BEGIN NEW DATA CASE C BENCHMARK DC-22 C Illustration of basic TACS logic that can be used to control the firing of C valves (thyristers) of an ac/dc converter bridge. The electric network C actually has no valves, however (TACS output signals are not used). The C electric network passes balanced three-phase voltages to TACS via Type-90 C sources. Summers convert to line-to-line voltages. A constant firing C angle DELAY1 of 1.0 msec is used, for simplicity. TACS variables FIRE1 C through FIRE6 should go back to electric network to control valves (only C FIRE1 is passed back, and for simplicity, just to a Type-60 source). C After this 1st small subcase, there is a 2nd, followed by 2 large subcases C 11 November 1998, add Type-10 source to illustrate saw-toothed waveform C Note: program created on this date, or later, is required for use. C 26 January 1999, add Orlando Hevia's rectangular and positive-pulse C waveforms. One new vector plot at end should be studied to understand. PRINTED NUMBER WIDTH, 10, 2, .000500 .040 { Double T-max on 26 Jan 99 to show repetition of Hevia signals 1 1 1 1 1 -1 40 5 TACS HYBRID PHA-B +GENA -GENB PHB-C +GENB -GENC PHC-A +GENC -GENA 90GENA 90GENB 90GENC 98ZA-B 52+UNITY 1. 0. 0. PHA-B 98ZB-A 52+UNITY 1. 0. 1. PHA-B 98ZB-C 52+UNITY 1. 0. 0. PHB-C 98ZC-B 52+UNITY 1. 0. 1. PHB-C 98ZC-A 52+UNITY 1. 0. 0. PHC-A 98ZA-C 52+UNITY 1. 0. 1. PHC-A 98DELAY1 .001 98FIRE1 54+ZA-B .001 DELAY1 98FIRE4 54+ZB-A .001 DELAY1 98FIRE3 54+ZB-C .001 DELAY1 98FIRE6 54+ZC-B .001 DELAY1 98FIRE5 54+ZC-A .001 DELAY1 98FIRE2 54+ZA-C .001 DELAY1 33PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B ZC-A ZA-C GENA GENB GENC FIRE1 33FIRE4 FIRE3 FIRE6 FIRE5 BLANK card ending all TACS data 0GENA 1.0 0GENB 1.0 0GENC 1.0 FIRE1 1.0 SAW 1.0 { Load on sawtooth waveform } 1 RECT 1.0 { Load on rectangular waveform } 1 PULSE 1.0 { Load on positive pulse } 1 SINE 1.0 { Load on reference sine wave } 1 BLANK card ending branch cards of the electric network BLANK card ending switch cards of the electric network 14GENA 1.0 60. -90. 14GENB 1.0 60. 30. 14GENC 1.0 60. 150. 60FIRE1 C Prior to 11 November 1998, saw-toothed waveforms were not generated on the C electrical side. If needed, they were generated in TACS and passed to the C electrical side just as the preceding Type-60 source illustrates. Orlando C Hevia contributed the following centered sawtooth waveform that is based on C a Type-10 analytically-defined source. Note that the signal is directly C generated on the electrical side (no need for TACS): 10SAW 100.0*(TIMEX-(TRUNC(TIMEX/0.010)*0.010))-0.5 { See Oct 98, newsletter C Orlando Hevia contributes rectangular waveform and positive pulse on C 26 January 1999. The rectangular waveform is trivial, so add it first: 10RECT 0.50*SIGN(SIN(TIMEX*314.1592)) C The positive pulse is more involved. More precisely, documentation of C the parameters is more involved. The following comment cards are from C Mr. Hevia (hope they are self-explanatory). C W= PULSE WIDTH (DEGREES) C X= ARCCOS(W/2) C X= ARCCOS(30/2)= 0.9659 C P= PHASE IN DEGREES (THE START OF PULSE) C Y= PHASE IN RADIANS C Y= (P+W/2)*3.141592/180.0 C Y= (45+30/2)*3.141592/180.0= 1.0472 C PULSE= 0.50*SIGN(COS(TIMEX*314.1592-Y )-X )+0.5 10PULSE 0.50*SIGN(COS(TIMEX*314.1592-1.0472)-0.9659)+0.5 C 10PULSE -.25 { Offset the preceding downward by 1/4 to demonstrate superposition C Preceding demonstrated the superposition of two sources on the same node. But C 3 were mistreated prior to correction 12 May 2001. To prove that 3 now can C be handled properly, split the preceding .25 into .10 and .15: 10PULSE -.10 { Offset the preceding downward by .10 to demonstrate superposition 10PULSE -.15 { Offset the preceding downward by .15 to demonstrate superposition C Finally, let's add Mr. Hevia's reference waveform. This documents the C sign and phase of the rectangular waveform. Plot will be beautiful. 10SINE SIN(TIMEX*314.1592) { Reference signal (RECT is 1/2 the sign of this) BLANK card ending source cards of the electric network C Next 4 output variables are branch currents (flowing from the upper node to the lower node); C Next 17 output variables belong to TACS (with "TACS" an internally-added upper name of pair). C Step Time SAW RECT PULSE SINE TACS TACS TACS TACS TACS TACS TACS C TERRA TERRA TERRA TERRA PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B C C TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS C ZC-A ZA-C GENA GENB GENC FIRE1 FIRE4 FIRE3 FIRE6 FIRE5 C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C 1 .5E-3 -.45 0.5 -.25 .1564344 -.569614 1.701371 -1.13176 0.0 1.0 1.0 0.0 C 0.0 1.0 .1873813 .7569951 -.944376 0.0 0.0 0.0 0.0 0.0 C 2 .1E-2 -.4 0.5 -.25 .3090169 -.253023 1.61042 -1.3574 0.0 1.0 1.0 0.0 C 0.0 1.0 .3681246 .6211478 -.989272 0.0 0.0 0.0 0.0 0.0 BLANK card ending selective node voltage outputs (none) C 80 .04 -.5 -.5 -.25 -.261E-5 1.582307 -1.40126 -.181049 1.0 0.0 0.0 1.0 C 0.0 1.0 .5877853 -.994522 .4067366 1.0 0.0 0.0 1.0 0.0 C Variable maxima : .45 0.5 .75 1.0 1.731671 1.728633 1.730532 1.0 1.0 1.0 1.0 C 1.0 1.0 1.0 .9997807 .9991228 1.0 1.0 1.0 1.0 1.0 C Times of maxima :.0395 .5E-3 .0025 .005 .0055 .0165 .011 .0015 .5E-3 .5E-3 .0045 C .007 .5E-3 .0375 .032 .0265 .0035 .0025 .0025 .0065 .009 C Variable minima : -.5 -.5 -.25 -1. -1.73167 -1.73205 -1.73167 0.0 0.0 0.0 0.0 C 0.0 0.0 -1. -.999781 -.999781 0.0 0.0 0.0 0.0 0.0 C Times of minima : .01 .0105 0.0 .015 .0305 .025 .0195 0.0 0.0 0.0 0.0 C 0.0 0.0 .0125 .007 .018 0.0 0.0 0.0 0.0 0.0 CALCOMP PLOT 194 4. 0.0 40. -1.0 1.0BRANCH { Show 2 cycles of the 4 Type-10 Hevia signals SINE RECT PULSE SAW PRINTER PLOT 194 2. 0.0 20. TACS PHA-B TACS FIRE1 { Axis limits: (-1.731, 1.732) BLANK card ending plot cards BEGIN NEW DATA CASE C 2nd of 5 subcases of DC-22 is a hybrid TACS example of the TACS-controlled C resistance (Type-91 electric network branch type). All-resistive electric C network allows easy checking with a pocket calculator at any step: For each C branch, verify that program node voltages and branch currents correspond to C the branch constraint equations v = R * i. There actually are two discon- C nected subnetworks, with one having two TACS-controlled arcs (illustrating C use of the multivariable solution code of "ZINCOX") and the other having 1. PRINTED NUMBER WIDTH, 11, 1, { Reassert default choice (used before 25 Jan 99) CHANGE PRINTOUT FREQUENCY 5 5 .02 2.0 { Step size is immaterial since network has no dynamics 1 1 1 1 1 TACS HYBRID { In a real case, arcs are on electric side, and equations in TACS 99RESIS = 1.0 + SIN ( 3.0 * TIMEX ) { 1st R(t) signal -- constant + sine wave 99RES = 1.0 + COS ( 3.0 * TIMEX ) { 2nd R(t) signal -- constant + cosine 33RESIS RES { Output the only 2 TACS variables: the 2 R(t) resistance functions 77RESIS 1.0 { Initial condition on 1st R(t) insures smooth start 77RES 2.0 { Initial condition on 1st R(t) insures smooth start BLANK card ending all TACS data BUS1 BUS2 1.0 { Master copy of five 1-ohm resistors } 1 BUS2 BUS3 BUS1 BUS2 { 2nd of 3 linear branches in 1st subnetwork BUS3 BUS1 BUS2 { 3rd of 3 linear branches