BEGIN NEW DATA CASE C BENCHMARK DCNEW-14 C 1st of 7 simulations using Taku Noda frequency dependence C Test of Taku Noda's frequency dependence for 500-Kv line energization C that was adapted from BENCHMARK DC-37. There is only one phase, so C this is a zero-sequence energization. The external Noda file DCN14A.DAT C was produced by Taku's fitter as it processed DCN14A.CCC (see DCN13.DAT). C DIAGNOSTIC 9 9 9 PRINTED NUMBER WIDTH, 13, 2, .000050 .020 1 1 1 1 1 -1 5 5 20 20 -1SEND REC Noda line DCN14A.DAT SHOW 5 { REC 100. { R = 100 ohms at receiving end PHASOR 1.0 { Extra node for sinusoidal value -1SENDOPRECOP Noda line DCN14A.DAT SHOW 5 { -1SENDOPREC37 .306 5.82 .012 200. BLANK card terminating branch data BLANK card terminating all (in this case, nonexistent) switches 14SEND 408000. 60. -1. 14SENDOP 408000. 60. C 14PHASOR 171783. 60. -63.03864 -1. Sept, 95 C 14PHASOR 167553. 60. -63.92034 -1. { 24 Oct 95 14PHASOR 161945. 60. -65.23648 -1. { 15 Dec 95 BLANK card ending source data C SEND 408000. 408000. 828.88239617701 1454.6091982437 .16909200882E9 .287215850537E8 C 0.0 0.0 -1195.341747336 -55.2615112 .243849716456E9 43849716.4564481 C C REC 73659.800560567 167553.22961161 -736.5980056057 1675.5322961161 -.14037042377E9 C -150493.5830348 -63.9203429 1504.9358303482 116.0796571 .19681465346E-8 C Total network loss P-loss by summing injections = 1.420609591332E+10 C Step Time RECOP REC REC37 SEND PHASOR SENDOP C 0 0.0 0.0 73659.80056 0.0 408000. 73659.70723 0.0 C 1 .5E-4 0.0 76407.32341 1689.017016 407927.5198 76483.18702 407927.5198 C 2 .1E-3 0.0 79203.65163 1710.134462 407710.1048 79279.49271 407710.1048 C 3 .15E-3 0.0 81971.46352 1730.644305 407347.8324 82047.63077 407347.8324 1 C 400 .02 346718.6299 165886.2597 -124994.318 126078.9337 165889.8045 126078.9337 C Variable maxima : 735330.9757 167562.0623 829744.565 408000. 167551.9757 407991.9464 C Times of maxima : .00205 .0196 .0168 0.0 .00295 .01665 C Variable minima : -736625.335 -167610.097 -883109.582 -407991.946 -167552.349 -407991.946 C Times of minima : .00625 .0113 .00765 .00835 .0113 .00835 144 2. 0.0 20. PHASOR REC 144 2. 0.0 20. RECOP REC37 BLANK card ending plot cards BEGIN NEW DATA CASE C 2nd of 7 simulations using Taku Noda frequency dependence C Test of Taku Noda's frequency dependence for all 3 phases (uncoupled) of C 600 meters of 2-wire (core, sheath) cable that feed a GIS substation. This C data came from Dr. Ivano Bonfanti of CESI in the summer of 1994. Using C JMARTI modeling, the natural oscillation after deenergization is C underdamped, and is unstable. Taku Noda stabilized this! The original C simulation had dT = 1 usec and Tmax = 60 msec. To speed the simulation C we increased the step size and decreased the end-time. See story in the C January, 1995, newsletter. 3.E-06 15.E-03 50. 