BEGIN NEW DATA CASE C BENCHMARK DC-28 C "CABLE CONSTANTS" illustration begins with a finite, overhead pipe that C encloses a 3-phase cable system. Each phase consists of a core only. C For nodes of punched cards, the cable stretches from end "1" to end "2". C The cable length (872 meters) is used only for this special output. C 1st of 4 subcases. CABLE CONSTANTS $ERASE { Empty punch buffer as precautionary measure (maybe preceding case) BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 PIPE1 PIPE2 3 1 3 1 1 1 1 0.381 0.401 0.421 2.E-7 300. 1. 3. 0.19393 0. 0.19393 120. 0.19393 240. 1 1 1 25.4E-3 6.8912E-8 1. 25.4E-3 6.8912E-8 1. 25.4E-3 6.8912E-8 1. 1.0 0.0 20.0 10. 872. { Cable length = 872 meters C Impedance matrix [ Z ] in [ohm/m] follows : C 8.5303094E-05 4.9395039E-05 4.9395039E-05 2.9513780E-05 C 1.7535768E-04 1.3713248E-04 1.3713248E-04 1.1639059E-04 C Admittance matrix [ Y ] in [mho/m] follows : C 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 1.4843948E-09 -1.4823084E-10 -1.4823084E-10 -1.1879330E-09 C Voltage transformation matrices follow. These are complex, with the mag C 0.0034957 0.0034958 0.0034959 1.0099676 C -162.8209534 -162.8215332 -162.8218384 0.1735267 C Transformation [A], from modal to phase variables: C 0.9937597 0.9999998 0.4999998 1.0000000 C -0.1112594 0.0000057 -179.9999847 0.0000000 C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: C 447.5839844 280.9452515 280.9451599 230.7716522 C -115.0411224 -49.0479126 -49.0479584 -28.8765430 C Modal Propagation Modal impedance Modal C Mode attenuation velocity real imaginary susceptance C [ db/km ] [ m/sec ] [ ohms / meter ] [mho/meter] C 1 5.49837E-04 1.22476E+08 2.925856E-05 1.167339E-04 2.220200E-09 C 2 1.29433E-03 1.66288E+08 3.202234E-05 3.470583E-05 3.493539E-09 C 3 9.35837E-04 2.30950E+08 2.393871E-05 2.548347E-05 2.448938E-09 C 4 9.35837E-04 2.30950E+08 1.795402E-05 1.911261E-05 3.265251E-09 $PUNCH, dc28a.pch ! { Exclamation holds lower case BLANK card ending frequency cards C $VINTAGE, 1 C -1CORA1 CORA2 2.92540E-05 2.29300E+02 1.22476E+08-8.72000E+02 1 4 C -2CORB1 CORB2 3.22334E-05 9.93885E+01 1.66288E+08-8.72000E+02 1 4 C -3CORC1 CORC2 2.39387E-05 1.02010E+02 2.30950E+08-8.72000E+02 1 4 C -4PIPE1 PIPE2 1.79540E-05 7.65071E+01 2.30950E+08-8.72000E+02 1 4 C $VINTAGE, 0 C -0.00334000 -0.00333993 -0.00334000 1.00996333 C -0.00103249 -0.00103249 -0.00103246 0.00307810 C 0.33665633 0.33665612 0.33665576 -1.00366375 C -0.00000644 -0.00000645 -0.00000664 0.00196862 C -0.33333370 -0.33333334 0.66666698 0.00000001 C -0.00000003 -0.00000004 -0.00000004 0.00000023 C -0.50000012 0.50000012 -0.00000004 0.00000016 C -0.00000005 -0.00000005 0.00000001 0.00000022 C 2nd fourth of test involves a submarine cable donated by BC Hydro. It is C modeled as a single-phase, 3-conductor cable. There is a core, a sheath, C and armor, with the armor grounded. 