From b18347ffc9db9641e215995edea1c04c363b2bdf Mon Sep 17 00:00:00 2001 From: Angelo Rossi Date: Wed, 21 Jun 2023 12:04:16 +0000 Subject: Initial commit. --- sources/algebra.cpp | 362 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 362 insertions(+) create mode 100644 sources/algebra.cpp (limited to 'sources/algebra.cpp') diff --git a/sources/algebra.cpp b/sources/algebra.cpp new file mode 100644 index 0000000..b927435 --- /dev/null +++ b/sources/algebra.cpp @@ -0,0 +1,362 @@ +//-*- mode: c++; indent-tabs-mode: t; coding: utf-8; show-trailing-whitespace: t -*- + +// file algebra.cpp + +#include "algebra.hpp" + +namespace algebra { + + // subroutine cdiz. + + bool cdivz (double *ar, double *ai, const double &br, const double &bi, const double &cr, const double &ci, const int &nKSn) + { + bool bReturnValue = false; + double nFAC; + double nSR; + // + if (ar && ai) { + nFAC = cr * cr + ci * ci; + nFAC = 1.0 / nFAC; + nSR = br * nFAC * cr + bi * nFAC * ci; + *ai = bi * nFAC * cr - br * nFAC * ci; + *ar = nSR; + if (nKSn < 0) { + *ar = -*ar; + *ai = -*ai; + } + bReturnValue = true; + } + return bReturnValue; + } + + // subroutine cmultz. + + bool cmultz (double *ar, double *ai, const double &br, const double &bi, const double &cr, const double &ci, const int &nKSn) + { + bool bReturnValue = false; + // + if (ar && ai) { + *ar = br * cr - bi * ci; + *ai = bi * cr - br * ci; + if (nKSn < 0) { + *ar = -*ar; + *ai = -*ai; + } + } + return bReturnValue; + } + + // subroutine trgwnd. + + bool trgwnd (const double &x, double *d17) + { + bool bReturnValue = false; + int n13; + // + if (d17) { + *d17 = x; + if (fabs(x) >= 25000.0) { + n13 = x / (2.0 * M_PI); + *d17 -= 2.0 * n13 * M_PI; + if (blkcom::nIprsUp >= 1) + *((std::ostream *) blkcom::pLFiles[ 5 ]) << " Angle unwind in \"trgwnd\" called by \"rfunl1\". nchain, x, d17 =" << blkcom::nChain << x << *d17 << std::endl; + } + bReturnValue = true; + } + return bReturnValue; + } + + // subroutine multmx. + bool multmx(std::vector &sA, \ + std::vector &sB, \ + std::vector &sC, \ + std::vector &sTemp, \ + const size_t &n) + { + // Subroutine multmx forms the matrix product (c) = (a)(b) where + // matrices (a), (b), and (c) are all n by n square arrays. + // Array 'temp' is a scratch working area of not less than 2n + // cells. Arrays (b) and (c) may be identical, thereby placing + // the product (a)(b) back into (b) . See subroutine 'mult' + // which is called herein, for details about the storage scheme used + // for these real, symmetric matrices. + bool bReturnValue = false; + long int l, ll0; + size_t i, ii; + size_t j; + size_t m; + // + ll0 = 0; + ii = 0; + for(j = 1; j <= n; j++) { + for(i = 1; i <= n; i++) { + if(i > j) { + l += (i - 1); + } else { + l = ii + i; + } + sTemp[ i - 1 ] = sB[ l - 1 ]; + } + m = n + i; + std::vector sTempX(sTemp.begin(), sTemp.begin() + n); + std::vector sTempY(sTemp.begin() + m - 1, sTemp.begin() + n); + bReturnValue = algebra::mult(sA, \ + sTempX, \ + sTempY, \ + n, \ + ll0) && \ + movecopy::move(sTemp.data() + m - 1, sC.data() + ii, j); + ii += j; + } + return bReturnValue; + } + + // subroutine mult. + bool mult(std::vector &sA, \ + std::vector &sX, \ + std::vector &sY, \ + const size_t &n, \ + long int &icheck) + { + bool bReturnValue = false; + double xx; + double yy; + size_t i, ii; + size_t k; + // + ii = 0; + k = 0; + FOREVER { + ++k; + if(k > n) + break; + xx = sX[ k - 1 ]; + yy = sY[ k - 1 ]; + if(icheck == 0) + yy = 0.0; + if(icheck < 0) + yy = -yy; + for(i = 1; i <= k; i++) { + ++ii; + sY[ i - 1 ] += sA[ ii - 1 ] * xx; + yy += sA[ ii - 1 ] * sX[ i - 1 ]; + sY[ k - 1 ] = yy; + } + bReturnValue = true; + } + return bReturnValue; + } + + // subroutine dgelg. + void dgelg(std::vector &sR, \ + std::vector &sA, \ + const size_t &m, \ + const size_t &n, \ + const float &eps, \ + int &ier) + { + /* + * Purpose: + * to solve a general system of simultaneous linear equations. + * + * Usage: + * call dgelg(r, a, m, n, eps, ier) + * + * Description of parameters: + * r - double precision m by n right hand side matrix + * (destroyed). On return r contains the solutions + * of the equations. + * a - double precision m by m coefficient