500 3 1 1 1 C NO LOAD OPENING C FEEDING SYSTEM MODEL Xo/Xd = 1.5 IEC OSCILLATIONS C 51SORGERRETEIR 7.697 11.56 52SORGESRETEIS 0.465 7.70 53SORGETRETEIT RETEIRCELLAR 33.0 2.27 CELLAR 8.55 1.9 CELLAR .9425 RETEISCELLAS 33.0 2.27 CELLAS 8.55 1.9 CELLAS .9425 RETEITCELLAT 33.0 2.27 CELLAT 8.55 1.9 CELLAT .9425 C C AUTOTRANSFORMER MODEL (3 WINDs, SINGLE PHASE) C TRANSFORMER .554 1560.INTERR6.6E+5 9999 1T1000RTR400R .855 130.3464.1 2TR400R 1.E-62309.4 3TERZIR 1.1E-3 .0803 122. T1000R 109. 4.6E-3 T1000RTR400R 513. 5.7E-3 TR400R 230. 4.9E-3 TR400RTERZIR 324. 2.1E-3 TERZIR 88. 5.7E-3 TRANSFORMER .554 1560.INTERR6.6E+5 9999 1T1000STR400S .855 130.3464.1 2TR400S 1.E-62309.4 3TERZISTERZFS 1.1E-3 .0803 122. T1000S 109. 4.6E-3 T1000STR400S 513. 5.7E-3 TR400S 230. 4.9E-3 TR400STERZIS 324. 2.1E-3 TERZIS 88. 5.7E-3 TRANSFORMER .554 1560.INTERR6.6E+5 9999 1T1000TTR400T .855 130.3464.1 2TR400T 1.E-62309.4 3TERZITTERZFT 1.1E-3 .0803 122. T1000T 109. 4.6E-3 T1000TTR400T 513. 5.7E-3 TR400T 230. 4.9E-3 TR400TTERZIT 324. 2.1E-3 TERZIT 88. 5.7E-3 C C CONNECTIONS AMONG TERTIARIES C TERZIS .59E-3 TERZIS 15. 30.E-3 TERZFSTERZIT .59E-3 TERZIT 15. 30.E-3 TERZFTTERZIR 1.3E-3 TERZIR 15. 66.E-3 C -------------------------------------------------------------------- C C 600 m CABLE - SINGLE PIECE C C PHASE R C -1T1000RLINEIR Noda line DCN14B.DAT SHOW 5 { 1 of 2 -2 GUAI2R C C PHASE S - C -1T1000SLINEIS Noda line DCN14B.DAT SHOW 5 { 1 of 2 -2 GUAI2S C C PHASE T - C -1T1000TLINEIT Noda line DCN14B.DAT SHOW 5 { 1 of 2 -2 GUAI2T C -------------------------------------------------------------------- C C Overhead line (JMARTI modeling) connected to cable; it is open ended C -1LINEIRLINEFR 2. 0.00 -2 3 6 0.41594447322080191000E+03 -0.670999919281493567E+04 0.115596661243669278E+05 0.993927202053121437E+04 0.437799474890913553E+05 0.615071877212520224E+06 0.484919159975218028E+07 0.126247917999855034E+03 0.125541194952814835E+03 0.131618421672545515E+04 0.303558850109017385E+04 0.221727916316544798E+05 0.187747576728828368E+06 6 0.94711343051337508200E-05 0.627144078924490600E+02 0.380804893328911476E+03 0.174977451831839358E+04 0.348074471363108660E+04 0.113940782723808953E+05 0.101795194165061461E+07 0.870408197488144106E+04 0.491231452549212191E+05 0.122949026800477048E+06 0.101854126642379532E+06 0.193028023946739763E+06 0.116009868370252406E+07 -2LINEISLINEFS 2. 0.00 -2 3 2 0.23495426137547622100E+03 0.145541128869323956E+03 0.317230857963757554E+05 0.769613905473121634E+02 0.169101759187606077E+05 2 0.94676914504312110400E-05 -0.565298558630553235E+05 0.348690682154812385E+07 0.613123991654509772E+07 0.345523296629063972E+07 -3LINEITLINEFT 2. 0.00 -2 3 2 0.18990790696897147400E+03 0.715297322023219522E+02 0.126259964321454504E+04 0.643449751540205739E+02 0.114317717964364147E+04 1 0.95267726581649492100E-05 0.625041670201623627E+07 0.625078786252403353E+07 0.55923422 -0.70710678 0.44272643 0.00000000 0.00000000 0.00000000 0.61197564 0.00000000 -0.77973496 0.00000000 0.00000000 0.00000000 0.55923422 0.70710678 0.44272643 0.00000000 0.00000000 0.00000000 C 600 m CABLE SHEAT GROUNDING GUAI2R 1.E-03 GUAI2S 1.E-03 GUAI2T 1.E-03 C -------------------------------------------------------------------- BLANK CARD ENDING BRANCHES C SWITCH CARDS RETEIRTR400R -1. 