From b18347ffc9db9641e215995edea1c04c363b2bdf Mon Sep 17 00:00:00 2001 From: Angelo Rossi Date: Wed, 21 Jun 2023 12:04:16 +0000 Subject: Initial commit. --- LICENSE | 28 + Makefile.global | 230 +++ benchmarks/DC4INS.DAT | 46 + benchmarks/_ | 0 benchmarks/antani.dat | 0 benchmarks/data_case_001.dat | 41 + benchmarks/data_case_002.dat | 42 + benchmarks/data_case_003.dat | 46 + benchmarks/data_case_003a.dat | 53 + benchmarks/data_case_003b.dat | 54 + benchmarks/dc1.dat | 1364 +++++++++++++++ benchmarks/dc10.dat | 378 ++++ benchmarks/dc11.dat | 409 +++++ benchmarks/dc12.dat | 183 ++ benchmarks/dc13.dat | 589 +++++++ benchmarks/dc14.dat | 196 +++ benchmarks/dc15.dat | 90 + benchmarks/dc16.dat | 230 +++ benchmarks/dc17.dat | 101 ++ benchmarks/dc17ains.dat | 22 + benchmarks/dc17bins.dat | 60 + benchmarks/dc17cins.dat | 60 + benchmarks/dc17dins.dat | 66 + benchmarks/dc17inc1.dat | 19 + benchmarks/dc17inc2.dat | 11 + benchmarks/dc17ins.dat | 44 + benchmarks/dc18.dat | 384 ++++ benchmarks/dc19.dat | 355 ++++ benchmarks/dc2.dat | 1024 +++++++++++ benchmarks/dc20.dat | 166 ++ benchmarks/dc21.dat | 545 ++++++ benchmarks/dc21se45.dat | 5 + benchmarks/dc22.dat | 1713 ++++++++++++++++++ benchmarks/dc22d.dat | 602 +++++++ benchmarks/dc22e.dat | 478 +++++ benchmarks/dc23.dat | 333 ++++ benchmarks/dc24.dat | 878 ++++++++++ benchmarks/dc24clik.dat | 555 ++++++ benchmarks/dc24clu8.dat | 16 + benchmarks/dc24lun8.dat | 16 + benchmarks/dc25.dat | 553 ++++++ benchmarks/dc26.dat | 551 ++++++ benchmarks/dc27.dat | 524 ++++++ benchmarks/dc28.dat | 511 ++++++ benchmarks/dc29.dat | 276 +++ benchmarks/dc3.dat | 633 +++++++ benchmarks/dc30.dat | 753 ++++++++ benchmarks/dc31.dat | 486 +++++ benchmarks/dc31chen.dat | 49 + benchmarks/dc32.dat | 96 + benchmarks/dc32a.dat | 87 + benchmarks/dc32b.dat | 83 + benchmarks/dc32old.dat | 165 ++ benchmarks/dc33.dat | 711 ++++++++ benchmarks/dc33inc1.dat | 27 + benchmarks/dc33inc2.dat | 15 + benchmarks/dc33incf.dat | 12 + benchmarks/dc34.dat | 194 ++ benchmarks/dc35.dat | 159 ++ benchmarks/dc36.dat | 295 ++++ benchmarks/dc36incl.dat | 12 + benchmarks/dc37.dat | 677 +++++++ benchmarks/dc37star.dat | 46 + benchmarks/dc38.dat | 885 ++++++++++ benchmarks/dc39.dat | 197 +++ benchmarks/dc3high.dat | 21 + benchmarks/dc3pl4op.dat | 10 + benchmarks/dc4.dat | 245 +++ benchmarks/dc40.dat | 417 +++++ benchmarks/dc40clik.dat | 421 +++++ benchmarks/dc41.dat | 519 ++++++ benchmarks/dc42.dat | 240 +++ benchmarks/dc43.dat | 166 ++ benchmarks/dc44.dat | 51 + benchmarks/dc45.dat | 288 +++ benchmarks/dc46.dat | 260 +++ benchmarks/dc46a.dat | 22 + benchmarks/dc47.dat | 751 ++++++++ benchmarks/dc48.dat | 498 ++++++ benchmarks/dc49.dat | 30 + benchmarks/dc49old.dat | 73 + benchmarks/dc4bincl.dat | 12 + benchmarks/dc4bins.dat | 58 + benchmarks/dc4cins.dat | 60 + benchmarks/dc4dins.dat | 64 + benchmarks/dc4drtt.dat | 62 + benchmarks/dc4drtt2.dat | 12 + benchmarks/dc4ins.dat | 22 + benchmarks/dc5.dat | 387 ++++ benchmarks/dc50.dat | 153 ++ benchmarks/dc51.dat | 753 ++++++++ benchmarks/dc51fs3.dat | 100 ++ benchmarks/dc51fs3p.dat | 34 + benchmarks/dc51fs3z.dat | 34 + benchmarks/dc51fs6.dat | 182 ++ benchmarks/dc51fs6m.dat | 62 + benchmarks/dc51fs6p.dat | 60 + benchmarks/dc51fs6z.dat | 60 + benchmarks/dc52.dat | 172 ++ benchmarks/dc52fs3.dat | 89 + benchmarks/dc53.dat | 499 ++++++ benchmarks/dc53pl4.dat | 74 + benchmarks/dc54.dat | 54 + benchmarks/dc55.dat | 298 ++++ benchmarks/dc56.dat | 148 ++ benchmarks/dc57.dat | 232 +++ benchmarks/dc58.dat | 137 ++ benchmarks/dc58inc1.dat | 11 + benchmarks/dc58inc2.dat | 2 + benchmarks/dc58inc3.dat | 2 + benchmarks/dc58inc4.dat | 4 + benchmarks/dc59.dat | 557 ++++++ benchmarks/dc59g.dat | 25 + benchmarks/dc6.dat | 96 + benchmarks/dc60.dat | 207 +++ benchmarks/dc61.dat | 203 +++ benchmarks/dc62.dat | 321 ++++ benchmarks/dc63.dat | 1135 ++++++++++++ benchmarks/dc64.dat | 57 + benchmarks/dc64incl.dat | 47 + benchmarks/dc65.dat | 63 + benchmarks/dc66.dat | 210 +++ benchmarks/dc67.dat | 78 + benchmarks/dc68.dat | 1362 +++++++++++++++ benchmarks/dc68se37.dat | 7 + benchmarks/dc68se49.dat | 4 + benchmarks/dc68se82.dat | 15 + benchmarks/dc7.dat | 300 ++++ benchmarks/dc8.dat | 153 ++ benchmarks/dc8incl0.dat | 7 + benchmarks/dc8incl1.dat | 44 + benchmarks/dc9.dat | 1367 +++++++++++++++ benchmarks/dcn1.dat | 883 ++++++++++ benchmarks/dcn10.dat | 212 +++ benchmarks/dcn11.dat | 338 ++++ benchmarks/dcn12.dat | 2334 +++++++++++++++++++++++++ benchmarks/dcn13.dat | 305 ++++ benchmarks/dcn14.dat | 466 +++++ benchmarks/dcn14a.dat | 28 + benchmarks/dcn14b.dat | 77 + benchmarks/dcn14c.dat | 120 ++ benchmarks/dcn14d.dat | 125 ++ benchmarks/dcn14e.dat | 422 +++++ benchmarks/dcn14f.dat | 114 ++ benchmarks/dcn15.dat | 484 +++++ benchmarks/dcn16.dat | 844 +++++++++ benchmarks/dcn17.dat | 646 +++++++ benchmarks/dcn18.dat | 128 ++ benchmarks/dcn19.dat | 763 ++++++++ benchmarks/dcn2.dat | 301 ++++ benchmarks/dcn20.dat | 639 +++++++ benchmarks/dcn21.dat | 1300 ++++++++++++++ benchmarks/dcn21inc.dat | 49 + benchmarks/dcn22.dat | 720 ++++++++ benchmarks/dcn23.dat | 484 +++++ benchmarks/dcn24.dat | 1359 ++++++++++++++ benchmarks/dcn25.dat | 1694 ++++++++++++++++++ benchmarks/dcn25old.dat | 836 +++++++++ benchmarks/dcn26.dat | 1334 ++++++++++++++ benchmarks/dcn27.dat | 997 +++++++++++ benchmarks/dcn28.dat | 118 ++ benchmarks/dcn29.dat | 1376 +++++++++++++++ benchmarks/dcn3.dat | 613 +++++++ benchmarks/dcn30.dat | 717 ++++++++ benchmarks/dcn31.dat | 55 + benchmarks/dcn4.dat | 287 +++ benchmarks/dcn5.dat | 257 +++ benchmarks/dcn6.dat | 369 ++++ benchmarks/dcn7.dat | 539 ++++++ benchmarks/dcn8.dat | 231 +++ benchmarks/dcn9.dat | 370 ++++ benchmarks/dcp1.dat | 70 + benchmarks/dcp10.dat | 53 + benchmarks/dcp11.dat | 52 + benchmarks/dcp12.dat | 35 + benchmarks/dcp13.dat | 54 + benchmarks/dcp14.dat | 65 + benchmarks/dcp15.dat | 116 ++ benchmarks/dcp16.dat | 78 + benchmarks/dcp17.dat | 124 ++ benchmarks/dcp18.dat | 65 + benchmarks/dcp19.dat | 123 ++ benchmarks/dcp2.dat | 31 + benchmarks/dcp20.dat | 27 + benchmarks/dcp21.dat | 127 ++ benchmarks/dcp22.dat | 114 ++ benchmarks/dcp23.dat | 17 + benchmarks/dcp24.dat | 75 + benchmarks/dcp25.dat | 49 + benchmarks/dcp26.dat | 74 + benchmarks/dcp3.dat | 69 + benchmarks/dcp4.dat | 26 + benchmarks/dcp5.dat | 40 + benchmarks/dcp6.dat | 43 + benchmarks/dcp7.dat | 59 + benchmarks/dcp8.dat | 48 + benchmarks/dcp9.dat | 60 + benchmarks/fort.1 | 0 benchmarks/rettore.atp | 26 + benchmarks/rettore.dat | 24 + benchmarks/rettore2.atp | 12 + benchmarks/rettore2.atp~ | 26 + benchmarks/rettore2.dat | 0 benchmarks/sacoi1.dat | 1151 ++++++++++++ benchmarks/sacoi1.dat~ | 1151 ++++++++++++ benchmarks/test_001.dat | 33 + benchmarks/test_001.dat~ | 16 + benchmarks/test_002.dat | 4 + benchmarks/test_002.dat~ | 32 + documents/from BPA/EMTP Application Guide.pdf | Bin 0 -> 4149769 bytes documents/from BPA/EMTP Rule Book.pdf | Bin 0 -> 21482757 bytes documents/from BPA/EMTP Workbook.pdf | Bin 0 -> 2836285 bytes documents/from BPA/readme.txt | 1 + documents/other/EL-4651-V2.pdf | Bin 0 -> 15090387 bytes documents/other/EL-4651.pdf | Bin 0 -> 9816271 bytes documents/other/EMTPTB.PDF | Bin 0 -> 3928787 bytes documents/other/readme.txt | 1 + includes/algebra.hpp | 64 + includes/blkcom.hpp | 260 +++ includes/comlock.hpp | 22 + includes/comlock.hpp~ | 21 + includes/datain.hpp | 36 + includes/dekplt.hpp | 381 ++++ includes/dekplt.hpp~ | 381 ++++ includes/dekspy.hpp | 158 ++ includes/emtp.hpp | 75 + includes/emtp.hpp~ | 55 + includes/freedom.hpp | 30 + includes/lab02.hpp~ | 22 + includes/labcom.hpp | 117 ++ includes/labl02.hpp | 50 + includes/labl29.hpp | 48 + includes/linemodel.hpp | 23 + includes/location.hpp | 27 + includes/main.hpp | 62 + includes/movecopy.hpp | 29 + includes/newmods.hpp | 63 + includes/over1.hpp | 71 + includes/over1.hpp~ | 70 + includes/over20.hpp | 67 + includes/over51.hpp | 199 +++ includes/over51.hpp~ | 200 +++ includes/plot.hpp | 41 + includes/plot.hpp~ | 17 + includes/random.hpp | 26 + includes/strcom.hpp | 22 + includes/tacsar.hpp | 60 + includes/tacsar.hpp~ | 60 + includes/time.hpp | 33 + includes/umdeck.hpp | 42 + includes/umdeck.hpp~ | 17 + includes/utilities.hpp | 67 + includes/vardim.hpp | 41 + includes/vardim.hpp~ | 41 + includes/volt45.hpp | 22 + sources/Makefile | 144 ++ sources/algebra.cpp | 362 ++++ sources/blkcom.cpp | 200 +++ sources/comlock.cpp | 13 + sources/datain.cpp | 1397 +++++++++++++++ sources/dekplt.cpp | 265 +++ sources/dekspy.cpp | 164 ++ sources/emtp.cpp | 1130 ++++++++++++ sources/freedom.cpp | 64 + sources/labcom.cpp | 101 ++ sources/labl02.cpp | 36 + sources/labl29.cpp | 50 + sources/location.cpp | 65 + sources/main.cpp | 387 ++++ sources/movecopy.cpp | 306 ++++ sources/newmods.cpp | 325 ++++ sources/over1.cpp | 767 ++++++++ sources/over20.cpp | 1909 ++++++++++++++++++++ sources/over51.cpp | 147 ++ sources/plot.cpp | 172 ++ sources/random.cpp | 236 +++ sources/strcom.cpp | 33 + sources/tacsar.cpp | 52 + sources/time.cpp | 153 ++ sources/umdeck.cpp | 32 + sources/utilities.cpp | 356 ++++ sources/vardim.cpp | 219 +++ sources/volt45.cpp | 15 + 283 files changed, 72761 insertions(+) create mode 100644 LICENSE create mode 100644 Makefile.global create mode 100644 benchmarks/DC4INS.DAT create mode 100644 benchmarks/_ create mode 100644 benchmarks/antani.dat create mode 100644 benchmarks/data_case_001.dat create mode 100644 benchmarks/data_case_002.dat create mode 100644 benchmarks/data_case_003.dat create mode 100644 benchmarks/data_case_003a.dat create mode 100644 benchmarks/data_case_003b.dat create mode 100644 benchmarks/dc1.dat create mode 100644 benchmarks/dc10.dat create mode 100644 benchmarks/dc11.dat create mode 100644 benchmarks/dc12.dat create mode 100644 benchmarks/dc13.dat create mode 100644 benchmarks/dc14.dat create mode 100644 benchmarks/dc15.dat create mode 100644 benchmarks/dc16.dat create mode 100644 benchmarks/dc17.dat create mode 100644 benchmarks/dc17ains.dat create mode 100644 benchmarks/dc17bins.dat create mode 100644 benchmarks/dc17cins.dat create mode 100644 benchmarks/dc17dins.dat create mode 100644 benchmarks/dc17inc1.dat create mode 100644 benchmarks/dc17inc2.dat create mode 100644 benchmarks/dc17ins.dat create mode 100644 benchmarks/dc18.dat create mode 100644 benchmarks/dc19.dat create mode 100644 benchmarks/dc2.dat create mode 100644 benchmarks/dc20.dat create mode 100644 benchmarks/dc21.dat create mode 100644 benchmarks/dc21se45.dat create mode 100644 benchmarks/dc22.dat create mode 100644 benchmarks/dc22d.dat create mode 100644 benchmarks/dc22e.dat create mode 100644 benchmarks/dc23.dat create mode 100644 benchmarks/dc24.dat create mode 100644 benchmarks/dc24clik.dat create mode 100644 benchmarks/dc24clu8.dat create mode 100644 benchmarks/dc24lun8.dat create mode 100644 benchmarks/dc25.dat create mode 100644 benchmarks/dc26.dat create mode 100644 benchmarks/dc27.dat create mode 100644 benchmarks/dc28.dat create mode 100644 benchmarks/dc29.dat create mode 100644 benchmarks/dc3.dat create mode 100644 benchmarks/dc30.dat create mode 100644 benchmarks/dc31.dat create mode 100644 benchmarks/dc31chen.dat create mode 100644 benchmarks/dc32.dat create mode 100644 benchmarks/dc32a.dat create mode 100644 benchmarks/dc32b.dat create mode 100644 benchmarks/dc32old.dat create mode 100644 benchmarks/dc33.dat create mode 100644 benchmarks/dc33inc1.dat create mode 100644 benchmarks/dc33inc2.dat create mode 100644 benchmarks/dc33incf.dat create mode 100644 benchmarks/dc34.dat create mode 100644 benchmarks/dc35.dat create mode 100644 benchmarks/dc36.dat create mode 100644 benchmarks/dc36incl.dat create mode 100644 benchmarks/dc37.dat create mode 100644 benchmarks/dc37star.dat create mode 100644 benchmarks/dc38.dat create mode 100644 benchmarks/dc39.dat create mode 100644 benchmarks/dc3high.dat create mode 100644 benchmarks/dc3pl4op.dat create mode 100644 benchmarks/dc4.dat create mode 100644 benchmarks/dc40.dat create mode 100644 benchmarks/dc40clik.dat create mode 100644 benchmarks/dc41.dat create mode 100644 benchmarks/dc42.dat create mode 100644 benchmarks/dc43.dat create mode 100644 benchmarks/dc44.dat create mode 100644 benchmarks/dc45.dat create mode 100644 benchmarks/dc46.dat create mode 100644 benchmarks/dc46a.dat create mode 100644 benchmarks/dc47.dat create mode 100644 benchmarks/dc48.dat create mode 100644 benchmarks/dc49.dat create mode 100644 benchmarks/dc49old.dat create mode 100644 benchmarks/dc4bincl.dat create mode 100644 benchmarks/dc4bins.dat create mode 100644 benchmarks/dc4cins.dat create mode 100644 benchmarks/dc4dins.dat create mode 100644 benchmarks/dc4drtt.dat create mode 100644 benchmarks/dc4drtt2.dat create mode 100644 benchmarks/dc4ins.dat create mode 100644 benchmarks/dc5.dat create mode 100644 benchmarks/dc50.dat create mode 100644 benchmarks/dc51.dat create mode 100644 benchmarks/dc51fs3.dat create mode 100644 benchmarks/dc51fs3p.dat create mode 100644 benchmarks/dc51fs3z.dat create mode 100644 benchmarks/dc51fs6.dat create mode 100644 benchmarks/dc51fs6m.dat create mode 100644 benchmarks/dc51fs6p.dat create mode 100644 benchmarks/dc51fs6z.dat create mode 100644 benchmarks/dc52.dat create mode 100644 benchmarks/dc52fs3.dat create mode 100644 benchmarks/dc53.dat create mode 100644 benchmarks/dc53pl4.dat create mode 100644 benchmarks/dc54.dat create mode 100644 benchmarks/dc55.dat create mode 100644 benchmarks/dc56.dat create mode 100644 benchmarks/dc57.dat create mode 100644 benchmarks/dc58.dat create mode 100644 benchmarks/dc58inc1.dat create mode 100644 benchmarks/dc58inc2.dat create mode 100644 benchmarks/dc58inc3.dat create mode 100644 benchmarks/dc58inc4.dat create mode 100644 benchmarks/dc59.dat create mode 100644 benchmarks/dc59g.dat create mode 100644 benchmarks/dc6.dat create mode 100644 benchmarks/dc60.dat create mode 100644 benchmarks/dc61.dat create mode 100644 benchmarks/dc62.dat create mode 100644 benchmarks/dc63.dat create mode 100644 benchmarks/dc64.dat create mode 100644 benchmarks/dc64incl.dat create mode 100644 benchmarks/dc65.dat create mode 100644 benchmarks/dc66.dat create mode 100644 benchmarks/dc67.dat create mode 100644 benchmarks/dc68.dat create mode 100644 benchmarks/dc68se37.dat create mode 100644 benchmarks/dc68se49.dat create mode 100644 benchmarks/dc68se82.dat create mode 100644 benchmarks/dc7.dat create mode 100644 benchmarks/dc8.dat create mode 100644 benchmarks/dc8incl0.dat create mode 100644 benchmarks/dc8incl1.dat create mode 100644 benchmarks/dc9.dat create mode 100644 benchmarks/dcn1.dat create mode 100644 benchmarks/dcn10.dat create mode 100644 benchmarks/dcn11.dat create mode 100644 benchmarks/dcn12.dat create mode 100644 benchmarks/dcn13.dat create mode 100644 benchmarks/dcn14.dat create mode 100644 benchmarks/dcn14a.dat create mode 100644 benchmarks/dcn14b.dat create mode 100644 benchmarks/dcn14c.dat create mode 100644 benchmarks/dcn14d.dat create mode 100644 benchmarks/dcn14e.dat create mode 100644 benchmarks/dcn14f.dat create mode 100644 benchmarks/dcn15.dat create mode 100644 benchmarks/dcn16.dat create mode 100644 benchmarks/dcn17.dat create mode 100644 benchmarks/dcn18.dat create mode 100644 benchmarks/dcn19.dat create mode 100644 benchmarks/dcn2.dat create mode 100644 benchmarks/dcn20.dat create mode 100644 benchmarks/dcn21.dat create mode 100644 benchmarks/dcn21inc.dat create mode 100644 benchmarks/dcn22.dat create mode 100644 benchmarks/dcn23.dat create mode 100644 benchmarks/dcn24.dat create mode 100644 benchmarks/dcn25.dat create mode 100644 benchmarks/dcn25old.dat create mode 100644 benchmarks/dcn26.dat create mode 100644 benchmarks/dcn27.dat create mode 100644 benchmarks/dcn28.dat create mode 100644 benchmarks/dcn29.dat create mode 100644 benchmarks/dcn3.dat create mode 100644 benchmarks/dcn30.dat create mode 100644 benchmarks/dcn31.dat create mode 100644 benchmarks/dcn4.dat create mode 100644 benchmarks/dcn5.dat create mode 100644 benchmarks/dcn6.dat create mode 100644 benchmarks/dcn7.dat create mode 100644 benchmarks/dcn8.dat create mode 100644 benchmarks/dcn9.dat create mode 100644 benchmarks/dcp1.dat create mode 100644 benchmarks/dcp10.dat create mode 100644 benchmarks/dcp11.dat create mode 100644 benchmarks/dcp12.dat create mode 100644 benchmarks/dcp13.dat create mode 100644 benchmarks/dcp14.dat create mode 100644 benchmarks/dcp15.dat create mode 100644 benchmarks/dcp16.dat create mode 100644 benchmarks/dcp17.dat create mode 100644 benchmarks/dcp18.dat create mode 100644 benchmarks/dcp19.dat create mode 100644 benchmarks/dcp2.dat create mode 100644 benchmarks/dcp20.dat create mode 100644 benchmarks/dcp21.dat create mode 100644 benchmarks/dcp22.dat create mode 100644 benchmarks/dcp23.dat create mode 100644 benchmarks/dcp24.dat create mode 100644 benchmarks/dcp25.dat create mode 100644 benchmarks/dcp26.dat create mode 100644 benchmarks/dcp3.dat create mode 100644 benchmarks/dcp4.dat create mode 100644 benchmarks/dcp5.dat create mode 100644 benchmarks/dcp6.dat create mode 100644 benchmarks/dcp7.dat create mode 100644 benchmarks/dcp8.dat create mode 100644 benchmarks/dcp9.dat create mode 100644 benchmarks/fort.1 create mode 100644 benchmarks/rettore.atp create mode 100644 benchmarks/rettore.dat create mode 100644 benchmarks/rettore2.atp create mode 100644 benchmarks/rettore2.atp~ create mode 100644 benchmarks/rettore2.dat create mode 100644 benchmarks/sacoi1.dat create mode 100644 benchmarks/sacoi1.dat~ create mode 100644 benchmarks/test_001.dat create mode 100644 benchmarks/test_001.dat~ create mode 100644 benchmarks/test_002.dat create mode 100644 benchmarks/test_002.dat~ create mode 100644 documents/from BPA/EMTP Application Guide.pdf create mode 100644 documents/from BPA/EMTP Rule Book.pdf create mode 100644 documents/from BPA/EMTP Workbook.pdf create mode 100644 documents/from BPA/readme.txt create mode 100644 documents/other/EL-4651-V2.pdf create mode 100644 documents/other/EL-4651.pdf create mode 100644 documents/other/EMTPTB.PDF create mode 100644 documents/other/readme.txt create mode 100644 includes/algebra.hpp create mode 100644 includes/blkcom.hpp create mode 100644 includes/comlock.hpp create mode 100644 includes/comlock.hpp~ create mode 100644 includes/datain.hpp create mode 100644 includes/dekplt.hpp create mode 100644 includes/dekplt.hpp~ create mode 100644 includes/dekspy.hpp create mode 100644 includes/emtp.hpp create mode 100644 includes/emtp.hpp~ create mode 100644 includes/freedom.hpp create mode 100644 includes/lab02.hpp~ create mode 100644 includes/labcom.hpp create mode 100644 includes/labl02.hpp create mode 100644 includes/labl29.hpp create mode 100644 includes/linemodel.hpp create mode 100644 includes/location.hpp create mode 100644 includes/main.hpp create mode 100644 includes/movecopy.hpp create mode 100644 includes/newmods.hpp create mode 100644 includes/over1.hpp create mode 100644 includes/over1.hpp~ create mode 100644 includes/over20.hpp create mode 100644 includes/over51.hpp create mode 100644 includes/over51.hpp~ create mode 100644 includes/plot.hpp create mode 100644 includes/plot.hpp~ create mode 100644 includes/random.hpp create mode 100644 includes/strcom.hpp create mode 100644 includes/tacsar.hpp create mode 100644 includes/tacsar.hpp~ create mode 100644 includes/time.hpp create mode 100644 includes/umdeck.hpp create mode 100644 includes/umdeck.hpp~ create mode 100644 includes/utilities.hpp create mode 100644 includes/vardim.hpp create mode 100644 includes/vardim.hpp~ create mode 100644 includes/volt45.hpp create mode 100644 sources/Makefile create mode 100644 sources/algebra.cpp create mode 100644 sources/blkcom.cpp create mode 100644 sources/comlock.cpp create mode 100644 sources/datain.cpp create mode 100644 sources/dekplt.cpp create mode 100644 sources/dekspy.cpp create mode 100644 sources/emtp.cpp create mode 100644 sources/freedom.cpp create mode 100644 sources/labcom.cpp create mode 100644 sources/labl02.cpp create mode 100644 sources/labl29.cpp create mode 100644 sources/location.cpp create mode 100644 sources/main.cpp create mode 100644 sources/movecopy.cpp create mode 100644 sources/newmods.cpp create mode 100644 sources/over1.cpp create mode 100644 sources/over20.cpp create mode 100644 sources/over51.cpp create mode 100644 sources/plot.cpp create mode 100644 sources/random.cpp create mode 100644 sources/strcom.cpp create mode 100644 sources/tacsar.cpp create mode 100644 sources/time.cpp create mode 