matrix + * (destroyed). + * m - the number of equations in the system. + * n - the number of right hand side vectors. + * eps - single precision input constant which is used as + * relative tolerance for test on loss of + * significance. + * ier - resulting error parameter coded as follows + * ier=0 - no error, + * ier=-1 - no result because of m less than 1 or + * pivot element at any elimination step + * equal to 0, + * ier=k - warning due to possible loss of signifi- + * cance indicated at elimination step k+1, + * where pivot element was less than or + * equal to the internal tolerance eps times + * absolutely greatest element of matrix a. + * + * Remarks: + * Input matrices r and a are assumed to be stored columnwise + * in m*n resp. m*m successive storage locations. On return + * solution matrix r is stored columnwise too. + * The procedure gives results if the number of equations m is + * greater than 0 and pivot elements at all elimination steps + * are different from 0. However warning ier=k - if given - + * indicates possible loss of significance. In case of a well + * scaled matrix a and appropriate tolerance eps, ier=k may be + * interpreted that matrix a has the rank k. No warning is + * given in case m=1. + * + * Method: + * Solution is done by means of gauss-elimination with + * complete pivoting. + */ + size_t i, ii, ist, j, k, l, lend, ll, lst, mm, nm; + double piv, pivi, tb, tol; + /* + */ + if(m <= 0) + goto a23; + ier = 0; + piv = 0.0; + mm = m * m; + nm = n * m; + for(l = 1; l <= mm; l++) { + tb = fabs(sA[ l - 1 ]); + if(tb > piv) { + piv = tb; + i = l; + } + } + tol = eps * piv; + lst = 1; + for(k = 1; k <= m; k++) { + if(piv <= 0.0) + goto a23; + if(ier != 0) + goto a7; + if(piv > tol) + goto a7; + ier = (long int) k - 1; + + a7: + pivi = 1.0 / sA[ i - 1 ]; + j = (i - 1) / m; + i = i - j * m - k; + j = j + 1 - k; + for(l = k; l <= nm; l += m) { + ll = l + i; + tb = pivi * sR[ ll - 1 ]; + sR[ ll - 1 ] = sR[ l - 1 ]; + sR[ l - 1 ] = tb; + } + if(k >= m) + goto a18; + lend = lst + m - k; + if(j <= 0) + goto a12; + ii = j * m; + for(l = lst; l <= lend; l++) { + tb = sA[ l - 1 ]; + ll = l + ii; + sA[ l - 1 ] = sA[ ll - 1 ]; + sA[ ll - 1 ] = tb; + } + + a12: + for(l = lst; l <= mm; l += m) { + ll = l + i; + tb = pivi * sA[ ll - 1 ]; + sA[ ll - 1 ] = sA[ l - 1 ]; + sA[ l - 1 ] = tb; + } + sA[ lst - 1 ] = j; + piv = 0.0; + ++lst; + j = 0; + for(ii = lst; ii <= lend; ii++) { + pivi = -sA[ ii - 1 ]; + ist = ii + m; + ++j; + for(l = ist; l <= mm; l += m) { + ll = l - j; + sA[ l - 1 ] += pivi * sA[ ll - 1 ]; + tb = fabs(sA[ l - 1 ]); + if(tb > piv) { + piv = tb; + i = l; + } + } + for(l = k; l <= nm; l += m) { + ll = l + j; + sR[ ll - 1 ] += pivi * sR[ l - 1 ]; + } + } + lst += m; + } + + a18: + if(m > 1) + goto a19; + if (m == 1) + goto a22; + goto a23; + + a19: + ist = mm + m; + lst = m + 1; + for(i = 2; i <= m; i++) { + ii = lst - i; + ist -= lst; + l = ist - m; + l = (long int) (sA[ l - 1 ] + 0.5); + for(j = ii; j <= nm; j += m) { + tb = sR[ j - 1 ]; + ll = j; + for(k = ist; k <= mm; k += mm) { + ++ll; + tb -= sA[ k - 1 ] * sR[ ll - 1 ]; + } + k = j + l; + sR[ j - 1 ] = sR[ k - 1 ]; + sR[ k - 1 ] = tb; + } + } + + a22: + return; + + a23: + ier = -1; + } + + // subroutine matmul + void matmul (double aum[ 3 ][ 3 ], double bum[ 3 ][ 3 ]) + { + size_t n1, n2, n3, n5; + double cum[ 3 ][ 3 ]; + // + n5 = 3; + for(n1 = 1; n1 <= n5; n1++) { + for(n2 = 1; n2 <= n5; n2++) { + cum[ n1 - 1 ][ n2 - 1 ] = aum[ n1 - 1 ][ 0 ] * bum[ 0 ][ n2 - 1 ]; + for (n3 = 2; n3 <= n5; n3++) { + cum[ n1 - 1 ][ n2 - 1 ] = cum[ n1 - 1 ][ n2 - 1 ] + aum[ n1 - 1 ][ n3 - 1 ] * bum[ n3 - 1 ][ n2 - 1 ]; + } + } + } + for(n1 =1; n1 <= n5; n1++) { + for(n2 = 1; n2 <= n5; n2++) { + aum[ n1 - 1 ][ n2 - 2 ] = cum[ n1 - 1 ][ n2 - 1 ]; + } + } + } + + // subroutine matvec. + void matvec(float aum[ 3 ][ 3 ], float yum[ 15 ]) + { + size_t n1, n2, n3; + float x[ 3 ]; + // + n1 = 3; + for (n2 = 1; n2 <= n1; n2++) { + for (n3 = 1; n3 <= n1; n3++) { + x[ n2 - 1 ] = x[ n2 - 1 ] + aum[ n2 - 1 ][ n3 - 1 ] * yum[ n3 - 1 ]; + } + } + for (n2 = 1; n2 <= n1; n2++) + yum[ n2 - 1 ] = x[ n2 - 1 ]; + } + +} + +// end of file algebra.cpp -- cgit v1.2.3