in 1st subnetwork BUS1 BUS4 BUS1 BUS2 { 1st of 2 linear branches in second subnetwork BUS4 BUS1 BUS2 { 2nd of 2 linear branches in second subnetwork 91BUS2 TACS RESIS { R(t) controlled by TACS variable "RESIS" } 1 91BUS3 TACS RES { R(t) controlled by TACS "RES" --- 2nd of 2 } 1 91BUS4 TACS RES { R(t) within 2nd, isolated subnetwork } 1 BLANK card ending electric network branches BLANK card ending switches 11BUS1 1.0 { 1-volt battery excites ladder networks of both subnetw BLANK card ending electric network source cards. C Step Time BUS4 BUS3 BUS2 BUS1 BUS2 BUS3 C TERRA TERRA C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C 1 .02 0.4 .153846154 .384615385 1.0 .384615385 .076923077 C 2 .04 .39992797 .157235276 .393158988 1.0 .3709173 .078688436 1 { Request all node voltage outputs. Just 4: BUS1 through BUS4 C Last step: 100 2.0 .3976118 .127869158 .321592965 1.0 .484683228 C Last step cont. ..... .065854649 .204776399 .678407035 .720584502 1.96017029 C Variable max : 0.4 .175860563 .464962112 1.0 .999366283 .342009625 .999533993 C Times of maxima : .02 .28 .44 .02 1.6 1.02 PRINTER PLOT { Axis limits: (0.000, 2.000) 193 .4 0.0 2.0 TACS RESIS TACS RES { 1st of 2 plots is two TACS R(t) 193 .4 0.0 2.0 BRANCH { Axis limits: (0.000, 9.995) BUS2 BUS3 BUS4 { 3 R(t) arc currents BLANK card ending plot cards BEGIN NEW DATA CASE C 3rd of 5 subcases illustrates the EMTP simulation of a rail gun or mass C driver. It was contributed by Wendell Neugebauer as described in his C paper on the subject (published in the Sept, 1990, issue of EMTP News). C AUGMENTED RAILGUN (Mass driver) Simulation C CAPACITOR BANK DRIVE C 65 CANS OF 65 kJ, 22kV FOR EACH OF 8 STAGES, TOTAL INITIAL ENERGY = 33.8 MJ C Wendell NEUGEBAUER C 586 Middle Line Rd. C Ballston Spa, New York 12020 C C March 20, 1990 C Tel. (518) 885-6050 (home) (evenings only) C C This is a simulation of a mass driver as energized from a bank of charged C capacitors. The individual switches are timed in synchronism with the C position of the mass along the rails. The physics of the driver itself C are modelled under TACS using its pseudo FORTRAN equations to implement C Newton's laws. The individual TACS statements are commented to show the C particular variables being computed. The storage capacitors and the C associated electrical network are modelled using standard EMTP components. C Note about time-step size. Wendell Neugebauer's originally data C case used DELTAT = 1.E-6 and TMAX = 5.5 msec as shown below on C comment cards. But the simulation is slow. By multiplying DELTAT C by 5, the simulation is speeded without significantly affecting the C PRINTER PLOT of rail current. NEW LIST SIZES 0 0 68 8 450 35 285 0 0 0 C 0 0 4700 0 0 0 0 0 12000 0 0 0 4700 0 0 0 0 10 5000 0 0 0 220 240000 C Preceding dimensions are the same as used by the 4th subcase except that C List 18 is increased from 0 (default 5) to 10 and List 19 is reduced to C 5K from 12K. This addition of NLS is necessitated by the modification C of ATD immediately below. In turn, that change was necessitated by the C a change to SSTACS (for many years, TACS Table 1 has been overflowing). ABSOLUTE TACS DIMENSIONS C Expand TACS Table 1 from 60 to 90 on 29 March 2007. Orlando Hevia, C using F95 GNU, discovered Table 1 need of 672 / 8 within SSTACS: C 60 270 300 60 90 1250 550 180 85 270 300 60 90 1250 550 180 UNIQUE TACS SWITCH { Halt if Type-91 or 93 TACS source is not uniquely defined C The preceding UTS is added during July of 2003. The answer is unchanged. C This data case was picked only because both Type-91 and 93 sources exist. C 1.E-6 5.5E-3 0. 0. ------ Orig. misc. data card C 1 11 1 0 1 -1 ------ Orig. misc. data card 5.E-6 5.0E-3 0. 0. { Larger DELTAT speeds simulation 1 3 1 0 1 -1 5 5 20 20 100 100 500 500 TACS HYBRID C LIST OF INPUT CONSTANTS C RAIL RESISTANCE COEFFICIENT (R. Hawkes method for including skin effect) C with the units ohms/amperes**0.75 11RRAIL0 5.53E-5 -1. C RAIL INDUCTANCE GRADIENT, H/m 11LPRIME .5765E-6 -1. C PROJECTILE MASS, kg 11MASS 2.500 -1. C LENGTH OF RAIL, m 11XRAIL 8.0 -1. C Muzzle discharge resistor, ohms 11RDUMP 8.E-3 -1. C final rail inductance, H 11LRAILF 4.6E-6 -1. C final rail resistance, ohms 11RRAILF 2.63E-4 -1. C augmenting rail inductance, H 11LAUG 4.2E-6 -1. C augmenting rail resistance, ohms 11RAUG 1.0E-4 -1. C Mutual inductance gradient, augmenting to main rail, H/m 11DMDX .35E-6 -1. C Friction approximation coefficient, fraction of applied force 11FMISC 0.2 -1. C Initial projectile position, m 11XINIT 0. -1. C Projectile initial velocity, m/s 11VINIT 738.0 -1. C Rail mass ablation coefficient, kg/A/V/s 11ALPHA 49.E-9 -1. C Threshold current for for computing effective arc drop 11ITHRES 100000. -1. C Bore diameter, m 11BORE 0.09 -1. C Velocity of sound in the medium within rails, m/s 11VSOUND 346.0 -1. C Coefficient for computing shock force 11GAMMA 1.40 -1. C Ambient pressure, N/m**2 11PAMB 1.013E5 -1. C positions of mass along the rails where the various switches close 11XA 0.25 -1. 11X2 .50 -1. 11X3 1.00 -1. 11X4 1.70 -1. 11X5 2.10 -1. 11X6 2.70 -1. 11X7 3.00 -1. C C THIS CONCLUDES THE TACS SOURCES. C C LIST OF EMTP SOURCES C VBREECH FROM EMTP 90VBR C IRAIL FROM EMTP 91IRAIL C C C --- EMTP NODE VOLTAGES ON 8 CAPACITORS. USED TO TRIGGER CROWBAR DIODES. 90NODE01 90NODE02 90NODE03 90NODE04 90NODE05 90NODE06 90NODE07 90NODE08 C --- EMTP SWITCH STATUS 0 = OPEN 1 = CLOSED C --- USED TO KEEP CROWBAR DIODES ON ONCE THEY ARE TRIGGERED. 93NODE17 93NODE18 93NODE19 93NODE20 93NODE21 93NODE22 93NODE23 93NODE24 C --- C --- SUPPLEMENTAL DEVICES C C --- COMPUTE GRID SIGNALS FOR CROWBAR DIODES C --- GRID SIGNALS (N1-N8) TURN ON WHEN THE CAPACITOR VOLTAGE IS LESS THAN 0. 88N1 = - NODE01 88N2 = - NODE02 88N3 = - NODE03 88N4 = - NODE04 88N5 = - NODE05 88N6 = - NODE06 88N7 = - NODE07 88N8 = - NODE08 C C C SUPPLEMENTAL DEVICES C SIMPLE RAILGUN MECHANICS C COMPUTE MECHANICAL FORCE ON THE PROJECTILE INCL. AUGMENTATION 88FMECH =.5*(1.0-FMISC)*(LPRIME+2.*DMDX)*ABS(IRAIL)**2-FSHOCK C USE LINEAR MODEL FOR SOLID ARMATURE ARC VOLTAGE DROP 88GNARC =45.+31.43*TIMEX*1000. C COMPUTE RATE OF MASS ABLATION FROM THE RAILS 88MDOT =(ALPHA*ABS(IRAIL)*ABS(GNVOLT))*FLAG1 C COMPUTE VDOT = PROJECTILE ACCELERATION, INCLUDE TIME DELAY OF ONE C STEP FOR STABILITY VEL1 +VEL 88VDOT =((FMECH-VEL1*MDOT)/MASS1)*FLAG1 C COMPUTE MACH NUMBER, PRESSURE RATIO, AND SHOCK FORCE 88MACH =VEL1/VSOUND 88PR =GAMMA*(GAMMA+1.)/4.*ABS(MACH)**2+1 88PRATIO =PR+GAMMA*MACH*ABS(((ABS(MACH)**2*ABS((GAMMA+1.))**2/16.+1.)))**0.5 88FSHOCK =PI*BORE**2/4*PRATIO*PAMB C C COMPUTE RESET SIGNAL FOR FIRST LAUNCH C FLAG1 IS 1 AS LONG AS PROJECTILE IS IN BARREL C Introduce one time step delay for stability of computation X1 +X 88FLAG1 =(TIMEX .GT. (2.*DELTAT)).AND.(X1.LE.XRAIL) 88FLAG4 =(TIMEX .GT. (2.