BEGIN NEW DATA CASE C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC). C Contributed to ATP materials of the Can/Am user group February 1992 by: C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant C #203 - 1745 Martin Drive 705 Westtown Circle C White Rock/ South Surrey B.C. West Chester, PA 19382 C CANADA V4A 6Z1 USA C Phone: 604-535-6540 Phone: 610-344-0432 C FAX: 604-535-6548 C In July of 1993, Mr. Furst revised it again in preparation for his use C of it at Prof. Ned Mohan's University of Minnesota short course there. C Size 1-10: 43 63 56 3 230 18 167 0 0 0 C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0 C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999 NEW LIST SIZES 0 0 68 8 450 35 285 0 0 0 0 0 4700 0 0 0 0 0 12000 0 0 0 220 240000 C *********** A GENERIC 6 PULSE SVC MODEL ************************************ C C This is a conceptual model only, it must be refined C for any specific system; the control algorithm can be greatly improved. C C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer; C TCR's connected in delta. C C Thyristor gating pulses are phase locked to the current zero transition C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT; C individual phase open loop VAR control is used, with a superimposed. C slow voltage control. C C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s C value of the 34.5 kV phase to phase voltages, which are the TACS variables C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC, C the thyristors have to be blocked. One way of doing this is to punch C 1000000. in col. 17-24 of the thyristor switches 11. C C To get the SVC overall response plot the transformer ph-ph r.m.s secondary C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three C ph-ph r.m.s. voltages C C To get the VAR import/phase through the transformer secondary C plot QINA (TACS) C C To get the transformer secondary voltage (instant.) plot TRSA C C TRSA-XLA shows the switching of the phase to phase load C C RXAB-TRSB plots the current through one AB arm of the thyristor bridge C C For sake of simplicity, some of the TACS variables have not been C initialized, so ignore the first 25 ms of the plots. C C If in the "Superimposed Voltage Control Section the gain C of DVQ is set to zero, the model reverts to open loop VAR control PRINTED NUMBER WIDTH, 13, 2, C For best results, do not use a time step more than 1/2 Degree (23.148 C microsec for 60 Hz). Here, to speed the illustration, we use twice that, C & only simulate for half as long (extend to 0.5 sec for more transients). C Free-format data input is used in order to specify DELTAT precisely: C DELTAT TMAX XOPT COPT EPSILN TOLMAT .0000462962962962963, 0.25, 60., , , , , , , , , 1 -3 1 2 1 -1 5 5 20 20 100 100 500 500 TACS HYBRID C C Firing pulses are derived from the current through the measuring inductances C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into C TACS from the measuring switches connecting the RM's in delta, C corresponding to the delta connected thyristor valves. C C The current lags the voltage 90 deg. and its zero transition produces C the firing signal at an alpha of 90 deg. C This is done by TACS level triggered switches Device 52. C The firing pulse delay is calculated by the variables DELAB/BC/CA C and implemented by TACS transport device Device 54; C C For convenience, the firing angle is initialized to alpha = 180 deg. C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system. C The required firing angle is then calculated backwards from the C 180 deg. point, by using the variable DELYA(B,C). C The actual firing angle is then DELAB = DELIN -DELYA etc. C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms. C Then DELAB= DELIN - DELYA =0.0 (90 deg.) C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees. C For 50 Hz, DELIN = 5.0 ms. C C *********** VOLTAGE AND REACTIVE REFERENCE ************* 11VREFD 1.0 C VAR reference C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.; C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase; C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV; C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u. 88QTCR = 33.3*10**6 C The VAR reference QREF should be determined so that the superimposed C voltage control changes the VAR flow as little as possible 88QREF = 0.30 C C *********** VOLTAGES TRANSFERRED FROM NETWORK ************* C C ******* Import 34.5 kV phase voltages, get phase to phase and normalize ***** C TRSA/B/C are the transformer secondary ph-g voltages C 90 - TACS voltage source driven by an EMTP network node voltage C (Rule Book p. 3-15) 90TRSA 90TRSB 90TRSC C the phase to phase voltages 99TRAB = TRSA - TRSB 99TRBC = TRSB - TRSC 99TRCA = TRSC - TRSA C normalize to get one p.u. for the phase to phase rms value 99TABX = TRAB/34500 99TBCX = TRBC/34500 99TCAX = TRCA/34500 C get the rms value of the A-B phase to phase voltage C Device 66 (Rule Book p. 3-32) 99TXNAB 66+TABX 60. 