From b18347ffc9db9641e215995edea1c04c363b2bdf Mon Sep 17 00:00:00 2001 From: Angelo Rossi Date: Wed, 21 Jun 2023 12:04:16 +0000 Subject: Initial commit. --- benchmarks/dcn14.dat | 466 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 466 insertions(+) create mode 100644 benchmarks/dcn14.dat (limited to 'benchmarks/dcn14.dat') diff --git a/benchmarks/dcn14.dat b/benchmarks/dcn14.dat new file mode 100644 index 0000000..5755054 --- /dev/null +++ b/benchmarks/dcn14.dat @@ -0,0 +1,466 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 1st of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for 500-Kv line energization +C that was adapted from BENCHMARK DC-37. There is only one phase, so +C this is a zero-sequence energization. The external Noda file DCN14A.DAT +C was produced by Taku's fitter as it processed DCN14A.CCC (see DCN13.DAT). +C DIAGNOSTIC 9 9 9 +PRINTED NUMBER WIDTH, 13, 2, + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +-1SEND REC Noda line DCN14A.DAT SHOW 5 { + REC 100. { R = 100 ohms at receiving end + PHASOR 1.0 { Extra node for sinusoidal value +-1SENDOPRECOP Noda line DCN14A.DAT SHOW 5 { +-1SENDOPREC37 .306 5.82 .012 200. +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SEND 408000. 60. -1. +14SENDOP 408000. 60. +C 14PHASOR 171783. 60. -63.03864 -1. Sept, 95 +C 14PHASOR 167553. 60. -63.92034 -1. { 24 Oct 95 +14PHASOR 161945. 60. -65.23648 -1. { 15 Dec 95 +BLANK card ending source data +C SEND 408000. 408000. 828.88239617701 1454.6091982437 .16909200882E9 .287215850537E8 +C 0.0 0.0 -1195.341747336 -55.2615112 .243849716456E9 43849716.4564481 +C +C REC 73659.800560567 167553.22961161 -736.5980056057 1675.5322961161 -.14037042377E9 +C -150493.5830348 -63.9203429 1504.9358303482 116.0796571 .19681465346E-8 +C Total network loss P-loss by summing injections = 1.420609591332E+10 +C Step Time RECOP REC REC37 SEND PHASOR SENDOP +C 0 0.0 0.0 73659.80056 0.0 408000. 73659.70723 0.0 +C 1 .5E-4 0.0 76407.32341 1689.017016 407927.5198 76483.18702 407927.5198 +C 2 .1E-3 0.0 79203.65163 1710.134462 407710.1048 79279.49271 407710.1048 +C 3 .15E-3 0.0 81971.46352 1730.644305 407347.8324 82047.63077 407347.8324 + 1 +C 400 .02 346718.6299 165886.2597 -124994.318 126078.9337 165889.8045 126078.9337 +C Variable maxima : 735330.9757 167562.0623 829744.565 408000. 167551.9757 407991.9464 +C Times of maxima : .00205 .0196 .0168 0.0 .00295 .01665 +C Variable minima : -736625.335 -167610.097 -883109.582 -407991.946 -167552.349 -407991.946 +C Times of minima : .00625 .0113 .00765 .00835 .0113 .00835 + 144 2. 0.0 20. PHASOR REC + 144 2. 0.0 20. RECOP REC37 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for all 3 phases (uncoupled) of +C 600 meters of 2-wire (core, sheath) cable that feed a GIS substation. This +C data came from Dr. Ivano Bonfanti of CESI in the summer of 1994. Using +C JMARTI modeling, the natural oscillation after deenergization is +C underdamped, and is unstable. Taku Noda stabilized this! The original +C simulation had dT = 1 usec and Tmax = 60 msec. To speed the simulation +C we increased the step size and decreased the end-time. See story in the +C January, 1995, newsletter. + 3.E-06 15.E-03 50. + 500 3 1 1 1 +C NO LOAD OPENING +C FEEDING SYSTEM MODEL Xo/Xd = 1.5 IEC OSCILLATIONS +C +51SORGERRETEIR 7.697 11.56 +52SORGESRETEIS 0.465 7.70 +53SORGETRETEIT + RETEIRCELLAR 33.0 2.27 + CELLAR 8.55 1.9 + CELLAR .9425 + RETEISCELLAS 33.0 2.27 + CELLAS 8.55 1.9 + CELLAS .9425 + RETEITCELLAT 33.0 2.27 + CELLAT 8.55 1.9 + CELLAT .9425 +C +C AUTOTRANSFORMER MODEL (3 WINDs, SINGLE PHASE) +C + TRANSFORMER .554 1560.INTERR6.6E+5 + 9999 + 1T1000RTR400R .855 130.3464.1 + 2TR400R 1.E-62309.4 + 3TERZIR 1.1E-3 .0803 122. + T1000R 109. 