summaryrefslogtreecommitdiffstats
path: root/benchmarks/dc22e.dat
diff options
context:
space:
mode:
authorAngelo Rossi <angelo.rossi.homelab@gmail.com>2023-06-21 12:04:16 +0000
committerAngelo Rossi <angelo.rossi.homelab@gmail.com>2023-06-21 12:04:16 +0000
commitb18347ffc9db9641e215995edea1c04c363b2bdf (patch)
treef3908dc911399f1a21e17d950355ee56dc0919ee /benchmarks/dc22e.dat
Initial commit.
Diffstat (limited to 'benchmarks/dc22e.dat')
-rw-r--r--benchmarks/dc22e.dat478
1 files changed, 478 insertions, 0 deletions
diff --git a/benchmarks/dc22e.dat b/benchmarks/dc22e.dat
new file mode 100644
index 0000000..13935e0
--- /dev/null
+++ b/benchmarks/dc22e.dat
@@ -0,0 +1,478 @@
+BEGIN NEW DATA CASE
+C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC).
+C This is very similar to the preceding 4th case except that here newer
+C MODELS replaces TACS for the control system modeling. The same
+C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed
+C this during February of 1995 (see January and April newsletters). To
+C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec.
+NEW LIST SIZES
+ 0 0 68 8 450 35 285 0 0 0
+ 0 0 4700 0 64800 0 0 0 0 0
+ 0 0 220 126000
+ 240000 742
+PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations
+C DELTAT TMAX XOPT COPT EPSILN TOLMAT
+C 46.296-6 0.600 60. ---- Gabor Furst's original data card
+.0000462962962962963, 0.250, 60., , , , , , , , ,
+C the time step is the cycle time 1/60 sec. divided by 360 degrees
+C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP
+C 9999 1 0 1 1
+ 1 -3 1 2 1 -1
+ 5 5 20 20 100 100 500 500
+C The running of this MODELS file requires the latest version of TPbig
+C with the increased list sizes for MODELS
+C
+C The example demonstrates a generic SVC connected to a 230/34.5 kV
+C step-down transformer, with an SVC reactor rating of 100 MVA.
+C The SVC is tested by switching on and off a 25 MVA 0.7 p.f.
+C load on the 34.5 kV bus
+C plot vatiable 'vllavg' for SVC response
+C ==============================================================================
+MODELS
+ INPUT trma {v(TRSA)} -- transf. sec. voltage
+ trmb {v(TRSB)}
+ trmc {v(TRSC)}
+--
+ irab {i(RMAB)} -- aux. reactor delata current
+ irbc {i(RMBC)}
+ irca {i(RMCA)}
+--
+ itra {i(TRXA)} -- transf. sec. current
+ itrb {i(TRXB)}
+ itrc {i(TRXC)}
+--
+ rxab {i(TRXA)} -- main reactor current
+ rxbc {i(TRXB)}
+ rxca {i(TRXC)}
+--
+ OUTPUT -- firing signals
+ FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals
+ FRLA, FRLB, FRLC -- reactor switching
+--
+MODEL svcmod -- MODELS version of DC 22 subcase 4
+--
+--
+DATA omega {dflt: 2*pi*freq}
+ dt {dflt :0.25/freq}
+--
+CONST freq {val: 60}
+ tper {val: 1/freq}
+ qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase
+ qref {val: 0.00} -- set 0 for this example
+ delin {val: 0.25/freq} -- initialization for firing delay (60Hz)
+ tpimp {val: 0.200} -- test reactor switching cycle
+ ton {val: 0.100} -- reactor on time
+ tstart {val: 0.3} -- start of switching reactors
+--
+VAR
+ tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3
+ dvq, error, fdb, vref, verr, inreact, delyi
+ vtrsec[1..3], vtrff[1..3]
+ f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3]
+ vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3]
+ errq[1..3], qincr[1..3]
+--
+ HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages
+ vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages
+--
+ dvq {dflt: 0} -- forward block output
+ error {dflt: 0} -- error signal
+ fdb {dflt: 0} -- feedback
+--
+ ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current
+ itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current
+ del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles
+--
+ INPUT trma {dflt: trma} -- trsf sec. voltage ph-g
+ trmb {dflt: trmb}
+ trmc {dflt: trmc}
+--
+ irab {dflt: irab} -- svc reactor currents
+ irbc {dflt: irbc}
+ irca {dflt: irca}
+--
+ itra {dflt: itra} -- transf. sec. current
+ itrb {dflt: itrb}
+ itrc {dflt: itrc}
+--
+ rxab {dflt: 0} -- main reactor delta current
+ rxbc {dflt: 0}
+ rxca {dflt: 0}
+--
+ OUTPUT
+ ficat[1..3], fian[1..3] -- firing signals to thyristors
+ ttt1, ttt2, ttt3 -- control signal to switch reactors
+--
+ INIT
+ vref:= 1.0 -- reference voltage
+ verr:= 0 -- voltage error
+ tt := timestep/tper -- integration multiplier
+ vrms[1..3] := 0
+ ficat[1..3]:= 0 -- firing pulse to cathode
+ fian[1..3]:= 0 -- firing pulse to anode
+ qin[1..3]:= 0.3 -- rective power
+ ttt1:= 0 -- test rector breaker control
+--
+ ENDINIT
+--
+DELAY CELLS DFLT: 100
+ CELLS(vtrsec[1..3]):500
+ CELLS(vtrff[1..3]):500
+--
+-- liearization of angel versus p.u. current through thyristors
+ FUNCTION dely POINTLIST
+-- angle current
+ ( 0.0, 0.0)
+ ( 0.0022, 0.111)
+ ( 0.0176, 0.222)
+ ( 0.0575, 0.333)
+ ( 0.1306, 0.444)
+ ( 0.2414, 0.555)
+ ( 0.3900, 0.666)
+ ( 0.5718, 0.777)
+ ( 0.7783, 0.888)
+ ( 1.0000 1.000)
+--
+-- ************** EXEC ****************
+EXEC
+-- convert to arrays
+ ir[1..3] := [irab, irbc, irca]
+ vtrsec[1..3] := [trma, trmb, trmc]
+--
+-- control signals for the type 12 switches in EMTP
+-- to switch test reactors
+-- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s
+ ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart)
+ ttt2 := ttt1
+ ttt3 := ttt1
+--
+-- form phase to phase voltages and normalize
+ vtrff[1] :=(trma - trmb)/34500
+ vtrff[2] :=(trmb - trmc)/34500
+ vtrff[3] :=(trmc - trma)/34500
+--
+-- calculation of voltage rms values
+ FOR i := 1 TO 3 DO
+ vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2))
+ ENDFOR
+--
+-- calculate reactive through transformer
+-- qina, qinb, qinc
+-- see DC22-3 for explanation
+ itr[1..3] := [itra, itrb, itrc]
+ FOR i:= 1 TO 3 DO
+ tri[i]:= delay(itr[i],tper/4)
+ trv[i]:= delay(vtrsec[i],tper/4)
+ qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr
+ ENDFOR
+--
+-- generate firing pulses 500 microsec wide
+--
+ if t> timestep then
+--
+ FOR i := 1 TO 3 DO
+ f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 )
+ f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 )
+ ENDFOR
+-- delayed pulses caclulated
+-- by var and voltage control
+ FOR i:= 1 TO 3 DO
+ ficat[i] := delay(f1[i],del[i]) -- cathode
+ fian[i] := delay(f2[i],del[i]) -- anode
+ ENDFOR
+ endif
+-- average ph-ph voltage normalized
+ vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85}
+--
+-- alternative to above but not used in this model
+-- 12 pulse rectfication with output smoothed alternative to rms signal
+-- smoothing rough, should be done with 120 c/s filter, not used here
+-- shown as possible alternative only
+-- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41
+-- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 )
+--
+-- voltage error forward and feedback loop
+ verr:= vllavg - vref
+-- combine endcombine used because forward - feedback loop
+ COMBINE AS first_group
+ error := sum( 1|vllavg - 1|vref - 1|fdb)
+-- forward gain . 1/1+stdelay
+ laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1)
+-- derivative feedback
+ claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 )
+ ENDCOMBINE
+--
+ FOR i := 1 TO 3 DO
+-- total error the qref - qin[i] component may be omitted
+-- it is usefull for unbalanced loads
+ errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0}
+ ENDFOR
+-- calculate new firing angles
+-- phase A
+ FOR i:= 1 TO 3 DO
+ k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B
+ l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C
+-- apply phase unbalance correction
+ inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0}
+-- linearize and convert from firing angle to time delay
+ delyi := delin - dely(inreact ) * dt
+ claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:=
+ 1.0|s0/(1.0|s0 + 0.005|s1)
+ ENDFOR
+--
+ENDEXEC
+ENDMODEL
+USE svcmod AS test
+ INPUT trma:= trma trmb:= trmb trmc:= trmc
+ irab:= irab irbc:= irbc irca:= irca
+ itra:= itra itrb:= itrb itrc:= itrc
+--
+ OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2]
+ FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3]
+ FRLA := ttt1 FRLB := ttt2 FRLC := ttt3
+ENDUSE
+C
+RECORD test.vrms[1] AS vrmsab
+ test.vrms[2] AS vrmsbc
+ test.vrms[3] AS vrmsca
+ test.vllavg AS vllavg
+ test.error AS error
+ test.dvq AS dvq
+ test.fdb AS fdb
+ test.verr AS verr
+ENDMODELS
+C ************** NETWORK DATA *********************
+C
+C ********* LINE TO SOURCE ***********
+C
+C transmission line (equivalent) from GEN source to transformer
+ GENA TRFA 4.5 25.0
+ GENB TRFB 4.5 25.0
+ GENC TRFC 4.5 25.0
+C fault level at trsf. 230 kV approx. 2083 MVA
+C
+C ************** MAIN TRANSFORMER **************
+C
+C transformer capacitance to ground 10000pF
+C a very simple model, can be replaced with any more complex model
+C transformer 230000/34500 Y/D 100 MVA; In=250 A
+C x = 7.2% on 100 MVA
+C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance
+C TRANSFORMER busref imag flux busin rmag empty
+C ------------______------______------______------_____________________________-
+C
+C no saturation
+ TRANSFORMER 0.7 700.0 X
+ 0.7 700.0 { 100%
+ 9999
+ 1TRPA 0.80 36.0 1330
+ 2TRXA TRXB 1.00 375 {385
+ TRANSFORMER X Y
+ 1TRPB
+ 2TRXB TRXC
+ TRANSFORMER X Z
+ 1TRPC
+ 2TRXC TRXA
+C
+C transformer capacitance to ground and ph - ph 10000pF
+ TRXA 0.01
+ TRXB 0.01
+ TRXC 0.01
+C capacitance between phases
+ TRXA TRXB 0.01
+ TRXB TRXC 0.01
+ TRXC TRXA 0.01
+C
+C *********** HARMONIC FILTERS ***************
+C
+C 5th harmonic filter 20 MVAR
+ TRSA TF5 2.38 44.6 1
+ TRSB TF5 2.38 44.6
+ TRSC TF5 2.38 44.6
+C 7th harmonic filter 10 MVAR
+ TRSA TF7 2.43 22.3 1
+ TRSB TF7 2.43 22.3
+ TRUC TF7 2.43 22.3
+C
+C ******** TRANSFORMER SECONDARY LOAD ***************
+C 70 MW, 30 MVAR
+ TRSA ND 13.67 5.47
+ TRSB ND 13.67 5.47
+ TRSC ND 13.67 5.47
+C
+C shunt capacitor 20 MVAR
+ TRSA 44.5
+ TRSB 44.5
+ TRSC 44.5
+C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST *********
+C
+C switched .1 sec. on .1 sec. off
+C see switch type 13 below and type 23 source in TACS
+C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load
+C
+ XLA NSR 34.0 34.0
+ XLB NSR 34.0 34.0
+ XLC NSR 34.0 34.0
+C
+C ************** SNUBBERS **************
+C
+C the snubber parameters shown below are not necessarily the
+C values a manufacturer would choose for a 34.5 kV valve.
+C The parameters were selected so that only a small currrent flows
+C through the control reactor with the valves non conducting,
+C and overvoltages and spikes interfering with the firing control
+C are prevented. It is quite possible that a better combination
+C than that shown exists.
