Times of max :  .018842593 .033425926 .021018519 .026759259 .032268519        0.0        0.0        0.0 .004490741     .09625
C                 .093333333       .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407
C                 .035046296 .034861111 .462963E-4        0.1 .034907407 .034861111
  PRINTER PLOT
 193.01 0.0 .10         MODELSDVQ                    { Limits:  (-7.141,  6.930)
BLANK   end of plot requests
BEGIN NEW DATA CASE
BLANK