100644 sources/umdeck.cpp create mode 100644 sources/utilities.cpp create mode 100644 sources/vardim.cpp create mode 100644 sources/volt45.cpp diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..ed316ae --- /dev/null +++ b/LICENSE @@ -0,0 +1,28 @@ +BSD 3-Clause License + +Copyright (c) 2023, Angelo Rossi + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git a/Makefile.global b/Makefile.global new file mode 100644 index 0000000..60a2c48 --- /dev/null +++ b/Makefile.global @@ -0,0 +1,230 @@ +#-*- mode: makefile; indent-tabs-mode: t; coding: utf-8; show-trailing-whitespace: t -*- +# Makefile.global +# Copyright 2022 Angelo Rossi +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# 1. Redistributions of source code must retain the above copyright notice, +# this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# 3. Neither the name of the copyright holder nor the names of its contributors +# may be used to endorse or promote products derived from this software +# without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE +# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. + +# +# Get the operating system name. If this is Cygwin, the .d files will be +# munged to convert c: into /cygdrive/c so that "make" will be happy with the +# auto-generated dependencies. +# + +# The command for calling the compiler. +ifeq (${shell uname},linux) + AS=${shell which as} + CC=${shell which gcc} + CXX=${shell which g++} + LD=${shell which ld} + OBJCOPY=${shell which objcopy} + OBJDUMP=${shell which objdump} + AR=${shell which ar} + NM=${shell which nm} +else + ifeq (${shell uname},OpenBSD) + AS=${shell which gas} + CC=${shell which egcc} + CXX=${shell which eg++} + LD=${shell which ld} + OBJCOPY=${shell which objcopy} + OBJDUMP=${shell which objdump} + AR=${shell which egcc-ar} + NM=${shell which egcc-nm} + endif +endif +LINKER=${CXX} + +# The flags passed to the assembler. + +AS_FLAGS= + +ifdef ARCH + AS_FLAGS+=-march=${ARCH} +endif + +# The flags passed to the c compiler. + +CC_FLAGS=-O0 \ + -Wall \ + -std=c99 \ + -pthread \ + -c + +# The flags passed to the c++ compiler. + +CXX_FLAGS=-O0 \ + -Wall \ + -std=gnu++11 \ + -pthread \ + -c + +ifdef WITH_OVER1 +CXX_FLAGS+=-DWITH_OVER1 +endif +ifdef WITH_OVER20 +CXX_FLAGS+=-DWITH_OVER20 +endif +ifdef WITH_OVER51 +CXX_FLAGS+=-DWITH_OVER51 +endif + + +# The flags passed to the linker. +LD_SCRIPT_FLAGS= +ifneq (${LINKER_SCRIPT},) + LD_SCRIPT_FLAGS+=-T ${SCRIPTS_PATH}/${LINKER_SCRIPT}.lnk +endif + +# Specs files. +SPECS_FILES= + +ifneq (${SPECS_FILES},) + SPECS_FLAGS=${patsubst %,--specs=%,${subst :, ,${SPECS_FILES}}} +else + SPECS_FLAGS= +endif + +LD_FLAGS= + +LD_FLAGS+=-Wl,--start-group \ + ${LD_SCRIPT_FLAGS} \ + ${SPECS_FLAGS} \ + -Wl,-Map=${TOOLCHAIN}/${TARGET}.map \ + -Wl,--end-group + +# ar most common flags. +AR_FLAGS=-cr + +# objdump most common flags. +OBJDUMP_FLAGS= -h \ + -EL \ + -s \ + -S \ + -d + +# objcopy most common flags. +OBJCOPY_FLAGS= -S \ + -R .data + +# Get the location of libgcc.a, libc.a, libstdc++ and +# libm.a from the GCC front-end. +LIBGCC=${shell ${CC} ${CC_FLAGS} -print-libgcc-file-name} +LIBC=${shell ${CC} ${CC_FLAGS} -print-file-name=libc.a} +LIBM=${shell ${CC} ${CC_FLAGS} -print-file-name=libm.a} +LIBPTHREAD=${shell ${CC} ${CC_FLAGS} --print-file-name=libpthread.a} +LIBSTDCXX=${shell ${CXX} ${CXX_FLAGS} --print-file-name=libstdc++.a} + +# Libraries to link. +LIBRARIES=pthread + +# Tell the compiler to include debugging information if the DEBUG environment +# variable is set. +ifneq (${DEBUG},) + AS_FLAGS+=-ggdb3 + CC_FLAGS+=-ggdb3 -DDEBUG + CXX_FLAGS+=-ggdb3 -DDEBUG + LD_FLAGS+=-ggdb3 +endif + +# Add the include file paths to AS_FLAGS, CC_FLAGS and CXX_FLAGS. +AS_FLAGS+=${patsubst %,-I%,${subst :, ,${INCLUDES_PATH}}} +CC_FLAGS+=${patsubst %,-I%,${subst :, ,${INCLUDES_PATH}}} +CXX_FLAGS+=${patsubst %,-I%,${subst :, ,${INCLUDES_PATH}}} + +LD_FLAGS+=-pthread + +ifneq (${LIBRARIES_PATH},) +LD_FLAGS+=${patsubst %,-L%,${subst :, ,${LIBRARIES_PATH}}} +endif + +ifneq (${LIBRARIES},) +LD_FLAGS+=${patsubst %,-l%,${subst :, ,${LIBRARIES}}} +endif + +# Rule for building the object file from each assembly source files. +${TOOLCHAIN}/%.o: %.S + @if [ 'x${VERBOSE}' = x ]; \ + then \ + echo " [ AS ] ${<}"; \ + else \ + echo "${AS} ${AS_FLAGS} ${<} -o ${@}"; \ + fi + @${AS} ${AS_FLAGS} ${<} -o ${@} + +# Rule for building the object file from each C source file. + +${TOOLCHAIN}/%.o: %.c + @if [ 'x${VERBOSE}' = x ]; \ + then \ + echo " [ CC ] ${<}"; \ + else \ + echo ${CC} ${CC_FLAGS} -o ${@} ${<}; \ + fi + @${CC} ${CC_FLAGS} -o ${@} ${<} + +${TOOLCHAIN}/%.o: %.cpp + @if [ 'x${VERBOSE}' = x ]; \ + then \ + echo " [ CPP ] ${<}"; \ + else \ + echo ${CXX} ${CXX_FLAGS} -o ${@} ${<}; \ + fi + @${CXX} ${CXX_FLAGS} -o ${@} ${<} + +# Rule for creating an object library. +${TOOLCHAIN}/%.a: + @if [ 'x${VERBOSE}' = x ]; \ + then \ + echo " [ AR ] ${@}"; \ + else \ + echo ${AR} ${AR_FLAGS} ${@} ${^}; \ + fi + @${AR} ${AR_FLAGS} ${@} ${^} + +# Rule for linking the application. +${TOOLCHAIN}/%: + @if [ 'x${VERBOSE}' = x ]; \ + then \ + echo " [ LD ] ${@}"; \ + else \ + echo ${LINKER} $(filter %.o %.a, ${^}) \ + ${LD_FLAGS} \ + -o ${@}; \ + fi + @${LINKER} $(filter %.o %.a, ${^}) \ + ${LD_FLAGS} \ + -o ${@} + +# Rule to create a .lst file. +${TOOLCHAIN}/%.lst: + @if [ 'x${VERBOSE}' = x ]; \ + then \ + echo " [ OBJDUMP ] ${@}"; \ + else \ + echo "${OBJDUMP} ${OBJDUMP_FLAGS} ${TOOLCHAIN}/${TARGET} > ${@}"; \ + fi + @${OBJDUMP} ${OBJDUMP_FLAGS} ${TOOLCHAIN}/${TARGET} > ${@} diff --git a/benchmarks/DC4INS.DAT b/benchmarks/DC4INS.DAT new file mode 100644 index 0000000..21c5162 --- /dev/null +++ b/benchmarks/DC4INS.DAT @@ -0,0 +1,46 @@ +KARD 10 10 +KARG 2 3 +KBEG 27 3 +KEND 32 8 +KTEX 0 1 +C0 Level-zero comment will be retained because STARTUP sets KOMLEV = 4 +C5 Level-five comment will be omitted because STARTUP sets KOMLEV = 4 +/SOURCE +14GEN 70. .1591549 -1. +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/SWITCH +C1 The following extraneous switch is permanently open, so has no effect: + TRAN 99999. 1.E6 +/BRANCH + GEN TRAN 5.0 5.E4 3 + TRAN 1.E4 +C Ordinary comment card within "INCLDUM" (Blank col. 2) +93?????? ?????? 30. 3 + -5.0 -100. + -.1 -50. + -.02 -45. + -.01 -40. + -.005 -30. +C Begin illustration of $DISABLE usage within an INSERT file. +C The comments now being read are not part of the test, so they will be seen +C (even though they have nothing to do with the data of the network). All of +C the remaining cards except the last one ($ENABLE) will be omitted as data +C is first read, so there will be no trace in the interpretation of EMTP data +C cards except for the final card, which will document the number involved. +$DISABLE +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa +bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb +cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc +$ENABLE + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 +/STATISTICS +Statistical tabulation card will never be used, of course. +/PLOT + PRINTER PLOT + 1931.0 0.0 7.0 TRAN { Axis limits: (-0.140, 3.031) diff --git a/benchmarks/_ b/benchmarks/_ new file mode 100644 index 0000000..e69de29 diff --git a/benchmarks/antani.dat b/benchmarks/antani.dat new file mode 100644 index 0000000..e69de29 diff --git a/benchmarks/data_case_001.dat b/benchmarks/data_case_001.dat new file mode 100644 index 0000000..28e0410 --- /dev/null +++ b/benchmarks/data_case_001.dat @@ -0,0 +1,41 @@ +begin new data case +c RL.............................................Figure 3.9(a).................| +c Energization of a trivial RL circuit. | +c ----dt<---tmax...............................................................| + 100.e-6 50.e-3 +c -Iprnt<--Iplot<-Idoubl<-KssOut<-MaxOut<---Ipun<-Memsav<---Icat | + 25 1 1 0 0 1 +c | +c Circuit data.................................................................. +c Bus-->Bus-->Bus-->Bus--><----R<----L<----C 0 + load .1 1. 0 +blank End of circuit data......................................................| +c | +c Switch data................................................................... +c Bus-->Bus--><---Tclose<----Topen<-------Ie 0 + src load 1.e-3 9999. 0 1 +blank End of switch data.......................................................| +c | +c Source data................................................................... +c Bus--><---Tstart<----Tstop +14src 1. 60. 0 0. -1. 9999. +blank End of source data.......................................................| +c | +c Nodal Output Request Data..................................................... +c Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus--> + src load +blank End of output requests...................................................| +c | +c Plot request Data............................................................| + Figure 3.9(c): Output for Switch Current +c ______Graph type: 4(volts) 8(branch volts) 9(currents) | +c | _____Units: 1(deg) 2(cyc) 3(sec) 4(msec) 5(microsec) | +c || _________Units per inch | +c || | _____Plot starting time | +c || | | _Plot stopping time | +c || | | | _____Value at bottom of vertical axis (optional) | +c || | | | | Value at top of vertical axis (optional) | +c VV<-|<--|<--|<---|---|Bus-->Bus-->Bus-->Bus-->Heading-------->Vert axis------> + 194 5. 0.0 50. -4. 4.src load RL Energization Amps +blank End of Plot Request Data.................................................| +blank End of All Cases | diff --git a/benchmarks/data_case_002.dat b/benchmarks/data_case_002.dat new file mode 100644 index 0000000..f9813fe --- /dev/null +++ b/benchmarks/data_case_002.dat @@ -0,0 +1,42 @@ +begin new data case +c RL.............................................Figure 3.10(b)................. +c Energization of an RL load. | +c ----dt<---tmax...............................................................| + 50.e-6 50.e-3 +c -Iprnt<--Iplot<-Idoubl<-KssOut<-MaxOut<---Ipun<-Memsav<---Icat + 15 1 0 0 0 1 +c +c Circuit data.................................................................. +c Bus-->Bus-->Bus-->Bus--><----R<----L<----C 0 + bus13 22.61 19.72 1 +blank End of circuit data......................................................| +c +c Switch data................................................................... +c Bus-->Bus--><---Tclose<----Topen<-------Ie 0 + src bus13 1.e-3 9999. 0 1 +blank End of switch data.......................................................| +c +c Source data................................................................... +c Bus--><---Tstart<----Tstop +14src 56.34 60. 0 0. -1. 9999. +blank End of source data.......................................................| +c +c Nodal Output Request Data..................................................... +c Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus--> + src bus13 +blank End of output requests...................................................| +c +c Plot request Data............................................................. + 2Figure 3.10(c): 3.10(d) +c ______Graph type: 4(volts) 8(branch volts) 9(currents) | +c | _____Units: 1(deg) 2(cyc) 3(sec) 4(msec) 5(microsec) | +c || _________Units per inch | +c || | _____Plot starting time | +c || | | _Plot stopping time | +c || | | | _____Value at bottom of vertical axis (optional) | +c || | | | | Value at top of vertical axis (optional) | +c VV<-|<--|<--|<---|---|Bus-->Bus-->Bus-->Bus-->Heading-------->Vert axis------> + 194 5. 0.0 50. -4. 4.src bus13 ENER 200MVA.95pfKAmps + 144 5. 0.0 50. bus13 ENER 200MVA.95pfKVolts +blank End of Plot Request Data.................................................| +blank End of All Cases diff --git a/benchmarks/data_case_003.dat b/benchmarks/data_case_003.dat new file mode 100644 index 0000000..5c8771f --- /dev/null +++ b/benchmarks/data_case_003.dat @@ -0,0 +1,46 @@ +begin new data case +c THEV_RL........................................Figure 3.11(b)................. +c Energization of an RL load with more detailed source model | +c ----dt<---tmax...............................................................| + 50.e-6 50.e-3 +c -Iprnt<--Iplot<-Idoubl<-KssOut<-MaxOut<---Ipun<-Memsav<---Icat + 1 1 1 0 0 1 +c +c Circuit data.................................................................. +c Bus-->Bus-->Bus-->Bus--><----R<----L<----C 0 + src bus1 6. 0 + bus1 bus12 .05 2. 0 + bus1 .8 0 + bus12 .8 0 + bus12 bus13s 6. 0 + bus13l 22.61 19.72 0 +blank End of circuit data......................................................| +c +c Switch data................................................................... +c Bus-->Bus--><---Tclose<----Topen<-------Ie 0 + bus13sbus13l 1.e-3 9999. 0 1 +blank End of switch data.......................................................| +c +c Source data................................................................... +c Bus--><---Tstart<----Tstop +14src 56.34 60. 0 0. -1. 9999. +blank End of source data.......................................................| +c +c Nodal Output Request Data..................................................... +c Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus--> + src bus13l +blank End of output requests...................................................| +c +c Plot request Data............................................................. +c ______Graph type: 4(volts) 8(branch volts) 9(currents) | +c | _____Units: 1(deg) 2(cyc) 3(sec) 4(msec) 5(microsec) | +c || _________Units per inch | +c || | _____Plot starting time | +c || | | _Plot stopping time | +c || | | | _____Value at bottom of vertical axis (optional) | +c || | | | | Value at top of vertical axis (optional) | +c VV<-|<--|<--|<---|---|Bus-->Bus-->Bus-->Bus-->Heading-------->Vert axis------> + 194 5. 0.0 50. -4. 4.bus13sbus13l EnTh 200MVA.95pfkAmps + 144 5. 0.0 50. bus13l EnTh 200MVA.95pfkAmps +blank End of Plot Request Data.................................................| +blank End of All Cases diff --git a/benchmarks/data_case_003a.dat b/benchmarks/data_case_003a.dat new file mode 100644 index 0000000..fda9dde --- /dev/null +++ b/benchmarks/data_case_003a.dat @@ -0,0 +1,53 @@ +begin new data case +c THEV_RL........................................Figure 3.11(b)................. +c Energization of an RL load with more detailed source model | +c ----dt<---tmax...............................................................| + 10.e-6 100.e-3 +c -Iprnt<--Iplot<-Idoubl<-KssOut<-MaxOut<---Ipun<-Memsav<---Icat + 1 1 1 0 0 1 +c +c Circuit data.................................................................. +c Bus-->Bus-->Bus-->Bus--><----R<----L<----C 0 + src bus1 6. 0 + bus1 bus12 .05 2. 0 + bus1 .8 0 + bus12 .8 0 + bus12 bus13s 6. 0 + bus13l 22.61 19.72 0 +blank End of circuit data......................................................| +c +c Switch data................................................................... +c Bus-->Bus--><---Tclose<----Topen<-------Ie 0 + bus13sbus13l 1.e-3 9999. 0 1 +blank End of switch data.......................................................| +c +c Source data................................................................... +c Bus--><---Tstart<----Tstop +14src 56.34 60. 0 0. 1.e-3 9999. +14bus13l-1 1. 60. 0 0. 1.e-3 9999. +14bus13l-1 1. 180. 0 0. 1.e-3 9999. +14bus13l-1 1. 300. 0 0. 1.e-3 9999. +14bus13l-1 1. 420. 0 0. 1.e-3 9999. +14bus13l-1 1. 540. 0 0. 1.e-3 9999. +14bus13l-1 1. 660. 0 0. 1.e-3 9999. +14bus13l-1 1. 780. 0 0. 1.e-3 9999. +blank End of source data.......................................................| +c +c Nodal Output Request Data..................................................... +c Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus--> + src bus13l +blank End of output requests...................................................| +c +c Plot request Data............................................................. +c ______Graph type: 4(volts) 8(branch volts) 9(currents) | +c | _____Units: 1(deg) 2(cyc) 3(sec) 4(msec) 5(microsec) | +c || _________Units per inch | +c || | _____Plot starting time | +c || | | _Plot stopping time | +c || | | | _____Value at bottom of vertical axis (optional) | +c || | | | | Value at top of vertical axis (optional) | +c VV<-|<--|<--|<---|---|Bus-->Bus-->Bus-->Bus-->Heading-------->Vert axis------> + 194 5. 0.0 50. -4. 4.bus13sbus13l EnTh 200MVA.95pfkAmps + 144 5. 0.0 50. bus13l EnTh 200MVA.95pfkAmps +blank End of Plot Request Data.................................................| +blank End of All Cases diff --git a/benchmarks/data_case_003b.dat b/benchmarks/data_case_003b.dat new file mode 100644 index 0000000..2a0d95b --- /dev/null +++ b/benchmarks/data_case_003b.dat @@ -0,0 +1,54 @@ +begin new data case +c THEV_RL........................................Figure 3.11(b)................. +c Energization of an RL load with more detailed source model | +c ----dt<---tmax...............................................................| + 10.e-6 100.e-3 +c -Iprnt<--Iplot<-Idoubl<-KssOut<-MaxOut<---Ipun<-Memsav<---Icat + 25 1 1 0 0 1 +c +c Circuit data.................................................................. +c Bus-->Bus-->Bus-->Bus--><----R<----L<----C 0 + src bus1 6. 0 + bus1 bus12 .05 2. 0 + bus1 .8 0 + bus12 .8 0 + bus12 bus13s 6. 0 + bus13l 22.61 19.72 0 +blank End of circuit data......................................................| +c +c Switch data................................................................... +c Bus-->Bus--><---Tclose<----Topen<-------Ie 0 + bus13sbus13l 1.e-3 9999. 0 1 +blank End of switch data.......................................................| +c +c Source data................................................................... +c Bus--><---Tstart<----Tstop +14src 56.34 50. 0 0. 1.e-3 9999. +14bus13l-1 .5 50. 0 0. 1.e-3 9999. +14bus13l-1 .5 150. 0 0. 1.e-3 9999. +14bus13l-1 .5 250. 0 0. 1.e-3 9999. +14bus13l-1 .5 350. 0 0. 1.e-3 9999. +14bus13l-1 .5 450. 0 0. 1.e-3 9999. +14bus13l-1 .5 550. 0 0. 1.e-3 9999. +14bus13l-1 .5 650. 0 0. 1.e-3 9999. +14bus13l-1 .5 750. 0 0. 1.e-3 9999. +blank End of source data.......................................................| +c +c Nodal Output Request Data..................................................... +c Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus-->Bus--> + src bus13l +blank End of output requests...................................................| +c +c Plot request Data............................................................. +c ______Graph type: 4(volts) 8(branch volts) 9(currents) | +c | _____Units: 1(deg) 2(cyc) 3(sec) 4(msec) 5(microsec) | +c || _________Units per inch | +c || | _____Plot starting time | +c || | | _Plot stopping time | +c || | | | _____Value at bottom of vertical axis (optional) | +c || | | | | Value at top of vertical axis (optional) | +c VV<-|<--|<--|<---|---|Bus-->Bus-->Bus-->Bus-->Heading-------->Vert axis------> + 194 5. 0.0 50. -4. 4.bus13sbus13l EnTh 200MVA.95pfkAmps + 144 5. 0.0 50. bus13l EnTh 200MVA.95pfkAmps +blank End of Plot Request Data.................................................