4.6E-3 + T1000RTR400R 513. 5.7E-3 + TR400R 230. 4.9E-3 + TR400RTERZIR 324. 2.1E-3 + TERZIR 88. 5.7E-3 + TRANSFORMER .554 1560.INTERR6.6E+5 + 9999 + 1T1000STR400S .855 130.3464.1 + 2TR400S 1.E-62309.4 + 3TERZISTERZFS 1.1E-3 .0803 122. + T1000S 109. 4.6E-3 + T1000STR400S 513. 5.7E-3 + TR400S 230. 4.9E-3 + TR400STERZIS 324. 2.1E-3 + TERZIS 88. 5.7E-3 + TRANSFORMER .554 1560.INTERR6.6E+5 + 9999 + 1T1000TTR400T .855 130.3464.1 + 2TR400T 1.E-62309.4 + 3TERZITTERZFT 1.1E-3 .0803 122. + T1000T 109. 4.6E-3 + T1000TTR400T 513. 5.7E-3 + TR400T 230. 4.9E-3 + TR400TTERZIT 324. 2.1E-3 + TERZIT 88. 5.7E-3 +C +C CONNECTIONS AMONG TERTIARIES +C + TERZIS .59E-3 + TERZIS 15. 30.E-3 + TERZFSTERZIT .59E-3 + TERZIT 15. 30.E-3 + TERZFTTERZIR 1.3E-3 + TERZIR 15. 66.E-3 +C -------------------------------------------------------------------- +C +C 600 m CABLE - SINGLE PIECE +C +C PHASE R +C +-1T1000RLINEIR Noda line DCN14B.DAT SHOW 5 { 1 of 2 +-2 GUAI2R +C +C PHASE S - +C +-1T1000SLINEIS Noda line DCN14B.DAT SHOW 5 { 1 of 2 +-2 GUAI2S +C +C PHASE T - +C +-1T1000TLINEIT Noda line DCN14B.DAT SHOW 5 { 1 of 2 +-2 GUAI2T +C -------------------------------------------------------------------- +C +C Overhead line (JMARTI modeling) connected to cable; it is open ended +C +-1LINEIRLINEFR 2. 0.00 -2 3 + 6 0.41594447322080191000E+03 + -0.670999919281493567E+04 0.115596661243669278E+05 0.993927202053121437E+04 + 0.437799474890913553E+05 0.615071877212520224E+06 0.484919159975218028E+07 + 0.126247917999855034E+03 0.125541194952814835E+03 0.131618421672545515E+04 + 0.303558850109017385E+04 0.221727916316544798E+05 0.187747576728828368E+06 + 6 0.94711343051337508200E-05 + 0.627144078924490600E+02 0.380804893328911476E+03 0.174977451831839358E+04 + 0.348074471363108660E+04 0.113940782723808953E+05 0.101795194165061461E+07 + 0.870408197488144106E+04 0.491231452549212191E+05 0.122949026800477048E+06 + 0.101854126642379532E+06 0.193028023946739763E+06 0.116009868370252406E+07 +-2LINEISLINEFS 2. 0.00 -2 3 + 2 0.23495426137547622100E+03 + 0.145541128869323956E+03 0.317230857963757554E+05 + 0.769613905473121634E+02 0.169101759187606077E+05 + 2 0.94676914504312110400E-05 + -0.565298558630553235E+05 0.348690682154812385E+07 + 0.613123991654509772E+07 0.345523296629063972E+07 +-3LINEITLINEFT 2. 0.00 -2 3 + 2 0.18990790696897147400E+03 + 0.715297322023219522E+02 0.126259964321454504E+04 + 0.643449751540205739E+02 0.114317717964364147E+04 + 1 0.95267726581649492100E-05 + 0.625041670201623627E+07 + 0.625078786252403353E+07 + 0.55923422 -0.70710678 0.44272643 + 0.00000000 0.00000000 0.00000000 + 0.61197564 0.00000000 -0.77973496 + 0.00000000 0.00000000 0.00000000 + 0.55923422 0.70710678 0.44272643 + 0.00000000 0.00000000 0.00000000 +C 600 m CABLE SHEAT GROUNDING + GUAI2R 1.E-03 + GUAI2S 1.E-03 + GUAI2T 1.E-03 +C -------------------------------------------------------------------- +BLANK CARD ENDING BRANCHES +C SWITCH CARDS + RETEIRTR400R -1. 1.E-06 3 + RETEISTR400S -1. 1.E-06 3 + RETEITTR400T -1. 1.E-06 3 +BLANK CARD ENDING SWITCHES +C SOURCE CARDS +14SORGER 326600. 50. -10. -1. 1. +14SORGES 326600. 50. -130. -1. 1. +14SORGET 326600. 50. -250. -1. 