+C
+C in series with valves
+C
+ CATAB RXAB .1
+ ANOAB RXAB .1
+ CATAB RXAB 4.0
+ ANOAB RXAB 4.0
+C
+ CATBC RXBC .1
+ ANOBC RXBC .1
+ CATBC RXBC 4.0
+ ANOBC RXBC 4.0
+C
+ CATCA RXCA .1
+ ANOCA RXCA .1
+ CATCA RECA 4.0
+ ANOCA RXCA 4.0
+C
+C across valves
+C
+ CATAB TRSA 2000. .1
+ ANOAB TRSA 2000. .1
+C
+ CATBC TRSB 2000. .1
+ ANOBC TRSB 2000. .1
+C
+ CATCA TRSC 2000. .1
+ ANOCA TRSC 2000. .1
+C
+C ************* SVC CONTROLLED REACTOR *************
+C
+C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm
+ RXAB TRSB 0.1 35.71 1
+ RXBC TRSC 0.1 35.71
+ RXCA TRSA 0.1 35.71
+C
+C *************** REACTOR FOR FIRING PULSE GENERATION ******
+C
+C Fire angle reference measurement using delta connected reactors
+C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus
+ TRSA RMXA 0.01 1
+ TRSB RMXB 0.01
+ TRSC RMXC 0.01
+C The reactors are delta connected through measuring switches below
+ RMAB RMXB 200. 20000.
+ RMBC RMXC 200. 20000.
+ RMCA RMXA 200. 20000.
+C
+BLANK end of branch data
+C *************** SWITCH DATA ***************8
+C
+C current measurement in the auxiliary reactor for firing pulse generation
+C these switches complete the delta connection of the reactors
+C (Rule Book p.6A-9)
+ RMXA RMAB MEASURING 1
+ RMXB RMBC MEASURING 1
+ RMXC RMCA MEASURING 1
+C
+C current measurement in the main transformer secondary
+ TRXA TRSA MEASURING
+ TRXB TRSB MEASURING
+ TRXC TRSC MEASURING
+C current measurement in the main transformer prinmary
+ TRFA TRPA MEASURING
+ TRFB TRPB MEASURING
+ TRFC TRPC MEASURING
+C
+C switch for on/off switching the 36.6 MVAR resistive-reactive load
+C (Rule Book p. 6C-1)
+12TRSA XLA FRLA 1
+12TRSB XLB FRLB 1
+12TRSC XLC FRLC 1
+C
+C VALVES
+C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR
+C Rule Book p. 6B-1
+11TRSA CATAB 100. 35.0 FIAB1 1
+11ANOAB TRSA 100. 35.0 FIAB2 1
+11TRSB CATBC 100. 35.0 FIBC1 1
+11ANOBC TRSB 100. 35.0 FIBC2 1
+11TRSC CATCA 100. 35.0 FICA1 1
+11ANOCA TRSC 100. 35.0 FICA2 1
+C
+BLANK end of switch data
+C
+C AC sources
+C 230 kV supply
+14GENA 187794. 60. 0. -1.
+14GENB 187794. 60. 240. -1.
+14GENC 187794. 60. 120. -1.
+C --------------+------------------------------
+BLANK end of source cards
+C Output for steady-state phasor switch currents.
+C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive
+C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04
+C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04
+C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04
+C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06
+C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06
+C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06
+C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06
+C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06
+C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06
+C TRSA XLA Open Open .... Etc. (all remaining switches)
+C
+C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8
+C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739
+ TRSA TRFA { Node voltage output requests
+C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB
+C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA
+C
+C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS
+C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC
+C
+C MODELS MODELS MODELS MODELS MODELS MODELS
+C VRMSCA VLLAVG ERROR DVQ FDB VERR
+C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state.
+C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state.
+C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state.
+C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state.
+C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state.
+C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state.
+C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state.
+C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state.
+C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state.
+C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%%
+C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk =
+C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN
+C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF.
+C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491
+C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15
+C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865
+C .046333037 .85 .007233288 -.37886586 -.15723329 -.15
+C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0
+C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142
+C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15
+BLANK end of output requests
+C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0
+C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633
+C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629
+C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119
+C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273
+C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165
+C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625
+C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407
+C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111
+ PRINTER PLOT
+ 193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930)
+BLANK end of plot requests
+BEGIN NEW DATA CASE
+BLANK