99TXNBC 66+TBCX 60. 99TXNCA 66+TCAX 60. C C ************** PHASE A FIRING PULSES ************************************** C C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15) 91RMAB C send square impulse at current zero Device 52 (Rule B. p. 3-21) 88FAB1 52+UNITY 1. 0. 0 RMAB 88FAB2 52+UNITY 1. 0. -1 RMAB C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23) 98FIAB1 54+FAB1 .0000 DELAB 98FIAB2 54+FAB2 .0000 DELAB C for a 50 Hz system the constant .004167 below should be changed to 0.005 88DELIN = .004167 { to initialize alpha to 180 deg. C C ************* PHASE B FIRING PULSES ************************************* C 91RMBC 88FBC1 52+UNITY 1. 0. 0 RMBC 88FBC2 52+UNITY 1. 0. -1 RMBC 98FIBC1 54+FBC1 .0000 DELBC 98FIBC2 54+FBC2 .0000 DELBC C C ************ PHASE C FIRING PULSES ************************************* C 91RMCA 88FCA1 52+UNITY 1. 0. 0 RMCA 88FCA2 52+UNITY 1. 0. -1 RMCA 98FICA1 54+FCA1 .0000 DELCA 98FICA2 54+FCA2 .0000 DELCA C C ************* OPEN LOOP VAR CONTROL ************************** C **** WITH SUPERIMPOSED VOLTAGE CONTROL *********** C C the following will be repeated for all three phases as the SVC C C ************ RACTIVE POWER FLOWS ********* C C calclate VAR transfer at transf. secondary 91TRXA { 34.5 kV side current through transformer C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22) 88TRIA 53+TRXA .00417 .0043 88TRVA 53+TRSA .00417 .0043 C the following equation for calculating VAR flow is from C Miller: Reactive power Control etc. (text book) p. 321 88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR C 91TRXB 88TRIB 53+TRXB .00417 .0043 88TRVB 53+TRSB .00417 .0043 88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR C 91TRXC 88TRIC 53+TRXC .00417 .0043 88TRVC 53+TRSC .00417 .0043 88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR C C ******************** SUPERIMPOSED VOLTAGE CONTROL ******************** C C ******** DELTA Q TO ADJUST VOLTAGE ************ C the average value of phase to phase voltage is 0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15 C the difference between ref. and actual voltage is C slow down the response by a (1/1+st) block 1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0 1.0 1.0 0.500 C the required VAR import taking voltage correction into account 0QRNEW +QREF +DVQ C ***************** PHASE A ERROR ****************************************** C C error in VAR import 0ERRQA +QRNEW -QINA 0QINCRA +ERRQA C the new reactor output is then given by the Steinmetz Algorithm as C the output at T-delT + QINCRA + QINCRB - QINCRC; C as shown below in calculating the new SVC VAR's C ****************** PHASE B ERROR **************************************** C 0ERRQB +QRNEW -QINB 0QINCRB +ERRQB C C ****************** PHASE C ERROR ***************************************** C 0ERRQC +QRNEW -QINC C 0QINCRC +ERRQC C C C **************** PHASE A PULSE DELAY CONTROL **************************** C the current firing angle is DELAB, this corresponds to an old reactor C p.u. current given by the following non linear relation corresponding C to the x = sigma-sin(sigma) function 99DLA1 = 1 - DELAB/.004167 C where DLA1 is the normalized conduction angle sigma between firing C angle alpha 90 and 180 degrees. C 99REOAB 56+DLA1 0.0 0.0 0.111 0.0022 0.222 0.0176 0.333 0.0575 0.444 0.1306 0.555 0.2414 0.666 0.3900 0.777 0.5718 0.888 0.7783 1.000 1.0000 9999. C the new reactor current demanded is the increment plus the old C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0 C this is applying the Steinmetz algorithm 0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00 C this is now reconverted into an angle, using the inverse of the C above relation, and becomes the new DELAB; (Rule Book p. 3-25 ) 99DELYAA56+INREAB 0.0 0.0 0.0022 0.111 0.0176 0.222 0.0575 0.333 0.1306 0.444 0.2414 0.555 0.3900 0.666 0.5718 0.777 0.7783 0.888 1.0000 1.000 9999. 