1.E-06 3 RETEISTR400S -1. 1.E-06 3 RETEITTR400T -1. 1.E-06 3 BLANK CARD ENDING SWITCHES C SOURCE CARDS 14SORGER 326600. 50. -10. -1. 1. 14SORGES 326600. 50. -130. -1. 1. 14SORGET 326600. 50. -250. -1. 1. BLANK CARD ENDING SOURCES TR400RTR400STR400TT1000RT1000ST1000TLINEIRLINEISLINEIT BLANK CARD ENDING NODE VOLTAGE REQUEST 1441.5 0.0 15. TR400RTR400STR400T BLANK CARD ENDING PLOT REQUEST BEGIN NEW DATA CASE C BENCHMARK DCNEW-14 C 3rd of 7 simulations using Taku Noda frequency dependence C Test of Taku Noda's frequency dependence for 500-Kv line energization C The 18 old (around 1970), cascaded Pi-circuits in DC-3 have been C replaced by reference to the external Nodal file DCN14C.DAT (see below). PRINTED NUMBER WIDTH, 13, 2, .000050 .100 3000. { XOPT = 3 KHz means reactance in ohms at this freq. 1 1 1 1 1 -1 2 5 5 10 10 20 20 100 100 { Printout -1GEN-A 18-A Noda line DCN14C.DAT SHOW 2 { 1 of 3 } -2GEN-B 18-B { 2 of 3 } -3GEN-C 18-C { 1 of 3 } 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 0M-C GEN-C 400.0 { msec, respectively.} 1 0POLE-AM-A 15.0 0POLE-BM-B 15.0 0POLE-CM-C 15.0 BLANK card ending branch cards E-A POLE-A 0. 20.0 1 E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). BLANK card ending switches 14E-A -1.0 60.0 -90.0 14E-B -1.0 60.0 -210.0 14E-C -1.0 60.0 30.0 BLANK card ending sources 18-C 18-B 18-A C Step Time 18-C 18-B 18-A E-A E-B E-C M-C C POLE-A POLE-B POLE-C GEN-C C *** Switch "E-A " to "POLE-A" closed after 0.00000000E+00 sec. C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C 1 .5E-4 0.0 0.0 0.0 0.0 -.298225E-4 0.0 0.0 .433681E-20 C 2 .1E-3 0.0 0.0 0.0 0.0 -.596344E-4 0.0 0.0 .867362E-20 C 3 .15E-3 0.0 0.0 0.0 0.0 -.892467E-4 0.0 0.0 .130104E-19 C 4 .2E-3 0.0 0.0 0.0 0.0 -.118807E-3 0.0 0.0 .173472E-19 C 5 .25E-3 0.0 0.0 0.0 0.0 -.148281E-3 0.0 0.0 .21684E-19 C 10 .5E-3 0.0 0.0 0.0 0.0 -.29411E-3 0.0 0.0 .433681E-19 C 20 .1E-2 0.0 -.1156E-19 -.26977E-19 -.26977E-19 -.574156E-3 0.0 0.0 .867362E-19 C 40 .002 0.0 -.042648677 -.042653832 -.192009171 -.001055655 0.0 0.0 .173472E-18 BLANK card ending output variables requests (node voltages, here) C 2000 0.1 0.0 -.951949629 .9242773228 .0636028753 -.0031009 .0016317758 .0014052925 0.0 C Variable maxima : 0.0 1.414644389 1.532499021 1.725016394 .0053208621 .0068965948 .0062319486 .0017896749 C Times of maxima : 0.0 .023 .017 .0131 .01055 .01595 .0179 .006 C Variable minima : 0.0 -1.96464238 -1.21489183 -1.30405718 -.004371267 -.004528488 -.006055026 -.002037552 C Times of minima : 0.0 .0156 .0264 .02125 .0161 .022 .01425 .012 144 2. 0.0 20. 18-A 18-B 18-C 14410. 0.0100. 18-A 18-B 18-C BLANK card ending plot cards BEGIN NEW DATA CASE C 4th of 7 simulations using Taku Noda frequency dependence C Test of Taku Noda's frequency dependence for a fault on a 3-phase line. C The old (around 1980) Hauer frequency dependence in DC-41 has been C replaced by reference to the external Nodal file DCN14D.DAT (see below). C IPLOT has been decreased to unity (DC-41 had 8) so all details can be seen. PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) 20.E-6 20.E-3 60. 