*DELTAT)) 88FLAG5 =NOT(FLAG1) C C COMPUTE MASS1, PROJECTILE PLUS ABLATED RAIL MASS 88MASS1 58+MDOT 1.0 0.0 1.0FLAG4 MASS C INTEGRATE VDOT TO GET VELOCITY OF MASS 88VEL 58+VDOT 1.0 0.0 1.0FLAG4 VINIT C INTEGRATE VELOCITY TO GET PROJECTILE POSITION 88X 58+VEL 1.0 0.0 1.0FLAG4 XINIT C COMPUTE THE INSTANTANEOUS RAIL INDUCTANCE 88LRAIL =LPRIME*ABS(X1)*FLAG1+FLAG5*LRAILF C COMPUTE THE INSTANTANEOUS RAIL RESISTANCE 88RRAIL =FLAG1*RRAIL0*ABS(X1)**0.75+FLAG5*RRAILF C COMPUTE INSTANTANEOUS MUTUAL INDUCTANCE, AUGMENTING TO MAIN RAILS 88M =DMDX*(FLAG1*X1+FLAG5*XRAIL) C C CALCULATE THE POWER AND ENERGY DELIVERED TO THE RAILS 88PBR =VBR*IRAIL 88EBR 58+PBR 1.0 0.0 1.0FLAG4 ZERO C CALCULATE SHOCK POWER AND ENERGY 88PSHOCK =FSHOCK*VEL*FLAG1 88ESHOCK58+PSHOCK 1.0 0.0 1.0FLAG4 ZERO C CALCULATE ARC POWER AND ENERGY 88PARC =IRAIL*GNVOLT*FLAG1 88EARC 58+PARC 1.0 0.0 1.0FLAG4 ZERO C CALCULATE MIXING POWER AND ENERGY 88PMIX =0.5*VEL**2*MDOT*FLAG1 88EMIX 58+PMIX 1.0 0.0 1.0FLAG4 ZERO C CALCULATE THE DUMP RESISTOR POWER AND ENERGY 88PMUZ =RDUMP*(ABS(IRAIL-I3A)**2) 88EMUZ 58+PMUZ 1.0 0.0 1.0FLAG5 ZERO C CALCULATE PROJECTILE CHANGE IN KINETIC ENERGY 88DKE =0.5*MASS*(VEL**2-VINIT**2) C CALCULATE ABLATED PLASMA CHANGE IN KINETIC ENERGY 88PLSMKE =0.5*(MASS1-MASS)*VEL**2 C CALCULATE INSTANTANEOUS RAIL HEAT POWER AND ENERGY 88HPOWR =ABS(IRAIL)**2*RRAIL 88HEAT 58+HPOWR 1.0 0.0 1.0FLAG4 ZERO C COMPUTE AUGMENTING RAIL LOSS 88PAUG =IRAIL*IRAIL*RAUG 88EAUG 58+PAUG 1.0 0.0 1.0FLAG4 ZERO C CALCULATE FRICTION POWER AND ENERGY 88PFRIC =VEL*0.25*FMISC*(FMECH+FSHOCK)*FLAG1 88EFRIC 58+PFRIC 1.0 0.0 1.0FLAG4 ZERO C CALCULATE TRAPPED MAGNETIC ENERGY WITHIN RAIL MATERIAL (ASSUMPTION) 88ETRAP =3.0*EFRIC C COMPUTE ENERGY STORED IN RAIL AND MUTUAL INDUCTANCE 88ESTORE =(.5*LRAIL+.5*LAUG+M)*IRAIL*IRAIL C COMPUTE ENERGY BALANCE DYNAMICALLY-should equal zero-conservation of energy 88EBAL =EBR-ETRAP-EFRIC-HEAT-PLSMKE-DKE-EMUZ-EMIX-EARC-ESHOCK-ESTORE-EAUG C C COMPUTE INJECTION CURRENTS I1, I2, I3 C THESE CURRENTS EFFECTIVELY REPRESENT THE BACK EMF OF THE MOVING MASS 88I1 =(IRAIL*(RRAIL-RRAILF)/RRAILF)*FLAG1 88I2A =(IRAIL*(LRAIL-LRAILF)/LRAILF)*FLAG1+M*IRAIL*FLAG4/LRAILF 88I2 =I2A-I1 C Compute the effective arc voltage 88GNVOLT =SIGN(IRAIL)*GNARC*(1.-EXP(-ABS(IRAIL)/ITHRES)) 88I3A =((IRAIL*(-RDUMP)+GNVOLT)/RDUMP)*FLAG1 88I3 =I3A-I2A C COMPUTE INJECTION CURRENT DUE TO MUTUAL EFFECTS 88I4I =M*IRAIL/LAUG 88I4O =-I4I C C CAPACITOR SWITCHING FLAGS BASED UPON PROJECTILE POSITION 88FLAG11 =X .GT. XA 88FLAG12 =X .GT. X2 88FLAG13 =X .GT. X3 88FLAG14 =X .GT. X4 88FLAG15 =X .GT. X5 88FLAG16 =X .GT. X6 88FLAG17 =X .GT. X7 C C TACS OUTPUTS C 111111222222333333444444555555666666777777888888999999AAAAAABBBBBBCCCCCCDDDDDD 33VDOT VEL X MASS1 IRAIL I1 I2 I3 FMECH MDOT ESTOREVBR EAUG 33EBR ESHOCKEARC EMIX EMUZ DKE PLSMKEHEAT EFRIC ETRAP EBAL BLANK card that ends TACS data cards C EMTP CIRCUIT INPUT FOLLOWS C --- ELECTRIC NETWORK BRANCHES. C --- SERIES R-L-C BRANCHES $VINTAGE, 1 C --- RC SNUBBER ACROSS RAIL GUN C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC 0I1 0.033 4.5E2 4 C --- RAIL FINAL RESISTANCE R_RF 0I1 I2 2.63E-4 C --- RAIL FINAL INDUCTANCE L_LF 0I2 I3 4.6E-3 C --- DUMP RESISTANCE R_DUMP 0I3 8.0E-3 C --- CAPACITORS C = 16116 MICRO FARADS , R_FUSE = 223 MICRO OHMS C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC 0NODE01 223.E-6 17459. 4 0NODE02 NODE01 4 0NODE03 NODE01 4 0NODE04 NODE01 4 0NODE05 NODE01 4 0NODE06 NODE01 4 0NODE07 NODE01 4 0NODE08 NODE01 4 C --- IGNITRON SWITCHES R_SWITCH = 30 MICRO OHMS, L_SWITCH = 0.35 MICRO HENRIES C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC 0NODE09NODE25 30.E-6 0.35E-3 0NODE10NODE26NODE09NODE25 0NODE11NODE27NODE09NODE25 0NODE12NODE28NODE09NODE25 0NODE13NODE29NODE09NODE25 0NODE14NODE30NODE09NODE25 0NODE15NODE31NODE09NODE25 0NODE16NODE32NODE09NODE25 C --- INDUCTORS R_IND = 250 MICRO OHMS, L_IND = 20 MICRO HENRIES C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC 0NODE33NODE41 75.E-6 3.0E-3 0NODE34NODE41NODE33NODE41 0NODE35NODE41NODE33NODE41 0NODE36NODE41NODE33NODE41 0NODE37NODE41NODE33NODE41 0NODE38NODE41NODE33NODE41 0NODE39NODE41NODE33NODE41 0NODE40NODE41NODE33NODE41 C --- INTERNAL BUSWORK R_INT = 25 MICRO OHMS L_INT = 1 MICRO HENRY C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC 0NODE25NODE33 25.E-6 1.0E-3 0NODE26NODE34NODE25NODE33 0NODE27NODE35NODE25NODE33 0NODE28NODE36NODE25NODE33 0NODE29NODE37NODE25NODE33 0NODE30NODE38NODE25NODE33 0NODE31NODE39NODE25NODE33 0NODE32NODE40NODE25NODE33 C --- DIODE IMPEDANCE: R_DIODE = 73 MICRO OHMS , L_DIODE = 0.2 MICRO HENRIES C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC 0 NODE17 73.E-6 0.2E-3 0 NODE18 NODE17 0 NODE19 NODE17 0 NODE20 NODE17 0 NODE21 NODE17 0 NODE22 NODE17 0 NODE23 NODE17 0 NODE24 NODE17 C --- EXTERNAL BUSWORK: R_BUS = 37.3 MICRO OHMS, L_BUS = 0.47 MICRO HENRIES C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC 0NODE41VBR 37.3E-6 0.47E-3 0VBR I4I 1.E-4 0I4I I4O 4.2E-3 0I4O IRAIL 1.0E-9 $VINTAGE, 0 BLANK card after last electric network branch C INPUT SWITCH CARDS HERE IRAIL I1 -1.0 1000.00 1 C --- SWITCH DATA. C --- 8 IGNITRON SWITCHES C --- <---TCLOSE<----TOPEN NODE01NODE09 0. 50.E-3 C --- TACS CONTROLLED SWITCHES USING FLAGS 13NODE02NODE10 FLAG11 1 13NODE03NODE11 FLAG12 1 13NODE04NODE12 FLAG13 1 13NODE05NODE13 FLAG14 1 13NODE06NODE14 FLAG15 1 13NODE07NODE15 FLAG16 1 13NODE08NODE16 FLAG17 1 C C --- DIODE DATA: 8 CROWBAR DIODES. (TACS CONTROLLED) C --- GRID SIGNAL TURNS ON DIODE, TACS SIGNAL KEEPS THE DIODE ON REGARDLESS C --- OF "RINGING VOLTAGE" ACROSS THE DIODE. THIS HELPS TO SMOOTH THE SOLUTION C --- ESPECIALLY WHEN THE BANKS ARE TRIGGERED AT DIFFERENT TIMES. C <---N1<---N2<------VON<----IHOLD<---TEDION CLOSED <-GRID<-TACS XX 11NODE17NODE25 0. 0. 0. N1 NODE17 10 11NODE18NODE26 0. 0. 0. N2 NODE18 10 11NODE19NODE27 0. 0. 0. N3 NODE19 10 11NODE20NODE28 0. 0. 0. N4 NODE20 10 11NODE21NODE29 0. 0. 0. N5 NODE21 10 11NODE22NODE30 0. 0. 0. N6 NODE22 10 11NODE23NODE31 0. 0. 0. N7 NODE23 10 11NODE24NODE32 0. 0. 0. N8 NODE24 10 BLANK card ends all switch cards C SOURCE CARDS follow .... C MASS DRIVER EQUIVALENT CURRENT SOURCES 60I1 -1 60I2 -1 60I3 -1 60I4I -1 60I4O -1 C --------------+------------------------------ C From bus name | Names of all adjacent busses. C --------------+------------------------------ C I1 |TERRA *I2 *IRAIL * C I2 |I1 *I3 * C I3 |TERRA *I2 * C NODE01 |TERRA *NODE09* C NODE02 |TERRA *NODE10* C NODE03 |TERRA *NODE11* C NODE04 |TERRA *NODE12* C NODE05 |TERRA *NODE13* C NODE06 |TERRA *NODE14* C NODE07 |TERRA *NODE15* BLANK card after last electric network source C --- INITIAL CONDITIONS: INITIAL VOLTAGE ON THE 8 CAPACITORS 2NODE01 22.E3 2NODE02 22.E3 2NODE03 22.E3 2NODE04 22.E3 2NODE05 22.E3 2NODE06 22.E3 2NODE07 22.E3 2NODE08 22.E3 C --- INITIAL CONDITIONS: LINEAR BRANCH CURRENTS 3NODE01 0. 22.E3 3NODE02 0. 22.E3 3NODE03 0. 22.E3 3NODE04 0. 22.E3 3NODE05 0. 22.E3 3NODE06 0. 22.E3 3NODE07 0. 22.E3 3NODE08 0. 22.E3 C --- LIST OF NODE VOLTAGE OUTPUT REQUESTS NODE01I1 C Step Time I1 NODE01 NODE02 NODE03 NODE04 NODE05 C TERRA TERRA TERRA TERRA TERRA TERRA C C I1 IRAIL I1 NODE01 NODE02 NODE03 C I1 TERRA TERRA TERRA TERRA C C NODE08 TACS TACS TACS TACS TACS C TERRA VDOT VEL X MASS1 IRAIL C C TACS TACS TACS TACS TACS TACS C MDOT ESTORE VBR EAUG EBR ESHOCK C C TACS TACS TACS TACS TACS C PLSMKE HEAT EFRIC ETRAP EBAL C *** Switch "IRAIL " to "I1 " closed before 0.00000000E+00 sec. C *** Switch "NODE01" to "NODE09" closed after 0.00000000E+00 sec. C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 0.0 C 1 .5E-5 .1346699E7 -.13272E9 .163913E-3 .163913E-3 .163913E-3 .163913E-3 C 227.865632 6033.34599 3.36674866 -331.8007 .409782E-9 .409782E-9 C .409782E-9 0.0 738. 