2 -1 1 1 1 1 2 3 0.01 0.02525 0.0518 0.055553 0.0675 0.0735 1.78E-8 1.0 1.0 3.5 2.8E-7 1.0 1.0 3.5 7.54E-8 1.0 0.2 0.0 0.21 10.0000 5 1 C From final calculation of logarithmic looping, 1.00000000E+06 Hertz. : C Impedance matrix [ Z ] in [ohm/m] follows : C 9.1996193E-03 4.3044090E-03 C 1.1569544E+00 2.4907887E-01 C Admittance matrix [ Y ] in [mho/m] follows : C 0.0000000E+00 0.0000000E+00 C 1.7025936E-03 -1.7025938E-03 C Voltage transformation matrices follow. These are complex, with the magnitud C Transformation [AI], from phase to modal variables: C 0.0000011 1.0000008 C -135.8211517 0.0000440 C Transformation [A], from modal to phase variables: C 0.9999925 1.0000000 C -0.0004397 0.0000000 C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: C 29.3894901 6.2976413 C -0.1167270 -0.0544422 C ..... Modal Characteristic impedance Characteristic admittance C ..... susceptance real imaginary real imaginary C ..... [mho/meter] SQRT ( z / y ) in [ohm] SQRT ( y / z ) in [mho] C ..... 6.280722E-03 6.297670E+00 -5.441193E-02 1.587770E-01 1.371835E-03 C ..... 1.702591E-03 2.309191E+01 -6.221918E-02 4.330489E-02 1.166813E-04 BLANK card ending frequency cards C 3rd of 4 subcases generates PI-circuit modeling of a crossbonded cable C having one major section. Armor is solidly grounded, and sheaths are C cross-bonded. TEPCO OF275KV SC CABLE. MAY 17, 1985 $ERASE { Empty punch buffer as precautionary measure (maybe preceding case) C BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 SHEA1 SHEA2 SHEB1 SHEB2 SHEC1 SHEC2 C Ashok Parsotam of Vector Limited in Auckland, New Zealand, inspired a rule C change for BRANCH data that eliminates the former need for name packing. C 26 December 2008, WSM replaces preceding packed card by the new equivalent C form which ignores imbedded blank name pairs. This improves readability & C makes easier any later addition or subtraction of conductors. In order to C handle the rare case where both ends of a conductor are grounded, replace C the former 12 blank bytes by "TERRA TERRA " (upon recognition, this will C be replaced by the two desired blank names). Another special case is that C where a name pair has not been defined. Most commonly this will be due to C a user who supplies no BRANCH declaration at all. But in the more general C case, the user may simply not have supplied enough non-blank name pairs to C cover all phases. In either case, any unnamed phase will be labeled using C the 2A6 default name pair "NoNameNoName". BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 { All cores are numbered first, note BRANCH SHEA1 SHEA2 SHEB1 SHEB2 SHEC1 SHEC2 { Next in the numbering: all sheaths PUNCH { Request for punched output of PI-circuits that are to be determined 2 -1 3 0 1 1 1 2 -1 1 0 1.E3 1.E-1A 3 3 3 0.0132 0.0249 0.0542 0.057 0.063 0.066 0.072 1.89E-8 1.0 1.0 2.30 3.00E-8 1.0 1.0 3.50 3.E-8 1.0 1.0 3.50 0.0132 0.0249 0.0542 0.057 0.063 0.066 0.072 1.89E-8 1.0 1.0 2.30 3.00E-8 1.0 1.0 3.50 3.E-8 1.0 1.0 3.50 0.0132 0.0249 0.0542 0.057 0.063 0.066 0.072 1.89E-8 1.0 1.0 2.30 3.00E-8 1.0 1.0 3.50 3.E-8 1.0 1.0 3.50 2. 0. 1.8095 0.11 2. .22 1.E2 1.E3 $PUNCH { Actual punching of card images that by now must be in punch buffer C $VINTAGE, 1 C AIN 4 1.0000000E-01 C 1AIN 1A 11 1 3.2000030E-02 6.5728021E-02 5.4835246E-02 C 2AIN 2A 11 2 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 3.1999972E-02 6.5727922E-02 5.4835246E-02 C 3AIN 3A 11 3 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 3.1999991E-02 6.5727972E-02 5.4835246E-02 C 4AIN 4A 11 4 1.1000064E-02 9.2998579E-03 -5.4835252E-02 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 2.0414416E-02 8.7684233E-03 7.0333978E-01 C 5AIN 4A 11 5 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 1.1000006E-02 9.2997591E-03 -5.4835252E-02 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 