BEGIN NEW DATA CASE C BENCHMARK DCNEW-12 C Automatic steady-state initialization for Type-4 U.M. (a 3-phase induction C machine). Power coils are non-compensated. Rotor coils have external C resistances. Apply a step to the input torque at 0.02 sec (step 100). C Rating: 720 KVA, 4.2 KV, 4-pole ( 85.67% efficiency at 0.846 pf C and 14.0E+3 NM.; Kipp torque = 45.09E+2 NM, slip = 2.5%) C 4 May 2006, append the 8 subcases of IM.DAT making a total of 9. This C is to document use of the new Type-56 Induction Machine from TEPCO. PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60 0.0002 0.900 1 2 0 0 1 -1 5 5 20 20 100 1 110 10 200 200 C --------- ROTOR EXTERNAL RESISTANCES BUSA1 1.E-10 1 BUSB1 BUSA1 1 BUSC1 BUSA1 1 C -------- TRANSMISSION LINES BUSA2 BUSAS2 1.0E-4 10.0 1 BUSB2 BUSBS2BUSA2 BUSAS2 1 BUSC2 BUSCS2BUSA2 BUSAS2 1 C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK BUSAS2 1.0E+6 BUSBS2 BUSAS2 BUSCS2 BUSAS2 C --------- MECHANICAL NETWORK COMPONENTS BUSMG BUSMGR .4548 1 BUSMGR BUSMG BUSMGR BUSMG 9.8E+7 { Rotor mass = capacitance } 1 C ------- Near-zero resistance to measure electromechanical torque (a current): BUSMS BUSMG 1.0E-6 1 BLANK card ending all branch cards BLANK card ending all (here, nonexistent) switch cards C --------- SOURCES FOR INFINITE BUS 14BUSAS2 3000.0 60.0 0.0 -1.0 14BUSBS2 3000.0 60.0 -120.0 -1.0 14BUSCS2 3000.0 60.0 +120.0 -1.0 C ----------- Mechanical input torque, with value set by steady-state solution: 14BUSMS -1 0.000001 0.00001 -1.0 C -------- Step change to input torque occurs at time .020 seconds (Step 100): 14BUSMS -1 3900.0 0.00001 +0.02 C ----------------------- Type-4 U.M. (3-phase induction machine) data follows: 19 UM 1 1 BLANK card ending Class-1 U.M. data C UM-1 MACH TABLE 4 111BUSMG 2 0.0188 0.02358 0.02358 2.0 BUSMS C UM-1 COIL TABLE BUSA2 1 0.412 0.0012 BUSB2 1 0.412 0.0012 BUSC2 1 0.110 0.0012 BUSB1 1 0.110 0.0012 BUSC1 1 BUSA1 1 BLANK card ending all U.M. data cards BLANK card ending all source cards C Total network loss P-loss by summing injections = 7.171020819312E+05 C Total network loss P-loss by summing injections = 8.732408663441E+05 C Total network loss P-loss by summing injections = 1.223706646064E+07 C Total network loss P-loss by summing injections = 1.223706596064E+07 C Total network loss P-loss by summing injections = 1.223707382155E+07 C Zero-th time step documents initial conditions, cut on right edge: BUSAS2BUSA2 BUSA1 BUSMG C Step Time BUSAS2 BUSA2 BUSA1 BUSMG BUSA1 C TERRA C C BUSB2 BUSC2 BUSMG BUSMG BUSMS C BUSBS2 BUSCS2 BUSMGR TERRA BUSMG C C UM-1 UM-1 UM-1 UM-1 UM-1 C IPA IPB IPC IE1 IE2 C 0 0.0 3000. 1784.374676 .1471233E-7 184.725648 147.1233291 C 376.2746526 -182.224238 203.0844855 0.0 -3965.07077 C -194.050415 376.2746526 -182.224238 0.0 0.0 C 1 .2E-3 2991.476701 1834.404076 .1467203E-7 184.7256479 146.7202619 C 374.6920464 -156.915064 203.0844854 -.092695802 -3965.07077 C -217.776982 374.6920464 -156.915064 161.7505543 -308.470816 BLANK card ending output requests (node voltages only, here) C For some unknown reason, these agree with VAX to only 4 or 5 digits, often: C 4500 0.9 3000. 2139.363254 -.929034E-9 188.3186232 -9.29033753 C 206.6043639 -188.546337 207.0345461 -12.7407524 -65.0707659 C -18.0580266 206.6043639 -188.546337 15.99476461 -6.70442708 C Variable max : 3000. 2142.192646 .1471233E-7 189.143889 147.1233291 C 376.2746526 376.1164039 207.9418304 3898.215212 -65.0707659 C 376.0215626 376.2746526 376.1164039 228.3663773 6.204481463 C Times of max : 0.0 .5668 0.0 .2202 0.0 C 0.0 .0222 .2202 .0202 .8786 C .011 0.0 .0222 .0544 .3316 C Variable min : -3000. -2142.13595 -.123856E-8 184.7253125 -12.385633 C -375.871946 -376.188889 203.0841166 -661.121518 -3965.07077 C -376.241942 -375.871946 -376.188889 -24.9469672 -362.34101 C Times of min : .075 .5418 .564 .02 .564 C .0082 .0138 .02 .3084 0.0 C .0194 .0082 .0138 .3076 0.0 PRINTER PLOT 193 .1 0.0 0.9 UM-1 TQGEN { Axis limits: (-4.168, 0.389) BLANK card ending plot cards BEGIN NEW DATA CASE C 2nd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. C 1st of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). C Begin several illustrations of TEPCO (Tokyo Electric Power Company in Japan) C IM (Induction Machine) model that entered the UTPF on 7 April 2006. The C coding is by Cao Xinglin of TEPCO Systems Corp, as communicated to BPA via C Atsushi Kurita of TEPCO. Number 56 is the new ATP source type code that is C to appear in columns 1-2 at the beginning of IM data. First, ATPIG56.DAT C The TEPCO data had 21 permanently-closed switches of which only 6 have been C retained. The remainder were removed without any confusion or difficulty C in order to drop nonessenttial and unrelated complexity. The six switches C that have been retained serve to pass armature currents of the two parallel C machines to TACS. The phasor solution output of the switches clearly shows C opposite directions for the power flow: positive (out) of the generator IG1 C and negative (into) the motor IM1. The phasor solution provides very good C initialization, and simulation of this continues for 1.25 cycles in the dT C loop to demonstrate stability of the steady state. Most machine variables C are nearly constant as extrema clearly demonstrate. The original TEPCO data C simulated to 10 seconds (5000 cycles) to demonstrate longer-term stability, C but this has been drastically shortened to save computer time. C G400 PG=500kW,QG=-232kVar C L300 PL=250kW C L400 PL=200kW,QL=-259kVar C M400 PL=50kW,QL=27kVar C MODE G400:LV PRINTED NUMBER WIDTH, 11, 1, { Restore values that are common within STARTUP POWER FREQUENCY, 50., { So one cycle is 20 msec, note C 0.00025 10. 0.0 0.0 --- TEPCO's T-max was 10 seconds, note 0.00025 .025 0.0 0.0 { 1.25 cycles is enough to verify steady state 1 1 1 1 1 -1 5 5 20 20 100 100 TACS HYBRID 33VIG PIGEN QIGEN PIM QIM C C /// G1 BRANCH VOLTAGE MONITOR /// VAB +N400A -N400B 1.0 90N400A -1.0 90N400B -1.0 90N400C -1.0 91IG1A -1.0 91IG1B -1.0 91IG1C -1.0 91IM1A -1.0 91IM1B -1.0 91IM1C -1.0 C /// VOLTAGE FEED BACK /// 99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 C /// POWER MONITOR(I.G.) /// 99QIG1 = IG1A*(N400B-N400C) 99QIG2 = IG1B*(N400C-N400A) 99QIG3 = IG1C*(N400A-N400B) 99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) 99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C 99PPIG = PIGEN/1000000. 99QQIG = QIGEN/1000000. 99QIM1 = IM1A*(N400B-N400C) 99QIM2 = IM1B*(N400C-N400A) 99QIM3 = IM1C*(N400A-N400B) 99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0) 99PIM = N400A*IM1A+N400B*IM1B+N400C*IM1C 99PPIM = PIM/1000000. 99QQIM = QIM/1000000. C C /// TACS OUTPUT VARIABLES /// C 33PPIG QQIG PPIM QQIM C /// TACS INITIAL CONDITIONS /// 77VIG 1.00478 77PPIG .5000 77QQIG -.232 77PIGEN 500000. 77QIGEN -232000. 77PIM -50000. 77QIM -27600. C C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 BLANK card ends TACS data C /// NETWORK DATA /// $VINTAGE, 1 C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) C *** XS *** ( j0.012(pu) : 0.1663869437mH ) N100A N200A .1663869437 N100B N200B N100A N200A N100C N200C N100A N200A C *** XT *** ( j0.075(pu) : 1.039918398mH ) N200A N300A 1.039918398 N200B N300B N200A N300A N200C N300C N200A N300A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N300A N400A 0.871200000 4.326060536 N300B N400B N300A N400A N300C N400C N300A N400A C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W N300A 174.2211826 N300B N300A N300C N300A C ***INSIDE LOAD*** ( 1.00478) N400A 221.1645148 N400B N400A N400C N400A N400A 18.56624062 N400B N400A N400C N400A $VINTAGE, 0 C BLANK card ends electric network branches C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 C /// SWITCH DATA /// C Only 6 of the 21 original switches are retained. This allows separate C names for the two IM busses even though the two are in parallel. In C fact, IG1A is the same as IM1A, etc. for B and C: IG1A N400A MEASURING IG1B N400B MEASURING IG1C N400C MEASURING IM1A N400A MEASURING IM1B N400B MEASURING IM1C N400C MEASURING BLANK card ends switches C /// SOURCE DATA /// C < RMVA >< RSKV >< FREQ > 0 1 0.625 6.6 50.