0.0 2.5 6033.34599 C 0.0 262.0891 10364.4902 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 -262.81712 C 2 .1E-4 .1028069E8 -.35417E9 0.0 0.0 0.0 0.0 C 663.274543 16104.2329 32.4352182 -1549.0272 .819564E-9 .819564E-9 C .819564E-9 0.0 738. 0.0 2.5 16104.2329 C 0.0 1867.29349 14205.3015 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 -1873.9365 C Warning. The powers (NODE01, TERRA) through (NODE07, TERRA) should be C ------- zero initially. But these are floating (near) zeros. The problem C comes from the current. Turning the debugger on or off may change C these from near zeros to exact zeros, or vice versa. The SUBTS2 C computation involves the cancellation of 2 very large numbers to C give the current. If numbers such as 1.E-4 are seen, this is the C best that can be guaranteed using 64 bits. WSM + THL, 8 August 96 BLANK card ending node voltage outputs C Valve "NODE22" to "NODE30" closing after 2.56000000E-03 sec. C Switch "NODE08" to "NODE16" closing after 2.61500000E-03 sec. C Valve "NODE23" to "NODE31" closing after 2.93000000E-03 sec. C Valve "NODE24" to "NODE32" closing after 3.10000000E-03 sec. C 1000 .005 .9701709E8 .1788576E8 .114869E8 .3849588E9 -.530779E9 -.327226E9 C 4394.39452 857904.981 5103.30646 -.415356E7 -.407104E7 -.389447E7 C -.387852E7 0.0 2415.92363 8.18382873 2.53769379 857904.981 C 0.0 .5299207E7 -4437.3114 872163.762 .1706545E8 272689.202 C 110003.436 .1023366E7 353147.438 .1059442E7 181783.733 C Variable max: .102486E9 .3091743E9 .141619E10 .316849E10 .38723E10 .31399E10 C 4394.39452 .1634357E7 5103.30646 0.0 .286847E-7 .553206E-7 C .214316E-6 534570.044 2415.92363 8.18382873 2.53769379 .1634357E7 C 10.1502923 .9999568E7 22826.1693 872163.762 .170705E8 272689.202 C 110003.436 .1023366E7 353147.438 .1059442E7 297386.202 C Times of max: .00499 .001105 .00109 .0013 .00178 .00235 C .005 .00152 .005 0.0 .35E-3 .675E-3 C .002615 .001515 .00493 .005 .00493 .00152 C .002975 .0029 .45E-4 .005 .004895 .00493 C .00493 .005 .00493 .00493 .004925 PRINTER PLOT 194 1. 0.0 5.5 TACS IRAIL { Axis limits: (0.000, 1.634) BLANK card ending plot cards BEGIN NEW DATA CASE C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC). C Contributed to ATP materials of the Can/Am user group February 1992 by: C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant C #203 - 1745 Martin Drive 705 Westtown Circle C White Rock/ South Surrey B.C. West Chester, PA 19382 C CANADA V4A 6Z1 USA C Phone: 604-535-6540 Phone: 610-344-0432 C FAX: 604-535-6548 C In July of 1993, Mr. Furst revised it again in preparation for his use C of it at Prof. Ned Mohan's University of Minnesota short course there. C Size 1-10: 43 63 56 3 230 18 167 0 0 0 C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0 C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999 NEW LIST SIZES 0 0 68 8 450 35 285 0 0 0 0 0 4700 0 0 0 0 0 12000 0 0 0 220 240000 C *********** A GENERIC 6 PULSE SVC MODEL ************************************ C C This is a conceptual model only, it must be refined C for any specific system; the control algorithm can be greatly improved. C C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer; C TCR's connected in delta. C C Thyristor gating pulses are phase locked to the current zero transition C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT; C individual phase open loop VAR control is used, with a superimposed. C slow voltage control. C C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s C value of the 34.5 kV phase to phase voltages, which are the TACS variables C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC, C the thyristors have to be blocked. One way of doing this is to punch C 1000000. in col. 17-24 of the thyristor switches 11. C C To get the SVC overall response plot the transformer ph-ph r.m.s secondary C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three C ph-ph r.m.s. voltages C C To get the VAR import/phase through the transformer secondary C plot QINA (TACS) C C To get the transformer secondary voltage (instant.) plot TRSA C C TRSA-XLA shows the switching of the phase to phase load C C RXAB-TRSB plots the current through one AB arm of the thyristor bridge C C For sake of simplicity, some of the TACS variables have not been C initialized, so ignore the first 25 ms of the plots. C C If in the "Superimposed Voltage Control Section the gain C of DVQ is set to zero, the model reverts to open loop VAR control PRINTED NUMBER WIDTH, 13, 2, ALLOW EVEN PLOT FREQUENCY { See April, 1998, newsletter (to allow IPLOT = 2 below) C For best results, do not use a time step more than 1/2 Degree (23.148 C microsec for 60 Hz). Here, to speed the illustration, we use twice that, C & only simulate for half as long (extend to 0.5 sec for more transients). C Free-format data input is used in order to specify DELTAT precisely: C DELTAT TMAX XOPT COPT EPSILN TOLMAT C .0000462962962962963, 0.25, 60., , , , , , , , , C That was the old, brute-force way. Alternative finesse first was made C available on 19 August 1998. As long as columns 1-16 involve no decimal C point, dT and T-max are replaced by points/cycle & end time in cycles: 360 15 60. { Points per cycle, simulation time in cycles, XOPT 1 4 1 2 1 -1 5 5 20 20 100 100 500 500 TACS HYBRID C C Firing pulses are derived from the current through the measuring inductances C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into C TACS from the measuring switches connecting the RM's in delta, C corresponding to the delta connected thyristor valves. C C The current lags the voltage 90 deg. and its zero transition produces C the firing signal at an alpha of 90 deg. C This is done by TACS level triggered switches Device 52. C The firing pulse delay is calculated by the variables DELAB/BC/CA C and implemented by TACS transport device Device 54; C C For convenience, the firing angle is initialized to alpha = 180 deg. C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system. C The required firing angle is then calculated backwards from the C 180 deg. point, by using the variable DELYA(B,C). C The actual firing angle is then DELAB = DELIN -DELYA etc. C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms. C Then DELAB= DELIN - DELYA =0.0 (90 deg.) C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees. C For 50 Hz, DELIN = 5.0 ms. C C *********** VOLTAGE AND REACTIVE REFERENCE ************* 11VREFD 1.0 C VAR reference C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.; C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase; C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV; C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u. 88QTCR = 33.3*10**6 C The VAR reference QREF should be determined so that the superimposed C voltage control changes the VAR flow as little as possible 88QREF = 0.30 C C *********** VOLTAGES TRANSFERRED FROM NETWORK ************* C C ******* Import 34.5 kV phase voltages, get phase to phase and normalize ***** C TRSA/B/C are the transformer secondary ph-g voltages C 90 - TACS voltage source driven by an EMTP network node voltage C (Rule Book p. 3-15) 90TRSA 90TRSB 90TRSC C the phase to phase voltages 99TRAB = TRSA - TRSB 99TRBC = TRSB - TRSC 99TRCA = TRSC - TRSA C normalize to get one p.u. for the phase to phase rms value 99TABX = TRAB/34500 99TBCX = TRBC/34500 99TCAX = TRCA/34500 C get the rms value of the A-B phase to phase voltage C Device 66 (Rule Book p. 3-32) 99TXNAB 66+TABX 60. 