60. 1 1 1 1 1 -1 5 5 20 20 100 100 0GENA BEGINA 14. 0GENB BEGINBGENA BEGINA 0GENC BEGINCGENA BEGINA C Taku Noda's 3_phase line follows. See DCNEW-13 for creation of the data: C $LISTOFF -1BEGINAENDA Noda line DCN14D.DAT SHOW 5 { 1 of 3 -2BEGINBENDB -3BEGINCENDC ENDC 1.E18 C $LISTON BLANK card ending branch cards ENDA .00413 1.0 BLANK card ending switch cards (just the fault switch, here) 14GENA 428. 60. -90.0 -1. 14GENB 428. 60. -210.0 -1. 14GENC 428. 60. 30.0 -1. BLANK card ending source cards C Total network loss P-loss by summing injections = -1.013945364547E+01 C GENC 370.65887281974 428. -.4805293859127 .93518318711039 -3.21188654066 200.12920204162 C 214. 30.0000000 .80228367970955 120.9195832 -200.1034264941 -0.0160491 C Step Time ENDC ENDB ENDA BEGINC BEGINB BEGINA GENA GENB GENC C C 0 0.0 398.546371 -399.93767 -1.9823321 381.890844 -382.3653 .22786864 .26207E-13 -370.65887 370.658873 C 1 .2E-4 396.229497 -401.60165 1.39573871 379.97479 -384.04649 3.4865286 3.2270134 -372.26184 369.03483 C 2 .4E-4 394.45906 -403.31911 4.87008728 378.294669 -385.67355 6.81831965 6.45384335 -373.84365 367.389809 C 3 .6E-4 392.661642 -405.02177 8.33699876 376.588353 -387.28347 10.1450332 9.6803064 -375.40421 365.723902 1 C 1000 .02 -297.12285 -545.53844 0.0 -90.750721 -331.99965 367.631455 407.052189 -318.06599 -88.986204 C Variable maxima : 627.936494 580.071468 461.651958 440.730397 458.783591 441.364716 427.998648 427.99985 427.99985 C Times of maxima : .0145 .00948 .00414 .01532 .01014 .00416 .00416 .00972 .01528 C Variable minima : -686.76985 -589.84135 -1.9823321 -492.71846 -441.34178 -413.11665 -428. -427.9994 -427.9994 C Times of minima : .00602 .01928 0.0 .00676 .0014 .01306 .0125 .01806 .00694 CALCOMP PLOT 144 2. 0.0 20. ENDC ENDB ENDA BLANK card ending plot cards BEGIN NEW DATA CASE C 5th of 7 simulations using Taku Noda frequency dependence is 6-phase C (double circuit) simulation from Robert Hasibar of BPA. Trivial example. C * TRANSIENT STUDY - TEST OF MARTI VS NODA * C * LINE MODELS, DOUBLE CCT LINE, 500 KV, 50 MILES * C * LINE ENERGIZING TRANSIENT * 10.E-6 50.E-3 60. 0.0 1 3 0 0 1 -1 5 5 20 20 100 100 51SENDA BUSA 2. 23. 52SENDB BUSB 3. 60. 53SENDC BUSC C ------- CONNECTION TO ENERGIZED CCT, OPEN AT END 0BUSA A'1 .001 0BUSB B'1 .001 0BUSC C'1 .001 -1A1 A2 Noda line DCN14E.DAT SHOW 5 { 1 of 6 } -2B1 B2 -3C1 C2 -4A'1 A'2 -5B'1 B'2 -6C'1 C'2 BLANK C ------ SWITCHES CLOSING ON ONE CCT, OPEN ENDED BUSA A1 4.00E-3 10.00 1 BUSB B1 4.00E-3 10.00 1 BUSC C1 5.00E-3 10.00 1 BLANK card ending switch cards 14SENDA 449.0 60. 0.0 -1. 14SENDB 449.0 60. -120.0 -1. 14SENDC 449.0 60. 