| +blank End of All Cases diff --git a/benchmarks/dc1.dat b/benchmarks/dc1.dat new file mode 100644 index 0000000..cc83835 --- /dev/null +++ b/benchmarks/dc1.dat @@ -0,0 +1,1364 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-1 +C Full-size, hvdc simulation of the Pacific Northwest to Pacific Southwest +C (Oregon to California) intertie as first done by BPA during the late '70s. +C There are two ends of the line, two poles, 3 bridges/pole, and 7 values +C (6 plus bypass) per bridge. For some description of the simulation, see +C the EMTP Newsletter article by W. Scott Meyer and Ma Ren-ming, Volume 3, +C No. 1, the last paragraph of Section I. For simplified, smaller versions +C of this same basic problem, see DC-2. The USE TPPLOT that follows was +C added at the end of September, 1994 (see October newsletter). +USE TPPLOT BEGIN { The first such declaration precedes the data for TPPLOT +PL4 { Access to plot of ongoing simulation is via this basic command +RAM { Special new (September, 1994) option to apply TPPLOT to EMTP +LABEL { Define labeling for plots, beginning with super title (next): +Super Title Line +Vertical Axis +Horizontal Axis of X-Y +FLUSH { Erase any multi-line case title now being stored +END { Bound the case title (none); this ends LABEL command +# 1 2 3 5 7 9 13 14 15 { Select 9 curves to plot by number +LIMITS { Request to manually set the Y-axis limits +-500 500 { Curves will be small (maybe 1/4 height) to allow many using offsets +FACTOR { Different units for currents (variables 7, 8, 9) require this + 1 1 1 0.3 0.3 0.3 180 180 180 { Multiply curves by these factors +OFFSET { Vertical displacement (constant to be added to each curve) + 0 0 0 -325 -325 -325 200 200 200 { Then add these offsets to curves +COLOR { Request to change pen colors to avoid weak ones for pens 7, 8, 9 +1 9 { Beginning index and length of color vector to be redefined +14 10 15 12 13 11 14 10 15 { Vector of color numbers (1st 6 are default) + { bypasses radii of marking disks (use default values of zero) + { bypasses pixel widths of curves (use default values of unity) +ROLL { After next plot is complete, curves will be extended automatically +TIME 0 .02 { The first frame will cover 10% of the total range of 200 msec +USE TPPLOT END { The 2nd such declaration ends the data for TPPLOT +C The preceding uses FACTOR and OFFSET to separate curves. This was +C done before WINDOW plotting was allowed. For a second use of ROLLing +C (real-time) plotting, see DC-63, which uses 3 windows for same 9 curves. +ABSOLUTE TACS DIMENSIONS +C Expand TACS Table 1 from 60 to 140 on 1 April 2007. The overflow +C check of SSTACS requires this. But to keep the total within List 19 +C we must decrease some other tables. Here, it is easy. In fact, other +C TACS tables easily are reduced so burden on List 19 is well under the +C total 4800 for 3 * default. Note 3194 bytes, less than 2 * default! +C Size List 19. Total floating-point TACS table space. 3194 4800 (LTACST) +C Tacs table number 1 2 3 4 5 6 7 8 +C Present figure 111 62 73 17 63 309 112 108 +C Program limit 140 75 95 20 80 350 130 125 +C 60 270 300 60 90 1250 550 180 --- default + 140 75 95 20 80 350 130 125 + .000100 .200 + 1 1 3 1 -1 + 5 5 20 20 +C DC LINE WITH 12-PULSE RECTIFIER/INVERTER OPERATION USING TACS ------------ +TACS HYBRID CASE FOR DC TERMINAL SIMULATION +C DC LINE WITH 12-PULSE RECTIFIER/INVERTER OPERATION USING TACS ------------ +C * * * * * * * GRID TIMING VOLTAGES * * * * * * * * * * * * * * + PHA-BS +GENAS -GENBS + PHB-AS +GENBS -GENAS + PHB-CS +GENBS -GENCS + PHC-BS +GENCS -GENBS + PHC-AS +GENCS -GENAS + PHA-CS +GENAS -GENCS + PHA-BR +GENAR -GENBR + PHB-AR +GENBR -GENAR + PHB-CR +GENBR -GENCR + PHC-BR +GENCR -GENBR + PHC-AR +GENCR -GENAR + PHA-CR +GENAR -GENCR + 4 +NOT13 + 9 +NOT18 + 14 +NOT23 + 19 +NOT28 + 24 +NOT3 + 29 +NOT8 + 4R +NOT13R + 9R +NOT18R + 14R +NOT23R + 19R +NOT28R + 24R +NOT3R + 29R +NOT8R +C ********* ZERO-ORDER BLOCK ON "TIMEX" FOR LIMIT OF 2 CYCLES ******* +C + TIMER +TIMEX 0.0 33.3-3 +90GENAS +90GENBS +90GENCS +90GENAR +90GENBR +90GENCR +C $$$$$$ DECREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +C +88ALPHAR -.1045045 * TIMER + 4.17-3 +C +C -------------- RECTIFIER CONTROL LOGIC FOLLOWS -------------------- +88SA-B 52 +UNITY 0.0 PHA-BS +88F1S 54 +SA-B 0.0 ALPHAR +88F1SII 4 .AND. F1S +88NOT3 .NOT. F1SII +88F1SI 54 +F1SII 1.4E-3 +88SB-A 52 +UNITY 0.0 PHB-AS +88F4S 54 +SB-A 0.0 ALPHAR +88F4SII 9 .AND. F4S +88NOT8 .NOT. F4SII +88F4SI 54 +F4SII 1.4E-3 +88SB-C 52 +UNITY 0.0 PHB-CS +88F3S 54 +SB-C 0.0 ALPHAR +88F3SII 14 .AND. F3S +88NOT13 .NOT. F3SII +88F3SI 54 +F3SII 1.4E-3 +88SC-B 52 +UNITY 0.0 PHC-BS +88F6S 54 +SC-B 0.0 ALPHAR +88F6SII 19 .AND. F6S +88NOT18 .NOT. F6SII +88F6SI 54 +F6SII 1.4E-3 +88SC-A 52 +UNITY 0.0 PHC-AS +88F5S 54 +SC-A 0.0 ALPHAR +88F5SII 24 .AND. F5S +88NOT23 .NOT. F5SII +88F5SI 54 +F5SII 1.4E-3 +88SA-C 52 +UNITY 0.0 PHA-CS +88F2S 54 +SA-C 0.0 ALPHAR +88F2SII 29 .AND. F2S +88NOT28 .NOT. F2SII +88F2SI 54 +F2SII 1.4E-3 +C $$$$$$ INCREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +C +88ALPHAI +.076276 * TIMER + 4.17-3 +C +C ----------------- INVERTER CONTROL LOGIC FOLLOWS ----------------- +88RA-B 52 +UNITY 0.0 PHA-BR +88F1R 54 +RA-B 0.0 ALPHAI +88F1RIV 4R .AND. F1R +88NOT3R .NOT. F1RIV +88F1RIII54 +F1RIV 1.4E-3 +88RB-A 52 +UNITY 0.0 PHB-AR +88F4R 54 +RB-A 0.0 ALPHAI +88F4RIV 9R .AND. F4R +88NOT8R .NOT. F4RIV +88F4RIII54 +F4RIV 1.4E-3 +88RB-C 52 +UNITY 0.0 PHB-CR +88F3R 54 +RB-C 0.0 ALPHAI +88F3RIV 14R .AND. F3R +88NOT13R .NOT. F3RIV +88F3RIII54 +F3RIV 1.4E-3 +88RC-B 52 +UNITY 0.0 PHC-BR +88F6R 54 +RC-B 0.0 ALPHAI +88F6RIV 19R .AND. F6R +88NOT18R .NOT. F6RIV +88F6RIII54 +F6RIV 1.4E-3 +88RC-A 52 +UNITY 0.0 PHC-AR +88F5R 54 +RC-A 0.0 ALPHAI +88F5RIV 24R .AND. F5R +88NOT23R .NOT. F5RIV +88F5RIII54 +F5RIV 1.4E-3 +88RA-C 52 +UNITY 0.0 PHA-CR +88F2R 54 +RA-C 0.0 ALPHAI +88F2RIV 29R .AND. F2R +88NOT28R .NOT. F2RIV +88F2RIII54 +F2RIV 1.4E-3 +C +C DELAY FIRING FOR BYPASS VALVES +C +88FIRE - UNITY +77PHA-BS +166.1710 +77PHB-AS -166.1710 +77PHB-CS -332.3420 +77PHC-BS +332.3420 +77PHC-AS +166.1710 +77PHA-CS -166.1710 +77PHA-BR +153.2873 +77PHB-AR -153.2873 +77PHB-CR -306.5746 +77PHC-BR +306.5746 +77PHC-AR +153.2873 +77PHA-CR -153.2873 +77FIRE -1.0 +BLANK card ending TACS initial conditions (and also all TACS data) +C +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 +C AC CIRCUIT OF POLE 4, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +C + 0GENAS BIGEA4 .01 + 0GENBS BIGEB4GENAS BIGEA4 + 0GENCS BIGEC4GENAS BIGEA4 + 0BIGEA4 .86 114. 2.46 + 0BIGEB4 BIGEA4 + 0BIGEC4 BIGEA4 + 0 BIGEA4 1.18 114. 1.28 + 0 BIGEB4 BIGEA4 + 0 BIGEC4 BIGEA4 + 0BIGEA413AC4 .02 1.56 + 0BIGEB413BC4 BIGEA413AC4 + 0BIGEC413CC4 BIGEA413AC4 + 013AC4 HPAC4 40. + 0HPAC4 13AC4 5.5 + 013BC4 HPBC4 13AC4 HPAC4 + 0HPBC4 13BC4 HPAC4 13AC4 + 013CC4 HPCC4 13AC4 HPAC4 + 0HPCC4 13CC4 HPAC4 13AC4 + 0HPAC4 3.9 + 0HPBC4 HPAC4 + 0HPCC4 HPAC4 + 0 13AC4 .93 44. .95 + 0 13BC4 13AC4 + 0 13CC4 13AC4 + 013AC4 11AC4 GENAS BIGEA4 + 013BC4 11BC4 GENAS BIGEA4 + 013CC4 11CC4 GENAS BIGEA4 + 011AC4 .82 44. 1.33 + 011BC4 11AC4 + 011CC4 11AC4 + 011AC4 AC6 GENAS BIGEA4 + 011BC4 BC6 GENAS BIGEA4 + 011CC4 CC6 GENAS BIGEA4 + 011AC4 AC4 GENAS BIGEA4 + 011BC4 BC4 GENAS BIGEA4 + 011CC4 CC4 GENAS BIGEA4 + 011AC4 AC2 GENAS BIGEA4 + 011BC4 BC2 GENAS BIGEA4 + 011CC4 CC2 GENAS BIGEA4 +C +C -------------------------------- GROUP 6, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0VI-1 VICA 3000. + 0VICA VI-1 1.0 + 0VI-3 VICB VI-1 VICA + 0VICB VI-3 VICA VI-1 + 0VI-5 VICC VI-1 VICA + 0VICC VI-5 VICA VI-1 + 0VI-4 AN6C VI-1 VICA + 0AN6C VI-4 VICA VI-1 + 0VI-6 AN6C VI-1 VICA + 0AN6C VI-6 VICA VI-1 + 0VI-2 AN6C VI-1 VICA + 0AN6C VI-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN6C BYP6C 300. + 0BYP6C AN6C 1.0 +C //////////////////////// VALVE DAMPERS ///////////////////// + 0CEL4 VDA6 1200. .1 + 0CEL4 VDB6 CEL4 VDA6 + 0CEL4 VDC6 CEL4 VDA6 + 0AN6C VDA6 CEL4 VDA6 + 0AN6C VDB6 CEL4 VDA6 + 0AN6C VDC6 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA6 VICA 1000. + 0VICA VDA6 .25 + 0VDB6 VICB VDA6 VICA + 0VICB VDB6 VICA VDA6 + 0VDC6 VICC VDA6 VICA + 0VICC VDC6 VICA VDA6 + 0CEL4 CTH6C VDA6 VICA + 0CTH6C CEL4 VICA VDA6 +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC6Y TXA6 .203 .7 + 0BC6Y TXB6 AC6Y TXA6 + 0CC6Y TXC6 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA6C VDA6 .202 .717 + 0TXB6C VDB6 TXA6C VDA6 + 0TXC6C VDC6 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA6 99300. +52TXA6C TXB6C 82715. 68946. +51TXB6 TXA6 +52TXB6C TXC6C +51TXC6 TXA6 +52TXC6C TXA6C +C +C +C -------------------------------- GROUP 4, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0IV-1 IVCA VI-1 VICA + 0IVCA IV-1 VICA VI-1 + 0IV-3 IVCB VI-1 VICA + 0IVCB IV-3 VICA VI-1 + 0IV-5 IVCC VI-1 VICA + 0IVCC IV-5 VICA VI-1 + 0IV-4 AN4C VI-1 VICA + 0AN4C IV-4 VICA VI-1 + 0IV-6 AN4C VI-1 VICA + 0AN4C IV-6 VICA VI-1 + 0IV-2 AN4C VI-1 VICA + 0AN4C IV-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN4C BYP4C AN6C BYP6C + 0BYP4C AN4C BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN6C VDA4 CEL4 VDA6 + 0AN6C VDB4 CEL4 VDA6 + 0AN6C VDC4 CEL4 VDA6 + 0AN4C VDA4 CEL4 VDA6 + 0AN4C VDB4 CEL4 VDA6 + 0AN4C VDC4 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA4 IVCA VDA6 VICA + 0IVCA VDA4 VICA VDA6 + 0VDB4 IVCB VDA6 VICA + 0IVCB VDB4 VICA VDA6 + 0VDC4 IVCC VDA6 VICA + 0IVCC VDC4 VICA VDA6 + 0AN6C CTH4C VDA6 VICA + 0CTH4C AN6C VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC4Y TXA4 .22 2.07 + 0BC4Y TXB4 AC4Y TXA4 + 0CC4Y TXC4 AC4Y TXA4 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA4C VDA4 .07 .8343 + 0TXB4C VDB4 TXA4C VDA4 + 0TXC4C VDC4 TXA4C VDA4 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA4 99300. +52TXA4C NS1 47951. 23174. +51TXB4 TXA4 +52TXB4C NS1 +51TXC4 TXA4 +52TXC4C NS1 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS1 1.E+10 +C ------------------------------------------------------------------------- +C -------------------------------- GROUP 2, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0II-1 IICA VI-1 VICA + 0IICA II-1 VICA VI-1 + 0II-3 IICB VI-1 VICA + 0IICB II-3 VICA VI-1 + 0II-5 IICC VI-1 VICA + 0IICC II-5 VICA VI-1 + 0II-4 AN2C VI-1 VICA + 0AN2C II-4 VICA VI-1 + 0II-6 AN2C VI-1 VICA + 0AN2C II-6 VICA VI-1 + 0II-2 AN2C VI-1 VICA + 0AN2C II-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN2C BYP2C AN6C BYP6C + 0BYP2C AN2C BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN4C VDA2 CEL4 VDA6 + 0AN4C VDB2 CEL4 VDA6 + 0AN4C VDC2 CEL4 VDA6 + 0AN2C VDA2 CEL4 VDA6 + 0AN2C VDB2 CEL4 VDA6 + 0AN2C VDC2 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA2 IICA VDA6 VICA + 0IICA VDA2 VICA VDA6 + 0VDB2 IICB VDA6 VICA + 0IICB VDB2 VICA VDA6 + 0VDC2 IICC VDA6 VICA + 0IICC VDC2 VICA VDA6 + 0AN4C CTH2C VDA6 VICA + 0CTH2C AN4C VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC2Y TXA2 AC4Y TXA4 + 0BC2Y TXB2 AC4Y TXA4 + 0CC2Y TXC2 AC4Y TXA4 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA2C VDA2 TXA4C VDA4 + 0TXB2C VDB2 TXA4C VDA4 + 0TXC2C VDC2 TXA4C VDA4 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA2 TXA4 +52TXA2C NS2 +51TXB2 TXA4 +52TXB2C NS2 +51TXC2 TXA4 +52TXC2C NS2 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS2 NS1 +C +C ------------------------------------------------------------------------- +C GROUND ELECTRODE CIRCUIT, CELILO + 0AN2C GR1C 1.0 + 0GR1C ELEC1 AN2C GR1C + 0GR1C .06 + 0ELEC1 GR2C AN2C GR1C + 0GR2C CELGR AN2C GR1C + 0GR2C GR1C + 0ELEC1 .43 22. +C ------------------------------------------------------------------------- +C AC CIRCUIT OF POLE 3, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +C + 0GENAS BIGEA3GENAS BIGEA4 + 0GENBS BIGEB3GENAS BIGEA4 + 0GENCS BIGEC3GENAS BIGEA4 + 0BIGEA3 BIGEA4 + 0BIGEB3 BIGEA4 + 0BIGEC3 BIGEA4 + 0 BIGEA3 BIGEA4 + 0 BIGEB3 BIGEA4 + 0 BIGEC3 BIGEA4 + 0BIGEA313AC3 BIGEA413AC4 + 0BIGEB313BC3 BIGEA413AC4 + 0BIGEC313CC3 BIGEA413AC4 + 013AC3 HPAC3 13AC4 HPAC4 + 0HPAC3 13AC3 HPAC4 13AC4 + 013BC3 HPBC3 13AC4 HPAC4 + 0HPBC3 13BC3 HPAC4 13AC4 + 013CC3 HPCC3 13AC4 HPAC4 + 0HPCC3 13CC3 HPAC4 13AC4 + 0HPAC3 HPAC4 + 0HPBC3 HPAC4 + 0HPCC3 HPAC4 + 0 13AC3 13AC4 + 0 13BC3 13AC4 + 0 13CC3 13AC4 + 013AC3 11AC3 GENAS BIGEA4 + 013BC3 11BC3 GENAS BIGEA4 + 013CC3 11CC3 GENAS BIGEA4 + 011AC3 11AC4 + 011BC3 11AC4 + 011CC3 11AC4 + 011AC3 AC1 GENAS BIGEA4 + 011BC3 BC1 GENAS BIGEA4 + 011CC3 CC1 GENAS BIGEA4 + 011AC3 AC3 GENAS BIGEA4 + 011BC3 BC3 GENAS BIGEA4 + 011CC3 CC3 GENAS BIGEA4 + 011AC3 AC5 GENAS BIGEA4 + 011BC3 BC5 GENAS BIGEA4 + 011CC3 CC5 GENAS BIGEA4 +C +C -------------------------------- GROUP 1, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0I-1 ICA VI-1 VICA + 0ICA I-1 VICA VI-1 + 0I-3 ICB VI-1 VICA + 0ICB I-3 VICA VI-1 + 0I-5 ICC VI-1 VICA + 0ICC I-5 VICA VI-1 + 0I-4 AN1C VI-1 VICA + 0AN1C I-4 VICA VI-1 + 0I-6 AN1C VI-1 VICA + 0AN1C I-6 VICA VI-1 + 0I-2 AN1C VI-1 VICA + 0AN1C I-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN1C BYP1C AN6C BYP6C + 0BYP1C AN1C BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0CELGR VDA1 CEL4 VDA6 + 0CELGR VDB1 CEL4 VDA6 + 0CELGR VDC1 CEL4 VDA6 + 0AN1C VDA1 CEL4 VDA6 + 0AN1C VDB1 CEL4 VDA6 + 0AN1C VDC1 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA1 ICA VDA6 VICA + 0ICA VDA1 VICA VDA6 + 0VDB1 ICB VDA6 VICA + 0ICB VDB1 VICA VDA6 + 0VDC1 ICC VDA6 VICA + 0ICC VDC1 VICA VDA6 + 0CELGR CTH1C VDA6 VICA + 0CTH1C CELGR VICA VDA6 +C +C !!!!!!!!!!!!!!!!!!!!! SYMMETRY !!!!!!!!!!!!!!!! + 0AN5C CEL3 .01 +C !!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!! +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC1Y TXA1 AC6Y TXA6 + 0BC1Y TXB1 AC6Y TXA6 + 0CC1Y TXC1 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA1C VDA1 TXA6C VDA6 + 0TXB1C VDB1 TXA6C VDA6 + 0TXC1C VDC1 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA1 TXA6 +52TXA1C TXB1C +51TXB1 TXA6 +52TXB1C TXC1C +51TXC1 TXA6 +52TXC1C TXA1C +C -------------------------------- GROUP 3, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0III-1 IIICA VI-1 VICA + 0IIICA III-1 VICA VI-1 + 0III-3 IIICB VI-1 VICA + 0IIICB III-3 VICA VI-1 + 0III-5 IIICC VI-1 VICA + 0IIICC III-5 VICA VI-1 + 0III-4 AN3C VI-1 VICA + 0AN3C III-4 VICA VI-1 + 0III-6 AN3C VI-1 VICA + 0AN3C III-6 VICA VI-1 + 0III-2 AN3C VI-1 VICA + 0AN3C III-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN3C BYP3C AN6C BYP6C + 0BYP3C AN3C BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN1C VDA3 CEL4 VDA6 + 0AN1C VDB3 CEL4 VDA6 + 0AN1C VDC3 CEL4 VDA6 + 0AN3C VDA3 CEL4 VDA6 + 0AN3C VDB3 CEL4 VDA6 + 0AN3C VDC3 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA3 IIICA VDA6 VICA + 0IIICA VDA3 VICA VDA6 + 0VDB3 IIICB VDA6 VICA + 0IIICB VDB3 VICA VDA6 + 0VDC3 IIICC VDA6 VICA + 0IIICC VDC3 VICA VDA6 + 0AN1C CTH3C VDA6 VICA + 0CTH3C AN1C VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC3Y TXA3 AC4Y TXA4 + 0BC3Y TXB3 AC4Y TXA4 + 0CC3Y TXC3 AC4Y TXA4 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA3C VDA3 TXA4C VDA4 + 0TXB3C VDB3 TXA4C VDA4 + 0TXC3C VDC3 TXA4C VDA4 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA3 TXA4 +52TXA3C NS3 +51TXB3 TXA4 +52TXB3C NS3 +51TXC3 TXA4 +52TXC3C NS3 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS3 NS1 +C ------------------------------------------------------------------------- +C -------------------------------- GROUP 5, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0V-1 VCA VI-1 VICA + 0VCA V-1 VICA VI-1 + 0V-3 VCB VI-1 VICA + 0VCB V-3 VICA VI-1 + 0V-5 VCC VI-1 VICA + 0VCC V-5 VICA VI-1 + 0V-4 AN5C VI-1 VICA + 0AN5C V-4 VICA VI-1 + 0V-6 AN5C VI-1 VICA + 0AN5C V-6 VICA VI-1 + 0V-2 AN5C VI-1 VICA + 0AN5C V-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN5C BYP5C AN6C BYP6C + 0BYP5C AN5C BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN3C VDA5 CEL4 VDA6 + 0AN3C VDB5 CEL4 VDA6 + 0AN3C VDC5 CEL4 VDA6 + 0AN5C VDA5 CEL4 VDA6 + 0AN5C VDB5 CEL4 VDA6 + 0AN5C VDC5 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA5 VCA VDA6 VICA + 0VCA VDA5 VICA VDA6 + 0VDB5 VCB VDA6 VICA + 0VCB VDB5 VICA VDA6 + 0VDC5 VCC VDA6 VICA + 0VCC VDC5 VICA VDA6 + 0AN3C CTH5C VDA6 VICA + 0CTH5C AN3C VICA VDA6 +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC5Y TXA5 AC6Y TXA6 + 0BC5Y TXB5 AC6Y TXA6 + 0CC5Y TXC5 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA5C VDA5 TXA6C VDA6 + 0TXB5C VDB5 TXA6C VDA6 + 0TXC5C VDC5 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA5 TXA6 +52TXA5C TXB5C +51TXB5 TXA6 +52TXB5C TXC5C +51TXC5 TXA6 +52TXC5C TXA5C +C +C +C SMOOTHING REACTOR, CELILO, POLE 4 =================== + 0CEL4 S4- 500. 1 +C ============================ +C DC FILTERS, CELILO, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0S4- ELEC1 6.3 280. .7 + 0S4- HP4C 2.5 + 0HP4C ELEC1 100. + 0ELEC1 HP4C 7.0 +C =========================================== +C SURGE CAPACITOR, CELILO, POLE 4 + 0S4- SURC4 .7 + 0SURC4 5. + 0SURC4 ELEC1 GENAS BIGEA4 +C ============================================================ +C SMOOTHING REACTOR, CELILO, POLE 3 =================== + 0CEL3 A3+ CEL4 S4- +C ============================ +C DC FILTERS, CELILO, POLE 3 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS + 0A3+ ELEC1 S4- ELEC1 + 0A3+ HP3C S4- HP4C + 0HP3C ELEC1 HP4C ELEC1 + 0ELEC1 HP3C ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, CELILO, POLE 3 + 0A3+ SURC3 S4- SURC4 + 0SURC3 SURC4 + 0SURC3 ELEC1 GENAS BIGEA4 +C ============================================================ +C +C ************************************************************************* +C CELILO - SYLMAR LINE, 846 MILES (1362 KM) +C ************************************************************************* +C +-1S4- 4-282 .02 6.56 .0142 282. +-2A3+ 3-282 .02 1.56 .0192 282. +-14-282 4-564 S4- 4-282 +-23-282 3-564 +-14-564 R4- S4- 4-282 +-23-564 R3+ +C +C +C SMOOTHING REACTOR, SYLMAR, POLE 4 =================== + 0AN6S SYL4 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R4- ELEC2 S4- ELEC1 + 0R4- HP4 S4- HP4C + 0HP4 ELEC2 HP4C ELEC1 + 0ELEC2 HP4 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 4 + 0R4- SURS4 S4- SURC4 + 0SURS4 SURC4 + 0SURS4 ELEC2 GENAS BIGEA4 +C ============================================================ +C SMOOTHING REACTOR, SYLMAR, POLE 3 =================== + 0CTH5S SYL3 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 3 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R3+ ELEC2 S4- ELEC1 + 0R3+ HP3 S4- HP4C + 0HP3 ELEC2 HP4C ELEC1 + 0ELEC2 HP3 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 3 + 0R3+ SURS3 S4- SURC4 + 0SURS3 SURC4 + 0SURS3 ELEC2 GENAS BIGEA4 +C ============================================================ +C +C LC CIRCUIT NEAR SMOOTHING REACTOR ON LINE AT SYLMAR ONLY .......... +C + 0R4- CAP4 GENAS BIGEA4 + 0CAP4 .06 + 0CAP4 SYL4 1.0 + 0R3+ CAP3 GENAS BIGEA4 + 0CAP3 CAP4 + 0CAP3 SYL3 CAP4 SYL4 +C +C +C AC CIRCUIT OF POLE 4, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. +C + 0AS6 11AS4 GENAS BIGEA4 + 0BS6 11BS4 GENAS BIGEA4 + 0CS6 11CS4 GENAS BIGEA4 + 0AS4 11AS4 GENAS BIGEA4 + 0BS4 11BS4 GENAS BIGEA4 + 0CS4 11CS4 GENAS BIGEA4 + 0AS2 11AS4 GENAS BIGEA4 + 0BS2 11BS4 GENAS BIGEA4 + 0CS2 11CS4 GENAS BIGEA4 + 011AS4 L1A 1. + 011BS4 L1B 11AS4 L1A + 011CS4 L1C 11AS4 L1A + 0L1A A57-4 GENAS BIGEA4 + 0L1B B57-4 GENAS BIGEA4 + 0L1C C57-4 GENAS BIGEA4 + 0A57-4 4. 214. 1.32 + 0B57-4 A57-4 + 0C57-4 A57-4 + 0 A57-4 5.7 214. .67 + 0 B57-4 A57-4 + 0 C57-4 A57-4 + 0A57-4 A13-4 GENAS BIGEA4 + 0B57-4 B13-4 GENAS BIGEA4 + 0C57-4 C13-4 GENAS BIGEA4 + 0A13-4 1.8 44. 