BEGIN NEW DATA CASE C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC). C This is very similar to the preceding 4th case except that here newer C MODELS replaces TACS for the control system modeling. The same C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed C this during February of 1995 (see January and April newsletters). To C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec. NEW LIST SIZES 0 0 68 8 450 35 285 0 0 0 0 0 4700 0 64800 0 0 0 0 0 0 0 220 126000 240000 742 PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations C DELTAT TMAX XOPT COPT EPSILN TOLMAT C 46.296-6 0.600 60. ---- Gabor Furst's original data card .0000462962962962963, 0.250, 60., , , , , , , , , C the time step is the cycle time 1/60 sec. divided by 360 degrees C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP C 9999 1 0 1 1 1 -3 1 2 1 -1 5 5 20 20 100 100 500 500 C The running of this MODELS file requires the latest version of TPbig C with the increased list sizes for MODELS C C The example demonstrates a generic SVC connected to a 230/34.5 kV C step-down transformer, with an SVC reactor rating of 100 MVA. C The SVC is tested by switching on and off a 25 MVA 0.7 p.f. C load on the 34.5 kV bus C plot vatiable 'vllavg' for SVC response C ============================================================================== MODELS INPUT trma {v(TRSA)} -- transf. sec. voltage trmb {v(TRSB)} trmc {v(TRSC)} -- irab {i(RMAB)} -- aux. reactor delata current irbc {i(RMBC)} irca {i(RMCA)} -- itra {i(TRXA)} -- transf. sec. current itrb {i(TRXB)} itrc {i(TRXC)} -- rxab {i(TRXA)} -- main reactor current rxbc {i(TRXB)} rxca {i(TRXC)} -- OUTPUT -- firing signals FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals FRLA, FRLB, FRLC -- reactor switching -- MODEL svcmod -- MODELS version of DC 22 subcase 4 -- -- DATA omega {dflt: 2*pi*freq} dt {dflt :0.25/freq} -- CONST freq {val: 60} tper {val: 1/freq} qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase qref {val: 0.00} -- set 0 for this example delin {val: 0.25/freq} -- initialization for firing delay (60Hz) tpimp {val: 0.200} -- test reactor switching cycle ton {val: 0.100} -- reactor on time tstart {val: 0.3} -- start of switching reactors -- VAR tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3 dvq, error, fdb, vref, verr, inreact, delyi vtrsec[1..3], vtrff[1..3] f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3] vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3] errq[1..3], qincr[1..3] -- HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages -- dvq {dflt: 0} -- forward block output error {dflt: 0} -- error signal fdb {dflt: 0} -- feedback -- ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles -- INPUT trma {dflt: trma} -- trsf sec. voltage ph-g trmb {dflt: trmb} trmc {dflt: trmc} -- irab {dflt: irab} -- svc reactor currents irbc {dflt: irbc} irca {dflt: irca} -- itra {dflt: itra} -- transf. sec. current itrb {dflt: itrb} itrc {dflt: itrc} -- rxab {dflt: 0} -- main reactor delta current rxbc {dflt: 0} rxca {dflt: 0} -- OUTPUT ficat[1..3], fian[1..3] -- firing signals to thyristors ttt1, ttt2, ttt3 -- control signal to switch reactors -- INIT vref:= 1.0 -- reference voltage verr:= 0 -- voltage error tt := timestep/tper -- integration multiplier vrms[1..3] := 0 ficat[1..3]:= 0 -- firing pulse to cathode fian[1..3]:= 0 -- firing pulse to anode qin[1..3]:= 0.3 -- rective power ttt1:= 0 -- test rector breaker control -- ENDINIT -- DELAY CELLS DFLT: 100 CELLS(vtrsec[1..3]):500 CELLS(vtrff[1..3]):500 -- -- liearization of angel versus p.u. current through thyristors FUNCTION dely POINTLIST -- angle current ( 0.0, 0.0) ( 0.0022, 0.111) ( 0.0176, 0.222) ( 0.0575, 0.333) ( 0.1306, 0.444) ( 0.2414, 0.555) ( 0.3900, 0.666) ( 0.5718, 0.777) ( 0.7783, 0.888) ( 1.0000 1.000) -- -- ************** EXEC **************** EXEC -- convert to arrays ir[1..3] := [irab, irbc, irca] vtrsec[1..3] := [trma, trmb, trmc] -- -- control signals for the type 12 switches in EMTP -- to switch test reactors -- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart) ttt2 := ttt1 ttt3 := ttt1 -- -- form phase to phase voltages and normalize vtrff[1] :=(trma - trmb)/34500 vtrff[2] :=(trmb - trmc)/34500 vtrff[3] :=(trmc - trma)/34500 -- -- calculation of voltage rms values FOR i := 1 TO 3 DO vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2)) ENDFOR -- -- calculate reactive through transformer -- qina, qinb, qinc -- see DC22-3 for explanation itr[1..3] := [itra, itrb, itrc] FOR i:= 1 TO 3 DO