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.0113 0.0903 0.0093 0.114 4.3 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 1.12 0.0 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | C 0.02 .000264555 9999 { Special terminator for any Class-4 data of Type-56 IM C CLASS5 C | BUS|N| C | A4 |I2 FINISH { Key word that ends data for this particular (the 1st of 2) IM C |BUS | | SLIP || TM0 | C | A6 | | E10.6 || E10.6 | 56IM1A 2.736296 0.0 56IM1B 56IM1C C CLASS2 C TY < RMVA >< RSKV >< FREQ > 0 1 0.0625 6.6 50.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.062 0.075 0.031 0.075 2.58 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 1.97 0.0 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | C 0.02 .000264555 9999 { Special terminator for any Class-4 data of Type-56 IM C CLASS5 C | BUS|N| C | A4 |I2 FINISH { Key word that ends data for this particular (the 2nd of 2) IM BLANK card terminating ATP source cards C Total network loss P-loss by summing injections = 8.693842500266E+01 C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C IG1A N400A 6.13352336E+01 2.91346671E+01 6.79031642E+01 25.4080 1.66673295E+05 -7.75683916E+04 C IG1B N400B -5.43625497E+00 -6.76852040E+01 6.79031642E+01 -94.5920 1.66673295E+05 -7.75683916E+04 C IG1C N400C -5.58989787E+01 3.85505369E+01 6.79031642E+01 145.4080 1.66673295E+05 -7.75683916E+04 C IM1A N400A -6.18285824E+00 3.35138837E+00 7.03274769E+00 151.5403 -1.66673368E+04 -9.20498467E+03 C IM1B N400B 5.99381659E+00 3.67881812E+00 7.03274769E+00 31.5403 -1.66673368E+04 -9.20498467E+03 C IM1C N400C 1.89041650E-01 -7.03020649E+00 7.03274769E+00 -88.4597 -1.66673368E+04 -9.20498467E+03 C C Column headings for the 29 EMTP output variables follow. These are divided among the 5 possible classes as follows .... C Next 24 output variables belong to IM (with "IM" an internally-added upper name of pair). C Next 5 output variables belong to TACS (with "TACS" an internally-added upper name of pair). C Step Time IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 C P Q ISA ISB ISC IRA IRB IRC WR ANG C C IM-1 IM-1 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 C TQ TM P Q ISA ISB ISC IRA IRB IRC C C IM-2 IM-2 IM-2 IM-2 TACS TACS TACS TACS TACS C WR ANG TQ TM VIG PIGEN QIGEN PIM QIM C *** Phasor I(0) = 6.1335234E+01 Switch "IG1A " to "N400A " closed in the steady-state. C *** Phasor I(0) = -5.4362550E+00 Switch "IG1B " to "N400B " closed in the steady-state. C *** Phasor I(0) = -5.5898979E+01 Switch "IG1C " to "N400C " closed in the steady-state. C *** Phasor I(0) = -6.1828582E+00 Switch "IM1A " to "N400A " closed in the steady-state. C *** Phasor I(0) = 5.9938166E+00 Switch "IM1B " to "N400B " closed in the steady-state. C *** Phasor I(0) = 1.8904165E-01 Switch "IM1C " to "N400C " closed in the steady-state. C 0 0.0 500019.886 -232705.17 61.3352336 -5.436255 -55.898979 -11.518219 60.1819687 -48.66375 316.625821 1.57079633 C 1608.95108 1608.95108 -50002.011 -27614.954 -6.1828582 5.99381659 .18904165 -.58621064 -5.1267795 5.71299012 C 305.562938 1.57079633 -148.95686 -148.95686 1.0047 500000. -232000. -50000. -27600. C 1 .25E-3 500145.619 -232725.27 58.8756131 -.11553737 -58.760076 -11.479526 60.1817443 -48.702218 316.625814 1.64995278 C 1609.32268 1608.95108 -49988.051 -27614.135 -6.4248212 5.68592478 .738896446 -.57282271 -5.1329244 5.70574715 C 305.562934 1.64718706 -148.91265 -148.95686 1.00481726 500145.619 -232725.27 -49988.051 -27614.135 C 2 .5E-3 500279.634 -232738.55 56.0518759 5.20801006 -61.259886 -11.440363 60.1804072 -48.740044 316.625795 1.72910923 C 1609.6677 1608.95108 -49976.514 -27614.492 -6.6274021 5.34328199 1.28412013 -.55938995 -5.1392418 5.69863173 C 305.562921 1.72357779 -148.87311 -148.95686 1.00485913 500279.634 -232738.55 -49976.514 -27614.492 BLANK card ending names of ATP output variables (none for this case) C 100 .025 500666.577 -231710.46 -29.009861 67.689943 -38.680082 -7.5010766 58.7427696 -51.241693 316.626251 9.48642268 C 1610.05009 1608.95108 -50027.397 -27567.289 -3.3454225 -3.6840913 7.02951382 .767497344 -5.7887829 5.02128552 C 305.560218 9.20981993 -148.95965 -148.95686 1.00485987 500666.577 -231710.46 -50027.397 -27567.289 C Variable max: 501351.888 -230444.64 67.8036384 67.9774295 67.7273265 -7.5010766 60.1819687 -48.66375 316.62671 9.48642268 C 1612.20306 1608.95108 -49882.18 -27466.013 7.01961078 7.02912135 7.02951382 .767497344 -5.1267795 5.71299012 C 305.562938 9.20981993 -148.58255 -148.95686 1.0049302 501351.888 -230444.64 -49882.18 -27466.013 C Times of max: .005 .01 .0185 .00525 .012 .025 0.0 0.0 .021 .025 C .0045 0.0 .0045 .009 .0115 .01825 .025 .025 0.0 0.0 C 0.0 .025 .00475 0.0 .1E-2 .005 .01 .0045 .009 C Variable min: 499173.557 -232738.55 -67.822794 -67.743906 -67.960287 -11.518219 58.7427696 -51.241693 316.623142 1.57079633 C 1605.49808 1608.95108 -50027.634 -27615.163 -7.0288686 -7.0157093 -7.0236834 -.58621064 -5.7887829 5.02128552 C 305.560211 1.57079633 -148.96079 -148.95686 1.0047 499173.557 -232738.55 -50027.634 -27615.163 C Times of min: .015 .5E-3 .0085 .01525 .002 0.0 .025 .025 .009 0.0 C .0145 0.0 .024 .75E-3 .0215 .00825 .015 0.0 .025 .025 C .02175 0.0 .02375 0.0 0.0 .015 .5E-3 .024 .75E-3 PRINTER PLOT { No need for vector plotting as all variables are smooth 1942.5 0. 25. BRANCH { Plot limits: (-7.029, 7.029) IM-2 ISA IM-2 ISB IM-2 ISC BLANK card ending batch-mode plot cards BEGIN NEW DATA CASE C 3rd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. C 2nd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). C For background of the model, see top of 1st subcase. This second case is a C simplification of ATPIGT56.DAT which has just a single IM. Like the first C subcase, this second one involves no transient. The phasor solution merely C is continued for one cycle to confirm the sinusoidal steady state. Of the C original 19 permanently-closed switches, only 10 could be eliminated without C tampering with TACS control system logic. The 9 switches that remain are C used to pass currents to TACS. As for outputs, these have been reduced C drastically by elimination of the request for every node voltage (a 1-punch C in column 2). This reduces the voltage outputs from 31 to 0. POWER FREQUENCY, 50 C 0.00025 1.0 0.0 0.0 { TEPCO simulation extended to Tmax = 1 sec 0.00025 .020 0.0 0.0 1 1 1 1 1 -1 5 5 20 20 TACS HYBRID C OUTPUT 33VIG PPIG QQIG TM C 88FLG1 = TIMEX .GE. 0.1 88FLG2 = TIMEX .GE. 0.5 88TM = 1.0+FLG1*0.2+FLG2*0.3 77TM 1.0 C /// G1 BRANCH VOLTAGE MONITOR /// VAB +N400A -N400B 1.0 90N400A -1.0 90N400B -1.0 90N400C -1.0 91IG1A -1.0 91IG1B -1.0 91IG1C -1.0 C /// VOLTAGE FEED BACK /// 99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 C /// POWER MONITOR(I.G.) /// 99QIG1 = IG1A*(N400B-N400C) 99QIG2 = IG1B*(N400C-N400A) 99QIG3 = IG1C*(N400A-N400B) 99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) 99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C 99PPIG = PIGEN/1000000. 