1.33 + 0B13-4 A13-4 + 0C13-4 A13-4 + 0 A13-4 2.2 44. .95 + 0 B13-4 A13-4 + 0 C13-4 A13-4 + 0A13-4 A4 34.5 + 0A4 A13-4 4.8 + 0A4 4.5 + 0B13-4 B4 A13-4 A4 + 0B4 B13-4 A4 A13-4 + 0B4 A4 + 0C13-4 C4 A13-4 A4 + 0C4 C13-4 A4 A13-4 + 0C4 A4 + 0A13-4 GENAR GENAS BIGEA4 + 0B13-4 GENBR GENAS BIGEA4 + 0C13-4 GENCR GENAS BIGEA4 +C +C ---------------------------------- GROUP 6, SYLMAR -------------------- +C ####### ANODE REACTORS ############### + 0AN6S 6-1 VI-1 VICA + 06-1 AN6S VICA VI-1 + 0AN6S 6-3 VI-1 VICA + 06-3 AN6S VICA VI-1 + 0AN6S 6-5 VI-1 VICA + 06-5 AN6S VICA VI-1 + 06SA 6-4 VI-1 VICA + 06-4 6SA VICA VI-1 + 06SB 6-6 VI-1 VICA + 06-6 6SB VICA VI-1 + 06SC 6-2 VI-1 VICA + 06-2 6SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN6S BYP6S AN6C BYP6C + 0BYP6S AN6S BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN6S 6SA CEL4 VDA6 + 0AN6S 6SB CEL4 VDA6 + 0AN6S 6SC CEL4 VDA6 + 0CTH6S 6SA CEL4 VDA6 + 0CTH6S 6SB CEL4 VDA6 + 0CTH6S 6SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS6Y TXS6A AC6Y TXA6 + 0BS6Y TXS6B AC6Y TXA6 + 0CS6Y TXS6C AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA6 6SA TXA6C VDA6 + 0TXSB6 6SB TXA6C VDA6 + 0TXSC6 6SC TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS6A TXA6 +52TXSA6 TXSB6 +51TXS6B TXA6 +52TXSB6 TXSC6 +51TXS6C TXA6 +52TXSC6 TXSA6 +C +C +C RESISTOR SEPARATING VALVE GROUPS AT SYLMAR ONLY! + 0CTH6S AN4S .01 +C +C -------------------------------- GROUP 4, SYLMAR ---------------------- +C ####### ANODE REACTORS ############### + 0AN4S 4-1 VI-1 VICA + 04-1 AN4S VICA VI-1 + 0AN4S 4-3 VI-1 VICA + 04-3 AN4S VICA VI-1 + 0AN4S 4-5 VI-1 VICA + 04-5 AN4S VICA VI-1 + 04SA 4-4 VI-1 VICA + 04-4 4SA VICA VI-1 + 04SB 4-6 VI-1 VICA + 04-6 4SB VICA VI-1 + 04SC 4-2 VI-1 VICA + 04-2 4SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN4S BYP4S AN6C BYP6C + 0BYP4S AN4S BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN4S 4SA CEL4 VDA6 + 0AN4S 4SB CEL4 VDA6 + 0AN4S 4SC CEL4 VDA6 + 0CTH4S 4SA CEL4 VDA6 + 0CTH4S 4SB CEL4 VDA6 + 0CTH4S 4SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS4Y TXS4A AC4Y TXA4 + 0BS4Y TXS4B AC4Y TXA4 + 0CS4Y TXS4C AC4Y TXA4 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA4 4SA TXA4C VDA4 + 0TXSB4 4SB TXA4C VDA4 + 0TXSC4 4SC TXA4C VDA4 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS4A TXA4 +52TXSA4 NR1 +51TXS4B TXA4 +52TXSB4 NR1 +51TXS4C TXA4 +52TXSC4 NR1 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NR1 NS1 +C ------------------------------------------------------------------------- +C +C RESISTOR SEPARATING VALVE GROUPS AT SYLMAR ONLY! + 0CTH4S AN2S .01 +C +C -------------------------------- GROUP 2, SYLMAR ---------------------- +C ####### ANODE REACTORS ############### + 0AN2S 2-1 VI-1 VICA + 02-1 AN2S VICA VI-1 + 0AN2S 2-3 VI-1 VICA + 02-3 AN2S VICA VI-1 + 0AN2S 2-5 VI-1 VICA + 02-5 AN2S VICA VI-1 + 02SA 2-4 VI-1 VICA + 02-4 2SA VICA VI-1 + 02SB 2-6 VI-1 VICA + 02-6 2SB VICA VI-1 + 02SC 2-2 VI-1 VICA + 02-2 2SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN2S BYP2S AN6C BYP6C + 0BYP2S AN2S BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN2S 2SA CEL4 VDA6 + 0AN2S 2SB CEL4 VDA6 + 0AN2S 2SC CEL4 VDA6 + 0CTH2S 2SA CEL4 VDA6 + 0CTH2S 2SB CEL4 VDA6 + 0CTH2S 2SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS2Y TXS2A AC4Y TXA4 + 0BS2Y TXS2B AC4Y TXA4 + 0CS2Y TXS2C AC4Y TXA4 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA2 2SA TXA4C VDA4 + 0TXSB2 2SB TXA4C VDA4 + 0TXSC2 2SC TXA4C VDA4 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS2A TXA4 +52TXSA2 NR2 +51TXS2B TXA4 +52TXSB2 NR2 +51TXS2C TXA4 +52TXSC2 NR2 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NR2 NS1 +C ------------------------------------------------------------------------- +C +C ------------------------------------------------------------------------- +C GROUND ELECTRODE CIRCUIT, SYLMAR + 0CTH2S GR1S AN2C GR1C + 0GR1S ELEC2 AN2C GR1C + 0GR1S GR1C + 0ELEC2 GR2S AN2C GR1C + 0GR2S AN1S AN2C GR1C + 0GR2S GR1C + 0ELEC2 ELEC1 +C ------------------------------------------------------------------------- +C +C AC CIRCUIT OF POLE 3, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. +C + 0AS1 11AS3 GENAS BIGEA4 + 0BS1 11BS3 GENAS BIGEA4 + 0CS1 11CS3 GENAS BIGEA4 + 0AS3 11AS3 GENAS BIGEA4 + 0BS3 11BS3 GENAS BIGEA4 + 0CS3 11CS3 GENAS BIGEA4 + 0AS5 11AS3 GENAS BIGEA4 + 0BS5 11BS3 GENAS BIGEA4 + 0CS5 11CS3 GENAS BIGEA4 + 011AS3 L2A 11AS4 L1A + 011BS3 L2B 11AS4 L1A + 011CS3 L2C 11AS4 L1A + 0L2A A57-3 GENAS BIGEA4 + 0L2B B57-3 GENAS BIGEA4 + 0L2C C57-3 GENAS BIGEA4 + 0A57-3 A57-4 + 0B57-3 A57-4 + 0C57-3 A57-4 + 0 A57-3 A57-4 + 0 B57-3 A57-4 + 0 C57-3 A57-4 + 0A57-3 A13-3 GENAS BIGEA4 + 0B57-3 B13-3 GENAS BIGEA4 + 0C57-3 C13-3 GENAS BIGEA4 + 0A13-3 A13-4 + 0B13-3 A13-4 + 0C13-3 A13-4 + 0 A13-3 A13-4 + 0 B13-3 A13-4 + 0 C13-3 A13-4 + 0A13-3 A3 A13-4 A4 + 0A3 A13-3 A4 A13-4 + 0A3 A4 + 0B13-3 B3 A13-4 A4 + 0B3 B13-3 A4 A13-4 + 0B3 A4 + 0C13-3 C3 A13-4 A4 + 0C3 C13-3 A4 A13-4 + 0C3 A4 + 0A13-3 GENAR GENAS BIGEA4 + 0B13-3 GENBR GENAS BIGEA4 + 0C13-3 GENCR GENAS BIGEA4 +C +C ---------------------------------- GROUP 1, SYLMAR -------------------- +C ####### ANODE REACTORS ############### + 0AN1S 1-1 VI-1 VICA + 01-1 AN1S VICA VI-1 + 0AN1S 1-3 VI-1 VICA + 01-3 AN1S VICA VI-1 + 0AN1S 1-5 VI-1 VICA + 01-5 AN1S VICA VI-1 + 01SA 1-4 VI-1 VICA + 01-4 1SA VICA VI-1 + 01SB 1-6 VI-1 VICA + 01-6 1SB VICA VI-1 + 01SC 1-2 VI-1 VICA + 01-2 1SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN1S BYP1S AN6C BYP6C + 0BYP1S AN1S BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN1S 1SA CEL4 VDA6 + 0AN1S 1SB CEL4 VDA6 + 0AN1S 1SC CEL4 VDA6 + 0CTH1S 1SA CEL4 VDA6 + 0CTH1S 1SB CEL4 VDA6 + 0CTH1S 1SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS1Y TXS1A AC6Y TXA6 + 0BS1Y TXS1B AC6Y TXA6 + 0CS1Y TXS1C AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA1 1SA TXA6C VDA6 + 0TXSB1 1SB TXA6C VDA6 + 0TXSC1 1SC TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS1A TXA6 +52TXSA1 TXSB1 +51TXS1B TXA6 +52TXSB1 TXSC1 +51TXS1C TXA6 +52TXSC1 TXSA1 +C +C +C RESISTOR SEPARATING VALVE GROUPS AT SYLMAR ONLY! + 0CTH1S AN3S .01 +C +C -------------------------------- GROUP 3, SYLMAR ---------------------- +C ####### ANODE REACTORS ## 0AN3S 3-1 VI-1 VICA + 03-1 AN3S VICA VI-1 + 0AN3S 3-3 VI-1 VICA + 03-3 AN3S VICA VI-1 + 0AN3S 3-5 VI-1 VICA + 03-5 AN3S VICA VI-1 + 03SA 3-4 VI-1 VICA + 03-4 3SA VICA VI-1 + 03SB 3-6 VI-1 VICA + 03-6 3SB VICA VI-1 + 03SC 3-2 VI-1 VICA + 03-2 3SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN3S BYP3S AN6C BYP6C + 0BYP3S AN3S BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN3S 3SA CEL4 VDA6 + 0AN3S 3SB CEL4 VDA6 + 0AN3S 3SC CEL4 VDA6 + 0CTH3S 3SA CEL4 VDA6 + 0CTH3S 3SB CEL4 VDA6 + 0CTH3S 3SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS3Y TXS3A AC4Y TXA4 + 0BS3Y TXS3B AC4Y TXA4 + 0CS3Y TXS3C AC4Y TXA4 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA3 3SA TXA4C VDA4 + 0TXSB3 3SB TXA4C VDA4 + 0TXSC3 3SC TXA4C VDA4 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS3A TXA4 +52TXSA3 NR3 +51TXS3B TXA4 +52TXSB3 NR3 +51TXS3C TXA4 +52TXSC3 NR3 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NR3 NS1 +C ------------------------------------------------------------------------- +C +C RESISTOR SEPARATING VALVE GROUPS AT SYLMAR ONLY! + 0CTH3S AN5S .01 +C ---------------------------------- GROUP 5, SYLMAR -------------------- +C ####### ANODE REACTORS ############### + 0AN5S 5-1 VI-1 VICA + 05-1 AN5S VICA VI-1 + 0AN5S 5-3 VI-1 VICA + 05-3 AN5S VICA VI-1 + 0AN5S 5-5 VI-1 VICA + 05-5 AN5S VICA VI-1 + 05SA 5-4 VI-1 VICA + 05-4 5SA VICA VI-1 + 05SB 5-6 VI-1 VICA + 05-6 5SB VICA VI-1 + 05SC 5-2 VI-1 VICA + 05-2 5SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## + 0AN5S BYP5S AN6C BYP6C + 0BYP5S AN5S BYP6C AN6C +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN5S 5SA CEL4 VDA6 + 0AN5S 5SB CEL4 VDA6 + 0AN5S 5SC CEL4 VDA6 + 0CTH5S 5SA CEL4 VDA6 + 0CTH5S 5SB CEL4 VDA6 + 0CTH5S 5SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS5Y TXS5A AC6Y TXA6 + 0BS5Y TXS5B AC6Y TXA6 + 0CS5Y TXS5C AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA5 5SA TXA6C VDA6 + 0TXSB5 5SB TXA6C VDA6 + 0TXSC5 5SC TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS5A TXA6 +52TXSA5 TXSB5 +51TXS5B TXA6 +52TXSB5 TXSC5 +51TXS5C TXA6 +52TXSC5 TXSA5 +C +C $$$$$$$$$$$$$$$$$$$$$$$$$ LEAKAGE CAPACITANCE ACROSS VALVES +C + 0VICA CTH6C .001 + 0VICB CTH6C VICA CTH6C + 0VICC CTH6C VICA CTH6C + 0AN6C VICA VICA CTH6C + 0AN6C VICB VICA CTH6C + 0AN6C VICC VICA CTH6C + 0IVCA CTH4C VICA CTH6C + 0IVCB CTH4C VICA CTH6C + 0IVCC CTH4C VICA CTH6C + 0AN4C IVCA VICA CTH6C + 0AN4C IVCB VICA CTH6C + 0AN4C IVCC VICA CTH6C + 0IICA CTH2C VICA CTH6C + 0IICB CTH2C VICA CTH6C + 0IICC CTH2C VICA CTH6C + 0AN2C IICA VICA CTH6C + 0AN2C IICB VICA CTH6C + 0AN2C IICC VICA CTH6C + 0ICA CTH1C VICA CTH6C + 0ICB CTH1C VICA CTH6C + 0ICC CTH1C VICA CTH6C + 0AN1C ICA VICA CTH6C + 0AN1C ICB VICA CTH6C + 0AN1C ICC VICA CTH6C + 0IIICA CTH3C VICA CTH6C + 0IIICB CTH3C VICA CTH6C + 0IIICC CTH3C VICA CTH6C + 0AN3C IIICA VICA CTH6C + 0AN3C IIICB VICA CTH6C + 0AN3C IIICC VICA CTH6C + 0VCA CTH5C VICA CTH6C + 0VCB CTH5C VICA CTH6C + 0VCC CTH5C VICA CTH6C + 0AN5C VCA VICA CTH6C + 0AN5C VCB VICA CTH6C + 0AN5C VCC VICA CTH6C + 06SA CTH6S VICA CTH6C + 06SB CTH6S VICA CTH6C + 06SC CTH6S VICA CTH6C + 0AN6S 6SA VICA CTH6C + 0AN6S 6SB VICA CTH6C + 0AN6S 6SC VICA CTH6C + 04SA CTH4S VICA CTH6C + 04SB CTH4S VICA CTH6C + 04SC CTH4S VICA CTH6C + 0AN4S 4SA VICA CTH6C + 0AN4S 4SB VICA CTH6C + 0AN4S 4SC VICA CTH6C + 02SA CTH2S VICA CTH6C + 02SB CTH2S VICA CTH6C + 02SC CTH2S VICA CTH6C + 0AN2S 2SA VICA CTH6C + 0AN2S 2SB VICA CTH6C + 0AN2S 2SC VICA CTH6C + 01SA CTH1S VICA CTH6C + 01SB CTH1S VICA CTH6C + 01SC CTH1S VICA CTH6C + 0AN1S 1SA VICA CTH6C + 0AN1S 1SB VICA CTH6C + 0AN1S 1SC VICA CTH6C + 03SA CTH3S VICA CTH6C + 03SB CTH3S VICA CTH6C + 03SC CTH3S VICA CTH6C + 0AN3S 3SA VICA CTH6C + 0AN3S 3SB VICA CTH6C + 0AN3S 3SC VICA CTH6C + 05SA CTH5S VICA CTH6C + 05SB CTH5S VICA CTH6C + 05SC CTH5S VICA CTH6C + 0AN5S 5SA VICA CTH6C + 0AN5S 5SB VICA CTH6C + 0AN5S 5SC VICA CTH6C +BLANK card ending electric network branch cards +C ((((((((((( BRIDGE CIRCUIT BREAKERS, CELILO )))))))))))))))))))) + AC6 AC6Y -10.E-3 10.E+3 + BC6 BC6Y -10.E-3 10.E+3 + CC6 CC6Y -10.E-3 10.E+3 + AC4 AC4Y -10.E-3 10.E+3 + BC4 BC4Y -10.E-3 10.E+3 + CC4 CC4Y -10.E-3 10.E+3 + AC2 AC2Y -10.E-3 10.E+3 + BC2 BC2Y -10.E-3 10.E+3 + CC2 CC2Y -10.E-3 10.E+3 + AC1 AC1Y -10.E-3 10.E+3 + BC1 BC1Y -10.E-3 10.E+3 + CC1 CC1Y -10.E-3 10.E+3 + AC3 AC3Y -10.E-3 10.E+3 + BC3 BC3Y -10.E-3 10.E+3 + CC3 CC3Y -10.E-3 10.E+3 + AC5 AC5Y -10.E-3 10.E+3 + BC5 BC5Y -10.E-3 10.E+3 + CC5 CC5Y -10.E-3 10.E+3 +C +C ((((((((((( BRIDGE CIRCUIT BREAKERS, SYLMAR )))))))))))))))))))) + AS6 AS6Y -10.E-3 10.E+3 + BS6 BS6Y -10.E-3 10.E+3 + CS6 CS6Y -10.E-3 10.E+3 + AS4 AS4Y -10.E-3 10.E+3 + BS4 BS4Y -10.E-3 10.E+3 + CS4 CS4Y -10.E-3 10.E+3 + AS2 AS2Y -10.E-3 10.E+3 + BS2 BS2Y -10.E-3 10.E+3 + CS2 CS2Y -10.E-3 10.E+3 + AS1 AS1Y -10.E-3 10.E+3 + BS1 BS1Y -10.E-3 10.E+3 + CS1 CS1Y -10.E-3 10.E+3 + AS3 AS3Y -10.E-3 10.E+3 + BS3 BS3Y -10.E-3 10.E+3 + CS3 CS3Y -10.E-3 10.E+3 + AS5 AS5Y -10.E-3 10.E+3 + BS5 BS5Y -10.E-3 10.E+3 + CS5 CS5Y -10.E-3 10.E+3 +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +C VALVES AT CELILO +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +11VI-1 CTH6C F2SI 1 +11VI-3 CTH6C F4SI 1 +11VI-5 CTH6C F6SI 13 +11VI-4 VICA F5SI 1 +11VI-6 VICB F1SI 1 +11VI-2 VICC F3SI 1 +11IV-1 CTH4C F2SII 1 +11IV-3 CTH4C F4SII 1 +11IV-5 CTH4C F6SII 1 +11IV-4 IVCA F5SII 1 +11IV-6 IVCB F1SII 1 +11IV-2 IVCC F3SII 1 +11II-1 CTH2C F2SII 1 +11II-3 CTH2C F4SII 13 +11II-5 CTH2C F6SII 1 +11II-4 IICA F5SII 1 +11II-6 IICB F1SII 1 +11II-2 IICC F3SII 1 +11I-1 CTH1C F2SI 1 +11I-3 CTH1C F4SI 1 +11I-5 CTH1C F6SI 1 +11I-4 ICA F5SI 1 +11I-6 ICB F1SI 1 +11I-2 ICC F3SI 1 +11III-1 CTH3C F2SII 1 +11III-3 CTH3C F4SII 1 +11III-5 CTH3C F6SII 1 +11III-4 IIICA F5SII 1 +11III-6 IIICB F1SII 1 +11III-2 IIICC F3SII 1 +11V-1 CTH5C F2SI 13 +11V-3 CTH5C F4SI 1 +11V-5 CTH5C F6SI 1 +11V-4 VCA F5SI 1 +11V-6 VCB F1SI 1 +11V-2 VCC F3SI 1 +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +C BYPASS VALVES +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +11BYP6C CTH6C FIRE 1 +11BYP4C CTH4C FIRE 1 +11BYP2C CTH2C FIRE 1 +11BYP1C CTH1C FIRE 1 +11BYP3C CTH3C FIRE 1 +11BYP5C CTH5C FIRE 1 +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +C VALVES AT SYLMAR +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +116-1 6SA F5RIII 1 +116-3 6SB F1RIII 1 +116-5 6SC F3RIII 1 +116-4 CTH6S F2RIII 1 +116-6 CTH6S F4RIII 1 +116-2 CTH6S F6RIII 1 +114-1 4SA F5RIV 1 +114-3 4SB F1RIV 1 +114-5 4SC F3RIV 1 +114-4 CTH4S F2RIV 13 +114-6 CTH4S F4RIV 1 +114-2 CTH4S F6RIV 1 +112-1 2SA F5RIV 1 +112-3 2SB F1RIV 1 +112-5 2SC F3RIV 1 +112-4 CTH2S F2RIV 1 +112-6 CTH2S F4RIV 1 +112-2 CTH2S F6RIV 1 +111-1 1SA F5RIII 1 +111-3 1SB F1RIII 1 +111-5 1SC F3RIII 1 +111-4 CTH1S F2RIII 1 +111-6 CTH1S F4RIII 1 +111-2 CTH1S F6RIII 1 +113-1 3SA F5RIV 1 +113-3 3SB F1RIV 1 +113-5 3SC F3RIV 1 +113-4 CTH3S F2RIV 1 +113-6 CTH3S F4RIV 1 +113-2 CTH3S F6RIV 1 +115-1 5SA F5RIII 1 +115-3 5SB F1RIII 1 +115-5 5SC F3RIII 1 +115-4 CTH5S F2RIII 1 +115-6 CTH5S F4RIII 1 +115-2 CTH5S F6RIII 1 +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +C BYPASS VALVES +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +11BYP6S CTH6S FIRE 1 +11BYP4S CTH4S FIRE 1 +11BYP2S CTH2S FIRE 1 +11BYP1S CTH1S FIRE 1 +11BYP3S CTH3S FIRE 1 +11BYP5S CTH5S FIRE 1 +BLANK card ending switch and valve cards +14GENAS 191.88 60. - 90. -1. +14GENBS 191.88 60. 150. -1. +14GENCS 191.88 60. 30. -1. +14GENAR 177.00 60. - 90. -1. +14GENBR 177.00 60. 150. -1. +14GENCR 177.00 60. 30. -1. +BLANK card ending electric network source cards +C 5SC 85.161135603237 85.161135845967 .24239772743E-8 +C -.0064297994253 -0.0043259 .32104991758E-4 +C Total network loss P-loss by summing injections = 9.400745644988E-01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C AC6 AC6Y -0.17537736E-02 -0.15130560E-03 0.17602884E-02 +C BC6 BC6Y 0.74585229E-03 0.15944653E-02 0.17602884E-02 +C CC6 CC6Y 0.10079213E-02 -0.14431597E-02 0.17602884E-02 +C AC4 AC4Y -0.17256830E-02 -0.15254779E-03 0.17324124E-02 + S4- 4-282 4-564 R4- A3+ 3-282 3-564 R3+ +C Step Time VI-5 II-3 V-1 4-4 S4- 4-282 +C CTH6C CTH2C CTH5C CTH4S +C +C 3-564 R3+ VI-5 II-3 V-1 4-4 +C CTH6C CTH2C CTH5C CTH4S +C *** Phasor I(0) = -1.7537736E-03 Switch "AC6 " to "AC6Y " closed +C *** Phasor I(0) = 7.4585229E-04 Switch "BC6 " to "BC6Y " closed +C *** Phasor I(0) = 1.0079213E-03 Switch "CC6 " to "CC6Y " closed +C < < Etc. for all closed switches (many) > > +C 0 0.0 92.4471816 -80.391986 -46.23358 -.00603248 .3504E-12 .51982E-12 +C .11844E-12 -.4208E-12 0.0 0.0 0.0 0.0 +C 1 .1E-3 92.3819397 -82.084592 -43.183633 3.21704985 .38869E-12 .49439E-12 +C .13314E-12 -.391E-12 0.0 0.0 0.0 0.0 +C 20 .002 67.3990315 -90.384846 21.0991082 58.5370378 .22041E-12 -.2248E-13 +C .36015E-12 .29277E-12 0.0 0.0 0.0 0.0 +C Valve "IV-6 " to "IVCB " closing after 3.90000000E-03 sec. +C Valve "II-6 " to "IICB " closing after 3.90000000E-03 sec. +C Valve "III-6 " to "IIICB " closing after 3.90000000E-03 sec. +C 40 .004 8.90509663 -34.543231 78.5718629 85.3493624 .197975812 .14269E-12 +C .89101E-13 .85369E-12 0.0 0.0 0.0 0.0 +C Valve "III-6 " to "IIICB " opening after 4.40000000E-03 sec. +C Valve "IV-6 " to "IVCB " opening after 4.50000000E-03 sec. +C Valve "II-6 " to "IICB " opening after 4.50000000E-03 sec. +C Valve "4-3 " to "4SB " closing after 4.70000000E-03 sec. +BLANK card ending output variable requests (just node voltages, here) +C 1980 .198 46.1602391 -113.62943 -110.38699 0.0 414.910346 406.384239 +C -397.18723 -365.84617 0.0 0.0 0.0 .08752568 +C Valve "4-4 " to "CTH4S " opening after 1.98200000E-01 sec. +C Valve "2-4 " to "CTH2S " opening after 1.98200000E-01 sec. +C Valve "3-4 " to "CTH3S " opening after 1.98200000E-01 sec. +C Valve "6-6 " to "CTH6S " closing after 1.98500000E-01 sec. +C Valve "1-6 " to "CTH1S " closing after 1.98500000E-01 sec. +C Valve "5-6 " to "CTH5S " closing after 1.98500000E-01 sec. +C Valve "VI-3 " to "CTH6C " opening after 1.98700000E-01 sec. +C Valve "I-3 " to "CTH1C " opening after 1.98700000E-01 sec. +C Valve "V-3 " to "CTH5C " opening after 1.98700000E-01 sec. +C Valve "6-4 " to "CTH6S " opening after 1.99300000E-01 sec. +C Valve "IV-6 " to "IVCB " closing after 1.99400000E-01 sec. +C Valve "II-6 " to "IICB " closing after 1.99400000E-01 sec. +C Valve "III-6 " to "IIICB " closing after 1.99400000E-01 sec. +C Valve "1-4 " to "CTH1S " opening after 1.99800000E-01 sec. +C Valve "5-4 " to "CTH5S " opening after 1.99800000E-01 sec. +C Valve "4-1 " to "4SA " closing after 1.99900000E-01 sec. +C Valve "2-1 " to "2SA " closing after 1.99900000E-01 sec. +C 2000 0.2 0.0 -122.65729 -136.34202 116.985575 412.121881 399.669877 +C -375.18165 -284.40015 1.16803681 0.0 0.0 0.0 +C Variable max:135.843884 147.506119 154.898333 219.556654 460.297853 464.200612 +C 2.68656079 5.38510251 1.44399474 1.33625405 1.42211178 1.24791434 +C Times of max : .0166 .0101 .0064 .0214 .0419 .0399 +C .0082 .0083 .1321 .1919 .171 .1761 +C Variable min:-240.63646 -239.41651 -276.74318 -148.88559 .18263E-12 -.2867E-12 +C -448.03483 -427.31588 -.19958675 -.20362309 -.2353591 -.06790456 +C Times of min : .022 .0156 .0119 .0124 .0022 .0049 +C .0592 .0413 .0219 .1808 .0118 .0306 + PRINTER PLOT + 194 2. 0.0 20. VI-5 CTH6C { Axis limits : (-0.052, 1.022) + 144 2. 0.0 20. S4- { Axis limits : (0.000, 3.051) +BLANK card terminating batch-mode plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc10.dat b/benchmarks/dc10.dat new file mode 100644 index 0000000..7e37b09 --- /dev/null +++ b/benchmarks/dc10.dat @@ -0,0 +1,378 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-10 +C Companion to "CASCADED PI" test of preceding data case. Same answer +C Use batch-mode solution only, since SPY sets TMAX to nearly infinity, +C and then the 0 DELTAT will result in an error stop. 6 subcases total. +C 20 June 2007, add the following comment merely to satisfy a new 6th +C subcase which will illustrate CONCATENATE MONTE CARLO PL4 ( CMCP ) . +C Since subcases 1 through 5 do not use .PL4 files significantly, the +C switch from C-like to widexx format should go unnoticed : +C FMTPL4 L4BYTE NEWPL4 Next card FORMAT ( 16X, A6, 2X, 2I8 ) +C CONCATENATE. wide08 0 0 key text anywhere +C The preceding overrides .PL4 choices of STARTUP. Service begins 17 June 2007 +C A second illustration of just this declaration can be found in DCNEW-22. + 0.0 0.0 60. + 1 1 + USE OLD { Extraneous request to undo preceding USE RL or AB will be rejected +C Note about preceding, which was added 5 November 2001. This first +C occurence will illustrate the warning message. For a legal use of +C USE OLD, see the 2nd subcase. + 1RA1 1A1 .877 8.40 .1628 + 2RB1 1B1 .747 4.14-.0252 .852 8.43 .1559 + 3RC1 1C1 .735 3.47-.0067 .723 4.17-.0277 .829 8.46 .1571 + 11A1 2A1 RA1 1A1 + 21B1 2B1 + 31C1 2C1 + 02B1 3B1 13.1449.071 3 + 12C1 4C1 RA1 1A1 + 23A1 4A1 + 33B1 4B1 + 04C1 5C1 13.14 1 + 04A1 5A1 13.1449.071 2 + 04B1 5B1 4C1 5C1 + 05C1 5G1 2B1 3B1 + 05A1 5G1 2B1 3B1 + 05B1 5G1 2B1 3B1 + 5G1 5.0 13.14 + 15B1 6B1 RA1 1A1 + 25C1 6C1 + 35A1 6A1 + 6A1 7A1 4B1 5B1 + 6B1 7B1 4C1 5C1 + 6C1 7C1 4A1 5A1 + 7A1 7G1 2B1 3B1 + 7B1 7G1 2B1 3B1 + 7C1 7G1 2B1 3B1 + 7G1 5G1 + 17A1 GA1 1.658 16.92 .3142 + 27B1 GB1 1.446 8.34-.0554 1.704 16.86 .3118 + 37C1 GC1 1.470 6.94-.0134 1.494 8.28-.0504 1.754 16.80 .3256 +BLANK card ending branch cards +BLANK card ending switch cards (none, for this problem) +14GA1 424.35 60. 0.0 -.1 +14RA1 424.35 60. 10.0 -.1 +14GB1 424.35 60. -120.0 -.1 +14RB1 424.35 60. -110.0 -.1 +14GC1 424.35 60. 120.0 -.1 +14RC1 424.35 60. 130.0 -.1 +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C RA1 |1A1 * +C 1A1 |RA1 *2A1 * +C RB1 |1B1 * +C 1B1 |RB1 *2B1 * +C RC1 |1C1 * +C 1C1 |RC1 *2C1 * +C 2A1 |1A1 * +C 2B1 |1B1 *3B1 * +C 2C1 |1C1 *4C1 * +C 3B1 |2B1 *4B1 * +C 4C1 |2C1 *5C1 * +C 3A1 |4A1 * +C Etc. (many more connections!) ..... +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 9.311041032866E+03 +C End injection: -12.95674346101 44.419110587004 -6432.468410934 9424.6247887975 +C End injection: -42.48741206788 -106.9593405 -6888.171205186 -0.6825172 +C Selective branch outputs follow (for column-80 keyed branches only). Any req +C augmented to include branch voltage. But the converse is not true (a request +C From To (======== Branch voltage Vkm = Vk - Vm =========) (== +C bus K bus M Magnitude Degrees Real part Imag part Magni +C 2B1 3B1 1.6180264E+03 -139.359766 -1.2277813E+03 -1.0538323E+03 3.9545 +C 4C1 5C1 3.9925372E+02 -138.975087 -3.0120669E+02 -2.6206500E+02 3.0384 +C 4A1 5A1 2.9415954E+00 92.386571 -1.2249239E-01 2.9390439E+00 +BLANK card ending output variable requests + PRINTER PLOT +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2 of 6 subcases is unrelated to the first. It shows "BCTRAN" usage. +C Illustration of 9x9 matrix representation of 3-phase, 3-winding +C transformer as punched by the 2nd subcase of DCNEW-8. Note the use +C of "USE AR" for better representation via [A] and [R] matrices. +C To validate, compare with the same solution in 3rd subcase which has +C no "USE AR" (it uses the more common "USE RL" for [R], [X]). +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000200 .010 + 1 1 1 1 1 -1 + 5 5 + USE AR +$VINTAGE, 1, + 1H-1 26.512692374898 .2054666 + 2L-1 -59.57848438329 0.0 + 180.85474339841 .0742333 + 3T-1 T-2 5.1245421614045 0.0 + -71.06950226953 0.0 + 76.560711306734 .0822 + 4H-2 1.317410104146 0.0 + -1.044760156768 0.0 + -2.174181664407 0.0 + 26.512692374898 .2054666 + 5L-2 -1.044760156768 0.0 + .10024670965949 0.0 + 2.6475868140585 0.0 + -59.57848438329 0.0 + 180.85474339841 .0742333 + 6T-2 -2.174181664407 0.0 + 2.6475868140585 0.0 + 2.4174362478358 0.0 + 5.1245421614045 0.0 + -71.06950226953 0.0 + 76.560711306734 .0822 + 7H-3 1.317410104146 0.0 + -1.044760156768 0.0 + -2.174181664407 0.0 + 1.317410104146 0.0 + -1.044760156768 0.0 + -2.174181664407 0.0 + 26.512692374898 .2054666 + 8L-3 -1.044760156768 0.0 + .10024670965949 0.0 + 2.6475868140585 0.0 + -1.044760156768 0.0 + .10024670965949 0.0 + 2.6475868140585 0.0 + -59.57848438329 0.0 + 180.85474339841 .0742333 + 9 T-1 -2.174181664407 0.0 + 2.6475868140585 0.0 + 2.4174362478358 0.0 + -2.174181664407 0.0 + 2.6475868140585 0.0 + 2.4174362478358 0.0 + 5.1245421614045 0.0 + -71.06950226953 0.0 + 76.560711306734 .0822 +C USE RL This old, absolute form is replaced by the following universal form: + USE OLD { Beginning 5 November 2001, this will undo preceding USE AB or RL + GENA H-1 5.0 + GENB H-2 5.0 + GENC H-3 5.0 + L-1 1.0 +BLANK card ending all branch cards +BLANK card terminating the last switch card +C Balanced 3-phase source of 400 Hz is connected to transformer delta side: +14GENA 100. 