tri[i]:= delay(itr[i],tper/4) trv[i]:= delay(vtrsec[i],tper/4) qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr ENDFOR -- -- generate firing pulses 500 microsec wide -- if t> timestep then -- FOR i := 1 TO 3 DO f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 ) f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 ) ENDFOR -- delayed pulses caclulated -- by var and voltage control FOR i:= 1 TO 3 DO ficat[i] := delay(f1[i],del[i]) -- cathode fian[i] := delay(f2[i],del[i]) -- anode ENDFOR endif -- average ph-ph voltage normalized vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85} -- -- alternative to above but not used in this model -- 12 pulse rectfication with output smoothed alternative to rms signal -- smoothing rough, should be done with 120 c/s filter, not used here -- shown as possible alternative only -- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41 -- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 ) -- -- voltage error forward and feedback loop verr:= vllavg - vref -- combine endcombine used because forward - feedback loop COMBINE AS first_group error := sum( 1|vllavg - 1|vref - 1|fdb) -- forward gain . 1/1+stdelay laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1) -- derivative feedback claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 ) ENDCOMBINE -- FOR i := 1 TO 3 DO -- total error the qref - qin[i] component may be omitted -- it is usefull for unbalanced loads errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0} ENDFOR -- calculate new firing angles -- phase A FOR i:= 1 TO 3 DO k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C -- apply phase unbalance correction inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0} -- linearize and convert from firing angle to time delay delyi := delin - dely(inreact ) * dt claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:= 1.0|s0/(1.0|s0 + 0.005|s1) ENDFOR -- ENDEXEC ENDMODEL USE svcmod AS test INPUT trma:= trma trmb:= trmb trmc:= trmc irab:= irab irbc:= irbc irca:= irca itra:= itra itrb:= itrb itrc:= itrc -- OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2] FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3] FRLA := ttt1 FRLB := ttt2 FRLC := ttt3 ENDUSE C RECORD test.vrms[1] AS vrmsab test.vrms[2] AS vrmsbc test.vrms[3] AS vrmsca test.vllavg AS vllavg test.error AS error test.dvq AS dvq test.fdb AS fdb test.verr AS verr ENDMODELS C ************** NETWORK DATA ********************* C C ********* LINE TO SOURCE *********** C C transmission line (equivalent) from GEN source to transformer GENA TRFA 4.5 25.0 GENB TRFB 4.5 25.0 GENC TRFC 4.5 25.0 C fault level at trsf. 230 kV approx. 2083 MVA C C ************** MAIN TRANSFORMER ************** C C transformer capacitance to ground 10000pF C a very simple model, can be replaced with any more complex model C transformer 230000/34500 Y/D 100 MVA; In=250 A C x = 7.2% on 100 MVA C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance C TRANSFORMER busref imag flux busin rmag empty C ------------______------______------______------_____________________________- C C no saturation TRANSFORMER 0.7 700.0 X 0.7 700.0 { 100% 9999 1TRPA 0.80 36.0 1330 2TRXA TRXB 1.00 375 {385 TRANSFORMER X Y 1TRPB 2TRXB TRXC TRANSFORMER X Z 1TRPC 2TRXC TRXA C C transformer capacitance to ground and ph - ph 10000pF TRXA 0.01 TRXB 0.01 TRXC 0.01 C capacitance between phases TRXA TRXB 0.01 TRXB TRXC 0.01 TRXC TRXA 0.01 C C *********** HARMONIC FILTERS *************** C C 5th harmonic filter 20 MVAR TRSA TF5 2.38 44.6 1 TRSB TF5 2.38 44.6 TRSC TF5 2.38 44.6 C 7th harmonic filter 10 MVAR TRSA TF7 2.43 22.3 1 TRSB TF7 2.43 22.3 TRUC TF7 2.43 22.3 C C ******** TRANSFORMER SECONDARY LOAD *************** C 70 MW, 30 MVAR TRSA ND 13.67 5.47 TRSB ND 13.67 5.47 TRSC ND 13.67 5.47 C C shunt capacitor 20 MVAR TRSA 44.5 TRSB 44.5 TRSC 44.5 C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* C C switched .1 sec. on .1 sec. off C see switch type 13 below and type 23 source in TACS C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load C XLA NSR 34.0 34.0 XLB NSR 34.0 34.0 XLC NSR 34.0 34.0 C C ************** SNUBBERS ************** C C the snubber parameters shown below are not necessarily the C values a manufacturer would choose for a 34.5 kV valve. C The parameters were selected so that only a small currrent flows C through the control reactor with the valves non conducting, C and overvoltages and spikes interfering with the firing control C are prevented. It is quite possible that a better combination C than that shown exists. C C in