99QQIG = QIGEN/1000000. C C *************** CONTROLL MODEL BLOCK ************** C 90N300A -1.0 90N300B -1.0 90N300C -1.0 91N250A -1.0 91N250B -1.0 91N250C -1.0 C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// 99QCB1 = N250A*(N300B-N300C) 99QCB2 = N250B*(N300C-N300A) 99QCB3 = N250C*(N300A-N300B) 99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. 99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. C 33PACCB C 33QACCB C /// L300 P & Q /// 91N400AD -1.0 91N400BD -1.0 91N400CD -1.0 99QCB5 = N400AD*(N400B-N400C) 99QCB6 = N400BD*(N400C-N400A) 99QCB7 = N400CD*(N400A-N400B) 99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. 99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. C 33PACCB1 C 33QACCB1 C C /// TACS OUTPUT VARIABLES /// C 33PPIG QQIG VIG C /// TACS INITIAL CONDITIONS /// 77VIG 1.00478 77PPIG .5000 77QQIG -.232 77PIGEN 500000. 77QIGEN -232000. 77PACCB 0.0 77QACCB 6.25 BLANK card ends TACS data $VINTAGE, 1 C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) C *** XS *** ( j0.012(pu) : 0.1663869437mH ) N100A N200A .1663869437 N100B N200B N100A N200A N100C N200C N100A N200A C *** XT *** ( j0.075(pu) : 1.039918398mH ) N200A N250A 1.039918398 N200B N250B N200A N250A N200C N250C N200A N250A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N300A N400A 0.871200000 4.326060536 N300B N400B N300A N400A N300C N400C N300A N400A C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W N300A 174.2211826 N300B N300A N300C N300A C ***INSIDE LOAD*** N400A N400AD 176.7332792 N400B N400BDN400A N400AD N400C N400CDN400A N400AD N400ADN400A 16.56943663 N400BDN400B N400ADN400A N400CDN400C N400ADN400A $VINTAGE, 0 BLANK card terminating branch cards N250A N300A -1.0 8.10 N250B N300B -1.0 8.10 N250C N300C -1.0 8.10 IG1A N400A MEASURING 1 IG1B N400B MEASURING 1 IG1C N400C MEASURING 1 N400AD MEASURING N400BD MEASURING N400CD MEASURING BLANK card ending switch cards C < RMVA >< RSKV >< FREQ > 0 1 0.625 6.6 50.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.0113 0.0903 0.0093 0.114 4.3 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 1.12 0.0 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | C 0.1 1.1 TM 0.1 1.2 0.5 1.5 9999 { Special terminator for any Class-4 data (here, 2 cards) C CLASS5 C | BUS|N| C | A4 |I2 C 73PGEN 1 FINISH { Key word that ends data for this particular (the one and only) IM BLANK card ending all source cards C Total network loss P-loss by summing injections = 7.668433002012E+01 C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 C C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows .... C Next 3 output variables are branch currents (flowing from the upper node to the lower node); C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 C N400A N400B N400C P Q ISA ISB ISC IRA IRB C C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS C IRC WR ANG TQ TM VIG PPIG QQIG TM C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state. C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state. C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state. C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state. C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state. C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state. C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state. C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state. C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state. C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0 C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0 C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0 BLANK card ending output variables (none specified here) C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0 C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0 C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0 C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0 C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0 1942.5 0. 25. BRANCH { Plot limits: (-6.796, 6.798) IG1A N400A IG1B N400B IG1C N400C BLANK card ending batch-mode plot cards BEGIN NEW DATA CASE C 4th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. C 3rd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). C For background of the model, see top of 1st subcase. This third case is a C simplification of IGTMT56.DAT which has just a single IM. Like the first C two, this third subcase involves no transient. The phasor solution merely C is continued for one cycle to confirm the sinusoidal steady state. Of the C original 19 permanently-closed switches, only 10 could be eliminated without C tampering with TACS control system logic. 6 of the 9 switches that remain C are used to pass currents to TACS. As for outputs, these have been reduced C drastically by elimination of the request for every node voltage (a 1-punch C in column 2). This reduces the voltage outputs from 31 to 0. POWER FREQUENCY, 50 C C 0.00025 1.0 0.0 0.0 --- TEPCO's T-max was 1.0 seconds, note 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state 1 1 1 1 1 -1 5 5 20 20 TACS HYBRID C OUTPUT 33VIG PPIG QQIG TM C 88FLG1 = TIMEX .GE. 0.1 88FLG2 = TIMEX .GE. 0.5 C 88TM = 1.0+FLG1*0.2+FLG2*0.3 88TM = 1.0+FLG1*0.4838+FLG2*0.3709 77TM 1.0 C /// G1 BRANCH VOLTAGE MONITOR /// VAB +N400A -N400B 1.0 90N400A -1.0 90N400B -1.0 90N400C -1.0 91IG1A -1.0 91IG1B -1.0 91IG1C -1.0 C /// VOLTAGE FEED BACK /// 99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 C /// POWER MONITOR(I.G.) /// 99QIG1 = IG1A*(N400B-N400C) 99QIG2 = IG1B*(N400C-N400A) 99QIG3 = IG1C*(N400A-N400B) 99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) 99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C 99PPIG = PIGEN/1000000. 99QQIG = QIGEN/1000000. C C *************** CONTROLL MODEL BLOCK ************** C 90N300A -1.0 90N300B -1.0 90N300C -1.0 91N250A -1.0 91N250B -1.0 91N250C -1.0 C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// 99QCB1 = N250A*(N300B-N300C) 99QCB2 = N250B*(N300C-N300A) 99QCB3 = N250C*(N300A-N300B) 99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. 99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. C 33PACCB C 33QACCB C /// L300 P & Q /// 91N400AD -1.0 91N400BD -1.0 91N400CD -1.0 99QCB5 = N400AD*(N400B-N400C) 99QCB6 = N400BD*(N400C-N400A) 99QCB7 = N400CD*(N400A-N400B) 99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. 99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. C 33PACCB1 C 33QACCB1 C C /// TACS OUTPUT VARIABLES /// C 33PPIG QQIG VIG C /// TACS INITIAL CONDITIONS /// 77VIG 1.00478 77PPIG .5000 77QQIG -.232 77PIGEN 500000. 77QIGEN -232000. 77PACCB 0.0 77QACCB 6.25 C IM TORQUE C 99TM =TIMEX C 88TM =TIMEX .GE. 0.1 $DISABLE C ---FOR.IG.No1(1/4)--- C ====== TIME OF MOTOR TO GEN MODE ===== 77MSLIP -0.785129 11MOTGEN 0.0 -1.0 90BUSMG -1.0 99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100. 33MSLIP 99BUSMS =(TIMEX.GE.MOTGEN)*1592 $ENABLE BLANK card ending TACS data C /// NETWORK DATA /// $VINTAGE, 1 C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) C *** XS *** ( j0.012(pu) : 0.1663869437mH ) N100A N200A .1663869437 N100B N200B N100A N200A N100C N200C N100A N200A C *** XT *** ( j0.075(pu) : 1.039918398mH ) N200A N250A 1.039918398 N200B N250B N200A N250A N200C N250C N200A N250A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N300A N400A 0.871200000 4.326060536 N300B N400B N300A N400A N300C N400C N300A N400A C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W N300A 174.2211826 N300B N300A N300C N300A C ***INSIDE LOAD*** N400A N400AD 176.7332792 N400B N400BDN400A N400AD N400C N400CDN400A N400AD N400ADN400A 16.56943663 N400BDN400B N400ADN400A N400CDN400C N400ADN400A $VINTAGE, 0 C $DISABLE C ---FOR.IG.No1(2/4)--- C --------- MECHANICAL NETWORK COMPONENTS C Tm=1.12 :M :2H ==> 7.09E+6 pole:1 C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 BUSMG 7.09E6 C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE BUSMS BUSMG 1.0E-8 $ENABLE BLANK card ending branch cards C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 C /// SWITCH DATA /// N250A N300A -1.0 8.10 N250B N300B -1.0 8.10 N250C N300C -1.0 8.10 IG1A N400A MEASURING 1 IG1B N400B MEASURING 1 IG1C N400C MEASURING 1 N400AD MEASURING N400BD MEASURING N400CD MEASURING BLANK card ending switch cards C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 $DISABLE C ---FOR.IG.No1(3/4)--- 14BUSMS -1 0.0001 0.0001 .0 -1.0 $ENABLE C /// SOURCE DATA /// C < RMVA >< RSKV >< FREQ > 0 1 0.625 6.6 50.