120.0 -1. BLANK card ending source cards A1 B1 C1 A'1 B'1 C'1 A2 B2 C2 A'2 B'2 C'2 C First 12 output variables are electric-network voltage differences (upper voltage minus lower voltage); C Next 3 output variables are branch currents (flowing from the upper node to the lower node); C Step Time A1 B1 C1 A'1 B'1 C'1 A2 B2 C2 C C C A'2 B'2 C'2 BUSA BUSB BUSC C A1 B1 C1 C 0 0.0 -47.555111 13.2189276 97.5574018 466.992437 -236.49344 -229.76061 -47.534179 13.5543977 98.3705012 C 469.7859 -237.50992 -230.23688 0.0 0.0 0.0 C 1 .1E-4 -47.55419 14.3348568 98.5451711 468.117239 -232.73895 -230.38265 -47.199522 14.3042986 98.9495346 C 470.213646 -235.11275 -231.02914 0.0 0.0 0.0 BLANK card ending node voltage outputs C 5000 .05 480.786349 -277.80271 -196.03887 480.786311 -277.80253 -196.03878 455.975175 -288.37514 -224.15388 C 509.351281 -277.122 -165.19716 .120430376 .254870926 -.16641182 C Variable maxima : 539.744875 695.834292 649.312458 539.744347 695.834921 649.310907 681.214671 952.100849 858.770718 C 679.373497 910.604531 800.998841 1.41622866 1.95524118 2.20395638 C Times of maxima : .0163 .00734 .00958 .0163 .00734 .00958 .01596 .00702 .00929 C .01647 .00728 .00985 .01343 .01656 .0079 C Variable minima : -592.97516 -677.85138 -538.36103 -592.97451 -677.85157 -538.36051 -707.88181 -817.48709 -616.73697 C -749.2678 -901.75017 -598.57197 -1.0836199 -2.2438628 -1.6491224 C Times of minima : .00789 .01463 .01798 .00789 .01463 .01798 .0087 .01518 .01794 C .00808 .01464 .01739 .02072 .00831 .00622 144 .5 3.0 8.0 A2 B2 C2 144 .5 3.0 8.0 A'2 B'2 C'2 144 5. 0.0 50. A2 B2 C2 144 5. 0.0 50. A'2 B'2 C'2 BLANK .... PLOTS BLANK ---- CASE BEGIN NEW DATA CASE C BENCHMARK DCNEW-14 C 6th of 7 simulations using Taku Noda frequency dependence C Test of Taku Noda's frequency dependence for 500-Kv line energization C The 18 old (around 1970), cascaded Pi-circuits in DC-3 have been C replaced by reference to the external Nodal file DCN14F.DAT (see below). C This is untransposed. For corresponding transposed, see 3rd subcase PRINTED NUMBER WIDTH, 13, 2, .000050 .100 3000. { XOPT = 3 KHz means reactance in ohms at this freq. 1 1 1 1 1 -1 5 5 10 10 20 20 100 100 { Printout -1GEN-A 18-A Noda line DCN14F.DAT SHOW 2 { 1 of 3 } -2GEN-B 18-B { 2 of 3 } -3GEN-C 18-C { 1 of 3 } 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 0M-C GEN-C 400.0 { msec, respectively.} 1 0POLE-AM-A 15.0 0POLE-BM-B 15.0 0POLE-CM-C 15.0 BLANK card ending branch cards E-A POLE-A 0. 20.0 1 E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). BLANK card ending switches 14E-A -1.0 60.0 -90.0 14E-B -1.0 60.0 -210.0 14E-C -1.0 60.0 30.0 BLANK card ending sources 18-C 18-B 18-A BLANK card ending output variables requests (node voltages, here) 144 2. 0.0 20. 18-A 18-B 18-C 144 2. 10. 30. 