2.0414358E-02 8.7683245E-03 7.0333978E-01 C 6AIN 4A 11 6 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 1.1000026E-02 9.2998085E-03 -5.4835252E-02 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 0.0000000E+00 0.0000000E+00 0.0000000E+00 C 2.0414377E-02 8.7683739E-03 7.0333978E-01 C 1A 11 1A 12 1AIN 1A 11 1 C 2A 11 2A 12 2 C 3A 11 3A 12 3 C 4A 11 6A 12 4 C 5A 11 4A 12 5 C 6A 11 5A 12 6 C 1A 12 1AOUT 1AIN 1A 11 1 C 2A 12 2AOUT 2 C 3A 12 3AOUT 3 C 4A 12 6AOUT 4 C 5A 12 4AOUT 4 C 6A 12 5AOUT 4 C AOUT 4 AIN 4 C $VINTAGE, 0 BLANK CARD ENDING FREQUENCY CARDS C 4th of 4 subcases. A three phase cable enclosed in a pipe with infinite C thickness. This case was brought to us by Prof. Aki Ametani in September C of 1993. Warning! Prof. Ametani spent 3 weeks at BPA during the summer C of 1994, and warned that this solution is wrong. The same data can be C found in 4th of 4 pipe-type illustrations of CABLE PARAMETERS that have C been appended to DC-27. Note the number of phases below is 8 whereas the C correct number is 9 (each of 3 phases has 3 conductors; the pipe does not C contribute because it is infinitely thick). THL, 17 Aug 1994. C Results of this case changed on March 2, 2001 after implementing the C correction that Prof. Ametani made on February 17, 2001. C This correction only affects cables having 3 layers of conductors: core, C sheath and armor. BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 SHEA1 SHEA2 SHEB1 SHEB2 SHEC1 SHEC2 BRANCH ARMA1 ARMA2 ARMB1 ARMB2 ARMC1 ARMC2 3 -1 3 0 1 1 1 0 1 1.850 1.860 1.870 33.0 1.0 1. 1. 1.17183738-29.9354891.18391480-38.1912031.32171262-33.629952 3 3 3 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. 10.00E-8 1.0 1.0 8.0 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. 10.00E-8 1.0 1.0 8.0 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. 10.00E-8 1.0 1.0 8.0 33.0 100.0E03 $PUNCH BLANK card ending frequency cards BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C August, 1994. Prof. Akihiro Ametani has left after 3 weeks of work C at BPA to install his new CABLE PARAMETERS program. There are 18 C standard test cases for this, and these will be split between the C ends of DC-27 and DC-28. See DC-27 for the 6 files CASE1*.DAT C for overhead lines (11A, 11G0, 11G1, 11G3, 11Y2, and 11A') and the C 4 files CASE3#.DAT for pipe-type cables (3G0, 3G1, 3G4, and 3NP0). C Those totaled 10 of 18. Here we add the remaining 8, CASE2*.DAT : C 1st of 8 examples of cables without pipe: CASE21G0.DAT CABLE CONSTANTS CABLE PARAMETERS C KOLW27 KOLS27 MATRIX PRECISION 0 0 { Optimally encode old F-field values C 4 December 2003, optional local KOLWID and KOLSEP of optimal encoding C are read from columns 25-40. Variables are local to overlay 27, and are C carried in LABL27. The default values (for default use, see DC-28) are C KOLW27 = 10 and KOLS27 = 2 (column width of 10 including 2 blanks to C separate matrix columns). Normally, if this is what the user wants, he C would have no MATRIX PRECISION request. But we can produce the same C effect by specifying illegal values (0 and 0). Both integers must be C positive, so the zero values shown above will be rejected and data card C interpretation should confirm default values KOLW27 = 10 & KOLSEP = 2. C MATRIX OUTPUTS 1 2 -1 3 0 1 0 0 0 0 0 0 0 2 2 2 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 2.500 0.0 2.730 0.0 2.960 0.0 100. 