60. -30. -1. +14GENB 100. 60. -150. -1. +14GENC 100. 60. 90. -1. +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 1.731473944895E+02 +C Last gen: GENC .6123031769E-14 100. .11363284501067 .62844772817969 +C Last gen: 100. 90.0000000 .61808909033326 79.5827588 + H-1 L-1 H-2 L-2 H-3 L-3 +C Step Time H-1 L-1 H-2 L-2 H-3 +C 0 0.0 83.84032026 .9255817033 -87.1526014 -35.2685815 -.568164225 +C 1 .2E-3 85.28151988 1.894879197 -82.9051812 -33.2151021 -7.86654662 +C 2 .4E-3 86.23807533 2.853434433 -78.1866756 -30.9728926 -15.1202281 +C 3 .6E-3 86.7045542 3.795799431 -73.0238961 -28.5546937 -22.2879919 +BLANK card ending program output-variable requests. +C 50 .01 -80.9365963 -8.33136565 39.29673143 13.29079634 57.4223614 +C Variable max : 86.7045542 12.93833086 102.0061131 43.76610174 57.4223614 +C Times of max : .6E-3 .004 .0068 .0066 .01 +C Variable min : -86.757459 -8.33136565 -87.1526014 -35.2685815 -96.8960673 +C Times of min : .009 .01 0.0 0.0 .0042 + PRINTER PLOT + 144 2. 0.0 10. L-1 L-2 L-3 { Axis limits: (-4.603, 4.377) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 3rd of 6 subcases has the same solution as the 2nd, but it is to be +C obtained using [R], [L] branch cards (punched by the 1st subcase +C of DCNEW-8) rather than [A], [R] branch cards of preceding case. +C Note XOPT = 60, so we use not L but rather wL in ohms at 60 Hz. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000200 .010 60. { Note XOPT = 60 to agree with DCNEW-8 punched cards + 1 1 1 1 1 -1 + 5 5 + USE RL { Should not be needed, since RL units are the default starting choice +$VINTAGE, 1, + 1H-1 .2054666 41432.097487177 + 2L-1 0.0 19771.027634356 + .0742333 9437.8794714269 + 3T-1 T-2 0.0 15579.567888173 + 0.0 7437.5502771391 + .0822 5866.2181589463 + 4H-2 0.0 -.0533106335013 + 0.0 .95599943703728 + 0.0 1.7517639180077 + .2054666 41432.097487177 + 5L-2 0.0 .95599943703728 + 0.0 .73764739804435 + 0.0 .83627686643027 + 0.0 19771.027634356 + .0742333 9437.8794714269 + 6T-2 0.0 1.7517639180077 + 0.0 .83627686643027 + 0.0 .65959655490825 + 0.0 15579.567888173 + 0.0 7437.5502771391 + .0822 5866.2181589463 + 7H-3 0.0 -.0533106335013 + 0.0 .95599943703728 + 0.0 1.7517639180077 + 0.0 -.0533106335013 + 0.0 .95599943703728 + 0.0 1.7517639180077 + .2054666 41432.097487177 + 8L-3 0.0 .95599943703728 + 0.0 .73764739804435 + 0.0 .83627686643027 + 0.0 .95599943703728 + 0.0 .73764739804435 + 0.0 .83627686643027 + 0.0 19771.027634356 + .0742333 9437.8794714269 + 9 T-1 0.0 1.7517639180077 + 0.0 .83627686643027 + 0.0 .65959655490825 + 0.0 1.7517639180077 + 0.0 .83627686643027 + 0.0 .65959655490825 + 0.0 15579.567888173 + 0.0 7437.5502771391 + .0822 5866.2181589463 + GENA H-1 5.0 + GENB H-2 5.0 + GENC H-3 5.0 + L-1 1.0 +BLANK card ending all branch cards +BLANK card terminating the last switch card +C Balanced 3-phase source of 400 Hz is connected to transformer delta side: +14GENA 100. 60. -30. -1. +14GENB 100. 60. -150. -1. +14GENC 100. 60. 90. -1. +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 1.731473944910E+02C 100. .11363284500541 .6284477281075 30.904454513041 31.422386405375 +C 90.0000000 .61808909026083 79.5827588 5.6816422502705 0.9835171 +C Step Time H-1 L-1 H-2 L-2 H-3 +C 0 0.0 83.84032026 .9255817034 -87.1526014 -35.2685815 -.568164225 +C 1 .2E-3 85.28151988 1.894879197 -82.9051812 -33.2151021 -7.86654662 +C 2 .4E-3 86.23807533 2.853434433 -78.1866756 -30.9728926 -15.1202281 +C 3 .6E-3 86.7045542 3.795799431 -73.0238961 -28.5546937 -22.2879919 + H-1 L-1 H-2 L-2 H-3 L-3 +BLANK card ending program output-variable requests. +C 50 .01 -80.9365963 -8.33136565 39.29673143 13.29079634 57.4223614 +C Variable max : 86.7045542 12.93833086 102.0061131 43.76610174 57.4223614 +C Times of max : .6E-3 .004 .0068 .0066 .01 +C Variable min : -86.757459 -8.33136565 -87.1526014 -35.2685815 -96.8960673 +C Times of min : .009 .01 0.0 0.0 .0042 + PRINTER PLOT + 144 2. 0.0 10. L-1 L-2 L-3 { Axis limits: (-4.603, 4.377) +$WIDTH, 79, +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 4th of 6 subcases is unrelated to the preceding. It shows "SSOMIT" +C usage as introduced 7 November 1998. More precisely, this 4th case +C does _not_ involve SSOMIT to omit a linear branch during the +C phasor solution. The switch (LEFT, RIGHT) is open, isolating 50 Hz +C on the left from 60 Hz on the right. But, because this switch is +C paralleled by a leakage branch (snubber circuits in case of hvdc), +C phasor solution logic will reject the mixing of frequencies. Use of +C an all-resistive network allows a large time step for illustration. +$WIDTH, 132, { Back to full width to make new 4th and 5th subcases look better +PRINTED NUMBER WIDTH, 9, 2, + .001 .020 + 1 1 1 1 1 + GEN1 LEFT 0.5 1 + RIGHT GEN2 0.5 1 + LEFT RIGHT 1.E4 +BLANK card ending branch cards + LEFT RIGHT .010 1.0 1 +BLANK card ending switch cards +14GEN1 1.0 50. 0. -1. +14GEN2 1.0 60. 0. -1. +BLANK card ending source cards + 1 +C PRINTER PLOT + 194 2. 0.0 20. LEFT RIGHT +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 6 subcases is the same as the preceding except for the name +C of the snubber branch that parallels the switch. It shows "SSOMIT" +C has the effect of omitting this branch during the phasor solution, +C thereby avoiding the illegal mixing of 50- and 60-Hz excitation (a +C problem of the preceding data subset). See January, 1999, newsletter. +PRINTED NUMBER WIDTH, 9, 2, + .001 .020 + 1 1 1 1 1 + GEN1 LEFT 0.5 1 + RIGHT GEN2 0.5 1 + LEFT RIGHT NAME SSOMIT 1.E4 { Snubber to be ignored during phasor solution +BLANK card ending branch cards + LEFT RIGHT .010 1.0 { Switch is open during phasor solution } 1 +BLANK card ending switch cards +14GEN1 1.0 50. 0. -1. +14GEN2 1.0 60. 0. -1. +BLANK card ending source cards +C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time RIGHT LEFT GEN1 GEN2 LEFT GEN1 RIGHT +C RIGHT LEFT GEN2 +C 0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 +C 1 .1E-2 .929778 .951055 .951057 .929776 0.0 .213E-5 .213E-5 +C 2 .002 .728973 .809013 .809017 .728969 0.0 .8E-5 .8E-5 +C 3 .003 .425787 .587777 .587785 .425779 0.0 .162E-4 .162E-4 + 1 { Output all node voltages +C 19 .019 .79424 .79424 .951057 .637424 .313633 .313633 .313633 +C 20 .02 .654508 .654508 1.0 .309017 .690983 .690983 .690983 +C Variable max : 1.0 1.0 1.0 1.0 .690983 .690983 .690983 +C Times of max : 0.0 0.0 0.0 0.0 .02 .02 .02 +C Variable min : -.99211 -.99999 -1. -.99211 -.84484 -.84484 -.84484 +C Times of min : .008 .01 .01 .008 .014 .014 .014 + PRINTER PLOT + 194 3. 0.0 20. LEFT RIGHT { Axis limits: (-8.448, 6.910) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 6 subcases is unrelated to preceding. It illustrates use of +C CONCATENATE MONTE CARLO PL4 ( CMCP ) which becme available with the +C UTPF update of 20 June 2007. Data is copied from DC-24, so the +C solution is well known. What is new is the .PL4 file, which will +C contain all 3 signal sets, for the 3 energizations, in 1 disk file. +C For illustration, use formatted .PL4 as per the +C declaration of the 1st subcase (mandatory location if present). +CONCATENATE MONTE CARLO PL4 { New form of IPLOT= 54321 frees IPLOT for frequency +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +REPEATABLE RANDOM NUMBERS { Same as NSEED=1 (this overrides zero value below) +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 1 2 1 -1 1 1 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 0 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +$OPEN, UNIT=LUNIT9 FILE=dc24at40.ext STATUS=UNKNOWN FORM=UNFORMATTED RECL=1000 ! + ASW10 BSW10 CSW10 { Request for these node voltage outputs +BLANK card ending the specification of program outputs (node voltages, here) +$OPEN, UNIT=LUNIT2 STATUS=SCRATCH FORM=UNFORMATTED { Disconnect *.BIN on LUNIT2 +-1 100. GENA A1 +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc11.dat b/benchmarks/dc11.dat new file mode 100644 index 0000000..ec8c5be --- /dev/null +++ b/benchmarks/dc11.dat @@ -0,0 +1,409 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-11 +C Illustration of data input using [Y]. Matrix comes from DC-9 (or +C more precisely, DCPRINT-25, since DIAGNOSTIC is needed to see it). +C Solution is close to DC-9 (remember limited input [Y] precision). +C Note two $UNITS cards. The 2nd, returning to original XOPT and +C COPT, does nothing, since all data input is completed. But the 1st +C is mandatory whenever [Y] input is used, so input [Y] in mhos will +C be loaded into List-3 tables TR and TX without any scaling. COPT is +C not used, so it can be anything (zero is used below). But XOPT must +C equal the reciprocal of 2 * Pi, since the scaling factor for [L] is +C 2 * Pi times this frequency (.1591549431) in Hz --- which is unity. +C There are 5 stacked subcases. The 4th & 5th are related to this 1st. + 0.0 0.0 60. { Note XOPT = 60 here --- never actually used + 1 1 +C New XOPT, COPT = 1.59154943E-01 0.00000000E+00 |$UNITS, .1591549431, 0.0, +C 1st of coupled R-L. 4.80000E-09 1.22811E-04 |51RA1 GA1 4 +C -1.000E-07-2.242E-05 9.440E-03-2.574E-02 9.440E-03|52RB1 GB1 - +C 4.300E-08-1.463E-05-8.500E-03 1.673E-02 1.660E-02|53RC1 GC1 4 +C -1.000E-07-9.426E-06 1.871E-02-5.030E-02-1.450E-02|54 - +C 4.631E-02-1.156E-02 3.250E-03-8.199E-02 4.631E-02| . +C 1.500E-06 6.459E-06-1.680E-02 5.972E-02 1.897E-02|55 1 +C -3.270E-02 3.048E-02 3.607E-02-6.062E-02 3.607E-02| - +C 1.200E-06 4.486E-06 2.090E-03-2.063E-02-2.200E-03|56 1 +C 3.660E-03-6.532E-02-2.000E-05 2.742E-02 4.850E-03| . +C New XOPT, COPT = 6.00000000E+01 0.00000000E+00 |$UNITS, 60., 0.0, { Restore +$UNITS, .1591549431, 0.0, { Ensures no scaling of [Y] in mhos. XOPT = 1/(2*Pi) +51RA1 GA1 4.8E-9 1.22811E-04 { 1st row of 6x6 [Y] in mhos +52RB1 GB1 -1.E-7-2.24227E-05.00944-2.57399E-02 +53RC1 GC1 4.3E-8-1.46254E-05-.0085 1.67291E-02.01660-4.74760E-02 +54 -1.E-7-9.42642E-06.01871-5.03015E-02-.0145 2.40976E-02 + .04631-1.15612E-02 +55 1.5E-6 6.45897E-06-.0168 5.97172E-02.01897-4.24556E-02 + -.0327 3.04757E-02.03607-6.06204E-02 +56 1.2E-6 4.48565E-06.00209-2.06269E-02-.0022 3.68953E-02 + .00366-6.53239E-02-2.E-5 2.74250E-02.00485 9.93931E-03 +$UNITS, 60., 0.0, { Restore original values; "CIMAGE" ends scaling XUNITS = 1. +BLANK card ending branch cards +BLANK card ending non-existent switch cards +14GA1 424.35 60. 0.0 -.1 +14RA1 424.35 60. 10.0 -.1 +14GB1 424.35 60. -120.0 -.1 +14RB1 424.35 60. -110.0 -.1 +14GC1 424.35 60. 120.0 -.1 +14RC1 424.35 60. 130.0 -.1 +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C RA1 |GA1 * +C GA1 |RA1 * +C RB1 |GB1 * +C GB1 |RB1 * +C RC1 |GC1 * +C GC1 |RC1 * +C --------------+------------------------------ +BLANK card ending source cards +C Total network loss P-loss by summing injections = 9.326316227367E+03 +C End injection: -12.96755041034 44.410354381177 -6429.033843309 9422.7669408263 +C End injection: -42.47495983067 -106.9773628 -6888.835943954 -0.6822873 +-5RA1 GA1 RB1 GB1 { Mar, 95. Illustrate 2 phasor branch voltage outputs +BLANK card ending output requests + PRINTER PLOT +BLANK card ending non-existent plot cards +BEGIN NEW DATA CASE +C 2nd of 5 subcases will illustrate the request for an exact Pi-equivalent +C to represent constant-parameter distributed lines in the phasor solution. +C Data is from BENCHMARK DCPRINT-1, from which the permanently-closed switch +C was removed to simplify. The solution is just a little different. To see +C this, look at generator inject (compare with following lumped-R solution): +C SEND 100. 100. 1.1985672173179 1.9672525544427 +C 0.0 0.0 -1.559974114699 -52.4640241 +C Acknowledgement: Bob Meredith of New York Power Authority inspired the +C work of this feature by his studies involving phasor +C solutions at high frequencies (200 KHz) for power system +C carrier relaying. Bob found that using lumped R modeling +C gave quite erroneous results. WSM. March 25, 1989 +EXACT PHASOR EQUIVALENT { Switch from lumped-R to exact Pi-equiv. of distributed +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000100 .020 60. 60. + 1 1 1 1 1 -1 + 2 1 5 5 20 20 + REC .001 { Near short at receiving end to ground } 3 +-1SEND REC 0.3 0.4 12.6 100. { 1-phase distributed line +BLANK card ending branch cards +BLANK card ending switch cards +14SEND 100. 60. { 60-Hz phasor solution } -1. +BLANK card ending source cards +C SEND 100. 100. 1.2001187442482 1.966491078825 +C 0.0 0.0 -1.557819682377 -52.3899333 +C REC .00119991725341 .00201685894214 -1.199917253405 2.0168589421448 +C -.001621085617 -53.4913908 1.6210856169526 126.5086092 +C Total network loss P-loss by summing injections = 6.000593721241E+01 +C Solution at nodes with known voltage. Nodes that are shorted together by swi +C SEND 100. 100. 1.2001187442482 1.966491078825 +C 0.0 0.0 -1.557819682377 -52.3899333 +C Step Time REC REC SEND REC +C TERRA TERRA +C 0 0.0 .0011999173 .0011999173 100. 1.199917253 +C 1 .1E-3 .0012601784 .0012601784 99.92894726 1.260178379 +C 2 .2E-3 .0013186574 .0013186574 99.71589003 1.318657447 +C 3 .3E-3 .0013752626 .0013752626 99.36113105 1.375262631 + 1 { Request the output of all (here, only two) node voltages +C 200 .02 .0019139029 .0019139029 30.90169944 1.913902913 +C Variable maxima : .0020181823 .0020181823 100. 2.018182282 +C Times of maxima : .0025 .0025 0.0 .0025 +C Variable minima : -.002017382 -.002017382 -99.9921044 -2.01738187 +C Times of minima : .0108 .0108 .0083 .0108 + PRINTER PLOT +C If lumped R, the extrema change just a little: (-2.017, 2.017) + 194 4. 0.0 20. REC { Axis limits : (-2.017, 2.018) +$WIDTH, 80, { To compact the case-summary tables, switch to narrow output +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 5 subcases is unrelated to the preceding two. It will illustrate +C the use of EMTP to perform both single-phase and 3-phase faults to ground. +C The network is copied from DC-3. Usage began the 1st week of March, 1993. +$WIDTH, 132, { More than 80 columns are needed to see the 3-phase fault table +FAULTS TO GROUND { Declaration of intention to run a phasor fault study + M-A M-B M-C { 1st fault is 3-phase; we will short these nodes to ground + 1-A 1-B 1-C { 2nd fault is 3-phase. Etc. FORMAT is (2X, 13A6) with + 2-A 2-B 2-C { blank field ignored (names are on left only to look nice). + 4-A 4-B 4-C { There is one line per fault, which can involve a maximum + 7-A 7-B 7-C { of 13 nodes. + 11-A 11-B 11-C 2-A { 6th fault is 4-phase, to illustrate no limit < 14 +C Keep the 7th fault 3-phase. However, spread it over 2 data cards as an +C illustration of CONT. on the right edge. The former limit of 13 nodes +C per fault thus is expanded to 25 on 18 August 2005. The number of faults +C becomes unlimited at this time as SUBROUTINE FAULT is reprogrammed. WSM. +C 18-A 18-B 18-C { 7th fault is 3-phase + 18-A 18-B CONT. + 18-C { 7th fault is spread over 2 data cards by continuation request + 18-A { 8th fault is single-line-to-ground (node 18-A is shorted). + 18-B { 9th fault is single-line-to-ground (node 18-B is shorted). + 18-C { 10 fault is single-line-to-ground (node 18-A is shorted). +C For 1, 2, ... 6 phases, it is possible to pack the fault names on input +C data cards. So, for example, there can be up to 13 single-phase faults, +C up to six 2-phase faults, up to four 3-phase faults, up to two 5- or 6-phase +C faults. For any one card, the 2 or more faults must be for the same number +C of phases --- the number that is declared on a ?-phase faults follow card +C that precedes it. The declared number of phases remains in effect until +C altered by another such declaration or End packing of 2 or more faults (to +C return to original, unpacked format). On any packed fault card, any one of +C the 2 or more data fields can be left blank. But not all can be left blank +C as this would serve to terminate the list of faults. So, an illustration. +C Let's repeat the 8th, 9th, and 10th faults immediately above. The preceding +C 3 separate cards can be replaced by the following packed, higher-level +C equivalent which is added by WSM on 19 August 2005 : +6-phase faults follow { Declare packing of 6-phase fault names, 2 per card +C In fact, no 6-phase fault will be illustrated, however. Think smaller: +1-phase faults follow { Declare packing of 1-phase fault names, 13 per card + 18-A 18-B 18-C { 11th, 12th, and 13th faults each are single-phase +C 7-phase faults follow { Illegal declaration of packing of 7-phase fault names +C The preceding halts execution, unfortunately, so it must be commented out. +End packing of 2 or more faults { Declare end of such card packing + 7-A 7-B 7-C { 14th fault is 3-phase to ground, identical to the 5th. +C Finally, illustrate the limit of 25 phases. This 15th fault is legal: + 18-A 18-B 17-A 17-B 16-A 16-B 15-A 15-B 14-A 14-B 13-A 13-B CONT. + 12-A 12-B 11-A 11-B 10-A 10-B 9-A 9-B 8-A 8-B 7-A 7-B 6-A +BLANK card ends list of faults (more accurately, nodes to be faulted to ground) + .000050 .010 3000. { DELTAT and TMAX of this card will be ignored + 1 1 1 1 1 { All these integers will be ignored + 1M-A 1-A 34.372457.68.15781 + 2M-B 1-B 35.735164.43-.031538.002451.79.16587 + 3M-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 + 11-A 2-A M-A 1-A { Sections 2 through 18 are copies of the first + 21-B 2-B { which has just been inputted. + 31-C 2-C +C The following $LISTOFF and $LISTON are used to illustrate operation of +C this valuable feature within fault studies. One 3-phase Pi-circuit, from +C node 2 to node 3, will be missing in the output. +$LISTOFF + 12-A 3-A M-A 1-A + 22-B 3-B + 32-C 3-C +$LISTON + 13-A 4-A M-A 1-A + 23-B 4-B + 33-C 4-C + 14-A 5-A M-A 1-A + 24-B 5-B + 34-C 5-C + 15-A 6-A M-A 1-A + 25-B 6-B + 35-C 6-C + 16-C 7-C M-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C + 26-A 7-A + 36-B 7-B + 17-C 8-C M-A 1-A + 27-A 8-A + 37-B 8-B + 18-C 9-C M-A 1-A + 28-A 9-A + 38-B 9-B + 19-C 10-C M-A 1-A + 29-A 10-A + 39-B 10-B + 110-C 11-C M-A 1-A + 210-A 11-A + 310-B 11-B + 111-C 12-C M-A 1-A + 211-A 12-A + 311-B 12-B + 112-B 13-B M-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B + 212-C 13-C + 312-A 13-A + 113-B 14-B M-A 1-A + 213-C 14-C + 313-A 14-A + 114-B 15-B M-A 1-A + 214-C 15-C + 314-A 15-A + 115-B 16-B M-A 1-A + 215-C 16-C + 315-A 16-A + 116-B 17-B M-A 1-A + 216-C 17-C + 316-A 17-A + 117-B 18-B M-A 1-A + 217-C 18-C + 317-A 18-A +$BEGIN PL4 COMMENTS +C Copy the structure as illustrated in DC-3. Prior to 10 June 2004, this +C data would produce an error halt because FTG required 2 cells in CIMAGE +C for each fault. This is for fixed KRDPL4(10). After 5 faults, the 10 +C cells would be filled. The complaint came from Anders Johnson, working +C with Dan Goldsworthy at BPA. Data was received 4 June 2004. Anders put +C his comment in the middle of his branch data. Curiously, if location was +C moved to the top (immediately after BNDC), the problem disappears. But it +C is simpler to protect against all locations by having FTP code of SUBR1 set +C KOMPL4 = 0 as each new fault begins. This standard test case is modified +C on 11 June 2004 to illustrate the problem for any executable version that +C was created prior to 10 June 2004. Note that ICAT of the integer misc. +C data card remains zero (unchanged). It is the use of PL4 comments that +C caused the problem, whether or not the user requested a .PL4 file to +C receive them. Except for this new data block in this one location, data +C is unchanged from the old DC-11, which had MS-DOS date 3-24-95. +$END PL4 COMMENTS + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A -1. 20.0 { 1st of 3 closed switches merely illustrate + E-B POLE-B -1. 20.0 { that such switches can coexist with this + E-C POLE-C -1. 