1. +BLANK CARD ENDING SOURCES + TR400RTR400STR400TT1000RT1000ST1000TLINEIRLINEISLINEIT +BLANK CARD ENDING NODE VOLTAGE REQUEST + 1441.5 0.0 15. TR400RTR400STR400T +BLANK CARD ENDING PLOT REQUEST +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 3rd of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for 500-Kv line energization +C The 18 old (around 1970), cascaded Pi-circuits in DC-3 have been +C replaced by reference to the external Nodal file DCN14C.DAT (see below). +PRINTED NUMBER WIDTH, 13, 2, + .000050 .100 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 1 1 1 -1 2 + 5 5 10 10 20 20 100 100 { Printout +-1GEN-A 18-A Noda line DCN14C.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +C Step Time 18-C 18-B 18-A E-A E-B E-C M-C +C POLE-A POLE-B POLE-C GEN-C +C *** Switch "E-A " to "POLE-A" closed after 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 0.0 0.0 0.0 0.0 -.298225E-4 0.0 0.0 .433681E-20 +C 2 .1E-3 0.0 0.0 0.0 0.0 -.596344E-4 0.0 0.0 .867362E-20 +C 3 .15E-3 0.0 0.0 0.0 0.0 -.892467E-4 0.0 0.0 .130104E-19 +C 4 .2E-3 0.0 0.0 0.0 0.0 -.118807E-3 0.0 0.0 .173472E-19 +C 5 .25E-3 0.0 0.0 0.0 0.0 -.148281E-3 0.0 0.0 .21684E-19 +C 10 .5E-3 0.0 0.0 0.0 0.0 -.29411E-3 0.0 0.0 .433681E-19 +C 20 .1E-2 0.0 -.1156E-19 -.26977E-19 -.26977E-19 -.574156E-3 0.0 0.0 .867362E-19 +C 40 .002 0.0 -.042648677 -.042653832 -.192009171 -.001055655 0.0 0.0 .173472E-18 +BLANK card ending output variables requests (node voltages, here) +C 2000 0.1 0.0 -.951949629 .9242773228 .0636028753 -.0031009 .0016317758 .0014052925 0.0 +C Variable maxima : 0.0 1.414644389 1.532499021 1.725016394 .0053208621 .0068965948 .0062319486 .0017896749 +C Times of maxima : 0.0 .023 .017 .0131 .01055 .01595 .0179 .006 +C Variable minima : 0.0 -1.96464238 -1.21489183 -1.30405718 -.004371267 -.004528488 -.006055026 -.002037552 +C Times of minima : 0.0 .0156 .0264 .02125 .0161 .022 .01425 .012 + 144 2. 0.0 20. 18-A 18-B 18-C + 14410. 0.0100. 18-A 18-B 18-C +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for a fault on a 3-phase line. +C The old (around 1980) Hauer frequency dependence in DC-41 has been +C replaced by reference to the external Nodal file DCN14D.DAT (see below). +C IPLOT has been decreased to unity (DC-41 had 8) so all details can be seen. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 20.E-6 20.E-3 60. 60. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 + 0GENA BEGINA 14. + 0GENB BEGINBGENA BEGINA + 0GENC BEGINCGENA BEGINA +C Taku Noda's 3_phase line follows. See DCNEW-13 for creation of the data: +C $LISTOFF +-1BEGINAENDA Noda line DCN14D.DAT SHOW 5 { 1 of 3 +-2BEGINBENDB +-3BEGINCENDC + ENDC 1.E18 +C $LISTON +BLANK card ending branch cards + ENDA .00413 1.0 +BLANK card ending switch cards (just the fault switch, here) +14GENA 428. 60. -90.0 -1. +14GENB 428. 60. -210.0 -1. +14GENC 428. 60. 30.0 -1. +BLANK card ending source cards +C Total network loss P-loss by summing injections = -1.013945364547E+01 +C GENC 370.65887281974 428. -.4805293859127 .93518318711039 -3.21188654066 200.12920204162 +C 214. 30.0000000 .80228367970955 120.9195832 -200.1034264941 -0.0160491 +C Step Time ENDC ENDB ENDA BEGINC BEGINB BEGINA GENA GENB GENC +C +C 0 0.0 398.546371 -399.93767 -1.9823321 381.890844 -382.3653 .22786864 .26207E-13 -370.65887 370.658873 +C 1 .2E-4 396.229497 -401.60165 1.39573871 379.97479 -384.04649 3.4865286 3.2270134 -372.26184 369.03483 +C 2 .4E-4 394.45906 -403.31911 4.87008728 378.294669 -385.67355 6.81831965 6.45384335 -373.84365 367.389809 +C 3 .6E-4 392.661642 -405.02177 8.33699876 376.588353 -387.28347 10.1450332 9.6803064 -375.40421 365.723902 + 1 +C 1000 .02 -297.12285 -545.53844 0.0 -90.750721 -331.99965 367.631455 407.052189 -318.06599 -88.986204 +C Variable maxima : 627.936494 580.071468 461.651958 440.730397 458.783591 441.364716 427.998648 427.99985 427.99985 +C Times of maxima : .0145 .00948 .00414 .01532 .01014 .00416 .00416 .00972 .01528 +C Variable minima : -686.76985 -589.84135 -1.9823321 -492.71846 -441.34178 -413.11665 -428. -427.9994 -427.9994 +C Times of minima : .00602 .01928 0.0 .00676 .0014 .01306 .0125 .01806 .00694 + CALCOMP PLOT + 144 2. 0.0 20. ENDC ENDB ENDA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 7 simulations using Taku Noda frequency dependence is 6-phase +C (double circuit) simulation from Robert Hasibar of BPA. Trivial example. +C * TRANSIENT STUDY - TEST OF MARTI VS NODA * +C * LINE MODELS, DOUBLE CCT LINE, 500 KV, 50 MILES * +C * LINE ENERGIZING TRANSIENT * + 10.E-6 50.E-3 60. 0.0 + 1 3 0 0 1 -1 + 5 5 20 20 100 100 +51SENDA BUSA 2. 23. +52SENDB BUSB 3. 60. +53SENDC BUSC +C ------- CONNECTION TO ENERGIZED CCT, OPEN AT END + 0BUSA A'1 .001 + 0BUSB B'1 .001 + 0BUSC C'1 .001 +-1A1 A2 Noda line DCN14E.DAT SHOW 5 { 1 of 6 } +-2B1 B2 +-3C1 C2 +-4A'1 A'2 +-5B'1 B'2 +-6C'1 C'2 +BLANK +C ------ SWITCHES CLOSING ON ONE CCT, OPEN ENDED + BUSA A1 4.00E-3 10.00 1 + BUSB B1 4.00E-3 10.00 1 + BUSC C1 5.00E-3 10.00 1 +BLANK card ending switch cards +14SENDA 449.0 60. 0.0 -1. +14SENDB 449.0 60. -120.0 -1. +14SENDC 449.0 60. 120.0 -1. +BLANK card ending source cards + A1 B1 C1 A'1 B'1 C'1 + A2 B2 C2 A'2 B'2 C'2 +C First 12 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time A1 B1 C1 A'1 B'1 C'1 A2 B2 C2 +C +C +C A'2 B'2 C'2 BUSA BUSB BUSC +C A1 B1 C1 +C 0 0.0 -47.555111 13.2189276 97.5574018 466.992437 -236.49344 -229.76061 -47.534179 13.5543977 98.3705012 +C 469.7859 -237.50992 -230.23688 0.0 0.0 0.0 +C 1 .1E-4 -47.55419 14.3348568 98.5451711 468.117239 -232.73895 -230.38265 -47.199522 14.3042986 98.9495346 +C 470.213646 -235.11275 -231.02914 0.0 0.0 0.0 +BLANK card ending node voltage outputs +C 5000 .05 480.786349 -277.80271 -196.03887 480.786311 -277.80253 -196.03878 455.975175 -288.37514 -224.15388 +C 509.351281 -277.122 -165.19716 .120430376 .254870926 -.16641182 +C Variable maxima : 539.744875 695.834292 649.312458 539.744347 695.834921 649.310907 681.214671 952.100849 858.770718 +C 679.373497 910.604531 800.998841 1.41622866 1.95524118 2.20395638 +C Times of maxima : .0163 .00734 .00958 .0163 .00734 .00958 .01596 .00702 .00929 +C .01647 .00728 .00985 .01343 .01656 .0079 +C Variable minima : -592.97516 -677.85138 -538.36103 -592.97451 -677.85157 -538.36051 -707.88181 -817.48709 -616.73697 +C -749.2678 -901.75017 -598.57197 -1.0836199 -2.2438628 -1.6491224 +C Times of minima : .00789 .01463 .01798 .00789 .01463 .01798 .0087 .01518 .01794 +C .00808 .01464 .01739 .02072 .00831 .00622 + 144 .5 3.0 8.0 A2 B2 C2 + 144 .5 3.0 8.0 A'2 B'2 C'2 + 144 5. 0.0 50. A2 B2 C2 + 144 5. 0.0 50. A'2 B'2 C'2 +BLANK .... PLOTS +BLANK ---- CASE +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 6th of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for 500-Kv line energization +C The 18 old (around 1970), cascaded Pi-circuits in DC-3 have been +C replaced by reference to the external Nodal file DCN14F.DAT (see below). +C This is untransposed. For corresponding transposed, see 3rd subcase +PRINTED NUMBER WIDTH, 13, 2, + .000050 .100 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 1 1 1 -1 + 5 5 10 10 20 20 100 100 { Printout +-1GEN-A 18-A Noda line DCN14F.