50.E03 C Total impedance [Zc] C 4.63767E-02 4.55563E-02 4.55049E-02 4.57808E-02 4.55563E-02 4.55049E-02 C 4.74692E-01 3.12743E-01 2.69461E-01 4.07294E-01 3.12743E-01 2.69461E-01 C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. C 1 1.27756E+01 14.46 4.84121E-02 3.55829E-01 0.00000E+00 1.31982E-03 C 2 6.55379E-02 39.08 1.29966E-04 6.92398E-02 0.00000E+00 9.33476E-04 C 3 8.29132E-02 51.43 1.61257E-04 5.15928E-02 0.00000E+00 7.23141E-04 C 4 7.73951E-02 153.52 5.86972E-04 6.73995E-02 0.00000E+00 6.21266E-05 C 5 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 C 6 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 BLANK card ending frequency cards BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C 2nd of 8 examples of cables without pipe: CASE21G3.DAT CABLE CONSTANTS CABLE PARAMETERS C 2 -1 3 0 0 0 0 0 3 0 0 0 2 -1 3 0 1 0 0 0 3 0 0 0 2 2 2 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 2.500 0.0 2.730 0.0 2.960 0.0 100. 50.E03 C Total admittance [Yc] C 0.00000E+00 0.00000E+00 0.00000E+00 C 6.21268E-05 0.00000E+00 0.00000E+00 C .... ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) C .... REAL IMAG. REAL IMAG. REAL IMAG. C .... 0.00000E+00 6.21268E-05 32.938 -0.143 3.03598E-02 1.32197E-04 C .... 0.00000E+00 6.21268E-05 32.938 -0.143 3.03598E-02 1.32197E-04 C .... 0.00000E+00 6.21268E-05 32.938 -0.143 3.03598E-02 1.32197E-04 BLANK card ending frequency cards BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C 3rd of 8 examples of cables without pipe: CASE21S1.DAT CABLE CONSTANTS CABLE PARAMETERS C 2 -1 3 0 0 0 0 -99 0 0 0 0 2 -1 3 0 1 0 0 -99 0 0 0 0 2 2 2 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 2.500 0.0 2.730 0.0 2.960 0.0 100. 50.E03 C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: C 58.63021 10.39525 10.39524 25.69268 10.39520 10.39519 C -1.20548 -1.04447 -1.04448 -1.06129 -1.04478 -1.04480 C C .... ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) C .... REAL IMAG. REAL IMAG. REAL IMAG. C .... 0.00000E+00 1.40154E-03 15.494 -1.050 6.42445E-02 4.35431E-03 C .... 0.00000E+00 7.00772E-04 10.198 -0.010 9.80544E-02 9.95546E-05 C .... 0.00000E+00 9.34367E-04 7.649 -0.008 1.30740E-01 1.32736E-04 C .... 0.00000E+00 6.21267E-05 32.938 -0.143 3.03598E-02 1.32197E-04 C .... 0.00000e+00 6.21267E-05 32.938 -0.143 3.03598E-02 1.32197E-04 C .... 0.00000E+00 6.21267E-05 32.938 -0.143 3.03598E-02 1.32197E-04 BLANK card ending frequency cards BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C 4th of 8 examples of cables without pipe: CASE21S2.DAT CABLE CONSTANTS CABLE PARAMETERS C KOLW27 KOLS27 Only F? MATRIX PRECISION 10 2 BOTH { Optimally encode both E and F C About preceding 2 lines, which were added 7 December 2003: KOLW27 and KOLS27 C are default values. BOTH in 45-48 is the request to have optimal encoding C replace both alternative formats (ordinary E-field matrices as well as C F-field matrices). Matrices have order 12, so without this treatment, C E-field matrices would require multiple rows (first 10 columns, then 2 C columns). Using BOTH, these multiple lines are avoided. 12 columns of C 10 bytes each easily fit within the 131-byte limit. In fact, there is C room for labeling on the right. C 2 -1 6 0 0 0 0 -99 0 0 0 0 2 -1 6 0 1 0 0 -99 0 0 0 0 2 2 2 2 2 2 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 2.500 0.0 2.730 0.0 2.960 0.0 2.50 1.0 2.730 1.0 2.960 1.0 100. 