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.0113 0.0903 0.0093 0.114 4.3 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 1.12 0.0 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | TM 9999 { Special terminator for any Class-4 data of Type-56 IM C CLASS5 C | BUS|N| C | A4 |I2 C 73PGEN 1 FINISH BLANK card ending source cards C Total network loss P-loss by summing injections = 7.668433002012E+01 C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 C C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows .... C Next 3 output variables are branch currents (flowing from the upper node to the lower node); C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 C N400A N400B N400C P Q ISA ISB ISC IRA IRB C C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS C IRC WR ANG TQ TM VIG PPIG QQIG TM C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state. C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state. C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state. C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state. C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state. C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state. C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state. C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state. C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state. C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0 C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0 C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0 BLANK card ending names for output purposes (none here) C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0 C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0 C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0 C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0 C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0 PRINTER PLOT { No need for vector plotting as all variables are smooth C For variety, let's not repeat the 50-Hz ac sinusoids of the preceding two C subcases. Instead, let's plot the rotor angle ANG which should be a C perfect ramp if rotor speed is constant. 1942.5 0. 25. BRANCH { Plot limits: ( 0.000, 7.903 ) IM-1 ANG BLANK card ending batch-mode plot cards BEGIN NEW DATA CASE C 5th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. C 4th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). C For background of the model, see top of 1st subcase. This fourth case is a C simplification of DCN12T56.DAT, so named because it is like DCN12 (in long C form, DCNEW-12) except that the U.M. of that old standard test case has been C replaced by a Type-56 IM. Unlike the preceding 3 IM illustrations, this one C _does_ involve transients. A comment card of that old data states: "Apply C a step to the input torque at 0.02 sec (step 100). Unlike the preceding C illustrations, there is no TACS (control system modeling). Also, 1 phasor C solution for initial conditions suffices (compare with the five of DCNEW-12, C each indicated by 1 line of output that begins "Total network loss P-loss C by summing injections = ..."). Of course, the compensation of DCNEW-12 is C nowhere to be seen. The TEPCO IM does not use compensation. Also gone is C the external rotor inertia that Prof. Hian Lauw modeled using a capacitor C (that unforgetable electrical analog used with the U.M.). Machine variable C names are are a little different, but are easily recognizable. For example, C the PRINTER PLOT of shaft torque (UM-1, TQGEN) has become (IM-1, TQ). C But the shape is the same: a slightly underdamped rise to a constant. In C fact, the plot limits are nearly the same. DCNEW-12 has ( -4.168 0.389 ) C whereas this new IM simulation produces ( -4.168 0.388 ). C About solution speed, WSM's old 133-MHz Pentium PC running real MS-DOS to C support DBOS reports the following: DCNEW-12 TEPCO 56 C Seconds for overlays 1-5 : 2.088 2.033 C Seconds for overlays 6-11 : 0.220 0.220 C Seconds for overlays 12-15 : 0.165 0.165 C Seconds for time-step loop : 2.637 1.484 C Seconds after DELTAT-loop : 0.330 0.385 C -------------------- C Totals : 5.440 4.286 C Bob Schultz reported: 7.80 6.59 C (this final row is the total job time, written only on the screen). So, C at least for the default tolerances used, there would seem to be no worry C that the Type-56 TEPCO IM simulates substantially slower. The surprising C preceding result shows faster simulation even though compensation is not C being used. Who would have predicted this? WSM's congratulations to Mr. C Cao for a job well done. WSM. 10 April 2006 PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough 0.0002 0.900 1 1 1 1 1 -1 5 5 20 20 100 1 110 10 200 200 C -------- TRANSMISSION LINES BUSA2 BUSAS2 1.0E-4 10.0 1 BUSB2 BUSBS2BUSA2 BUSAS2 1 BUSC2 BUSCS2BUSA2 BUSAS2 1 C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK BUSAS2 1.0E+6 BUSBS2 BUSAS2 BUSCS2 BUSAS2 BLANK card ending all branch cards BLANK card ending all (here, nonexistent) switch cards C --------- SOURCES FOR INFINITE BUS 14BUSAS2 3000.0 60.0 0.0 -1.0 14BUSBS2 3000.0 60.0 -120.0 -1.0 14BUSCS2 3000.0 60.0 +120.0 -1.0 C ----------- Mechanical input torque, with value set by steady-state solution: C |BUS | | SLIP || TM0 | C | A6 | | E10.6 || E10.6 | 56BUSA2 2.0 56BUSB2 56BUSC2 C CLASS2 C TY < RMVA >< RSKV >< FREQ > 0 2 0.72 4.2 60.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.0168163 0.0184649 0.0044898 0.0184649 0.3628347 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 4.8361824 0.05425244 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | 0.02 -0.070204 9999 { Special terminator for any Class-4 data of Type-56 IM C CLASS5 C | BUS|N| C | A4 |I2 FINISH BLANK card ending all source cards C Bus K Phasor node voltage Phasor branch current Power flow Power loss C Bus M Rectangular Polar Rectangular Polar P and Q P and Q C C BUSA2 1784.3750743312 1928.5009532126 -194.050261711 376.33642682066 -291068.3111111 7.0814553076206 C -731.5200070041 -22.2916012 322.44937910011 121.0395584 -216709.4929969 266964.5756532 C C BUSAS2 3000. 3000. 194.05026171096 376.33642682066 291075.39256644 C 0.0 0.0 -322.4493791001 -58.9604416 483674.06865017 C C Total network loss P-loss by summing injections = 8.732396776993E+05 C Node Source node voltage Injected source current Injected source power C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. C C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808 C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356 C C Column headings for the 17 EMTP output variables follow. These are divided among the 5 possible classes as follows .... C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); C Next 3 output variables are branch currents (flowing from the upper node to the lower node); C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1 C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB C C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 C ISC IRA IRB IRC WR ANG TQ TM C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485 C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612 C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295 C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 BUSAS2BUSA2 BLANK card ending output requests (node voltages only, here) C 4500 0.9 3000. 