99TXNBC 66+TBCX 60. 99TXNCA 66+TCAX 60. C C ************** PHASE A FIRING PULSES ************************************** C C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15) 91RMAB C send square impulse at current zero Device 52 (Rule B. p. 3-21) 88FAB1 52+UNITY 1. 0. 0 RMAB 88FAB2 52+UNITY 1. 0. -1 RMAB C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23) 98FIAB1 54+FAB1 .0000 DELAB 98FIAB2 54+FAB2 .0000 DELAB C for a 50 Hz system the constant .004167 below should be changed to 0.005 88DELIN = .004167 { to initialize alpha to 180 deg. C C ************* PHASE B FIRING PULSES ************************************* C 91RMBC 88FBC1 52+UNITY 1. 0. 0 RMBC 88FBC2 52+UNITY 1. 0. -1 RMBC 98FIBC1 54+FBC1 .0000 DELBC 98FIBC2 54+FBC2 .0000 DELBC C C ************ PHASE C FIRING PULSES ************************************* C 91RMCA 88FCA1 52+UNITY 1. 0. 0 RMCA 88FCA2 52+UNITY 1. 0. -1 RMCA 98FICA1 54+FCA1 .0000 DELCA 98FICA2 54+FCA2 .0000 DELCA C C ************* OPEN LOOP VAR CONTROL ************************** C **** WITH SUPERIMPOSED VOLTAGE CONTROL *********** C C the following will be repeated for all three phases as the SVC C C ************ RACTIVE POWER FLOWS ********* C C calclate VAR transfer at transf. secondary 91TRXA { 34.5 kV side current through transformer C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22) 88TRIA 53+TRXA .00417 .0043 88TRVA 53+TRSA .00417 .0043 C the following equation for calculating VAR flow is from C Miller: Reactive power Control etc. (text book) p. 321 88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR C 91TRXB 88TRIB 53+TRXB .00417 .0043 88TRVB 53+TRSB .00417 .0043 88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR C 91TRXC 88TRIC 53+TRXC .00417 .0043 88TRVC 53+TRSC .00417 .0043 88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR C C ******************** SUPERIMPOSED VOLTAGE CONTROL ******************** C C ******** DELTA Q TO ADJUST VOLTAGE ************ C the average value of phase to phase voltage is 0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15 C the difference between ref. and actual voltage is C slow down the response by a (1/1+st) block 1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0 1.0 1.0 0.500 C the required VAR import taking voltage correction into account 0QRNEW +QREF +DVQ C ***************** PHASE A ERROR ****************************************** C C error in VAR import 0ERRQA +QRNEW -QINA 0QINCRA +ERRQA C the new reactor output is then given by the Steinmetz Algorithm as C the output at T-delT + QINCRA + QINCRB - QINCRC; C as shown below in calculating the new SVC VAR's C ****************** PHASE B ERROR **************************************** C 0ERRQB +QRNEW -QINB 0QINCRB +ERRQB C C ****************** PHASE C ERROR ***************************************** C 0ERRQC +QRNEW -QINC C 0QINCRC +ERRQC C C C **************** PHASE A PULSE DELAY CONTROL **************************** C the current firing angle is DELAB, this corresponds to an old reactor C p.u. current given by the following non linear relation corresponding C to the x = sigma-sin(sigma) function 99DLA1 = 1 - DELAB/.004167 C where DLA1 is the normalized conduction angle sigma between firing C angle alpha 90 and 180 degrees. C 99REOAB 56+DLA1 0.0 0.0 0.111 0.0022 0.222 0.0176 0.333 0.0575 0.444 0.1306 0.555 0.2414 0.666 0.3900 0.777 0.5718 0.888 0.7783 1.000 1.0000 9999. C the new reactor current demanded is the increment plus the old C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0 C this is applying the Steinmetz algorithm 0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00 C this is now reconverted into an angle, using the inverse of the C above relation, and becomes the new DELAB; (Rule Book p. 3-25 ) 99DELYAA56+INREAB 0.0 0.0 0.0022 0.111 0.0176 0.222 0.0575 0.333 0.1306 0.444 0.2414 0.555 0.3900 0.666 0.5718 0.777 0.7783 0.888 1.0000 1.000 9999. 99DELYA =DELYAA * 0.004167 C now smooth it out a bit 1DELAB +DELIN -DELYA 1.0 .0040 1.0 1.0 0.015 C C ****************** PHASE B PULSE DELAY CONTROL ************************** C 99DLB1 = 1 - DELBC/.004167 C 99REOBC 56+DLB1 0.0 0.0 0.111 0.0022 0.222 0.0176 0.333 0.0575 0.444 0.1306 0.555 0.2414 0.666 0.3900 0.777 0.5718 0.888 0.7783 1.000 1.000 9999. C 0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00 C 99DELYBB56+INREBC 0.0 0.0 0.0022 0.111 0.0176 0.222 0.0575 0.333 0.1306 0.444 0.2414 0.555 0.3900 0.666 0.5718 0.777 0.7783 0.888 1.000 1.000 9999. 99DELYB =DELYBB * 0.004167 C 1DELBC +DELIN -DELYB 1.0 0.0040 1.0 1.0 0.015 C C *************** PHASE C PULSE DELAY CONTROL ****************************** C 99DLC1 = 1 - DELCA/.004167 C 99REOCA 56+DLC1 0.0 0.0 0.111 0.0022 0.222 0.0176 0.333 0.0575 0.444 0.1306 0.555 0.2414 0.666 0.3900 0.777 0.5718 0.888 0.7783 1.000 1.000 9999. C 0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00 C 99DELYCC56+INRECA 0.0 0.0 0.0022 0.111 0.0176 0.222 0.0575 0.333 0.1306 0.444 0.2414 0.555 0.3900 0.666 0.5718 0.777 0.7783 0.888 1.000 1.000 9999. 99DELYC =DELYCC * 0.004167 C 1DELCA +DELIN -DELYC 1.0 0.0040 1.0 1.0 0.015 C C ***************** REACTOR SWITCHING *************************************** C C control signals to switch reactive load 'XLA/B/C' on and off C see TYPE 12 switches in power network. C TACS source (Rule Book p. 3-14) 23FRLA 1000. 0.200 0.100 0.2 23FRLB 1000. 0.200 0.100 0.2 23FRLC 1000. 0.200 0.100 10.0 C C initializations 77VLLAVG 1.0 77TXNAB 1.0 77QRNEW .30 77QINA .30 77QINB .30 77QINC .30 C C ********* TACS OUTPUTS ************ C 33TXNAB TXNBC TXNCA ERRQA VLLAVG 33QRNEW DVQ QINA BLANK end of TACS C C ************** NETWORK DATA ********************* C C ********* LINE TO SOURCE *********** C C transmission line (equivalent) from GEN source to transformer GENA TRFA 4.5 25.0 GENB TRFB 4.5 25.0 GENC TRFC 4.5 25.0 C fault level at trsf. 230 kV approx. 