20.0 { special usage of FAULTS TO GROUND. + 17-A 0.00998 20.0 { 1st of 3 open switches could be omitted + 17-B 0.013998 20.0 { without any change to solution. These + 17-C 0.013998 20.0 { illustrate a 2nd type of coexistance. +BLANK card ending switches +14E-A -1.0 60.0 -90.0 { Note we make T-start < 0 } -1. +14E-B -1.0 60.0 -210.0 { The fault study is driven} -1. +14E-C -1.0 60.0 30.0 { by such phasor sources. } -1. +BLANK card ending sources + + Note: The blank card ending sources is the last that actually will + be read and used. When the fault study is complete, the program + will skip to the BEGIN NEW DATA CASE card below for any possible + following subcase (none for this illustration). So, we can show + output here with no need for "C " in columns 1-2. There are two + blocks of special output beginning with the interpretation of + input data cards: + +Request preceding list of nodes to be faulted. |FAULTS TO GROUND { Declaration of intention to run a phasor fault study +Names of nodes for fault number 1. | M-A M-B M-C { 1st fault is 3-phase; we will short these nodes to ground +Names of nodes for fault number 2. | 1-A 1-B 1-C { 2nd fault is 3-phase. Etc. FORMAT is (2X, 13A6) with +Names of nodes for fault number 3. | 2-A 2-B 2-C { blank field ignored (names are on left only to look nice). +Names of nodes for fault number 4. | 4-A 4-B 4-C { There is one line per fault, which can involve a maximum +Names of nodes for fault number 5. | 7-A 7-B 7-C { of 13 nodes. +Names of nodes for fault number 6. | 11-A 11-B 11-C 2-A { 6th fault is 4-phase, to illustrate no limit < 14 +Names of nodes for fault number 7. | 18-A 18-B CONT. +Names of nodes for fault number 7. | 18-C { 7th fault is spread over 2 data cards by continuation request +Names of nodes for fault number 8. | 18-A { 8th fault is single-line-to-ground (node 18-A is shorted). +Names of nodes for fault number 9. | 18-B { 9th fault is single-line-to-ground (node 18-B is shorted). +Names of nodes for fault number 10. | 18-C { 10 fault is single-line-to-ground (node 18-A is shorted). +Pack multiple faults on a single input card. |6-phase faults follow { Declare packing of 6-phase fault names, 2 per card +Pack multiple faults on a single input card. |1-phase faults follow { Declare packing of 1-phase fault names, 13 per card +Names of nodes for fault number 11. | 18-A 18-B 18-C { 11th, 12th, and 13th faults each are single-phase +End packing of multiple faults on input cards. |End packing of 2 or more faults { Declare end of such card packing +Names of nodes for fault number 14. | 7-A 7-B 7-C { 14th fault is 3-phase to ground, identical to the 5th. +Blank card ending list of nodes to be faulted. |BLANK card ends list of faults (more accurately, nodes to be faulted to ground) + + The second of two blocks of output is the table of fault currents: + + << Current in 1st Phase of Fault >> << Current in 2nd Phase of Fault >> << Current in 3rd Phase of Fault >> +Fault Node Fault current Angle in Node Fault current Angle in Node Fault current Angle in +number name magnitude degrees name magnitude degrees name magnitude degrees + 1 M-A .06666666667 90. M-B .06666666667 -30. M-C .06666666667 -150. + 2 1-A .06179153389 69.31714304 1-B .06022731205 -50.5641964 1-C .05941275365 -171.215847 + 3 2-A .05208219619 53.62523447 2-B .05015996695 -66.4921925 2-C .04949163745 173.4660183 + 4 4-A .03592866388 35.32657231 4-B .03411100322 -84.6521844 4-C .03393334197 155.903119 + 5 7-A .02302145842 23.41165559 7-B .02187391516 -96.3255496 7-C .02206682532 144.3138124 + 6 11-A .01341566059 8.497993142 11-B .01437596994 -100.647409 11-C .01485290881 136.1686199 + 2-A .01121324483 88.26381507 + 7 18-A .00946790732 12.03744642 18-B .00947195967 -107.725894 18-C .00943977544 132.1805708 + 8 18-A .00176246418 99.26050076 + 9 18-B .00178093781 -19.2144677 + 10 18-C .00174761465 -140.302677 + 11 18-A .00176246418 99.26050076 + 12 18-B .00178093781 -19.2144677 + 13 18-C .00174761465 -140.302677 + 14 7-A .02302145842 23.41165559 7-B .02187391516 -96.3255496 7-C .02206682532 144.3138124 +BEGIN NEW DATA CASE +C 4th of 5 subcases has the same solution as the 1st. It differs in that +C the phasor [Y] is contained on branch cards that were punched by DC-9. +C Note that $VINTAGE, 1 is required here. Of the 3 alternative precisions, +C this is the middle; this is the default on punched cards (of DC-9) now as +C the 4th and 5th subcases are being added 10 August 2009. The 1st subcase +C continues to use the old narrow format ($VINTAGE, 0) as constructed by +C hand many years ago. It is a part of history. For the 3rd alternative, +C which is maximum precision, see the following 5th subcase. WSM. + 0.0 0.0 60. { Note XOPT = 60 here --- never actually used + 1 1 +$UNITS, .1591549431, 0.0, { Ensures no scaling of [Y] in mhos. XOPT = 1/(2*Pi) +$VINTAGE, 1, { Of 3 widths, this is intermediate, requiring FORMAT ( 2E16.0 ) +51RA1 GA1 .48444770295E-8 .12281121515E-3 +52RB1 GB1 -.1296675794E-6 -.2242269696E-4 + .00944175322745 -.0257399002302 +53RC1 GC1 .43614506152E-7 -.1462537283E-4 + -.0084632380894 .01672909357449 + .01659497249359 -.0474759779044 +54 -.1496688542E-6 -.9426424776E-5 + .0187136308212 -.0503014889342 + -.014459054142 .0240975756066 + .04631483359448 -.0115611698646 +55 .14960460152E-5 .64589654581E-5 + -.0168059853862 .05971717826772 + .01897469864841 -.0424555556429 + -.0327145752086 .03047566556754 + .03607139971436 -.0606204446839 +56 .11898901751E-5 .44856452772E-5 + .00209415334953 -.0206268928201 + -.0022406862695 .0368952787805 + .00366143779662 -.0653239407336 + -.2258503629E-4 .02742503620834 + .00485408284636 .00993930807034 +$UNITS, 60., 0.0, { Restore original values; "CIMAGE" ends scaling XUNITS = 1. +BLANK card ending branch cards +BLANK card ending non-existent switch cards +14GA1 424.35 60. 0.0 -.1 +14RA1 424.35 60. 10.0 -.1 +14GB1 424.35 60. -120.0 -.1 +14RB1 424.35 60. -110.0 -.1 +14GC1 424.35 60. 120.0 -.1 +14RC1 424.35 60. 130.0 -.1 +BLANK card ending source cards +-5RA1 GA1 RB1 GB1 { Mar, 95. Illustrate 2 phasor branch voltage outputs +C 1st branch: RA1 417.90316999073 424.35 -.0131358847789 .05382578725921 -.8215796220638 7289.7633561218 +C 1st branch: 73.687604192962 10.0000000 .05219831324046 104.1253709 -11.39089622483 -948.6137732 +C Last injection: GC1 -212.175 424.35 -12.95674346031 44.41911058471 -6432.468410608 9424.6247883109 +C Last injection: 367.49788009593 120.0000000 -42.4874120657 -106.9593405 -6888.171204825 -0.6825172 +BLANK card ending output requests + PRINTER PLOT +BLANK card ending non-existent plot cards +BEGIN NEW DATA CASE +C 5th of 5 subcases has the same solution as the 4th. It differs in that +C the phasor [Y] is what would be produced by DC-9 if that $VINTAGE, 2, +C data card were uncommented. For 64-bit computation, precision is full. +C Note that the same $VINTAGE, 2 request of DC-9 is required here, too. + 0.0 0.0 60. { Note XOPT = 60 here --- never actually used + 1 1 +$UNITS, .1591549431, 0.0, { Ensures no scaling of [Y] in mhos. XOPT = 1/(2*Pi) +$VINTAGE, 2, { Of 3 alternatives, this is widest, requiring FORMAT ( 2E27.0 ) +51RA1 GA1 4.8444770277573491700E-09 1.2281121515163583300E-04 +52RB1 GB1 -1.2966757938532132400E-07 -2.2422696957929919700E-05 + 9.4417532274453028200E-03 -2.5739900230249322700E-02 +53RC1 GC1 4.3614506153007997000E-08 -1.4625372832163987600E-05 + -8.4632380893781746600E-03 1.6729093574486542100E-02 + 1.6594972493589866400E-02 -4.7475977904406906100E-02 +54 -1.4966885422339314900E-07 -9.4264247756427733400E-06 + 1.8713630821201195800E-02 -5.0301488934157152800E-02 + -1.4459054141970184600E-02 2.4097575606600894100E-02 + 4.6314833594475780800E-02 -1.1561169864637796700E-02 +55 1.4960460151833065100E-06 6.4589654580511652000E-06 + -1.6805985386192243800E-02 5.9717178267722430300E-02 + 1.8974698648408130900E-02 -4.2455555642932338300E-02 + -3.2714575208587087800E-02 3.0475665567539195200E-02 + 3.6071399714361830600E-02 -6.0620444683943348900E-02 +56 1.1898901751368022500E-06 4.4856452772413896800E-06 + 2.0941533495336460200E-03 -2.0626892820102635900E-02 + -2.2406862694774026100E-03 3.6895278780495553700E-02 + 3.6614377966236264600E-03 -6.5323940733637467200E-02 + -2.2585036293308193800E-05 2.7425036208339411600E-02 + 4.8540828463550763200E-03 9.9393080703350303300E-03 +$UNITS, 60., 0.0, { Restore original values; "CIMAGE" ends scaling XUNITS = 1. +BLANK card ending branch cards +C To show the effect of precision, consider P-loss for the 3 subcases. There +C is little difference between 2E16.0 data (subcase 4) and 2E27.0 (subcase 5). +C But for subcase 1, with [R] limited to E6.2, loss differs in the 3rd digit: +C 1: Total network loss P-loss by summing injections = 9.326316227367E+03 +C 4: Total network loss P-loss by summing injections = 9.311041032869E+03 +C 5: Total network loss P-loss by summing injections = 9.311041032866E+03 +C This is using Salford ATP. WSM. 10 August 2009 +BLANK card ending non-existent switch cards +14GA1 424.35 60. 0.0 -.1 +14RA1 424.35 60. 10.0 -.1 +14GB1 424.35 60. -120.0 -.1 +14RB1 424.35 60. -110.0 -.1 +14GC1 424.35 60. 120.0 -.1 +14RC1 424.35 60. 130.0 -.1 +BLANK card ending source cards +-5RA1 GA1 RB1 GB1 { Mar, 95. Illustrate 2 phasor branch voltage outputs +C 1st branch: RA1 417.90316999073 424.35 -.0131358847775 .05382578725998 -.821579621738 7289.7633561257 +C 1st branch: 73.687604192962 10.0000000 .0521983132416 104.1253709 -11.39089622502 -948.6137732 +C Last injection: GC1 -212.175 424.35 -12.95674346031 44.419110584718 -6432.468410609 9424.6247883126 +C Last injection: 367.49788009593 120.0000000 -42.48741206571 -106.9593405 -6888.171204826 -0.6825172 +BLANK card ending output requests + PRINTER PLOT +BLANK card ending non-existent plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc12.dat b/benchmarks/dc12.dat new file mode 100644 index 0000000..f9efb9c --- /dev/null +++ b/benchmarks/dc12.dat @@ -0,0 +1,183 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-12 +C Simulation of BPA single-line-to-ground fault and single-pole switching +C of Raver-Sickler-Chief Joseph line. See Volume I, 19 September 1974, +C pagination "DCL". For double-circuit representation, both Pi-circuits +C and constant-parameter distributed modeling with zero-sequence coupling +C is illustrated. Change 3-phase K.C. Lee col-80 "1"-punch to "2"-punch +C on 3 July 87, when realized that branch current output is not yet OK. +$NEW EPSILN, 1.E-9, { Not needed; Just added to prove the card is recognized +$WATCH, 25, { Illustrate extra echoing of cards to CRT periodically (every 25th) +PRINTED NUMBER WIDTH, 12, 2, { Full precision on each of 9 columns of printout + .000050 .025 60. + 1 1 1 3 1 -1 + 5 5 20 20 + 0CJA X32A .01 1 + 0CJB X32B .01 1 + 0RAA XA .01 + 0RAB XB .01 + 0RAGA RAA 26. 1 + 0RAGB RAB 26. 1 + 0RAGC RAC 26. 1 + 0CJGA CJA 28. + 0CJGB CJB 28. + 0CJGC CJC 28. + 0VC Y17C 26. + 0VB Y17B 26. + 0VA Y17A 26. + 0RAA YA .01 1 + 0RAB YB .01 1 + 0RAC YC .01 1 + 0XC 1680. + 0X16B T 1.0E18 2 + 0X16C T 1.0E18 2 + 0X16A T 1.0E18 2 + 0T 65. 1 + 1XA X1A .3545 3.2009.0476 + 2XB X1B .2599 1.543-.0088.349 3.2067.0449 + 3XC X1C .2624 1.484-.006 .2599 1.543 -.0087.3545 3.2009.0479 + 4YA Y1A .2619 1.128-.0008.2595 1.1848-.0018.2622 1.2824-.0025 + .3657 3.6724 .0363 + 5YB Y1B .2615 1.0374-.0004.2592 1.0834-.001 .2619 1.1492-.0011 + .2624 1.5455-.0052.3656 3.6724.0361 + 6YC Y1C .261 .9663 -.0003.2588 1.005 -.0007.2616 1.054 -.0006 + .2623 1.3076-.002 .2624 1.551 -.0053.3656 3.6724 .036 + 1X1A X2A 1.05749.547 .1421 + 2X1B X2B .7752 4.602 -.026 1.042 9.564 .1353 + 3X1C X2C .7826 4.426 -.018 .7752 4.602 -.02561.057 9.547 .1428 + 4Y1B Y2B .7811 3.366 -.0023.7741 3.534 -.0055.7822 3.825 -.0074 + 1.091 10.95 .1084 + 5Y1A Y2A .7799 3.094 -.0013.7732 3.231 -.0031.7813 3.427 -.0032 + .7827 4.609 -.01541.091 10.95 .1076 + 6Y1C Y2C .7785 2.882 -.0009.772 2.998 -.0022.7802 3.145 -.0018 + .7822 3.9 -.0059.7827 4.625 -.01591.091 10.95 .0357 +-1X2A X16A 0.58213.4008.00912 70. +-2X2B X16B .034160.6790.01663 70. +-3X2C X16C .034941.0952.01163 70. +-4Y2A Y16A +-5Y2B Y16B +-6Y2C Y16C + 1X16C X17C .6198 5.596 .08325 + 2X16A X17A .4545 2.698 -.0156.6110 5.606 .079 + 3X16B X17B .459 2.5945-.0107.4545 2.6975-.0156.6198 5.596 .08325 + 1X17C X18C X16C X17C + 2X17A X18A + 3X17B X18B + 1X18C X19C X16C X17C + 2X18A X19A + 3X18B X19B + 1X19A X20A X16C X17C + 2X19B X20B + 3X19C X20C + 1X20A X21A X16C X17C + 2X20B X21B + 3X20C X21C + 1X21A X22A X16C X17C + 2X21B X22B + 3X21C X22C + 1X22A X23A X16C X17C + 2X22B X23B + 3X22C X23C + 1X23A X24A X16C X17C + 2X23B X24B + 3X23C X24C + 1X24A X25A X16C X17C + 2X24B X25B + 3X24C X25C + 1X25A X26A X16C X17C + 2X25B X26B + 3X25C X26C + 1X26A X27A X16C X17C + 2X26B X27B + 3X26C X27C + 1X27A X28A X16C X17C + 2X27B X28B + 3X27C X28C + 1X28A X29A X16C X17C + 2X28B X29B + 3X28C X29C + 1X29A X30A X16C X17C + 2X29B X30B + 3X29C X30C + 1X30A X31A X16C X17C + 2X30B X31B + 3X30C X31C + 1X31A X32A X16C X17C + 2X31B X32B + 3X31C X32C +C 3 July 1987. Change 3 column-80 "1"-punches to "2"-punches that do work: +-1Y16C Y17C .316 752. 123.E3 31. 1 2 +-2Y16B Y17B .03 370. 179.E3 31. 1 2 +-3Y16A Y17A 2 +BLANK card ending branch cards + CJC X32C -1. .016 0.1 + RAC XC -1. .016 0.1 2 + X16C T -1. .2 0. +BLANK card ending switch cards +14VA 305418. 60. -1.5 -1. +14VB 305418. 60. -121.5 -1. +14VC 305418. 60. 118.5 -1. +14RAGA 301954. 60. 0.0 -1. +14RAGB 301954. 60. -120.0 -1. +14RAGC 301954. 60. 120.0 -1. +14CJGA 303109. 60. 12.0 -1. +14CJGB 303109. 60. -108.0 -1. +14CJGC 303109. 60. 132.0 -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C CJA | X32A *CJGA * +C X32A | CJA *X31A * +C CJB | X32B *CJGB * +C X32B | CJB *X31B * +C RAA | XA *RAGA *YA * +C XA | RAA *X1A * +C RAB | XB *RAGB *YB * +C XB | RAB *X1B * +C RAGA | RAA * +C RAGB | RAB * +C RAGC | RAC * +C RAC | RAGC *YC *XC * +C Etc. (many more connections!) ..... +BLANK card ending source cards +C Total network loss P-loss by summing injections = 4.180325863357E+08 +C Last gen: VA 305313.34087938 305418. -117.2584310988 258.76988979273 +C (inject) -7994.911198294 -1.5000000 230.67794909697 116.9451840 + X16C { Request this single node-voltage output +C Step Time X16B X16C X16A Y16C Y16B +C T T T Y17C Y17B +C +C CJB RAGA RAGB RAGC RAA +C X32B RAA RAB RAC YA +C *** Phasor I(0) = -3.0383545E+02 Switch "CJC " to "X32C " closed +C *** Phasor I(0) = 3.8992458E+02 Switch "RAC " to "XC " closed +C *** Phasor I(0) = 2.0157191E+02 Switch "X16C " to "T " closed +C 0 0.0 -78763.148 0.0 356989.678 20286.0902 17732.2707 +C -18.016564 -303.41193 324.866491 159.741413 116.579991 +C 1 .5E-4 -68915.376 0.0 360816.716 20407.8874 17886.2544 +C -7.6834907 -305.95716 323.27785 139.58148 116.957369 +C *** Open switch "CJC " to "X32C " after 1.63000000E-02 sec. +C 340 .017 -58325.296 0.0 332129.95 18459.1058 16144.8216 +C -71.509286 -318.23015 312.072738 24.5303035 118.269882 +C *** Open switch "RAC " to "XC " after 1.73000000E-02 sec. +C 360 .018 12731.9904 0.0 250135.752 -12838.9 -16820.319 +C 52.7863341 -253.90065 320.141582 -141.05357 52.1159786 +BLANK card ending output variable requests (here, just one node voltage) +C 500 .025 132495.985 0.0 -302263.22 -29.587992 2946.07641 +C 84.5341302 250.938187 -366.24032 246.772723 -200.01038 +C Variable maxima : 527574.804 0.0 412447.128 31636.9013 29592.9306 +C 548.378747 333.249762 334.841845 1080.00888 118.507064 +C Times of maxima : .00455 0.0 .0014 .01945 .01935 +C .00425 .00945 .016 .0129 .5E-3 +C Variable minima : -527587.93 0.0 -412416.39 -42474.614 -23464.43 +C -548.38706 -333.20182 -367.8861 -1079.8953 -234.86055 +C Times of minima : .0129 0.0 .0097 .01835 .0184 +C .0126 .00115 .02495 .00455 .02325 + PRINTER PLOT { Axis limits: (-3.870, 2.119) + Voltage across switch (RAC,XC), which opens at 16 milliseconds. + 184 1. 15. 30. RAC XC Recovery voltage +$WATCH, 9999, { Turn off echoing of cards to CRT, in case other solutions follow +BLANK card terminating plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc13.dat b/benchmarks/dc13.dat new file mode 100644 index 0000000..979b9c1 --- /dev/null +++ b/benchmarks/dc13.dat @@ -0,0 +1,589 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-13 +C Illustration of SUBROUTINE SATURA, the magnetic saturation routine +C that converts an RMS saturation curve of voltage vs. current into the +C corresponding locus of instantaneous flux vs. current. Also shown +C are B-H hysteresis generation and ZnO conversion from old formats. +C 12 data subcases are present, so many other features are tested, too +SATURATION +$ERASE + -1. 10. .001 1 + 0.0 5.0 + 2.0 5.0 + 3.0 3.5 + 4.0 2.0 + 5.0 1.0 + 10.0 1.0 + 9999 +C Final row of resulting printout: 6 100.0000000000 0.2350000000 + 60. .664 .01 1 + 1.0 100. + 1.6 105. + 2.75 110. + 4.0 113. + 6.0 116. + 10. 119. + 44. 131. + 9999 +C Final row of resulting printout: 8 1601.6892070492 326.3046435192 +$PUNCH, dc13a.pch ! { Exclamation holds lower case + -1. 10. .001 1 + 2.0 5.0 + 9999 + 60. 303.11 300. 1 1 + .000306 0.7 + .000415 0.8 + .00076 0.9 + .00198 1.0 + .0108 1.1 + 9999 +C Final row of resulting printout: 6 26.6610642630 1250.7681935392 +$PUNCH + 60. 34.5 300.0 1 + .000306 0.7 + .000415 0.8 + .00076 0.9 + .00198 1.0 + .0108 1.1 + 9999 +C Final row of resulting printout: 6 234.2387011236 142.3625174923 +$PUNCH, dc13b.pch ! { Exclamation holds lower case +C 3.76303783E+00 9.05943293E+01 +C 6.10062069E+00 1.03536376E+02 +C 1.33222222E+01 1.16478423E+02 +C 3.87652515E+01 1.29420470E+02 +C 2.34238701E+02 1.42362517E+02 +BLANK card ending all "SATURATION" data cases +BEGIN NEW DATA CASE +C 2nd of 12 subcases will illustrate use of another supporting program: +OLD TO NEW ZNO { Special request card to convert old ZnO data to new format + .000050 .020000 { Note: this data case once was numbered DC-38B. + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 +-1SENDA RECA .305515.8187.01210 200. 0 +-2SENDB RECB .031991.5559.01937 200. 0 +-3SENDC RECC +C 34567890123456789012345678901234567890 +92RECA 5555. + -1. -1. { Old ZnO data formats involved a dummy + 1. 1. { characteristic (these two data cards) + 9999. +92RECB RECA 5555. { 2nd arrester of 3-phase group is copy of 1st +92RECC RECA 5555. { 3rd arrester of 3-phase group is copy of 1st +BLANK card ending branch data +BLANK card terminating nonexistent switches +14SENDA 408000. 60. 0.0 +14SENDB 408000. 60. -120. +14SENDC 408000. 60. 120. +BLANK card ending source cards +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 +C The following 3 cards are ZnO characteristics, using the old formats: + -1 2500. 26. 0.5 778000. + -1 2500. 26. 0.5 778000. + -1 2500. 26. 0.5 778000. + 1 { 1st of remaining cards to be discarded searching for next case beginning + PRINTER PLOT + 144 3. 0.0 20. RECA +BLANK card ending plot cards { Final card to be discarded b4 new case starts +BEGIN NEW DATA CASE +$PUNCH +C 92RECA 5555. +C 0.778000000000000E+06 -0.100000000000000E+03 0.000000000000000E+00 +C 0.250000000000000E+04 0.260000000000000E+02 0.500000000000000E+00 +C 9999 +C 92RECB 5555. +C 0.778000000000000E+06 -0.100000000000000E+03 0.000000000000000E+00 +C 0.250000000000000E+04 0.260000000000000E+02 0.500000000000000E+00 +C 9999 +C 92RECC 5555. +C 0.778000000000000E+06 -0.100000000000000E+03 0.000000000000000E+00 +C 0.250000000000000E+04 0.260000000000000E+02 0.500000000000000E+00 +C 9999 +C 3rd of 12 subcases will illustrate use of another supporting program. +C This came from Prof. Ned Mohan and graduate student Jim Frame at the +C University of Minnesota in Minneapolis around 1981. +HYSTERESIS +C ITYPE LEVEL { Request Armco M4 oriented silicon steel -- only 1 available + 1 2 { That was ITYPE=1. As for LEVEL=2, moderate accuracy output + 500. 1.0 { Current and flux coordinates of positive saturation point +$PUNCH +C -1.25000000E+02 -9.70588235E-01 +C -1.56250000E+01 -9.19411765E-01 +C 9.37500000E+00 -8.47058824E-01 +C 2.18750000E+01 -6.58823529E-01 +C 4.21875000E+01 5.70588235E-01 +C 6.56250000E+01 7.52941176E-01 +C 1.12500000E+02 8.64705882E-01 +C 2.07812500E+02 9.41176471E-01 +C 5.00000000E+02 1.00000000E+00 +C 6.87500000E+02 1.00588235E+00 +C 9999. +C A quarter of a century late, Orlando Hevia in Santa Fe, Argentina, enhances +C both the code and the illustrations. He adds to the original ITYPE = 1 a +C new ITYPE = 2 alternative, which is for Armco M4 oriented silicon steel. +C Next, illustrate the remaining 3 levels for ITYPE = 1 (these are 1, 3, and +C 4) followed by the 4 levels for ITYPE = 2. Orlando had $PUNCH requests +C after each, although WSM removes them to minimize such redundant output. +C In E-mail to BPA's Dr. Tsu-huei Liu on February 21, 2006, Orlando wrote: +C "I received a curve of the B-H characteristics of ARMCO M-6 steel. It is +C for 0.014-inch thickness (0.35 mm), with a bit more losses than ARMCO M-4." +C ITYPE LEVEL { Request Armco M4 oriented silicon steel + 1 1 { That was ITYPE=1 and LEVEL=2. 1st of 4 levels is LEVEL = 1 + 500. 1.0 { Current and flux coordinates of positive saturation point +C ITYPE LEVEL { Request Armco M4 oriented silicon steel + 1 3 { That was ITYPE=1 and LEVEL=2. 