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) + 144 2. 0.0 20. 18-A 18-B 18-C + 144 2. 10. 30. 18-A 18-B 18-C +BLANK card ending plot cards +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 7th of 7 simulations uses the 180-mile line of preceding data, but with +C 15 ohms of source impedance. Illustrate FREQUENCY SCAN as mentioned +C in the October, 1999, newsletter. Add this data 30 Aug 1999. +FREQUENCY SCAN, 150., 2., 300., 0, { 160 < f < 300 Hz in 2-Hz increments +PRINTED NUMBER WIDTH, 13, 2, + .000050 -1.0 60. { XOPT = 60 Hz means reactance in ohms at this freq. + 1 1 1 0 1 + E-A GEN-A 15. + E-B GEN-B 15. + E-C GEN-C 15. +-1GEN-A 18-A Noda line DCN14F.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } +BLANK card ending branch cards +BLANK card ending switches + POLAR OUTPUT VARIABLES { 1st of 3 alternatives for output gives mag, angle +C Preceding is one of 3 alternatives. The other two are, after commented: +C BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag +C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag +14E-A -4.0 60.0 -90.0 -1. +14E-B -4.0 60.0 -210.0 -1. +14E-C -4.0 60.0 30.0 -1. +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) + F-SCAN COMPONENTS MAG ANGLE { Access "mag" and "angle" next + 14614.160.300. 18-A 18-A +C 18630. 60.150. CUR CUR { Node voltage at CUR is branch voltage to ground +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF + +C BENCHMARK DCNEW-14 +C 31 Aug 99. Is preceding 7th subcase correct? Curves are nice and +C smooth, so it might be. But there are trouble signs as the following +C data will demonstrate. One does not even need FREQUENCY SCAN to +C show the trouble. Return to 14F and add phasor solution. It will +C be found that the total network loss is negative. Also, sinusoidal +C continuation in the dT loop indicates discontinuity on 1st step. It +C is not large, but it is there. The graph clearly shows error in +C the initialization. Why? +C Total network loss P-loss by summing injections = -1.011651505719E-03 +C Node Source node voltage Injected source current Injected source power +C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. +C +C E-A -.244921271E-15 4.0 -.0062090388311 .00621276289868 -.4301610373E-3 .01242552579737 +C 4.0 90.0000000 -.2150805186E-3 -178.0160729 -.0124180776621 -0.0346191 +C +C E-B 3.4641016151378 4.0 .00279398778041 .0061561611401 -.6462844164E-3 .0123123222802 +C -2. -30.0000000 .00548561320782 63.0088877 -.012295348567 -0.0524909 +C +C E-C -3.464101615138 4.0 .00312691699591 .00631003036364 .64793947977E-4 .01262006072728 +C -2. -150.0000000 -.0054807730559 -60.2941694 -.0126198943936 0.0051342 +PRINTED NUMBER WIDTH, 13, 2, + .000050 .020 60. { XOPT = 60 Hz means reactance in ohms at this freq. + 1 1 1 1 1 + E-A GEN-A 15. + E-B GEN-B 15. + E-C GEN-C 15. +-1GEN-A 18-A Noda line \data\DCN14F.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } +BLANK card ending branch cards +BLANK card ending switches +C POLAR OUTPUT VARIABLES { 1st of 3 alternatives for output gives mag, angle +C Preceding is one of 3 alternatives. The other two are, after commented: +C BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag +C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag +14E-A -4.0 60.0 -90.0 -1. +14E-B -4.0 60.0 -210.0 -1. +14E-C -4.0 60.0 30.0 -1. +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) + 144 2. 0.0 20. 18-A 18-B 18-C +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + -- cgit v1.2.3