99DELYA =DELYAA * 0.004167 C now smooth it out a bit 1DELAB +DELIN -DELYA 1.0 .0040 1.0 1.0 0.015 C C ****************** PHASE B PULSE DELAY CONTROL ************************** C 99DLB1 = 1 - DELBC/.004167 C 99REOBC 56+DLB1 0.0 0.0 0.111 0.0022 0.222 0.0176 0.333 0.0575 0.444 0.1306 0.555 0.2414 0.666 0.3900 0.777 0.5718 0.888 0.7783 1.000 1.000 9999. C 0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00 C 99DELYBB56+INREBC 0.0 0.0 0.0022 0.111 0.0176 0.222 0.0575 0.333 0.1306 0.444 0.2414 0.555 0.3900 0.666 0.5718 0.777 0.7783 0.888 1.000 1.000 9999. 99DELYB =DELYBB * 0.004167 C 1DELBC +DELIN -DELYB 1.0 0.0040 1.0 1.0 0.015 C C *************** PHASE C PULSE DELAY CONTROL ****************************** C 99DLC1 = 1 - DELCA/.004167 C 99REOCA 56+DLC1 0.0 0.0 0.111 0.0022 0.222 0.0176 0.333 0.0575 0.444 0.1306 0.555 0.2414 0.666 0.3900 0.777 0.5718 0.888 0.7783 1.000 1.000 9999. C 0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00 C 99DELYCC56+INRECA 0.0 0.0 0.0022 0.111 0.0176 0.222 0.0575 0.333 0.1306 0.444 0.2414 0.555 0.3900 0.666 0.5718 0.777 0.7783 0.888 1.000 1.000 9999. 99DELYC =DELYCC * 0.004167 C 1DELCA +DELIN -DELYC 1.0 0.0040 1.0 1.0 0.015 C C ***************** REACTOR SWITCHING *************************************** C C control signals to switch reactive load 'XLA/B/C' on and off C see TYPE 12 switches in power network. C TACS source (Rule Book p. 3-14) 23FRLA 1000. 0.200 0.100 0.2 23FRLB 1000. 0.200 0.100 0.2 23FRLC 1000. 0.200 0.100 10.0 C C initializations 77VLLAVG 1.0 77TXNAB 1.0 77QRNEW .30 77QINA .30 77QINB .30 77QINC .30 C C ********* TACS OUTPUTS ************ C 33TXNAB TXNBC TXNCA ERRQA VLLAVG 33QRNEW DVQ QINA BLANK end of TACS C C ************** NETWORK DATA ********************* C C ********* LINE TO SOURCE *********** C C transmission line (equivalent) from GEN source to transformer GENA TRFA 4.5 25.0 GENB TRFB 4.5 25.0 GENC TRFC 4.5 25.0 C fault level at trsf. 230 kV approx. 2083 MVA C C ************** MAIN TRANSFORMER ************** C C transformer capacitance to ground 10000pF C a very simple model, can be replaced with any more complex model C transformer 230000/34500 Y/D 100 MVA; In=250 A C x = 7.0% on 100 MVA C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance C TRANSFORMER busref imag flux busin rmag empty C ------------______------______------______------_____________________________- C C no saturation TRANSFORMER 0.7 700.0 X 0.7 700.0 { 100% 9999 1TRPA 0.80 36.0 1330 2TRXA TRXB 1.00 385 {372 TRANSFORMER X Y 1TRPB 2TRXB TRXC TRANSFORMER X Z 1TRPC 2TRXC TRXA C C transformer capacitance to ground and ph - ph 10000pF TRXA 0.01 TRXB 0.01 TRXC 0.01 C capacitance between phases TRXA TRXB 0.01 TRXB TRXC 0.01 TRXC TRXA 0.01 C C *********** HARMONIC FILTERS *************** C C 5th harmonic filter 20 MVAR TRSA TF5 2.38 44.5 TRSB TF5 2.38 44.5 TRSC TF5 2.38 44.5 C 7th harmonic filter 20 MVAR TRSA TF7 1.21 44.5 TRSB TF7 1.21 44.5 TRUC TF7 1.21 44.5 C C ******** TRANSFORMER SECONDARY LOAD *************** C 75 MW, 30 MVAR TRSA ND 13.67 5.47 TRSB ND 13.67 5.47 TRSC ND 13.67 5.47 C C shunt capacitor 20 MVAR TRSA 44.5 TRSB 44.5 TRSC 44.5 C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* C C switched reactor .1 sec. on .1 sec. off C see switch type 13 below and type 23 source in TACS C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load XLA NSR 34.00 34.00 XLB NSR 34.00 34.00 XLC NSR 34.00 34.00 C C C ************** SNUBBERS ************** C C the snubber parameters shown below are not necessarily the C values a manufacturer would choose for a 34.5 kV valve. C The parameters were selected so that only a small currrent flows C through the control reactor with the valves non conducting, C and overvoltages and spikes interfering with the firing control C are prevented. It is quite possible that a better combination C than that shown exists. C C in series with valves C CATAB RXAB .1 ANOAB RXAB .1 CATAB RXAB 4.0 ANOAB RXAB 4.0 C CATBC RXBC .1 ANOBC RXBC .1 CATBC RXBC 4.0 ANOBC RXBC 4.0 C CATCA RXCA .1 ANOCA RXCA .1 CATCA RECA 4.0 ANOCA RXCA 4.0 C C across valves C CATAB TRSA 2000. .1 ANOAB TRSA 2000. .1 C CATBC TRSB 2000. .1 ANOBC TRSB 2000. .1 C CATCA TRSC 2000. .1 ANOCA TRSC 2000. .1 C C ************* SVC CONTROLLED REACTOR ************* C C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm RXAB TRSB 0.1 35.71 1 RXBC TRSC 0.1 35.71 RXCA TRSA 0.1 35.71 C C *************** REACTOR FOR FIRING PULSE GENERATION ****** C C Fire angle reference measurement using delta connected reactors C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus TRSA RMXA 0.01 1 TRSB RMXB 0.01 TRSC RMXC 0.01 C The reactors are delta connected through measuring switches below RMAB RMXB 200. 20000. RMBC RMXC 200. 20000. RMCA RMXA 200. 