3rd of 4 levels is LEVEL = 3 + 500. 1.0 { Current and flux coordinates of positive saturation point +C ITYPE LEVEL { Request Armco M4 oriented silicon steel + 1 4 { That was ITYPE=1 and LEVEL=2. 4th of 4 levels is LEVEL = 4 + 500. 1.0 { Current and flux coordinates of positive saturation point +C ITYPE LEVEL { Request Armco M6 oriented silicon steel + 2 1 { 1st of 4 illustrations of M6 steel is for LEVEL = 1 + 500. 1.0 { Current and flux coordinates of positive saturation point +C ITYPE LEVEL { Request Armco M6 oriented silicon steel + 2 2 { 2nd of 4 illustrations of M6 steel is for LEVEL = 2 + 500. 1.0 { Current and flux coordinates of positive saturation point +C ITYPE LEVEL { Request Armco M6 oriented silicon steel + 2 3 { 3rd of 4 illustrations of M6 steel is for LEVEL = 3 + 500. 1.0 { Current and flux coordinates of positive saturation point +C ITYPE LEVEL { Request Armco M6 oriented silicon steel + 2 4 { 4th of 4 illustrations of M6 steel is for LEVEL = 4 + 500. 1.0 { Current and flux coordinates of positive saturation point +BLANK card ending stacked "HYSTERESIS" data subcases +BEGIN NEW DATA CASE +C 4th of 12 subcases will illustrate the printing of error messages. +C Were there not at least five data cards remaining at this point, the +C data subcase would not even be read. The program would instead +C discard remaining cards and jump out to issue the initial prompt +C once again. But the present set of comment cards prevent this. +KILL CODES, 13, 14, { Just look at two very short error messages: KILL = 13, 14 +C The following 3 lines will never be executed because of the nature of the +C preceding KILL CODES. However, they are legal non-comment cards. Once +C we switch to the destruction of comment cards using NOCOMM= 1 in STARTUP, +C the 5th subcase was missing because it was not separated from the 4th by at +C least 5 data cards (variable KASEND = 5 in STARTUP). So, 14 Dec 94, we +C add 3 noncomments: +PRINTED NUMBER WIDTH, 15, 2, { 1st of 3 never-processed noncomment lines +PRINTED NUMBER WIDTH, 15, 2, { 2nd of 3 never-processed noncomment lines +PRINTED NUMBER WIDTH, 15, 2, { 3rd of 3 never-processed noncomment lines +BEGIN NEW DATA CASE +C 5th of 12 subcases is like the 4th except that output will be +C truncated to 125 columns --- short of the 132 columns needed. +TRUNCATE OUTPUT LINES, 125, { 132-column lines are formed, but then chopped off +KILL CODES, 13, 14, { The same two error messages as preceding subcase, note +C The following 3 lines will never be executed because of the nature of the +C preceding KILL CODES. However, they are legal non-comment cards. Once +C we switch to the destruction of comment cards using NOCOMM= 1 in STARTUP, +C this 5th subcase was missing because it did not have 5 or more data cards +C (variable KASEND = 5 in STARTUP). So, 14 Dec 94, we add 2 noncomments: +PRINTED NUMBER WIDTH, 15, 2, { 1st of 3 never-processed noncomment lines +PRINTED NUMBER WIDTH, 15, 2, { 2nd of 3 never-processed noncomment lines +PRINTED NUMBER WIDTH, 15, 2, { 3rd of 3 never-processed noncomment lines +BEGIN NEW DATA CASE +C 6th of 12 subcases illustrates batch-mode usage of Orlando +C Hevia's fitter to approximate piecewise-line (I, Psi) points +C of an ordinary, old, Type-93 nonlinear reactor by a smooth, +C hyperbolic tangent. See story in January, 1998, newsletter. +TRUNCATE OUTPUT LINES, 132, { Cancel preceding truncation; return to normal 132 +$ERASE +C 345678901234567890123456 +C 345678901234567890123456789012 ITMAX KPL DXL2 +SMOOTH SATURATION USING TANH 600 40 .08 +C Preceding parameters to the right of col. 32 are optional changes to defaults: +C ITMAX = the maximum number of iterations of parameter fitter (default = 3000) +C KPL = the number of uniform current steps for curve plotting (default = 50) +C DXL2 = radius in inches of marking circle to show data points (default = .05) +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +C AAAAAABBBBBBCCCCCCDDDDDDCURR FLUX I +93BUS1 BUS2 0.005 30.0 1 + -.005 30.0 { Illegal point illustrates rejection + 0.0 0.0 { 2nd illegal point (special case of origin) + .005 30.0 + .010 40.0 + .020 45.0 + .030 47.0 + 9999. +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +93BUS1 BUS2 0.005 30.0 + .002 11.0 + .005 30.0 + .010 40.0 + .020 43.0 + .030 45.0 + .040 46.0 + 9999. +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +93BUS1 BUS2 0.005 30.0 + .002 11.0 + .005 30.0 + 9999. +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +Arbitrary line will not be seen (illustrate how program ignores all but Type 93) +$PUNCH { Create .PCH file as well as show contents in the printed output +BLANK card ending last SSUT data case +BEGIN NEW DATA CASE +C 7th of 12 subcases illustrates batch-mode usage of Orlando +C Hevia's supporting program HYSTER. This serves to convert +C a Type-98 element into a Type-96 element. For background, +C see the story in the July, 2000, newsletter. +C 345678901234567890123456789012345678901234567890123456 +C NOZOOM FSCALE DXL2 +HYSTERESIS HEVIA 1 1.1 .04 +C The 3 parameters on the preceding request card govern the screen plot +C that automatically will document hysteresis of the result: +C NOZOOM is a binary switch that indicates whether the entire +C curve or just the hysteresis loop itself is to be plotted. +C Value 1 will plot everything (no zoom) whereas value zero +C will drop the final point, which is outside the loop proper. +C FSCALE is a scaling factor to waste space above and to the right +C of the 1st and 2nd-quadrant plot. For example, value 1.1 +C will waste 10%, providing this much margin. +C DXL2 is the "radius" in screen inches of the squares that mark data +C points. Value zero means that there will be no such marking. +C So much for the special-request card. On to reactor. Everything about +C the following is normal Type 98 except for columns 27-74, from which 3 +C new floating-point parameters are read. Of course, if currents are in +C amperes and voltage is in volts, power will be in watts and residual +C flux will be in volt-seconds: +C <--Losses in W-><--Freq in Hz--><-Residual flux> I +98NODE1 NODE2 40774.59 50.0 400.0 3 + 0.122419130E-01 0.563980835E+03 + 0.628200099E-01 0.782295959E+03 + 0.215062916E+00 0.100061115E+04 + 0.576934814E+00 0.121892639E+04 + 0.791255713E+00 0.129949500E+04 + 0.131488657E+01 0.143724146E+04 + 0.266661191E+01 0.165555664E+04 + 0.386263156E+01 0.178290710E+04 + 0.550489426E+01 0.192845056E+04 + 9999 +$PUNCH, dc13c.pch ! { Exclamation holds lower case +C NOZOOM FSCALE DXL2 + REPLOT 0 1.0 .07 +C The following subcase illustrates generalization of the preceding hysteresis +C derivation by Orlando Hevia. WSM adds 26 May 2001. +C The following case produces Type-96 hysteretic branch cards that will result +C in automatic initialization. There will be 8888. for I-steady and blank +C fields for flux and remanent flux. Note negative losses on the following +C Type-98 card (this is the way the user requests this option): +C <--Losses in W-><--Freq in Hz--><-Residual flux> I +98NODE1 NODE2 -40774.59 50.0 400.0 3 + 0.122419130E-01 0.563980835E+03 + 0.628200099E-01 0.782295959E+03 + 0.215062916E+00 0.100061115E+04 + 0.576934814E+00 0.121892639E+04 + 0.791255713E+00 0.129949500E+04 + 0.131488657E+01 0.143724146E+04 + 0.266661191E+01 0.165555664E+04 + 0.386263156E+01 0.178290710E+04 + 0.550489426E+01 0.192845056E+04 + 9999 +$PUNCH +C NOZOOM FSCALE DXL2 + REPLOT 0 1.0 .07 +BLANK card terminates stacked Type-98 elements within HYSTERESIS HEVIA +BEGIN NEW DATA CASE +C 8th of 12 subcases illustrates in-line usage of Orlando Hevia's +C hysteresis-creating program. The effect should be identical to +C replacement of the Type-98 branch by the Type-96 branch that was +C punched by the preceding subcase. The basic network was created +C by taking one phase of DC-7, and replacing the reactor using data +C of the preceding subcase. Simulation continues only long enough +C for the first pulse of current inrush of the reactor. + .000025 .001 60. 60. + 1 1 1 0 0 -1 + 5 5 30 1 + GENA SWA 89352. +-1SENDA RECA .137681.07755.6806124.27 + RECA TRANA GENA SWA 1 + TRANA GNDA 7.5398 1 + GNDA .0001 +C Note special request in 15:26 of the following branch card. This is +C what provides the in-line connection to Orlando Hevia's fitter, +C replacing the Type-98 branch by an equivalent (better) Type-96 branch: +C <--Losses in W-><--Freq in Hz--><-Residual flux> I +98TRANA HEVIA HYSTER 40774.59 50.0 400.0 3 + 0.122419130E-01 0.563980835E+03 + 0.628200099E-01 0.782295959E+03 + 0.215062916E+00 0.100061115E+04 + 0.576934814E+00 0.121892639E+04 + 0.791255713E+00 0.129949500E+04 + 0.131488657E+01 0.143724146E+04 + 0.266661191E+01 0.165555664E+04 + 0.386263156E+01 0.178290710E+04 + 0.550489426E+01 0.192845056E+04 + 9999 +BLANK card ends all branch cards + SWA SENDA 1.0 +BLANK card ends all switch cards +14GENA 188000. 60. 0.0 -1. +BLANK card ending source cards + GENA TRANA RECA +C Step Time TRANA GENA TRANA RECA TRANA RECA TRANA +C TERRA TERRA TRANA GNDA +C *** Switch "SWA " to "SENDA " closed after 0.00000000E+00 sec. +C 0 0.0 0.0 188000. 0.0 0.0 0.0 0.0 0.0 +C 1 .25E-4 .52901E-14 187991.65 .52901E-14 .52894E-14 -.2049E-16 -.1203E-16 .84641E-17 +C 2 .5E-4 .96607E-14 187966.602 .96607E-14 .96583E-14 -.2049E-16 -.2196E-16 -.1471E-17 +BLANK card ending output variable requests (just node voltages, here) +C 32 .8E-3 .90572E-14 179514.534 .90572E-14 .89899E-14 -.2044E-16 -.2044E-16 .11666E-20 +C 33 .825E-3 81947.1269 178980.254 81947.1269 81954.0422 .007179619 131.122181 131.114993 +C 34 .85E-3 284030.522 178430.075 284030.522 284054.493 .039243952 192.256743 192.217471 +C 35 .875E-3 383163.494 177864.047 383163.494 383195.837 .097698701 -33.507413 -33.60515 +C 36 .9E-3 365690.044 177282.221 365690.044 365720.926 .16330787 5.81105035 5.64770591 +C 37 .925E-3 368481.981 176684.647 368481.981 368513.116 .153316524 -1.0272643 -1.1806177 +C 38 .95E-3 367719.904 176071.379 367719.904 367750.991 .18045259 .141786623 -.03870274 +C 39 .975E-3 367528.209 175442.471 367528.209 367559.301 .2075535 -.06041831 -.26800857 +C 40 1.E-3 367198.987 174797.979 367198.987 367230.074 .234635209 -.02407335 -.25874528 +BLANK card terminating plot cards +BEGIN NEW DATA CASE +C 9th of 12 subcases illustrates batch-mode use of Orlando Hevia's +C supporting program to find parameters A, B, and C of the Type-15 +C Standler surge function. See the January, 2000, newsletter. The +C alternative of in-line fitting rather than batch-mode fitting can +C be found in the 3rd subcase of DC-19. +STANDLER SURGE FUNCTION + 10.0 50.0 0.0 1000. S10500 -1 +$PUNCH, dc13d.pch ! { Exclamation holds lower case +C C STANDLER SURGE FUNCTION +C C 10.0 50.0 0.0 1000. S10500 -1 +C C Surge peak : 1.0000E+03 +C C Time to peak : 1.0000E+01 us +C C Time to half value : 5.0000E+01 us +C 15S10500-1 1913.48 .34489E-4 .28995155 Standler + 10.0 50.0 10.0 1000. S10501 0 +$PUNCH +C C 10.0 50.0 10.0 1000. S10501 0 +C C Surge peak : 1.0000E+03 +C C Virtual front time : 1.0000E+01 us +C C Virtual half time : 5.0000E+01 us +C C Virtual front defined by 10.0 and 90.0 % +C 15S10501 2543.7879 .23168E-4 .65859353 Standler + 10.0 50.0 30.0 1000. S10503 1 + 10.0 50.0 50.0 1000. S10505 Voltage + 8.0 20.0 0.0 1000. S82000 Current + 8.0 20.0 10.0 1000. S82010 voltage + 8.0 20.0 30.0 1000. S82030 current + 8.0 20.0 50.0 1000. S82050 VOLTAGE +$PUNCH +C C 10.0 50.0 30.0 1000. S10503 1 +C C Surge peak : 1.0000E+03 +C C Virtual front time : 1.0000E+01 us +C C Virtual half time : 5.0000E+01 us +C C Virtual front defined by 30.0 and 90.0 % +C 15S10503 2372.9809 .25096E-4 .52633653 Standler +C This is 1st of 6. Etc. for 2nd through 6th illustrations. +BLANK card ending Standler surges +BEGIN NEW DATA CASE +C 10th of 12 subcases illustrates use of LOSSY SATURATION from +C Orlando Hevia. This is added 11 May 2001 as feature becomes +C available. In general terms, this supporting program is similar +C to SATURATION (see 1st subcase), but losses are taken into +C account. +LOSSY SATURATION +$ERASE +C +C FREQ: AS SATURATION +C +C VBASE: AS SATURATION +C +C PBASE: AS SATURATION +C +C KCON : CONNECTION +C -1, BLANK OR 0: SINGLE PHASE (THE SAME AS SATURATION) +C VOLTAGE, FLUX AND CURRENT WITHOUT SCALING. +C +C 1 STAR (Y, WYE) CONNECTION NEUTRAL GROUNDED +C VOLTAGE AND FLUX SCALED DIVIDING BY SQRT(3) +C +C 3 DELTA (TRIANGLE) CONNECTION +C CURRENT SCALED DIVIDING BY SQRT(3) +C TRIPLEN HARMONICS REMOVED +C +C KTHIRD : AS SATURATION +C +C IOUT : TO BE PASSED TO .PCH FILE IN COLUMN 80 +C +C BUS1, BUS2 : TO BE PASSED TO .PCH FILE FOR NON-LINEAR RESISTOR +C BUS3, BUS4 : TO BE PASSED TO .PCH FILE FOR NON-LINEAR INDUCTOR +C IF BUS3=BUS4=' ', BUS1 AND BUS2 WILL BE USED +C +C FREQ VBASE PBASE IPUNCH KTHIRD KCON IOUT BUS1 BUS2 BUS3 BUS4 +C ------________--------________--------________--------______------______------ +C + -1. 10. .001 0 0 +C I V +C --------------________________ + 0.0 5.0 + 2.0 5.0 + 3.0 3.5 + 4.0 2.0 + 5.0 1.0 + 10.0 1.0 + 9999 + -1. 10. .001 0 1 + 0.0 5.0 + 2.0 5.0 + 3.0 3.5 + 4.0 2.0 + 5.0 1.0 + 10.0 1.0 + 9999 + -1. 10. .001 1 0 + 0.0 5.0 + 2.0 5.0 + 3.0 3.5 + 4.0 2.0 + 5.0 1.0 + 10.0 1.0 + 9999 + -1. 10. .001 1 1 + 0.0 5.0 + 2.0 5.0 + 3.0 3.5 + 4.0 2.0 + 5.0 1.0 + 10.0 1.0 + 9999 +C + 60. .664 .01 0 0 + 1.0 100. + 1.6 105. + 2.75 110. + 4.0 113. + 6.0 116. + 10. 119. + 44. 131. + 9999 +C +$PUNCH, dc13e.pch ! { Exclamation holds lower case + -1. 10. .001 1 + 2.0 5.0 + 9999 + 60. 303.11 300. 1 1 + .000306 0.7 + .000415 0.8 + .00076 0.9 + .00198 1.0 + .0108 1.1 + 9999 +C +$PUNCH + 60. 34.5 300.0 1 + .000306 0.7 + .000415 0.8 + .00076 0.9 + .00198 1.0 + .0108 1.1 + 9999 +C +$PUNCH, dc13f.pch ! { Exclamation holds lower case +C INI EPSIR +CONTROLS 1024 1.E-8 { # of points per quarter cycle; convergence tolerance +C +C THE FOLLOWING IS A REAL LIFE CASE +C +C +C FREQ VBASE PBASE IPUNCH KTHIRD KCON IOUT BUS1 BUS2 BUS3 BUS4 +C ------________--------________--------________--------______------______------ + 50. 0.001 1.0E-6 0 3 1DOMAR DOMBR DOMAL DOMBL +C +C IRMS----------VRMS------------P--------------- +3.01 29107.00 50640.0 +4.39 31000.00 60640.0 +7.51 33200.00 75760.0 +14.45 35387.0 94960.0 +26.09 37280.00 114000.0 +53.73 39213.00 135360.0 + 9999. +$PUNCH +C +C SAMPLES OF EACH CONNECTION +C CURRENT, VOLTAGE AND POWER TO OBTAIN RESISTANCE=REACTANCE +C +C CURRENT, VOLTAGE AND LOSSES SCALED ACCORDINGLY +C +C SINGLE PHASE +C +C FREQ VBASE PBASE IPUNCH KTHIRD KCON IOUT BUS1 BUS2 BUS3 BUS4 +C ------________--------________--------________--------______------______------ + 50. 0.001 1.0E-6 0 -1 1 +C +C IRMS----------VRMS------------P--------------- +1.414213562 10000.0 10000.000 +3.39411255 12000.0 28800.000 +7.071067812 14000.0 70000.000 + 9999. +C +C Y NEUTRAL CONNECTED TO GROUND +C +C FREQ VBASE PBASE IPUNCH KTHIRD KCON IOUT BUS1 BUS2 BUS3 BUS4 +C ------________--------________--------_______------______------______------ + 50. 0.001 1.0E-6 0 0 1 1 +C +C IRMS----------VRMS------------P--------------- +1.414213562 17320.50808 30000.000 +3.39411255 20784.60969 86400.000 +7.071067812 24248.71131 210000.000 + 9999. +C +C DELTA CONNECTED +C +C FREQ VBASE PBASE IPUNCH KTHIRD KCON IOUT BUS1 BUS2 BUS3 BUS4 +C ------________--------________--------________--------______------______------ + 50. 0.001 1.0E-6 0 0 3 +C +C IRMS----------VRMS------------P--------------- +2.449489743 10000.0 30000.000 +5.878775383 12000.0 86400.000 +12.24744871 14000.0 210000.000 + 9999. +$PUNCH +BLANK card ends stacked subcases of LOSSY SATURATION data +BEGIN NEW DATA CASE +C 11th of 12 subcases illustrates batch-mode use of Orlando Hevia's +C supporting program to find parameters A, B, and C of the Type-15 +C Heidler surge function. See the January, 2001, newsletter. The +C alternative of in-line fitting rather than batch-mode fitting can +C be found in the ?? subcase of DC-??. Add this subcase 16 Nov 02 +HEIDLER SURGE FUNCTION +C FRONT TAIL PERC AMPLIT BUS IV N +C ------========--------========XX------========-- + 1.0E-6 50.0E-6 10.0 100.0 BUS 1 5 + 1.0E-6 50.0E-6 0.0 100.0 BUS -1 5 + 1.0E-6 50.0E-6 30.0 100.0 BUS Voltage 5 + 1.0E-6 50.0E-6 50.0 100.0 BUS current 5 +C The preceding data was within HEIDLER.DAT as supplied by Orlando Hevia +$PUNCH +C Essence of Orlando Hevia's HEIDSLOP.DAT is inserted here 17 August 2003. +C This verifies a new fitting option that allows the user to specify his +C desired peak value and slope. +C NEW OPTION FOR HEIDLER SURGE SOURCE +C IF PERC IS .LT. 0.0, THE SOURCE WILL HAVE THE +C SLOPE AS REQUIRED IN FIRST FIELD (NOT T1) +C SLOPE> IV N + 1.0E+10 50.0E-6 -1.0 1.0E4 OFFLIN -1 4 +$PUNCH +BLANK card ending input for Heidler fitter +BEGIN NEW DATA CASE +C 12th of 12 subcases illustrates batch-mode use of Orlando Hevia's +C supporting program TWOEXP to find parameters of Dommel's Type-15 +C exponential surge funct. See the January, 2001, newsletter (end +C of the Standler story mentions "other alternatives"). This does +C not imply more complicated (even Dommel's original 2-exponential +C surge is benefitted). Final note: the alternative of in-line +C fitting rather than batch-mode fitting can +C be found in the ?? subcase of DC-??. Add this subcase 16 Nov 02 +TWO EXP SURGE FUNCTION +C FRONT TAIL PERC AMPLIT BUS IV N +C ------========--------========XX------========-- + 1.0E-6 50.0E-6 10.0 100.0 BUS 1 5 + 1.0E-6 50.0E-6 0.0 100.0 BUS -1 5 + 1.0E-6 50.0E-6 30.0 100.0 BUS Voltage 5 + 1.0E-6 50.0E-6 50.0 100.0 BUS current 5 +$PUNCH +BLANK card ending input for 2-exponential fitter +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc14.dat b/benchmarks/dc14.dat new file mode 100644 index 0000000..4719d9c --- /dev/null +++ b/benchmarks/dc14.dat @@ -0,0 +1,196 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-14 +C 1st of 4 subcases will calculate constant-parameter equivalent network +C AGNOSTIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 { Ov 26 +C Add re-dimensioning request 1 April 2007 in order to regain those sparsity +C diagrams showing non-zero structure. Until this past year, these were +C missing for 3 * default dimensioning of Salford EMTP and also other versions +C I suppose. Then, working to support Orlando Hevia and GNU F95 testing, a +C change to NETEQV was made in January. Storage in KSPARS was changed from +C INTEGER (1 character per 4/byte word) to CHARACTER*1. But, as Tsu-huei +C discovered only toward the end of March (apparently testing was delayed), +C Watcom died at the first attempted storage in KSPARS(1,1). Suspecting that +C Watcom did not like the INTEGER vs. CHARACTER*1 mismatch of the final +C argument, WSM retains the NETEQV code and simply replaces KARRAY within +C SUBR26 by List 15 CSTO of MODELS. But, using 3 * default dimensioning, +C LSPARS = 225 and this requires 225 ** 2 = 50625 cells which is more than +C 3 * default will provide. So, as first tested, the two sparsity diagrams +C were correctly missing from the output. But they were nice, and there is no +C need to lose them. The dimensioned size of List 15 is substantially bigger, +C so why not simply expand List 15 to 51K at the same time much more storage +C is saved by reducing other list sizes (possible since they are not used, +C anyway, for supporting programs only). "LABCOM tables = 234090 INTEGER +C words" of the heading will shrink from 234090 to 84270. This is a novel +C use of NLS for non-simulation, so has educational value in its own right. +NEW LIST SIZES + 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 51000 0 0 0 0 0 + 0 0 0 { Note only List 15 = 51K differs from default size + 240000 +NETWORK EQUIVALENT { Request transfer to supporting program "NETEQV" +C NITMAX IPRSUP EPSILN PERCEN IPNCOM NAME ---- Begin next sub-sub-case + 10 0 1.E-9 0.5 0 ABC? +C K M X-OHMS + 1 2 0.5 { Branch node K, node M, reactance of branch +BLANK card terminates branch cards (all branches to be excluded from equivalent) +C BUS1 BUS2 X/R X-THEV NEGATE + 1DUMMY DUMMY 10. 