50.E03 C Modal transformation matrices follow. These are complex, with the real part displayed above the imaginary part. C Transpose of the current transformation matrix [Ti] follows. This is the inverse of the voltage transformation matrix. C By definition, [Ti] gives the mapping from modal to phase variables: i-phase = [Ti] * i-mode C 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 C 0.00000 0.00000 0.00000 -0.00001 0.00000 0.00000 0.00000 0.00000 C .... 0.00000 0.00000 0.00000 0.00000 C .... 0.00000 0.00000 0.00000 0.00000 C C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. REAL IMAG. REAL IMAG. C 1 1.98193E+01 11.24 4.54985E-02 2.76775E-01 0.00000E+00 2.80308E-03 C 2 1.07741E-01 24.61 1.13061E-04 5.81815E-02 0.00000E+00 2.80120E-03 C 3 6.30266E-02 43.96 1.48041E-04 7.29050E-02 0.00000E+00 7.00585E-04 C 4 6.30266E-02 43.96 1.48002E-04 7.28856E-02 0.00000E+00 7.00772E-04 C 5 6.30266E-02 43.96 1.11090E-04 5.47081E-02 0.00000E+00 9.33614E-04 C 6 6.30266E-02 43.96 1.11001E-04 5.46642E-02 0.00000E+00 9.34363E-04 C 7 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 C 8 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 C 9 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 C 10 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 C 11 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 C 12 7.73950E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 BLANK card ending frequency cards BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C 5th of 8 examples of cables without pipe: CASE22Y0.DAT CABLE CONSTANTS BRANCH CORA1 CORA2 SHEA1 SHEA2 CABLE PARAMETERS C KOLW27 KOLS27 Only F? MATRIX PRECISION 10 2 C The preceding 2 lines, added 7 Dec. 2003, restore the default choice. Note C that there is no optional BOTH in columns 45-48 (see preceding subcase). C 2 1 1 0 0 0 0 0 0 0 0 2 IPUNCH gone C 2 1 1 0 0 0 0 0 0 0 0 2 1 1 0 1 0 0 0 0 0 0 C 1 2.00 A 2 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 0.9 0.0 1.E-8 10.E06 1000. 2 C Voltage transformation matrix [Tv]. This gives the mapping from modal to phase variables: v-phase = [Tv] * v-mode C 1.00000 1.00000 C 0.00000 0.00000 C 0.00000 1.00000 C 0.00000 0.00000 C C ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) C REAL IMAG. REAL IMAG. REAL IMAG. C .... 0.00000E+00 3.74095E-03 57.817 -0.055 1.72959E-02 1.64284E-05 C .... 0.00000E+00 8.54359E-04 245.415 -0.014 4.07472E-03 2.33098E-07 BLANK card ending frequency cards $PUNCH, case22y0.pch ! { Of the 18 examples, this is 1st of 2 that punch C $VINTAGE, 1 C -1CORA1 CORA2 2.37561E-02 5.78171E+01 2.90497E+08-1.00000E+03 1 2 C -2SHEA1 SHEA2 5.88727E-03 2.45415E+02 2.99666E+08-1.00000E+03 1 2 C $VINTAGE, 0 C 1.00000000 0.00000000 C 0.00000000 0.00000000 C -1.00000000 1.00000000 C 0.00000000 0.00000000 BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C 6th of 8 examples of cables without pipe: CASE22Y1.DAT CABLE CONSTANTS BRANCH CORA1 CORA2 SHEA1 SHEA2 CABLE PARAMETERS C 2 1 1 0 0 1 0 0 0 0 1 2 C 2 1 1 0 0 1 0 0 0 0 1 2 1 1 0 1 1 0 0 0 0 1 C 1 2.00 A 2 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 0.0 1.0E-15 0.0 0.055E-9 0.9 0.0 1.E-8 10.E06 1000. 