series with valves C CATAB RXAB .1 ANOAB RXAB .1 CATAB RXAB 4.0 ANOAB RXAB 4.0 C CATBC RXBC .1 ANOBC RXBC .1 CATBC RXBC 4.0 ANOBC RXBC 4.0 C CATCA RXCA .1 ANOCA RXCA .1 CATCA RECA 4.0 ANOCA RXCA 4.0 C C across valves C CATAB TRSA 2000. .1 ANOAB TRSA 2000. .1 C CATBC TRSB 2000. .1 ANOBC TRSB 2000. .1 C CATCA TRSC 2000. .1 ANOCA TRSC 2000. .1 C C ************* SVC CONTROLLED REACTOR ************* C C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm RXAB TRSB 0.1 35.71 1 RXBC TRSC 0.1 35.71 RXCA TRSA 0.1 35.71 C C *************** REACTOR FOR FIRING PULSE GENERATION ****** C C Fire angle reference measurement using delta connected reactors C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus TRSA RMXA 0.01 1 TRSB RMXB 0.01 TRSC RMXC 0.01 C The reactors are delta connected through measuring switches below RMAB RMXB 200. 20000. RMBC RMXC 200. 20000. RMCA RMXA 200. 20000. C BLANK end of branch data C *************** SWITCH DATA ***************8 C C current measurement in the auxiliary reactor for firing pulse generation C these switches complete the delta connection of the reactors C (Rule Book p.6A-9) RMXA RMAB MEASURING 1 RMXB RMBC MEASURING 1 RMXC RMCA MEASURING 1 C C current measurement in the main transformer secondary TRXA TRSA MEASURING TRXB TRSB MEASURING TRXC TRSC MEASURING C current measurement in the main transformer prinmary TRFA TRPA MEASURING TRFB TRPB MEASURING TRFC TRPC MEASURING C C switch for on/off switching the 36.6 MVAR resistive-reactive load C (Rule Book p. 6C-1) 12TRSA XLA FRLA 1 12TRSB XLB FRLB 1 12TRSC XLC FRLC 1 C C VALVES C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR C Rule Book p. 6B-1 11TRSA CATAB 100. 35.0 FIAB1 1 11ANOAB TRSA 100. 35.0 FIAB2 1 11TRSB CATBC 100. 35.0 FIBC1 1 11ANOBC TRSB 100. 35.0 FIBC2 1 11TRSC CATCA 100. 35.0 FICA1 1 11ANOCA TRSC 100. 35.0 FICA2 1 C BLANK end of switch data C C AC sources C 230 kV supply 14GENA 187794. 60. 0. -1. 14GENB 187794. 60. 240. -1. 14GENC 187794. 60. 120. -1. C --------------+------------------------------ BLANK end of source cards C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04 C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04 C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04 C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06 C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06 C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06 C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06 C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06 C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06 C TRSA XLA Open Open .... Etc. (all remaining switches) C C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8 C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739 TRSA TRFA { Node voltage output requests C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA C C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC C C MODELS MODELS MODELS MODELS MODELS MODELS C VRMSCA VLLAVG ERROR DVQ FDB VERR C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state. C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state. C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state. C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state. C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state. C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state. C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state. C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state. C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state. C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491 C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15 C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865 C .046333037 .85 .007233288 -.37886586 -.15723329 -.15 C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142 C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15 BLANK end of output requests C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0 C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633 C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629 C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119 C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273 C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165 C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625 C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407 C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111 PRINTER PLOT 193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930) BLANK end of plot requests BEGIN NEW DATA CASE BLANK