18-A 18-B 18-C BLANK card ending plot cards BEGIN NEW DATA CASE C BENCHMARK DCNEW-14 C 7th of 7 simulations uses the 180-mile line of preceding data, but with C 15 ohms of source impedance. Illustrate FREQUENCY SCAN as mentioned C in the October, 1999, newsletter. Add this data 30 Aug 1999. FREQUENCY SCAN, 150., 2., 300., 0, { 160 < f < 300 Hz in 2-Hz increments PRINTED NUMBER WIDTH, 13, 2, .000050 -1.0 60. { XOPT = 60 Hz means reactance in ohms at this freq. 1 1 1 0 1 E-A GEN-A 15. E-B GEN-B 15. E-C GEN-C 15. -1GEN-A 18-A Noda line DCN14F.DAT SHOW 2 { 1 of 3 } -2GEN-B 18-B { 2 of 3 } -3GEN-C 18-C { 1 of 3 } BLANK card ending branch cards BLANK card ending switches POLAR OUTPUT VARIABLES { 1st of 3 alternatives for output gives mag, angle C Preceding is one of 3 alternatives. The other two are, after commented: C BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag 14E-A -4.0 60.0 -90.0 -1. 14E-B -4.0 60.0 -210.0 -1. 14E-C -4.0 60.0 30.0 -1. BLANK card ending sources 18-C 18-B 18-A BLANK card ending output variables requests (node voltages, here) F-SCAN COMPONENTS MAG ANGLE { Access "mag" and "angle" next 14614.160.300. 18-A 18-A C 18630. 60.150. CUR CUR { Node voltage at CUR is branch voltage to ground BLANK card ending plot cards BEGIN NEW DATA CASE BLANK EOF C BENCHMARK DCNEW-14 C 31 Aug 99. Is preceding 7th subcase correct? Curves are nice and C smooth, so it might be. But there are trouble signs as the following C data will demonstrate. One does not even need FREQUENCY SCAN to C show the trouble. Return to 14F and add phasor solution. It will C be found that the total network loss is negative. Also, sinusoidal C continuation in the dT loop indicates discontinuity on 1st step. It C is not large, but it is there. The graph clearly shows error in C the initialization. Why? C Total network loss P-loss by summing injections = -1.011651505719E-03 C Node Source node voltage Injected source current Injected source power C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. C C E-A -.244921271E-15 4.0 -.0062090388311 .00621276289868 -.4301610373E-3 .01242552579737 C 4.0 90.0000000 -.2150805186E-3 -178.0160729 -.0124180776621 -0.0346191 C C E-B 3.4641016151378 4.0 .00279398778041 .0061561611401 -.6462844164E-3 .0123123222802 C -2. -30.0000000 .00548561320782 63.0088877 -.012295348567 -0.0524909 C C E-C -3.464101615138 4.0 .00312691699591 .00631003036364 .64793947977E-4 .01262006072728 C -2. -150.0000000 -.0054807730559 -60.2941694 -.0126198943936 0.0051342 PRINTED NUMBER WIDTH, 13, 2, .000050 .020 60. { XOPT = 60 Hz means reactance in ohms at this freq. 1 1 1 1 1 E-A GEN-A 15. E-B GEN-B 15. E-C GEN-C 15. -1GEN-A 18-A Noda line \data\DCN14F.DAT SHOW 2 { 1 of 3 } -2GEN-B 18-B { 2 of 3 } -3GEN-C 18-C { 1 of 3 } BLANK card ending branch cards BLANK card ending switches C POLAR OUTPUT VARIABLES { 1st of 3 alternatives for output gives mag, angle C Preceding is one of 3 alternatives. The other two are, after commented: C BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag 14E-A -4.0 60.0 -90.0 -1. 14E-B -4.0 60.0 -210.0 -1. 14E-C -4.0 60.0 30.0 -1. BLANK card ending sources 18-C 18-B 18-A BLANK card ending output variables requests (node voltages, here) 144 2. 0.0 20. 18-A 18-B 18-C BLANK card ending plot cards BEGIN NEW DATA CASE BLANK