2139.14561 -18.05955 206.541811 -188.48226 -81144.03 -729966.82 -18.05955 206.541811 C -188.48226 9.2806015 -16.003198 6.72259646 188.318532 340.252637 -259.39252 -65.075052 C Variable maxima : 3000. 2142.5602 375.961666 376.274485 375.920036 38275.6628 -648850.48 375.961666 376.274485 C 375.920036 12.3551834 24.9125877 308.4899 189.143066 340.252637 387.73688 -65.075052 C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0 C .0222 .564 .3076 0.0 .22 0.9 .3086 .02 C Variable minima : -3000. -2142.6793 -376.12582 -375.68519 -376.20297 -873758.65 -769663.96 -376.12582 -375.68519 C -376.20297 -147.12317 -228.11722 -6.2184031 184.7252 1.57079633 -4168.4668 -3965.0683 C Times of minima : .025 .5584 .0194 .0082 .0138 .2E-3 .1896 .0194 .0082 C .0138 0.0 .0546 .3312 .0198 0.0 .0138 0.0 PRINTER PLOT 193 .1 0.0 1.0 IM-1 TQ { Axis limits: (-4.168, 0.388) BLANK card ending plot cards BEGIN NEW DATA CASE C 6th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. C 5th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). C For background of the model, see top of 1st subcase. This fifth case is a C simplification of WSMATPIG.DAT which has just a single IM. Like the first C three, this second subcase involves no transient. The phasor solution merely C is continued for one cycle to confirm the sinusoidal steady state. Of the C original 19 permanently-closed switches, only 10 could be eliminated without C tampering with TACS control system logic. The 9 switches that remain are C used to pass 6 currents and 3 voltages to TACS. As for outputs, these have C been reduced drastically by elimination of the request for every node voltage C (a 1-punch in column 2). This reduces the voltage outputs from 31 to 0. New C is illustration of the declaration to size IM tables within the working space C of List 25. This is immediately below. The Type-56 TEPCO IM and Prof. Hian C Lauw's Type-19 U.M. share the same working space, so what is not used by one C model is available for the other. There should be protection against any C attempt to use more space than exists. C LIM56 LIMTM { 32X, 2I8 data ABSOLUTE I.M. DIMENSIONS 3 12 { 2 and 10 are the defaults POWER FREQUENCY, 50 PRINTED NUMBER WIDTH, 11, 1, { This is the default choice; return to its use C 0.00025 1.0 0.0 0.0 { Original TEPCO simulation was to 1.0 second 0.00025 .020 0.0 0.0 1 1 1 1 1 -1 5 5 20 20 TACS HYBRID C OUTPUT 33VIG PPIG QQIG C C /// G1 BRANCH VOLTAGE MONITOR /// VAB +N400A -N400B 1.0 90N400A -1.0 90N400B -1.0 90N400C -1.0 91IG1A -1.0 91IG1B -1.0 91IG1C -1.0 C /// VOLTAGE FEED BACK /// 99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 C /// POWER MONITOR(I.G.) /// 99QIG1 = IG1A*(N400B-N400C) 99QIG2 = IG1B*(N400C-N400A) 99QIG3 = IG1C*(N400A-N400B) 99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) 99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C 99PPIG = PIGEN/1000000. 99QQIG = QIGEN/1000000. C C *************** CONTROLL MODEL BLOCK ************** C 90N300A -1.0 90N300B -1.0 90N300C -1.0 91N250A -1.0 91N250B -1.0 91N250C -1.0 C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// 99QCB1 = N250A*(N300B-N300C) 99QCB2 = N250B*(N300C-N300A) 99QCB3 = N250C*(N300A-N300B) 99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. 99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. C 33PACCB C 33QACCB C /// L300 P & Q /// 91N400AD -1.0 91N400BD -1.0 91N400CD -1.0 99QCB5 = N400AD*(N400B-N400C) 99QCB6 = N400BD*(N400C-N400A) 99QCB7 = N400CD*(N400A-N400B) 99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. 99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. C 33PACCB1 C 33QACCB1 C C /// TACS OUTPUT VARIABLES /// C 33PPIG QQIG VIG C /// TACS INITIAL CONDITIONS /// 77VIG 1.00478 77PPIG .5000 77QQIG -.232 77PIGEN 500000. 77QIGEN -232000. 77PACCB 0.0 77QACCB 6.25 $DISABLE C ---FOR.IG.No1(1/4)--- C ====== TIME OF MOTOR TO GEN MODE ===== 77MSLIP -0.785129 11MOTGEN 0.0 -1.0 90BUSMG -1.0 99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100. 33MSLIP 99BUSMS =(TIMEX.GE.MOTGEN)*1592 $ENABLE BLANK card ending TACS data C /// NETWORK DATA /// $VINTAGE, 1 C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) C *** XS *** ( j0.012(pu) : 0.1663869437mH ) N100A N200A .1663869437 N100B N200B N100A N200A N100C N200C N100A N200A C *** XT *** ( j0.075(pu) : 1.039918398mH ) N200A N250A 1.039918398 N200B N250B N200A N250A N200C N250C N200A N250A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N300A N400A 0.871200000 4.326060536 N300B N400B N300A N400A N300C N400C N300A N400A C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W N300A 174.2211826 N300B N300A N300C N300A C ***INSIDE LOAD*** N400A N400AD 176.7332792 N400B N400BDN400A N400AD N400C N400CDN400A N400AD N400ADN400A 16.56943663 N400BDN400B N400ADN400A N400CDN400C N400ADN400A $VINTAGE, 0 C $DISABLE C ---FOR.IG.No1(2/4)--- C --------- MECHANICAL NETWORK COMPONENTS C Tm=1.12 :M :2H ==> 7.09E+6 pole:1 C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 BUSMG 7.09E6 C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE BUSMS BUSMG 1.0E-8 $ENABLE BLANK card ending branch cards C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 C /// SWITCH DATA /// N250A N300A -1.0 8.10 N250B N300B -1.0 8.10 N250C N300C -1.0 8.10 IG1A N400A MEASURING 1 IG1B N400B MEASURING 1 IG1C N400C MEASURING 1 N400AD MEASURING N400BD MEASURING N400CD MEASURING BLANK card ending switch cards C /// SOURCE DATA /// C < RMVA >< RSKV >< FREQ > 0 1 0.625 6.6 50.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.0113 0.0903 0.0093 0.114 4.3 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 1.12 0.0 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | C 0.02 .000264555 9999 { Special terminator for any Class-4 data of Type-56 IM C CLASS5 C | BUS|N| C | A4 |I2 C 73PGEN 1 FINISH { Key word that ends data for this particular (the one and only) IM BLANK CARD ending source cards C Total network loss P-loss by summing injections = 7.668433002012E+01 C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows .... C Next 3 output variables are branch currents (flowing from the upper node to the lower node); C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). C Next 3 output variables belong to TACS (with "TACS" an internally-added upper name of pair). C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 C N400A N400B N400C P Q ISA ISB ISC IRA IRB C C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS C IRC WR ANG TQ TM VIG PPIG QQIG C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 BLANK CARD ending names for output (none here) C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 C Variable max:67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 C Times of max: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 C Variable min:-67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 C Times of min: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 PRINTER PLOT { No need for vector plotting as all variables are smooth 194 2. 0. 