20000. C BLANK end of branch data C *************** SWITCH DATA ***************8 C C current measurement in the auxiliary reactor for firing pulse generation C these switches complete the delta connection of the reactors C (Rule Book p.6A-9) RMXA RMAB MEASURING RMXB RMBC MEASURING RMXC RMCA MEASURING C C current measurement in the main transformer secondary TRXA TRSA MEASURING 1 TRXB TRSB MEASURING 0 TRXC TRSC MEASURING 0 C current measurement in the main transformer primary TRFA TRPA MEASURING 1 TRFB TRPB MEASURING 0 TRFC TRPC MEASURING 0 C C switch for on/off switching the 17.5 MVAR resistive-reactive load C (Rule Book p. 6C-1) 12TRSA XLA FRLA 11 12TRSB XLB FRLB 10 12TRSC XLC FRLC 10 C C VALVES C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR C Rule Book p. 6B-1 11TRSA CATAB 00. 15.0 FIAB1 1 11ANOAB TRSA 00. 15.0 FIAB2 1 11TRSB CATBC 0000. 15.0 FIBC1 1 11ANOBC TRSB 000. 15.0 FIBC2 1 11TRSC CATCA 0000. 15.0 FICA1 1 11ANOCA TRSC 000. 15.0 FICA2 1 C BLANK end of switch data C C AC sources C 230 kV supply 14GENA 187794. 60. 0. -1. 14GENB 187794. 60. 240. -1. 14GENC 187794. 60. 120. -1. C --------------+------------------------------ C From bus name | Names of all adjacent busses. C --------------+------------------------------ C GENA |TRFA * C TRFA |GENA *TRPA * C GENB |TRFB * C TRFB |GENB *TRPB * C GENC |TRFC * C TRFC |GENC *TRPC * C X |TERRA *TERRA *TRPA * C TRPA |TRFA * X* C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA * C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB * BLANK end of source cards C Total network loss P-loss by summing injections = 9.766831747973E+07 C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04 C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04 C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04 C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07 C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07 C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06 C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07 C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06 C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06 C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8 C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951 TRSA TRFA { Names of nodes for which voltage is to be outputted C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS C TRSA TRPA XLA TRSB RMXA TXNAB C C TACS TACS TACS TACS TACS TACS TACS C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state. C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state. C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state. C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state. C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state. C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state. C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state. C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state. C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state. C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0 C 0.0 0.0 0.0 1.0 0.3 0.0 0.3 C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562 C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0 C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec. C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949 C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0 BLANK end of output requests C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec. C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec. C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec. C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec. C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec. C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec. C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec. C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec. C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036 C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946 C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099 C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066 C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259 C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481 C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0 C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0 C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0 C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4 PRINTER PLOT 193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient BLANK end of plot requests BEGIN NEW DATA CASE BLANK