2 C EARTH IMPEDANCE ZE C 1.11110E-04 1.11110E-04 C 1.11111E-04 1.11111E-04 C C CONDUCTOR INTERNAL IMPEDANCE ZC C 2.95323E-02 5.77615E-03 C 1.29231E+01 4.17823E-01 C C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. C 1 2.34005E-01 133.42 5.88727E-03 5.14569E+01 0.00000E+00 4.31011E-03 C 2 1.78448E+00 290.49 2.37561E-02 1.25053E+01 0.00000E+00 3.74102E-03 BLANK card ending frequency cards $PUNCH, case22y1.pch ! { Of the 18 examples, this is 2nd of 2 that punch C $VINTAGE, 1 C -1CORA1 CORA2 5.88727E-03 1.09264E+02 1.33418E+08-1.00000E+03 1 2 C -2SHEA1 SHEA2 2.37561E-02 5.78166E+01 2.90494E+08-1.00000E+03 1 2 C $VINTAGE, 0 C 0.00000000 1.00000000 C 0.00000000 0.00000000 C 1.00000000 -1.00000000 C 0.00000000 0.00000000 BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C 7th of 8 examples of cables without pipe: CASE22Y2.DAT CABLE CONSTANTS CABLE PARAMETERS C 2 1 1 0 0 0 0 0 0 0 2 0 2 1 1 0 1 0 0 0 0 0 2 0 2 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 0.1E-14 0. 5.E-5 0. 0.9 0.0 1.E-8 10.E06 1000. 1 C ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) C REAL IMAG. REAL IMAG. REAL IMAG. C .... 0.00000E+00 3.74095E-03 57.817 -0.055 1.72959E-02 1.64284E-05 C .... 5.00000E-05 8.54359E-04 245.101 7.152 4.07647E-03 -1.18949E-04 BLANK card ending frequency cards $PUNCH { Show Pi-circuit branch cards (1-punch in col 58 of frequency card) C PI-EQUIVALENT MODEL WITH LENGTH= 0.100E+04(M) C $VINTAGE, 1 C 1 2.96433904E+01 1.01799070E+00 5.95391119E-02 C 2 5.88726509E+00 8.18962579E-01 -5.95391119E-02 C 5.88726509E+00 8.18962579E-01 7.31366522E-02 C $VINTAGE, 0 BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C 8th of 8 examples of cables without pipe: CASE22Y3.DAT CABLE CONSTANTS CABLE PARAMETERS 2 1 1 0 0 0 0 0 0 0 3 0 2 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 0.1E-14 1.0E-15 5.E-5 0.055E-9 0.9 0.0 1.E-8 10.E06 0 C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. C 1 2.39603E+01 133.42 5.88727E-03 5.14569E+01 5.00000E-05 4.31011E-03 C 2 1.78448E+00 290.49 2.37561E-02 1.25053E+01 0.00000E+00 3.74102E-03 BLANK card ending frequency cards BLANK card ending "CABLE CONSTANTS" data subcases BEGIN NEW DATA CASE C First of two examples of cables sent by Prof. Ametani on Feb. 17, 2001 C that he used for verifying the correction he made in the calculation of C conductor internal impedance of a cable having 3 layers of conductors, C core, sheath, and armor. C This is a one-phase SC cable with core and sheath only CABLE PARAMETERS 2 -1 1 0 1 1 0 0 0 0 0 2 .7000E-01 .8000E-01 .9000E-01 .1000 .1100 .1728E-07 1.000 1.000 2.200 .1728E-07 1.000 1.000 2.200 1.500 .0000 100.000 50.0000 0 0 0 BLANK card ending frequency cards BLANK card ending "CABLE PARAMETERS" data subcases BEGIN NEW DATA CASE C Second of two examples of cables sent by Prof. Ametani on Feb. 17, 2001 C This is a one-phase SC cable with core, sheath, and armor. This data C is almost the same as the previous one except having 3 conductors, and C the physical configuration of the sheath and armor here is the same as C the core and sheath of the previous case CABLE PARAMETERS C 2 -1 1 0 1 1 0 1 0 0 0 0 2 -1 1 0 1 1 0 0 0 0 0 3 .5000E-01 .6000E-01 .7000E-01 .8000E-01 .9000E-01 .1000 .1100 .1728E-07 1.000 1.000 2.200 .1728E-07 1.000 1.000 2.200 .1728E-07 1.000 1.000 2.200 1.500 .0000 100.000 50.0000 0 0 0 BLANK card ending frequency cards BLANK card ending "CABLE PARAMETERS" data subcases BEGIN NEW DATA CASE BLANK EOF