2083 MVA C C ************** MAIN TRANSFORMER ************** C C transformer capacitance to ground 10000pF C a very simple model, can be replaced with any more complex model C transformer 230000/34500 Y/D 100 MVA; In=250 A C x = 7.0% on 100 MVA C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance C TRANSFORMER busref imag flux busin rmag empty C ------------______------______------______------_____________________________- C C no saturation TRANSFORMER 0.7 700.0 X 0.7 700.0 { 100% 9999 1TRPA 0.80 36.0 1330 2TRXA TRXB 1.00 385 {372 TRANSFORMER X Y 1TRPB 2TRXB TRXC TRANSFORMER X Z 1TRPC 2TRXC TRXA C C transformer capacitance to ground and ph - ph 10000pF TRXA 0.01 TRXB 0.01 TRXC 0.01 C capacitance between phases TRXA TRXB 0.01 TRXB TRXC 0.01 TRXC TRXA 0.01 C C *********** HARMONIC FILTERS *************** C C 5th harmonic filter 20 MVAR TRSA TF5 2.38 44.5 TRSB TF5 2.38 44.5 TRSC TF5 2.38 44.5 C 7th harmonic filter 20 MVAR TRSA TF7 1.21 44.5 TRSB TF7 1.21 44.5 TRUC TF7 1.21 44.5 C C ******** TRANSFORMER SECONDARY LOAD *************** C 75 MW, 30 MVAR TRSA ND 13.67 5.47 TRSB ND 13.67 5.47 TRSC ND 13.67 5.47 C C shunt capacitor 20 MVAR TRSA 44.5 TRSB 44.5 TRSC 44.5 C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* C C switched reactor .1 sec. on .1 sec. off C see switch type 13 below and type 23 source in TACS C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load XLA NSR 34.00 34.00 XLB NSR 34.00 34.00 XLC NSR 34.00 34.00 C C C ************** SNUBBERS ************** C C the snubber parameters shown below are not necessarily the C values a manufacturer would choose for a 34.5 kV valve. C The parameters were selected so that only a small currrent flows C through the control reactor with the valves non conducting, C and overvoltages and spikes interfering with the firing control C are prevented. It is quite possible that a better combination C than that shown exists. C C in series with valves C CATAB RXAB .1 ANOAB RXAB .1 CATAB RXAB 4.0 ANOAB RXAB 4.0 C CATBC RXBC .1 ANOBC RXBC .1 CATBC RXBC 4.0 ANOBC RXBC 4.0 C CATCA RXCA .1 ANOCA RXCA .1 CATCA RECA 4.0 ANOCA RXCA 4.0 C C across valves C CATAB TRSA 2000. .1 ANOAB TRSA 2000. .1 C CATBC TRSB 2000. .1 ANOBC TRSB 2000. .1 C CATCA TRSC 2000. .1 ANOCA TRSC 2000. .1 C C ************* SVC CONTROLLED REACTOR ************* C C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm RXAB TRSB 0.1 35.71 1 RXBC TRSC 0.1 35.71 RXCA TRSA 0.1 35.71 C C *************** REACTOR FOR FIRING PULSE GENERATION ****** C C Fire angle reference measurement using delta connected reactors C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus TRSA RMXA 0.01 1 TRSB RMXB 0.01 TRSC RMXC 0.01 C The reactors are delta connected through measuring switches below RMAB RMXB 200. 20000. RMBC RMXC 200. 20000. RMCA RMXA 200. 20000. C BLANK end of branch data C *************** SWITCH DATA ***************8 C C current measurement in the auxiliary reactor for firing pulse generation C these switches complete the delta connection of the reactors C (Rule Book p.6A-9) RMXA RMAB MEASURING RMXB RMBC MEASURING RMXC RMCA MEASURING C C current measurement in the main transformer secondary TRXA TRSA MEASURING 1 TRXB TRSB MEASURING 0 TRXC TRSC MEASURING 0 C current measurement in the main transformer primary TRFA TRPA MEASURING 1 TRFB TRPB MEASURING 0 TRFC TRPC MEASURING 0 C C switch for on/off switching the 17.5 MVAR resistive-reactive load C (Rule Book p. 6C-1) 12TRSA XLA FRLA 11 12TRSB XLB FRLB 10 12TRSC XLC FRLC 10 C C VALVES C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR C Rule Book p. 6B-1 11TRSA CATAB 00. 15.0 FIAB1 1 11ANOAB TRSA 00. 15.0 FIAB2 1 11TRSB CATBC 0000. 15.0 FIBC1 1 11ANOBC TRSB 000. 15.0 FIBC2 1 11TRSC CATCA 0000. 15.0 FICA1 1 11ANOCA TRSC 000. 15.0 FICA2 1 C BLANK end of switch data C C AC sources C 230 kV supply 14GENA 187794. 60. 0. -1. 14GENB 187794. 60. 240. -1. 14GENC 187794. 60. 120. -1. C --------------+------------------------------ C From bus name | Names of all adjacent busses. C --------------+------------------------------ C GENA |TRFA * C TRFA |GENA *TRPA * C GENB |TRFB * C TRFB |GENB *TRPB * C GENC |TRFC * C TRFC |GENC *TRPC * C X |TERRA *TERRA *TRPA * C TRPA |TRFA * X* C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA * C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB * BLANK end of source cards C Total network loss P-loss by summing injections = 9.766831747973E+07 C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04 C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04 C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04 C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07 C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07 C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06 C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07 C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06 C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06 C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8 C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951 TRSA TRFA { Names of nodes for which voltage is to be outputted C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS C TRSA TRPA XLA TRSB RMXA TXNAB C C TACS TACS TACS TACS TACS TACS TACS C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state. C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state. C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state. C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state. C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state. C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state. C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state. C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state. C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state. C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0 C 0.0 0.0 0.0 1.0 0.3 0.0 0.3 C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562 C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0 C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec. C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949 C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0 BLANK end of output requests C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec. C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec. C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec. C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec. C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec. C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec. C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec. C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec. C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036 C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946 C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099 C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066 C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259 C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481 C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0 C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0 C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0 C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4 PRINTER PLOT 193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient BLANK end of plot requests BEGIN NEW DATA CASE C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC). C This is very similar to the preceding 4th case except that here newer C MODELS replaces TACS for the control system modeling. The same C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed C this during February of 1995 (see January and April newsletters). To C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec. NEW LIST SIZES 0 0 68 8 450 35 285 0 0 0 0 0 4700 0 64800 0 0 0 0 0 C 0 0 220 