20. BRANCH { Plot limits: (-6.796, 6.798) IM-1 ISA IM-1 ISB IM-1 ISC BLANK card ending plot cards BEGIN NEW DATA CASE C 7th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. C 6th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). C For background of the model, see top of 1st subcase. This sixth subcase C is a simplification of WSM12TAC.DAT which is like DCN12 (in long form, C DCNEW-12) except that the U.M. of that old standard test case has been C replaced by a Type-56 IM. The solution here seems to be the same as the 4th C subcase except that TACS is involved, and is used to initiate the transient C rather than such special capability within the Type-56 IM model itself. PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough C ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60 0.0002 0.900 1 3 1 1 1 -1 5 5 20 20 100 100 500 500 TACS HYBRID 33TM { The only TACS output variable will be this torque TM, which is a step 88FLG1 = TIMEX .GE. 0.02 88TM = 1.0-FLG1*0.98358791 77TM 1.0 BLANK C -------- TRANSMISSION LINES BUSA2 BUSAS2 1.0E-4 10.0 1 BUSB2 BUSBS2BUSA2 BUSAS2 1 BUSC2 BUSCS2BUSA2 BUSAS2 1 C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK BUSAS2 1.0E+6 BUSBS2 BUSAS2 BUSCS2 BUSAS2 BLANK card ending all branch cards BLANK card ending all (here, nonexistent) switch cards C --------- SOURCES FOR INFINITE BUS 14BUSAS2 3000.0 60.0 0.0 -1.0 14BUSBS2 3000.0 60.0 -120.0 -1.0 14BUSCS2 3000.0 60.0 +120.0 -1.0 C |BUS | | SLIP || TM0 | C | A6 | | E10.6 || E10.6 | 56BUSA2 2.0 56BUSB2 56BUSC2 C CLASS2 C TY < RMVA >< RSKV >< FREQ > 0 2 0.72 4.2 60.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.0168163 0.0184649 0.0044898 0.0184649 0.3628347 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 4.8361824 0.05425244 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | 0.02 -0.0702041 TM 9999 C CLASS5 C | BUS|N| C | A4 |I2 FINISH { Key word that ends data for this particular (the one and only) IM BLANK card ending all source cards C Total network loss P-loss by summing injections = 8.732396776993E+05 C Node Source node voltage Injected source current Injected source power C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808 C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356 BUSAS2BUSA2 { Names of nodes for voltage output C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows .... C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); C Next 3 output variables are branch currents (flowing from the upper node to the lower node); C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1 C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB C C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 TACS C ISC IRA IRB IRC WR ANG TQ TM TM C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485 C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 1.0 C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612 C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 1.0 C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295 C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 1.0 BLANK card ending output requests (node voltages only, here) C 4500 0.9 3000. 2139.14389 -18.055352 206.54004 -188.48469 -81125.234 -729968.29 -18.055352 206.54004 C -188.48469 9.31443983 -15.992732 6.67829219 188.318584 340.24976 -259.2923 -65.075057 .01641209 C Variable maxima : 3000. 2142.56391 375.961666 376.274485 375.939009 38282.079 -648850.48 375.961666 376.274485 C 375.939009 12.4231891 24.885902 308.4899 189.143064 340.24976 387.735739 -65.075057 1.0 C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0 C .0222 .5642 .308 0.0 .2204 0.9 .309 .0204 0.0 C Variable minima : -3000. -2142.6794 -376.12582 -375.69165 -376.20297 -873758.65 -769666.51 -376.12582 -375.69165 C -376.20297 -147.12317 -228.64774 -6.1496539 184.725187 1.57079633 -4168.4668 -3965.0683 .01641209 C Times of minima : .025 .5584 .0194 .025 .0138 .2E-3 .1896 .0194 .025 C .0138 0.0 .0548 .3318 .0202 0.0 .0138 0.0 .0202 PRINTER PLOT 193 .1 0.0 1.0 IM-1 TQ IM-1 TM { Axis limits: (-4.168, 0.388) BLANK card ending plot cards BEGIN NEW DATA CASE C 8th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. C 7th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). C For background of the model, see top of 1st subcase. This seventh case is a C simplification of ATPSGIUM.DAT which has no Type-56 IM. Instead, it uses C the U.M. to model an induction machine. It establishes the standard of C comparison for the following subset which replaces the U.M. by a Type-56 IM. C Like the first three subcases, this seventh one involves no transient. The C phasor solution merely is continued for one cycle to confirm the sinusoidal C steady state. Of the original 33 permanently-closed switches, only 12 could C be eliminated without tampering with TACS control system logic, leaving 21. C There is a lot of TACS modeling, and this required more storage than the C usual 3 * default of List 19. So, NEW LIST SIZES has been added to expand C the space for TACS while at the same time reducing a lot of other sizes. C Different from previous illustrations, Type-58 S.M. modeling is used. NEW LIST SIZES 70 60 50 20 250 50 300 0 0 0 0 20 0 0 0 0 0 0 12500 0 0 0 0 240000 ABSOLUTE TACS DIMENSIONS C 40 170 200 50 120 2500 350 180 C Expand various TACS Tables on 1 April 2007. Force acceptance C without worrying about probable waste that might be involved: C 57 256 285 36 85 713 998 171 --- default C Tacs table number 1 2 3 4 5 6 7 8 C Present figure 145 64 32 50 91 2229 212 165 C Program limit 230 65 80 50 170 8000 420 300 230 65 80 50 170 8000 420 300 PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough POWER FREQUENCY, 50 C 0.00025 10. 0.0 0.0 { Note TEPCO Tmax was 10 seconds 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state 1 1 1 1 1 -1 5 5 20 20 100 100 500 500 TACS HYBRID C OUTPUT 33VT4 PPG4 QQG4 33VT5 PPG5 QQG5 C C /// G1 S.G. GOVERNOR MODEL G400/// 00WGREF4 +PLUS1 1.0 99GOVNR4 = -WGREF4+WGFBK4 C 99GOV014 = GOVNR4*(1/0.04/0.1) 99GOV3R4 = GOV034*(1.0/0.1) 00GOV024 +GOV014 -GOV3R4 1.0 01GOV034 +GOV024 1.0 1.0 1.0 99GOV044 = PLUS1-GOV034 99GOV054 = GOV044*(1.0/0.6) 99TQTR4 = TQT4*(1.0/0.6) 00GOV064 +GOV054 -TQTR4 1.0 01TQT4 +GOV064 1.0 -0.02 1.1 1.0 1.0 C /// G1 S.G. GOVERNOR MODEL G500/// 00WGREF5 +PLUS1 1.0 99GOVNR5 = -WGREF5+WGFBK5 C 99GOV015 = GOVNR5*(1/0.04/0.1) 99GOV3R5 = GOV035*(1.0/0.1) 00GOV025 +GOV015 -GOV3R5 1.0 01GOV035 +GOV025 1.0 1.0 1.0 99GOV045 = PLUS1-GOV035 99GOV055 = GOV045*(1.0/0.6) 99TQTR5 = TQT5*(1.0/0.6) 00GOV065 +GOV055 -TQTR5 1.0 01TQT5 +GOV065 1.0 -0.02 1.1 1.0 1.0 C C /// G1 S.G. AVR MODEL G400/// C 77DROOP4 0.0 77DROP14 0.0 77DROP24 0.0 99DROP24 = DROP14*0.04 99PUFB14 = (PUFBK4+DROP24)*(1.0/0.035) 99VGFBR4 = VGFBK4*(1.0/0.035) 00PUFB24 +PUFB14 -VGFBR4 1.0 99LLIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*(-9999.) 99ULIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*9999. 01VGFBK4 +PUFB24 1.0 LLIM24ULIM24 1.0 1.0 C 99AVR014 = VGREF4-VGFBK4 99LLIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0) 99ULIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0) 01AVR024 +AVR014 1.0 LLIM14ULIM14 10.0 1.56 99AVR034 = AVR014*(10.0*1.56/1.56) C 99AVR044 = AVR024+AVR034+GAIN4 99AVR054 = AVR044*(1.0/0.2) 99AVR7R4 = AVR074*(1.0/0.2) 99AVR064 = AVR054-AVR7R4 99LLIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*(-9999.) 99ULIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*9999. 01AVR074 +AVR064 1.0 LLIM34ULIM34 1.0 1.0 99EF4 = AVR074/GAIN4 C C /// G1 S.G. AVR MODEL G500/// C 77DROOP5 0.0 77DROP15 0.0 77DROP25 0.0 99DROP25 = DROP15*0.04 99PUFB15 = (PUFBK5+DROP25)*(1.0/0.035) 99VGFBR5 = VGFBK5*(1.0/0.035) 00PUFB25 +PUFB15 -VGFBR5 1.0 99LLIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*(-9999.) 99ULIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*9999. 01VGFBK5 +PUFB25 1.0 LLIM25ULIM25 1.0 1.0 C 99AVR015 = VGREF5-VGFBK5 99LLIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0) 99ULIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0) 01AVR025 +AVR015 1.0 LLIM15ULIM15 10.0 1.56 99AVR035 = AVR015*(10.0*1.56/1.56) C 99AVR045 = AVR025+AVR035+GAIN5 99AVR055 = AVR045*(1.0/0.2) 99AVR7R5 = AVR075*(1.0/0.2) 99AVR065 = AVR055-AVR7R5 99LLIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*(-9999.) 99ULIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*9999. 01AVR075 +AVR065 1.0 LLIM35ULIM35 1.0 1.0 99EF5 = AVR075/GAIN5 C C /// SG BRANCH VOLTAGE MONITOR /// VAB4 +N400A -N400B 1.0 VAB5 +N500A -N500B 1.0 90N400A -1.0 90N400B -1.0 90N400C -1.0 91GSG4A -1.0 91GSG4B -1.0 91GSG4C -1.0 91IM4A -1.0 91IM4B -1.0 91IM4C -1.0 90N500A -1.0 90N500B -1.0 90N500C -1.0 91GSG5A -1.0 91GSG5B -1.0 91GSG5C -1.0 92SGOMG4 -1.0 92SGOMG5 -1.0 C /// VOLTAGE FEED BACK G400/// 99PUFBK4 = SQRT(N400A*N400A + N400B*N400B + N400C*N400C)/6600.0 00VT4 +PUFBK4 1.0 C /// POWER MONITOR(S.G.) /// 99QSG4A = GSG4A*(N400B-N400C) 99QSG4B = GSG4B*(N400C-N400A) 99QSG4C = GSG4C*(N400A-N400B) 99QSGEN4 = (QSG4A+QSG4B+QSG4C)/SQRT(3.0) 99PSGEN4 = N400A*GSG4A+N400B*GSG4B+N400C*GSG4C 99PPG4 = PSGEN4/1000000. 99QQG4 = QSGEN4/1000000. C /// VOLTAGE FEED BACK G500/// 99PUFBK5 = SQRT(N500A*N500A + N500B*N500B + N500C*N500C)/6600.0 00VT5 +PUFBK5 1.0 C /// POWER MONITOR(S.G.) /// 99QSG5A = GSG5A*(N500B-N500C) 99QSG5B = GSG5B*(N500C-N500A) 99QSG5C = GSG5C*(N500A-N500B) 99QSGEN5 = (QSG5A+QSG5B+QSG5C)/SQRT(3.0) 99PSGEN5 = N500A*GSG5A+N500B*GSG5B+N500C*GSG5C 99PPG5 = PSGEN5/1000000. 99QQG5 = QSGEN5/1000000. C 99QIM1 = IM4A*(N400B-N400C) 99QIM2 = IM4B*(N400C-N400A) 99QIM3 = IM4C*(N400A-N400B) 99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0) 99PIM = N400A*IM4A+N400B*IM4B+N400C*IM4C 99PPIM = PIM 99QQIM = QIM 33PPG4 PPG5 QQG4 QQG5 PPIM QQIM C *************** CONTROLL MODEL BLOCK ************** C /// G400 /// 99DROOP4 = (QSGEN4-QSGI4)/625000./VT4 00DROP14 +DROOP4 99WGFBK4 = SGOMG4/314.159265 99RPMSG4 = 30.0*SGOMG4/PI C /// G500 /// 99DROOP5 = (QSGEN5-QSGI5)/625000./VT5 00DROP15 +DROOP5 99WGFBK5 = SGOMG5/314.159265 99RPMSG5 = 30.0*SGOMG5/PI C 90N300A -1.0 90N300B -1.0 90N300C -1.0 91N250A -1.0 91N250B -1.0 91N250C -1.0 C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// 99QCB1 = N250A*(N300B-N300C) 99QCB2 = N250B*(N300C-N300A) 99QCB3 = N250C*(N300A-N300B) 99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. 99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. C 33PACCB C 33QACCB C /// L300 P & Q /// 91N300AD -1.0 91N300BD -1.0 91N300CD -1.0 99PACCB3 = (N300A*N300AD+N300B*N300BD+N300C*N300CD)/1000. C 33PACCB3 C /// L400 P & Q /// 91N400AD -1.0 91N400BD -1.0 91N400CD -1.0 99QCB4 = N400AD*(N400B-N400C) 99QCB5 = N400BD*(N400C-N400A) 99QCB6 = N400CD*(N400A-N400B) 99QACCB4 = ((QCB4+QCB5+QCB6)/SQRT(3.0))/1000. 99PACCB4 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000. C 33PACCB4 C 33QACCB4 C /// L500 P & Q /// 91N500AD -1.0 91N500BD -1.0 91N500CD -1.0 99QCB7 = N500AD*(N500B-N500C) 99QCB8 = N500BD*(N500C-N500A) 99QCB9 = N500CD*(N500A-N500B) 99QACCB5 = ((QCB7+QCB8+QCB9)/SQRT(3.0))/1000000. 99PACCB5 = (N500A*N500AD+N500B*N500BD+N500C*N500CD)/1000000. C 33PACCB5 C 33QACCB5 C C 33EF4 EF5 C /// TACS GOV,AVR REF /// 11VGREF4 1.00758 -1.0 11VGREF5 1.01249 -1.0 C IF/AGLINE 11GAIN4 2.661027 -1.0 11GAIN5 2.655261 -1.0 11QSGI4 242000.0 -1.0 11QSGI5 242000.0 -1.0 C /// TACS INITIAL CONDITIONS /// 77PPIM -300000. 77QQIM -167000. 77PPG4 .500000 77QQG4 .242000 77VGREF4 1.00758 77VGFBK4 1.00758 77PUFBK4 1.00758 77VT4 1.00758 77VGREF5 1.01249 77PUFBK5 1.01249 77VGFBK5 1.01249 77VT5 1.01249 77PPG5 .500000 77QQG5 .242000 C Vini/0.035 77VGFBR4 28.78800 77PUFB14 28.78800 C GAIN4/0.2:2.661027 77AVR7R4 13.3051350 77AVR054 13.3051350 C GAIN4: 77AVR044 2.661027 77AVR074 2.661027 C G500 C Vini/0.035 77VGFBR5 28.9282857 77PUFB15 28.9282857 C GAIN5/0.2:2.655261 77AVR055 13.2763050 77AVR7R5 13.2763050 C GAIN5 77AVR045 2.655261 77AVR075 2.655261 C 77PUFB24 0.0 77AVR065 0.0 77RPMSG4 3000.0 77WGREF4 1.0 77WGFBK4 1.0 77SGOMG4 314.159265 77TQT4 1.0 77GOVNR4 0.0 77GOV014 0.0 77GOV024 0.0 77GOV034 0.0 77GOV3R4 0.0 77GOV044 1.0 77GOV054 1.66666667 77GOV064 0.0 77TQTR4 1.66666667 77AVR014 0.0 77AVR024 0.0 77AVR034 0.0 77AVR064 0.0 77EF4 1.0 77WGREF5 1.0 77WGFBK5 1.0 77SGOMG5 314.159265 77TQT5 1.0 77PUFB25 0.0 77RPMSG5 3000.0 77GOVNR5 0.0 77GOV015 0.0 77GOV025 0.0 77GOV035 0.0 77GOV3R5 0.0 77GOV045 1.0 77GOV055 1.66666667 77GOV065 0.0 77TQTR5 1.66666667 77AVR015 0.0 77AVR025 0.0 77AVR035 0.0 77EF5 1.0 C C ---FOR.IM.No1(1/4)--- C ====== TIME OF MOTOR TO GEN MODE ===== 77MSLIPM 2.719739 90BUSMGM -1.0 99MSLIPM = (1.0-BUSMGM/(2.*PI*50.))*100. C 300kW/2*PI*F 99BUSMSM =954.9 C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 BLANK CARD C /// NETWORK DATA /// $VINTAGE, 1 C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) C *** XS *** ( j0.012(pu) : 0.1663869437mH ) N100A N200A .1663869437 N100B N200B N100A N200A N100C N200C N100A N200A C *** XT *** ( j0.075(pu) : 1.039918398mH ) N200A N250A 1.039918398 N200B N250B N200A N250A N200C N250C N200A N250A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N300A N400A 0.871200000 4.326060536 N300B N400B N300A N400A N300C N400C N300A N400A C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW N300A N300AD 108.8762611 N300B N300BDN300A N300AD N300C N300CDN300A N300AD C ***INSIDE LOAD*** N400A N400AD 986.5321930 N400B N400BDN400A N400AD N400C N400CDN400A N400AD N400ADN400A 1727.590765 N400BDN400B N400ADN400A N400CDN400C N400ADN400A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N400A N500A 0.871200000 4.326060536 N400B N500B N400A N500A N400C N500C N400A N500A C ***INSIDE LOAD*** ( ) N500A N500AD 177.9930622 N500B N500BDN500A N500AD N500C N500CDN500A N500AD N500ADN500A 588.6919231 N500BDN500B N500ADN500A N500CDN500C N500ADN500A $VINTAGE, 0 C ---FOR.IM.No1(2/4)--- C Tm=1.97 :M :2H ==> 7.49E+6 pole:1 1.97*0.375MVA/(2*PI*F)**2 BUSMGM 7.49E6 C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE BUSMSMBUSMGM 1.0E-8 BLANK CARD C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 C /// SWITCH DATA /// N250A N300A -1.0 10.0 N250B N300B -1.0 10.0 N250C N300C -1.0 10.0 GSG4A N400A MEASURING GSG4B N400B MEASURING GSG4C N400C MEASURING IM4A N400A MEASURING 1 IM4B N400B MEASURING 1 IM4C N400C MEASURING 1 GSG5A N500A MEASURING GSG5B N500B MEASURING GSG5C N500C MEASURING N300AD MEASURING N300BD MEASURING N300CD MEASURING N400AD MEASURING N400BD MEASURING N400CD MEASURING N500AD MEASURING N500BD MEASURING N500CD MEASURING BLANK CARD C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 C /// SOURCE DATA /// C ---FOR.IM.No1(3/4)--- 14BUSMSM-1 0.0001 0.0001 .0 -1.0 C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> 0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> 1.55 0.0 0.032 0.295 0.1032 C 1-2:ML MASS NUMBER C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> 0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> 1.55 0.0 0.032 0.295 0.1032 C 1-2:ML MASS NUMBER C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... C Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) C *** XS *** ( j0.012(pu) : 0.1663869437mH ) N100A N200A .1663869437 N100B N200B N100A N200A N100C N200C N100A N200A C *** XT *** ( j0.075(pu) : 1.039918398mH ) N200A N250A 1.039918398 N200B N250B N200A N250A N200C N250C N200A N250A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N300A N400A 0.871200000 