126000 0 0 220 30 126000 { 16 March 2007 C About the preceding 2 lines, List 27 default = 26 resulted in TACS1 overflow C Since year 1 (1995), this went undetected until Orlando Hevia's G95 testing 240000 742 PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations C DELTAT TMAX XOPT COPT EPSILN TOLMAT C 46.296-6 0.600 60. ---- Gabor Furst's original data card .0000462962962962963, 0.100, 60., , , , , , , , , C the time step is the cycle time 1/60 sec. divided by 360 degrees C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP C 9999 1 0 1 1 1 3 1 2 1 -1 5 5 20 20 100 100 500 500 C The running of this MODELS file requires the latest version of TPbig C with the increased list sizes for MODELS C C The example demonstrates a generic SVC connected to a 230/34.5 kV C step-down transformer, with an SVC reactor rating of 100 MVA. C The SVC is tested by switching on and off a 25 MVA 0.7 p.f. C load on the 34.5 kV bus C plot vatiable 'vllavg' for SVC response C ============================================================================== MODELS INPUT trma {v(TRSA)} -- transf. sec. voltage trmb {v(TRSB)} trmc {v(TRSC)} -- irab {i(RMAB)} -- aux. reactor delata current irbc {i(RMBC)} irca {i(RMCA)} -- itra {i(TRXA)} -- transf. sec. current itrb {i(TRXB)} itrc {i(TRXC)} -- rxab {i(TRXA)} -- main reactor current rxbc {i(TRXB)} rxca {i(TRXC)} -- OUTPUT -- firing signals FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals FRLA, FRLB, FRLC -- reactor switching -- MODEL svcmod -- MODELS version of DC 22 subcase 4 -- -- DATA omega {dflt: 2*pi*freq} dt {dflt :0.25/freq} -- CONST freq {val: 60} tper {val: 1/freq} qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase qref {val: 0.00} -- set 0 for this example delin {val: 0.25/freq} -- initialization for firing delay (60Hz) tpimp {val: 0.200} -- test reactor switching cycle ton {val: 0.100} -- reactor on time tstart {val: 0.3} -- start of switching reactors -- VAR tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3 dvq, error, fdb, vref, verr, inreact, delyi vtrsec[1..3], vtrff[1..3] f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3] vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3] errq[1..3], qincr[1..3] -- HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages -- dvq {dflt: 0} -- forward block output error {dflt: 0} -- error signal fdb {dflt: 0} -- feedback -- ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles -- INPUT trma {dflt: trma} -- trsf sec. voltage ph-g trmb {dflt: trmb} trmc {dflt: trmc} -- irab {dflt: irab} -- svc reactor currents irbc {dflt: irbc} irca {dflt: irca} -- itra {dflt: itra} -- transf. sec. current itrb {dflt: itrb} itrc {dflt: itrc} -- rxab {dflt: 0} -- main reactor delta current rxbc {dflt: 0} rxca {dflt: 0} -- OUTPUT ficat[1..3], fian[1..3] -- firing signals to thyristors ttt1, ttt2, ttt3 -- control signal to switch reactors -- INIT vref:= 1.0 -- reference voltage verr:= 0 -- voltage error tt := timestep/tper -- integration multiplier vrms[1..3] := 0 ficat[1..3]:= 0 -- firing pulse to cathode fian[1..3]:= 0 -- firing pulse to anode qin[1..3]:= 0.3 -- rective power ttt1:= 0 -- test rector breaker control -- ENDINIT -- DELAY CELLS DFLT: 100 CELLS(vtrsec[1..3]):500 CELLS(vtrff[1..3]):500 -- -- liearization of angel versus p.u. current through thyristors FUNCTION dely POINTLIST -- angle current ( 0.0, 0.0) ( 0.0022, 0.111) ( 0.0176, 0.222) ( 0.0575, 0.333) ( 0.1306, 0.444) ( 0.2414, 0.555) ( 0.3900, 0.666) ( 0.5718, 0.777) ( 0.7783, 0.888) ( 1.0000 1.000) -- -- ************** EXEC **************** EXEC -- convert to arrays ir[1..3] := [irab, irbc, irca] vtrsec[1..3] := [trma, trmb, trmc] -- -- control signals for the type 12 switches in EMTP -- to switch test reactors -- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart) ttt2 := ttt1 ttt3 := ttt1 -- -- form phase to phase voltages and normalize vtrff[1] :=(trma - trmb)/34500 vtrff[2] :=(trmb - trmc)/34500 vtrff[3] :=(trmc - trma)/34500 -- -- calculation of voltage rms values FOR i := 1 TO 3 DO vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2)) ENDFOR -- -- calculate reactive through transformer -- qina, qinb, qinc -- see DC22-3 for explanation itr[1..3] := [itra, itrb, itrc] FOR i:= 1 TO 3 DO tri[i]:= delay(itr[i],tper/4) trv[i]:= delay(vtrsec[i],tper/4) qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr ENDFOR -- -- generate firing pulses 500 microsec wide -- if t> timestep then -- FOR i := 1 TO 3 DO f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 ) f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 ) ENDFOR -- delayed pulses caclulated -- by var and voltage control FOR i:= 1 TO 3 DO ficat[i] := delay(f1[i],del[i]) -- cathode fian[i] := delay(f2[i],del[i]) -- anode ENDFOR endif -- average ph-ph voltage normalized vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85} -- -- alternative to above but not used in this model -- 12 pulse rectfication with output smoothed alternative to rms signal -- smoothing rough, should be done with 120 c/s filter, not used here -- shown as possible alternative only -- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41 -- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 ) -- -- voltage error forward and feedback loop verr:= vllavg - vref -- combine endcombine used because forward - feedback loop COMBINE AS first_group error := sum( 1|vllavg - 1|vref - 1|fdb) -- forward gain . 1/1+stdelay laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1) -- derivative feedback claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 ) ENDCOMBINE -- FOR i := 1 TO 3 DO -- total error the qref - qin[i] component may be omitted -- it is usefull for unbalanced loads errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0} ENDFOR -- calculate new firing angles -- phase A FOR i:= 1 TO 3 DO k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C -- apply phase unbalance correction inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0} -- linearize and convert from firing angle to time delay delyi := delin - dely(inreact ) * dt claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:= 1.0|s0/(1.0|s0 + 0.005|s1) ENDFOR -- ENDEXEC ENDMODEL USE svcmod AS test INPUT trma:= trma trmb:= trmb trmc:= trmc irab:= irab irbc:= irbc irca:= irca itra:= itra itrb:= itrb itrc:= itrc -- OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2] FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3] FRLA := ttt1 FRLB := ttt2 FRLC := ttt3 ENDUSE C RECORD test.vrms[1] AS vrmsab test.vrms[2] AS vrmsbc test.vrms[3] AS vrmsca test.vllavg AS vllavg test.error AS error test.dvq AS dvq test.fdb AS fdb test.verr AS verr ENDMODELS C ************** NETWORK DATA ********************* C C ********* LINE TO SOURCE *********** C C transmission line (equivalent) from GEN source to transformer GENA TRFA 4.5 25.0 GENB TRFB 4.5 25.0 GENC TRFC 4.5 25.0 C fault level at trsf. 230 kV approx. 2083 MVA C C ************** MAIN TRANSFORMER ************** C C transformer capacitance to ground 10000pF C a very simple model, can be replaced with any more complex model C transformer 230000/34500 Y/D 100 MVA; In=250 A C x = 7.2% on 100 MVA C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance C TRANSFORMER busref imag flux busin rmag empty C ------------______------______------______------_____________________________- C C no saturation TRANSFORMER 0.7 700.0 X 0.7 700.0 { 100% 9999 1TRPA 0.80 36.0 1330 2TRXA TRXB 1.00 375 {385 TRANSFORMER X Y 1TRPB 2TRXB TRXC TRANSFORMER X Z 1TRPC 2TRXC TRXA C C transformer capacitance to ground and ph - ph 10000pF TRXA 0.01 TRXB 0.01 TRXC 0.01 C capacitance between phases TRXA TRXB 0.01 TRXB TRXC 0.01 TRXC TRXA 0.01 C C *********** HARMONIC FILTERS *************** C C 5th harmonic filter 20 MVAR TRSA TF5 2.38 44.6 1 TRSB TF5 2.38 44.6 TRSC TF5 2.38 44.6 C 7th harmonic filter 10 MVAR TRSA TF7 2.43 22.3 1 TRSB TF7 2.43 22.3 TRUC TF7 2.43 22.3 C C ******** TRANSFORMER SECONDARY LOAD *************** C 70 MW, 30 MVAR TRSA ND 13.67 5.47 TRSB ND 13.67 5.47 TRSC ND 13.67 5.47 C C shunt capacitor 20 MVAR TRSA 44.5 TRSB 44.5 TRSC 44.5 C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* C C switched .1 sec. on .1 sec. off C see switch type 13 below and type 23 source in TACS C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load C XLA NSR 34.0 34.0 XLB NSR 34.0 34.0 XLC NSR 34.0 34.0 C C ************** SNUBBERS ************** C C the snubber parameters shown below are not necessarily the C values a manufacturer would choose for a 34.5 kV valve. C The parameters were selected so that only a small currrent flows C through the control reactor with the valves non conducting, C and overvoltages and spikes interfering with the firing control C are prevented. It is quite possible that a better combination C than that shown exists. C C in series with valves C CATAB RXAB .1 ANOAB RXAB .1 CATAB RXAB 4.0 ANOAB RXAB 4.0 C CATBC RXBC .1 ANOBC RXBC .1 CATBC RXBC 4.0 ANOBC RXBC 4.0 C CATCA RXCA .1 ANOCA RXCA .1 CATCA RECA 4.0 ANOCA RXCA 4.0 C C across valves C CATAB TRSA 2000. .1 ANOAB TRSA 2000. .1 C CATBC TRSB 2000. .1 ANOBC TRSB 2000. .1 C CATCA TRSC 2000. .1 ANOCA TRSC 2000. .1 C C ************* SVC CONTROLLED REACTOR ************* C C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm RXAB TRSB 0.1 35.71 1 RXBC TRSC 0.1 35.71 RXCA TRSA 0.1 35.71 C C *************** REACTOR FOR FIRING PULSE GENERATION ****** C C Fire angle reference measurement using delta connected reactors C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus TRSA RMXA 0.01 1 TRSB RMXB 0.01 TRSC RMXC 0.01 C The reactors are delta connected through measuring switches below RMAB RMXB 200. 20000. RMBC RMXC 200. 20000. RMCA RMXA 200. 20000. C BLANK end of branch data C *************** SWITCH DATA ***************8 C C current measurement in the auxiliary reactor for firing pulse generation C these switches complete the delta connection of the reactors C (Rule Book p.6A-9) RMXA RMAB MEASURING 1 RMXB RMBC MEASURING 1 RMXC RMCA MEASURING 1 C C current measurement in the main transformer secondary TRXA TRSA MEASURING TRXB TRSB MEASURING TRXC TRSC MEASURING C current measurement in the main transformer prinmary TRFA TRPA MEASURING TRFB TRPB MEASURING TRFC TRPC MEASURING C C switch for on/off switching the 36.6 MVAR resistive-reactive load C (Rule Book p. 6C-1) 12TRSA XLA FRLA 1 12TRSB XLB FRLB 1 12TRSC XLC FRLC 1 C C VALVES C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR C Rule Book p. 6B-1 11TRSA CATAB 100. 35.0 FIAB1 1 11ANOAB TRSA 100. 35.0 FIAB2 1 11TRSB CATBC 100. 35.0 FIBC1 1 11ANOBC TRSB 100. 35.0 FIBC2 1 11TRSC CATCA 100. 35.0 FICA1 1 11ANOCA TRSC 100. 35.0 FICA2 1 C BLANK end of switch data C C AC sources C 230 kV supply 14GENA 187794. 60. 0. -1. 14GENB 187794. 60. 240. -1. 14GENC 187794. 60. 120. -1. C --------------+------------------------------ BLANK end of source cards C Output for steady-state phasor switch currents. C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04 C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04 C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04 C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06 C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06 C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06 C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06 C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06 C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06 C TRSA XLA Open Open .... Etc. (all remaining switches) C C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8 C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739 TRSA TRFA { Node voltage output requests C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA C C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC C C MODELS MODELS MODELS MODELS MODELS MODELS C VRMSCA VLLAVG ERROR DVQ FDB VERR C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state. C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state. C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state. C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state. C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state. C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state. C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state. C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state. C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state. C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491 C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15 C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865 C .046333037 .85 .007233288 -.37886586 -.15723329 -.15 C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0 C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142 C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15 BLANK end of output requests C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0 C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633 C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629 C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119 C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273 C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165 C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625 C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407 C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111 PRINTER PLOT 193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930) BLANK end of plot requests BEGIN NEW DATA CASE BLANK EOF 10 June 2002, WSM adds output to the screen in case of DISK use. Without any EATS, this is simple as should be illustrated in the October (or later) newsletter. But with EATS, there are variations depending upon: 1) the subcase number; and 2) whether NEW LIST SIZES (NLS) is being used. The subject is mentioned here because the preceding data _does_ involve NLS. So, if EATS is requested from STARTUP (FLZERO < 0), expect the following new output to the screen: ---- Begin EATS for subcase number KNTSUB = 1 ---- Begin EATS for subcase number KNTSUB = 2 ---- Begin EATS for subcase number KNTSUB = 3 ---- Begin next subcase number KNTSUB = 4 ---- Begin next subcase number KNTSUB = 5 The NLS requests in the 4th and 5th subcases conflict with EATS, and NLS takes precedence.