4.326060536 N300B N400B N300A N400A N300C N400C N300A N400A C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW N300A N300AD 108.8762611 N300B N300BDN300A N300AD N300C N300CDN300A N300AD C ***INSIDE LOAD*** N400A N400AD 986.5321930 N400B N400BDN400A N400AD N400C N400CDN400A N400AD N400ADN400A 1727.590765 N400BDN400B N400ADN400A N400CDN400C N400ADN400A C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) N400A N500A 0.871200000 4.326060536 N400B N500B N400A N500A N400C N500C N400A N500A C ***INSIDE LOAD*** ( ) N500A N500AD 177.9930622 N500B N500BDN500A N500AD N500C N500CDN500A N500AD N500ADN500A 588.6919231 N500BDN500B N500ADN500A N500CDN500C N500ADN500A $VINTAGE, 0 BLANK CARD C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 C /// SWITCH DATA /// N250A N300A -1.0 10.0 N250B N300B -1.0 10.0 N250C N300C -1.0 10.0 GSG4A N400A MEASURING GSG4B N400B MEASURING GSG4C N400C MEASURING IM4A N400A MEASURING 1 IM4B N400B MEASURING 1 IM4C N400C MEASURING 0 GSG5A N500A MEASURING GSG5B N500B MEASURING GSG5C N500C MEASURING N300AD MEASURING N300BD MEASURING N300CD MEASURING N400AD MEASURING N400BD MEASURING N400CD MEASURING N500AD MEASURING N500BD MEASURING N500CD MEASURING BLANK CARD C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> 0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> 1.55 0.0 0.032 0.295 0.1032 C 1-2:ML MASS NUMBER C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> 0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> 1.55 0.0 0.032 0.295 0.1032 C 1-2:ML MASS NUMBER C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... C < RMVA >< RSKV >< FREQ > 0 1 0.375 6.6 50.0 C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | 0.062 0.075 0.031 0.075 2.58 C CLASS3 C | M || D || EMSOM | |NM|P|E|M| C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 1.97 0.0 1 1 1 C CLASS4 C T || TM | |TBUS| C E10.6 || E10.6 | | A6 | C 0.02 .000264555 9999 C CLASS5 C | BUS|N| C | A4 |I2 FINISH BLANK CARD ending source cards C Total network loss P-loss by summing injections = 1.000121334411E+06 C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C N250A N300A 2.51255296E-03 -1.55308344E+00 1.55308548E+00 -89.9073 6.76991997E+00 4.18423111E+03 C N250B N300B -1.34626599E+00 7.74365788E-01 1.55308548E+00 150.0927 6.76991997E+00 4.18423111E+03 C N250C N300C 1.34375344E+00 7.78717657E-01 1.55308548E+00 30.0927 6.76991997E+00 4.18423111E+03 C GSG4A N400A 6.17662457E+01 -2.88761587E+01 6.81828545E+01 -25.0564 1.66682896E+05 8.05074090E+04 C GSG4B N400B -5.58906098E+01 -3.90530585E+01 6.81828545E+01 -145.0564 1.66682896E+05 8.05074090E+04 C GSG4C N400C -5.87563589E+00 6.79292172E+01 6.81828545E+01 94.9436 1.66682896E+05 8.05074090E+04 C IM4A N400A -3.70892829E+01 1.99471256E+01 4.21129757E+01 151.7280 -9.99999888E+04 -5.54217136E+04 C IM4B N400B 3.58193589E+01 2.21466984E+01 4.21129757E+01 31.7280 -9.99999888E+04 -5.54217136E+04 C IM4C N400C 1.26992399E+00 -4.20938240E+01 4.21129757E+01 -88.2720 -9.99999888E+04 -5.54217136E+04 C GSG5A N500A 6.16852582E+01 -2.83272148E+01 6.78785841E+01 -24.6656 1.66684112E+05 8.06702138E+04 C GSG5B N500B -5.53747168E+01 -3.92573933E+01 6.78785841E+01 -144.6656 1.66684112E+05 8.06702138E+04 C GSG5C N500C -6.31054146E+00 6.75846081E+01 6.78785841E+01 95.3344 1.66684112E+05 8.06702138E+04 C N300AD 4.94900247E+01 -8.74559074E-06 4.94900247E+01 0.0000 0.00000000E+00 0.00000000E+00 C N300BD -2.47450199E+01 -4.28596143E+01 4.94900247E+01 -120.0000 0.00000000E+00 0.00000000E+00 C N300CD -2.47450048E+01 4.28596230E+01 4.94900247E+01 120.0000 0.00000000E+00 0.00000000E+00 C N400AD 5.62982343E+00 -9.93396450E+00 1.14183432E+01 -60.4587 0.00000000E+00 0.00000000E+00 C N400BD -1.14179773E+01 9.14121415E-02 1.14183432E+01 179.5413 0.00000000E+00 0.00000000E+00 C N400CD 5.78815390E+00 9.84255236E+00 1.14183432E+01 59.5413 0.00000000E+00 0.00000000E+00 C N500AD 3.12448854E+01 -2.88753581E+01 4.25444376E+01 -42.7430 0.00000000E+00 0.00000000E+00 C N500BD -4.06292364E+01 -1.26211854E+01 4.25444376E+01 -162.7430 0.00000000E+00 0.00000000E+00 C N500CD 9.38435098E+00 4.14965436E+01 4.25444376E+01 77.2570 0.00000000E+00 0.00000000E+00 C Column headings for the 26 EMTP output variables follow. These are divided among the 5 possible classes as follows .... C Next 2 output variables are branch currents (flowing from the upper node to the lower node); C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). C Next 12 output variables belong to TACS (with "TACS" an internally-added upper name of pair). C Step Time IM4A IM4B IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 C N400A N400B P Q ISA ISB ISC IRA IRB C C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS C IRC WR ANG TQ TM VT4 PPG4 QQG4 VT5 C C TACS TACS TACS TACS TACS TACS TACS TACS C PPG5 QQG5 PPG4 PPG5 QQG4 QQG5 PPIM QQIM C 0 0.0 -37.089283 35.8193589 -299999.97 -166265.14 -37.089283 35.8193589 1.26992399 -3.3020869 -30.789557 C 34.0916437 305.614953 1.57079633 -893.94476 -893.94476 1.00758 0.5 .242 1.01249 C 0.5 .242 0.5 0.5 .242 .242 -300000. -167000. C 1 .25E-3 -38.530914 33.9675872 -299996.42 -166298.13 -38.530914 33.9675872 4.56332653 -3.2222768 -30.827832 C 34.0501083 305.61495 1.64720007 -893.73559 -893.94476 1.00780767 .497455836 .241616478 1.01275637 C .497447005 .242093747 .497455836 .497447005 .241616478 .242093747 -299996.42 -166298.13 C 2 .5E-3 -39.73648 31.9076793 -299887.98 -166278.12 -39.73648 31.9076793 7.82880046 -3.1419208 -30.867462 C 34.0093826 305.61494 1.7236038 -893.55897 -893.94476 1.00766614 .49747865 .241619001 1.01263793 C .497469507 .242096958 .49747865 .497469507 .241619001 .242096958 -299887.98 -166278.12 BLANK card ending names for output variables (none here) C 80 .02 -37.095485 35.7780641 -300088.5 -165860.96 -37.095485 35.7780641 1.31742052 3.16334023 -34.036289 C 30.8729489 305.612633 7.68306549 -893.8068 -893.94476 1.00768225 .49747812 .242225269 1.01263226 C .49750592 .242807717 .49747812 .49750592 .242225269 .242807717 -300088.5 -165860.96 C Variable maxima : 42.0472768 42.088666 -299449.52 -165559.49 42.0472768 42.088666 42.0016152 3.16334023 -30.789557 C 34.0916437 305.614953 7.68306549 -892.13839 -893.94476 1.00780767 0.5 .243498409 1.01275637 C 0.5 .243680337 0.5 0.5 .243498409 .243680337 -299449.52 -165559.49 C Times of maxima : .0115 .01825 .0045 .00975 .0115 .01825 .005 .02 0.0 C 0.0 0.0 .02 .00475 0.0 .25E-3 0.0 .009 .25E-3 C 0.0 .00925 0.0 0.0 .009 .00925 .0045 .00975 C Variable minima : -42.060504 -42.029619 -300088.5 -166298.13 -42.060504 -42.029619 -42.056444 -3.3020869 -34.036289 C 30.8729489 305.612633 1.57079633 -893.94476 -893.94476 1.00758 .497098096 .241616478 1.01249 C .497272118 .242 .497098096 .497272118 .241616478 .242 -300088.5 -167000. C Times of minima : .0015 .00825 .02 .25E-3 .0015 .00825 .015 0.0 .02 C .02 .02 0.0 0.0 0.0 0.0 .01525 .25E-3 0.0 C .01525 0.0 .01525 .01525 .25E-3 0.0 .02 0.0 PRINTER PLOT { No need for vector plotting as all variables are smooth 194 2. 0. 20. BRANCH { Plot limits: (-4.206, 4.209) IM4A N400A IM4B N400B IM-1 ISC C Note the replacement of the 3rd switch current by the 3rd stator current in C the preceding plot. They should be the same. Compare with the preceding C subcase for which the plot of switch currents had limits (-4.216, 4.215). BLANK CARD ending plot cards BEGIN NEW DATA CASE BLANK EOF Note: ATPIGUM.DAT is being ignored because it does not involve any Type-56 IM modeling. IGIMUM.DAT is being ignored for the same reason. This accounts for all 10 of the data cases tested by RUNIM.BAT; 8 have been retained and massaged whereas 2 have been ignored.