0.1 0 + 2DUMMY DUMMY 20. .05 0 +C $PUNCH { Flush punched cards pertaining to just-completed 2-bus case +BLANK card ending data cases within "NETWORK EQUIVALENT". Exit to "OVER1" +BEGIN NEW DATA CASE +C 2nd of 4 subcases will calculate constant-parameter equivalent network +NETWORK EQUIVALENT { Request transfer to supporting program "NETEQV" +C NITMAX IPRSUP EPSILN PERCEN IPNCOM NAME ---- Begin next sub-sub-case + 10 0 1.E-9 1.0 +C K M X-OHMS + 1 2 278. { Branch node K, node M, reactance of branch + 1 3 87. { Branch node K, node M, reactance of branch + 1 4 145. { Branch node K, node M, reactance of branch + 1 5 145. { Branch node K, node M, reactance of branch + 1 6 5.16 { Branch node K, node M, reactance of branch + 1 7 467. { Branch node K, node M, reactance of branch + 1 8 316. { Branch node K, node M, reactance of branch +BLANK card terminates branch cards (all branches to be excluded from equivalent) +C BUS1 BUS2 X/R X-THEV NEGATE + 1DUMMY DUMMY 50. .09 + 2DUMMY DUMMY 33. .15 + 3DUMMY DUMMY 50. .09 + 4DUMMY DUMMY 33. .15 + 5DUMMY DUMMY 50. .09 + 6DUMMY DUMMY 33. .15 + 7DUMMY DUMMY 50. .09 + 8DUMMY DUMMY 33. .15 +C $PUNCH { Flush the punched-card output of just-created equivalent network +BLANK card ending data cases within "NETWORK EQUIVALENT". Exit to "OVER1" +BEGIN NEW DATA CASE +C 3rd of 4 data subcases was appended to illustrate realistic usage at BPA. +C Data for BPA's EMTP was converted for solution using ATP by Eugene Davis of +C of BPA during August of 1992. ATP advice from WSM. See Oct, 92, newsletter +C ** HOT SPRINGS - TAFT - DWORSHAK EQUIVALENTS +NETWORK EQUIVALENT, 9, { Max number of generators is reduced to yield diagram +C NITMAX IPRSUP EPSILN PERCEN IPNCOM NAME --- 1st of 2 halves: zero seq + 10 0 1.E-9 1.0 0 ABC? +C K M X-OHMS + 1 2 113.2 (K, M, REACTANCE OF BRANCH) + 2 3 194.0 (K, M, REACTANCE OF BRANCH) +BLANK card ends branches that are to be excluded from the equivalent +C BUS1 BUS2 X/R X-THEV NEGATE ---- Short circuit impedance at bus + 1DUMMY HOTS 9. 70.84 0 (zero-sequence values) + 2DUMMY TAFT 6. 48.51 0 + 3DUMMY DWOR 9. 39.41 0 +C -- Done with Newton iteration # 1. Largest correction D4 = 3.84916323E-01 +C -- Done with Newton iteration # 1. Largest correction D4 = 1.33373074E-01 +C -- Done with Newton iteration # 1. Largest correction D4 = 5.54850941E-03 +C -- Done with Newton iteration # 1. Largest correction D4 = 1.96795976E-05 +C -- Done with Newton iteration # 1. Largest correction D4 = 1.14179987E-10 +C reactance computed after removal of user-flagged generators. .... LOOP = 2. +C Gen X-new R-new X-fault X-thev X/R-thev +C 1 1.19249599709E+02 1.32499555232E+01 7.08400E+01 7.08400E+01 9.000000 +C 2 8.22611517150E+01 1.37101919525E+01 4.85100E+01 4.85100E+01 6.000000 +C 3 4.66222308277E+01 5.18024786975E+00 3.94100E+01 3.94100E+01 9.000000 +C NITMAX IPRSUP EPSILN PERCEN IPNCOM NAME ----- End 0-sequence, begin + + 10 0 1.E-9 1.0 0 ABC? +C K M X-OHMS K = "from" node number; M = "to" node number; + 1 2 30.33 X is reactance of branch not included in equiv. + 2 3 55.73 (branches represented explicitely in EMTP data) +BLANK card ends branches that are to be excluded from the equivalent +C BUS1 BUS2 X/R X-THEV NEGATE ---- Short circuit impedance at bus + 1DUMMY HOTS 16. 52.37 0 (positive-sequence values) + 2DUMMY TAFT 17. 38.59 0 + 3DUMMY DWOR 19. 30.59 0 +C -- Done with Newton iteration # 1. Largest correction D4 = 6.33252721E-01 +C -- Done with Newton iteration # 2. Largest correction D4 = 3.90146597E-01 +C -- Done with Newton iteration # 3. Largest correction D4 = 1.39754125E-01 +C -- Done with Newton iteration # 4. Largest correction D4 = 5.79939902E-03 +C -- Done with Newton iteration # 5. Largest correction D4 = 2.06058080E-06 +C -- Done with Newton iteration # 6. Largest correction D4 = 1.96349525E-12 +C Final generator equivalent impedances, plus confirmation of original generator +C parameters. Resistance is ignored during the internal computation, and is +C added as a fixed percentage only at the end. X-fault is the short circuit +C reactance computed after removal of user-flagged generators. .... LOOP = 1. +C Gen X-new R-new X-fault X-thev X/R-thev +C 1 1.55130207469E+02 9.69563796684E+00 5.23700E+01 5.23700E+01 16.000000 +C 2 9.81300314308E+01 5.77235479005E+00 3.85900E+01 3.85900E+01 17.000000 +C 3 4.10670198789E+01 2.16142209889E+00 3.05900E+01 3.05900E+01 19.000000 +C Note about order. Preceding data has two halves, with the zero sequence +C sequence preceding the positive. This order is needed only for punched +C cards that follow to be correct (zero sequence first). Otherwise, the +C order is immaterial. In fact, the same solution is performed twice. It +C is only data values that distinguish the two solutions. +$PUNCH, dc14b.pch ! +C <++++++> Cards punched by support routine on 24-Aug-92 09.27.44 <++++++> +C 51,DUMMYA,HOTS A, ,,, 1.324995552323771E+01, 1.192495997091393E+02,,,,,, +C 52,DUMMYB,HOTS B, ,,, 9.695637966841947E+00, 1.551302074694711E+02,,,,,, +C 53,DUMMYC,HOTS C, ,,,,,,,,,, +C 51,DUMMYA,TAFT A, ,,, 1.371019195249209E+01, 8.226115171495253E+01,,,,,, +C 52,DUMMYB,TAFT B, ,,, 5.772354790047830E+00, 9.813003143081311E+01,,,,,, +C 53,DUMMYC,TAFT C, ,,,,,,,,,, +C 51,DUMMYA,DWOR A, ,,, 5.180247869745662E+00, 4.662223082771096E+01,,,,,, +C 52,DUMMYB,DWOR B, ,,, 2.161422098891424E+00, 4.106701987893705E+01,,,,,, +C 53,DUMMYC,DWOR C, ,,,,,,,,,, +BLANK card ending data subcases within NETWORK EQUIVALENT. +BEGIN NEW DATA CASE +C 4th of 4 subcases has nothing to do with the preceding 3. Instead, +C it converts old Type-91, 92, or 93 switched elements to newer +C pseudo-nonlinear branches. +CHANGE SWITCH +C Cards preceding the blank card ending branch cards are all discarded +C except for the Type-91 time-dependent resistance. So, following a +C dummy series R-L-C branch, let's insert one of these Type-91 branches: + NODE1 NODE2 1.0 { Series R-L-C will be discarded, of course +91LEFT RIGHT 0.3E6 { From p. 20 example of 1980 Rule Book } 1 + 0.0 300. + 0.3 200. + 0.6 150. + 1000. 150. + 9999 +91 NODE1 NODE2 COPYL COPYR .25E6 { Final card from p. 20 of 1980 Rule Book +BLANK card ending program branch cards. This is flag that switches follow. +C Type-92 switched-R element follows (to be converted): +C 3456789012345678901234567890123456789012345678901234567890 +92JDAYA LMONA 8.5 3.E5 3.5E5 3 +C Type-93 switched-L element follows (to be converted): +93SENDA NEUTRL 4.2 2.5 0.7 3.3 1 +BLANK card terminating program switch cards +C Since all cards between the blank card ending switch cards (immediately +C above) and the start of a new case ("BNDC" in unabbreviated, long form) +C are to be discarded, we will not show anything here. No intelligence +C is involved in the "CHANGE SWITCH" logic, so nothing can be tested. +BEGIN NEW DATA CASE +$PUNCH { Flush the punched-card output of equivalent pseudo-nonlinear elements +C 91LEFT RIGHT 3333. +C 0.3E6 +C 0.0 300. +C 0.3 200. +C 0.6 150. +C 1000. 150. +C 9999 +C 91 NODE1 NODE2 COPYL COPYR 3333. +C 99JDAYA LMONA 0 3 2 035 +C 0.0000001 3.E5 +C 1.0 0.300008500E+06 +C 9999 +C 98SENDA NEUTRL 1.0 3.3 +C 0.1320000E+04 3.3 +C 0.2640000E+04 0.4224000E+01 +C 9999 +C Because this was not the first subcase of the disk file that punched +C cards ($PUNCH usage), note that the usual $ERASE was not required +C at the start. The $PUNCH at the end of the preceding subcase left +C the punch buffer empty. But the final $PUNCH (immediately before +C these comment cards) requires special attention. Were there not at +C least five data cards remaining at the end of the final meaningful +C data case, the blank terminating case would not even be read (the +C program would instead discard remaining cards and jump out to issue +C the initial prompt once again. The present set of comment cards do +C number more than 5, so they should protect against this possibility +C provided comment cards were not being destroyed by NOCOMM = 1 as +C set in STARTUP. But we can not be sure of this, so it is safer to +C have 5 or more non-blank data cards. By adding 2 unused blank cards +C below, BNDC + $PUNCH + original blank + these 2 new ones total 5. +C The blank bounding case, including the imbedded $PUNCH (which we +C need to flush the final punched cards) will be read. +BLANK +BLANK { 1st of 2 unused lines can have any content. This is line 4 of 5. +BLANK { 2nd of 2 unused lines can have any content This is line 5 of 5. diff --git a/benchmarks/dc15.dat b/benchmarks/dc15.dat new file mode 100644 index 0000000..9d7703d --- /dev/null +++ b/benchmarks/dc15.dat @@ -0,0 +1,90 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-15 +C Derive [R], [L] representations of 2- or 3-winding transformers. +XFORMER +$ERASE { Erase any remnant card images that might exist in punch buffer +22. 700. +139.4 13.6 2100. 12. 700. +$PUNCH { Flush contents of punch buffer (LUNIT7 punched output of preceding) +C 2nd punch : 52, , , , , -0.2028822586562E-02 , 0.1353359666262E+03 $ +C Frequency was added explicitly on 18 July 2002. Prior to this date, it +C merely was implied. But now it will be declared on a new $UNITS card +C is to precede punched cards. However, there is ambiguity. Since the user +C does not declare frequency as part of XFORMER data, for freq. of X the +C $UNITS card will display STATFR --- the power frequency from STARTUP. +C That is if data is old. But a user can define his own frequency F as he +C goes using $DEPOSIT as follows (switch to a power frequency of 400 Hz): +$DEPOSIT, STATFR=400. { SPY DEPOSIT command puts valu 400 in ATP variable STATFR +22. 600. +139.4 13.6 1800. 12. 600. +$PUNCH +C 1st punch : 51, , , , , 0.2426133676335E-01 , 0.1620334065762E+04 , ,,,, +$DEPOSIT, STATFR=60. { Return to a more common power frequency (cancel the 400) +22. 280. +139.4 13.2 840. 13. 280. +$PUNCH +C 3rd punch : 0.4661083093112E-03 , 0.3113449149085E+02 , ,,,, +22. 305. +139.4 13.2 915. 13. 305. +$PUNCH +C 1st punch : 51, , , , , 0.4772244898150E-01 , 0.3187701553139E+04 , ,,,, +22. 400. +139.4 13.2 1200. 13. 400. +$PUNCH +C 2nd punch : 52, , , , , -0.3445670365668E-02 , 0.2298606303275E+03 $ +BRANCH NAME1 NAME2 NAME3 NAME4 NAME5 NAME6 { 3 pairs of names for phases +3.3 83.3 +132.8 250. 6.7 83.3 +66.4 56.8 5.1 18.96 +13.2 56.8 3.2 18.96 +$PUNCH +C 4th punch: 53,NAME5 ,NAME6 , , , -0.5802607141885E-01 , 0.7013580357111E+04 $ +C 5th punch: -0.2901590479727E-01 , 0.3507083721397E+04 $ +C 6th punch: 0.1153587338779E-01 , 0.6973923571743E+03 , ,,,, +3.3 80. +177. 400. 3.37 80. +132.8 22. 3.57 7.35 +13.2 22. 3.42 7.35 +$PUNCH +C Last LUNIT7: 0.3031150665151E-01 , 0.7263587283765E+03 , ,,,, +BLANK carding ending "XFORMER" cases. +BEGIN NEW DATA CASE +C 2nd of 3 data subcases tests Gabor Furst's supporting routine that +C will punch data cards to represent a Type-3 U.M. (induction motor). +C This was added 4 February 1997 as described in April, 97, newsletter. +INDUCTION MOTOR DATA + SINGLE { 1st of 2 for default motor parameters must be nonblank, so key 1st 8 +BLANK { 2nd of 2 for default motor parameters +BLANK carding ending data subcases within SUBROUTINE INDUCT by Gabor Furst +BEGIN NEW DATA CASE +C 3rd of 3 data subcases tests Orlando Hevia's supporting routine that +C calculates Type-14 harmonic sources for an HFS frequency scan. This +C is added 16 December 2001 as should be documented in a newsletter. +C Orlando Hevia's subroutine has been renamed HSOURC ("harmonic source"). +C ITYPE : 1- 2 RESERVED +C BUS : 3- 8 BUS NAME +C VOLT : 9-16 VOLTAGE OF BRIDGE IN VOLT +C FREQ : 17-24 FREQUENCY IN HZ +C AMPER : 25-32 CURRENT IN AMPER +C PHASE : 33-40 PHASE IN DEGREES +C SCCMVA : 41-48 SHORT-CIRCUIT POWER IN MVA +C PERCEN : 49-56 PERCENT OF LOAD +C ALFA : 57-64 DELAY ANGLE IN DEGREES +C MU : 65-72 OVERLAP ANGLE IN DEGREES +C NPU : 73-75 NUMBER OF PULSES +C IMF : 76-78 MAXIMUM HARMONIC TO CALCULATE +C KY : 79-80 RESERVED +C BUS VOLT FREQ AMPER PHASE SCCMVA PERCEN ALFA MU NPUIMFKY +C +$ERASE { Erase any remnant card images that might exist in punch buffer +CREATE HARMONIC SOURCES { Request transfer to Orlando Hevia's SUBROUTINE HSOURC +C ------________--------________--------________--------________--------___---__ + BUS6 600.0 50.0 1000.0 0.0 75.0 0.0 0.0 6 55 +$PUNCH { Flush the Type-14 source cards, which are output of the computation + BUS12 600.0 50.0 1000.0 0.0 75.0 0.0 0.0 12 55 +$PUNCH { Flush the Type-14 source cards, which are output of the computation + BUS18 600.0 50.0 1000.0 0.0 75.0 0.0 0.0 18 55 +$PUNCH { Flush the Type-14 source cards, which are output of the computation +BLANK card ending requests of CHS +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc16.dat b/benchmarks/dc16.dat new file mode 100644 index 0000000..3650a6a --- /dev/null +++ b/benchmarks/dc16.dat @@ -0,0 +1,230 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-16 +C Test of "SYSTEMATIC" option which allows the user to have switch closing +C times varied regularly. There are 3 independent, systematically-varied +C switches taking 2, 4, and 3 steps, respectively. In addition to the base +C case, then, there are to be 2 * 4 * 3 = -NENERG = 24 energizations. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +99.03E-6 .025 60. + 1 1 1 2 1 -1 -24 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 { ISW=1 ==> Printed switching times; ITEST=1 ==> no bias + 5 5 20 20 { Printout frequency changes for base case + 0GENA A1 7. 4 + 0GENB B1 7. 3 + 0GENC C1 7. + 0ENDA A10 7. + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards + B10 BSW10 10.E-3 1.0 + B1 BSW1 4.E-3 .2E-3 2 SYSTEMATIC + C1 CSW1 6.E-3 .3E-3 4 SYSTEMATICTARGET + A10 ASW10 2.E-3 .4E-3 3 SYSTEMATIC + A1 ASW1 1.E-3 SYSTEMATICB1 BSW1 + C10 CSW10 12.E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards + ASW1 BSW1 +BLANK card ending output variable requests (node voltages only, here) +C *** Close switch "B1 " to "BSW1 " after 6.04083000E-03 sec. +C *** Close switch "C1 " to "CSW1 " after 6.04083000E-03 sec. +C *** Close switch "A10 " to "ASW10 " after 6.04083000E-03 sec. +C *** Close switch "A1 " to "ASW1 " after 7.03113000E-03 sec. +C 80 .0079224 3.639449214 12.5053685 -283.627168 177.6693051 .5124656E-3 +C 100 .009903 1.299612647 -58.9506992 -271.930029 38.31674092 .6510477E-4 +C *** Close switch "B10 " to "BSW10 " after 1.00020300E-02 sec. +C 120 .0118836 -13.4793168 7.386747874 -54.0094052 -227.85024 .0068001249 +C *** Close switch "C10 " to "CSW10 " after 1.20816600E-02 sec. +C +C Last step: 252 .02495556 -2.83666996 -5.98940516 -327.625802 161.8641485 +C Last step continued ....... .1629402E-3 .3686585491 + PRINTER PLOT + 144 4. 0.0 50. ASW1 { Axis limits: (-3.276, 3.176) +C GENA GENB ASW1 BSW1 GENA +C A1 B1 A1 +C First shot: Random switching times for energization number 1 : +C 2 5.9000000E-03 3 6.0000000E-03 4 5.6000000E-03 5 6.9000000E-03 +C 58.93128751 192.0984488 -326.075521 336.1486991 .0315970504 +C Times of maxima : .0138642 .00604083 .02495556 .00722919 .01554771 +C +C 2nd shot: Random switching times for energization number 2 : +C 2 6.1000000E-03 3 6.0000000E-03 4 5.6000000E-03 5 7.1000000E-03 +C 56.04192203 165.7654174 -322.282369 -326.291206 .0329276386 +C Times of maxima : .01267584 .00623889 .02495556 .01346808 .01574577 +BLANK card ending plot cards (for base case only) +C 23rd shot: Random switching times for energization number 23 : +C 23rd shot: 2 6.8000000E-3 3 6.9000000E-3 4 7.3000000E-3 5 7.8000000E-3 +C 23rd shot: -39.0656922 169.6381869 -379.444302 -311.343589 .0253668269 +C Times of maxima: .01742928 .0069321 .00812046 .01346808 .01673607 +C +C Last shot: Random switching times for energization number 24 : +C Last shot: 2 7.0000000E-3 3 6.9000000E-3 4 7.3000000E-3 5 8.0000000E-3 +C Last shot: 49.82358949 165.4706377 -382.803147 310.7780459 .0299093498 +C Last shot: .01356711 .00713016 .00812046 .02188563 .01673607 +C +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENB " to "B1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 57 2.8500000 0.14250000E+03 0 0 +C 58 2.9000000 0.14500000E+03 1 1 +C < < Etc. (rows 59 through 75 omitted to save space) > > +C 76 3.8000000 0.19000000E+03 0 21 +C 77 3.8500000 0.19250000E+03 3 24 +C Summary for following request: Mean = 3.48750000E+00 3.49384237E+00 +C Variance = 5.61413043E-02 5.91771084E-02 +C Standard deviation = 2.36941563E-01 2.43263455E-01 +-1 50. GENB B1 +C 2 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage at node "ASW1 ". The base voltage +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 21 1.0500000 0.31815000E+03 0 0 +C 22 1.1000000 0.33330000E+03 5 5 +C 23 1.1500000 0.34845000E+03 5 10 +C 24 1.2000000 0.36360000E+03 3 13 +C 25 1.2500000 0.37875000E+03 5 18 +C 26 1.3000000 0.39390000E+03 3 21 +C 27 1.3500000 0.40905000E+03 3 24 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.18541667E+00 1.18028303E+00 +C Variance = 7.38677536E-03 6.74976204E-03 +C Standard deviation = 8.59463517E-02 8.21569354E-02 + 0 ASW1 BSW1 { See preceding comments for 1st of 3 tables produced +C MODTAB AINCR XMAXMX +STATISTICS DATA 0 -15. 0.0 ---- Fixed 15 boxes used now +C 5 ) -------------------------------------------------------------------------- +C Statistical distribution of peak current for branch "GENB " to "B1 ". +C Interval current current in Frequency Cumulative +C number in per unit physical units (density) frequency +C 19 0.9976152 0.95970790E+00 0 0 +C 20 1.0501213 0.10102188E+01 2 2 +C 21 1.1026274 0.10607298E+01 0 2 +C < < Etc. (rows 22 through 32 omitted to save space) > > +C 33 1.7327002 0.16668611E+01 0 22 +C 34 1.7852062 0.17173720E+01 2 24 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40672501E+00 1.39937500E+00 +C Variance = 3.96702046E-02 3.93384525E-02 +C Standard deviation = 1.99173805E-01 1.98339236E-01 +-2 GENB B1 { See preceding comment cards for resulting single table +-3 GENA A1 { Ungrouped: Mean= 1.63806617E0, Variance = 1.01307955E-1 +-4 GENA A1 { Ungrouped: Mean= 1.30997561E0, Variance = 1.73383337E-2 +C MODTAB AINCR XMAXMX 15 Aug 03, add Sturges use: +STATISTICS DATA 0 Sturges 0.0 ---- Sturges gives # of boxes +-4 GENA A1 { Ungrouped: +C 8 ) ------------------------------------------------------------------------------------------------------------------------------- +C Statistical distribution of peak energy for branch "GENA " to "A1 ". Base energy for per unit output = 2.33417187E-02 +C Interval energy energy in Frequency Cumulative Per cent +C number in per unit physical units (density) frequency .GE. current value +C 9 .9050250 2.11248398E-02 0 0 100.000000 +C 10 1.0055834 2.34720442E-02 1 1 95.833333 +C 11 1.1061417 2.58192486E-02 2 3 87.500000 +C 12 1.2067000 2.81664531E-02 2 5 79.166667 +C 13 1.3072584 3.05136575E-02 5 10 58.333333 +C 14 1.4078167 3.28608619E-02 9 19 20.833333 +C 15 1.5083751 3.52080663E-02 5 24 .000000 +C Summary of preceding table follows: Grouped data Ungrouped data +C Mean = 1.29887852E+00 1.30997561E+00 +C Variance = 1.92713806E-02 1.73383337E-02 +C Standard deviation = 1.38821398E-01 1.31675107E-01 +BLANK card ending "SYSTEMATIC" output-variable requests +BEGIN NEW DATA CASE +C 2nd of 3 subcases is related to 1st in that it demonstrates SYSTEMATIC use. +C But network is single phase and much simpler. Basically, a 50-Hz generator +C will charge a capacitor upon switch closure. Illustrate different options: +C a) Misc. data KSSOUT of column 32 is 3 whereas in DC-16 it was 2. The +C difference is a phasor branch flow (now seen) for the base case. +C b) Misc. data MAXOUT of column 40 is zero whereas in DC-16 it was 1. But +C this makes no difference. The base case show extrema either way. +C c) Misc. data MEMSAV of column 56 is 2 meaning that program tables will +C be partially dumped, as 3rd subcase of DC-24 (STATISTICS). For ease of +C documentation, this will be FORMATTED rather than UNFORMATTED (note +C FORM= of the $OPEN statement). +C d) IMAX, read from cols. 25-32 of the STATISTICS/SYSTEMATIC misc. data +C card, has value 1 to request the addition of normal, non-statistic +C extrema. +C e) There is a single SYSTEMATIC switch. NENERG of the misc. data card +C can be found without the minus sign in column 44 of the switch card. +C f) Illustrate PARTIAL TABLE DUMPING for faster table dumping. This +C illustration is added 5 October 2001. +PARTIAL TABLE DUMPING { Faster table dumping (dump only what is used, not limit) +PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns) + .000500 .010 { Take 20 steps over half a cycle of the 50-Hz power frequency +C IOUT IPLOT IDOUBL KSSOUT MAXOUT NENERG + 1 1 1 3 0 -1 -4 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 1 1 1 + 5 1 { Printout frequency remains unchanged; print each time step + GEN SWIT 1.0 1 + SWIT 1.0 + CAP 0.0 0.0 1.0E3 3 +BLANK card ending branch cards + SWIT CAP 5.E-3 1.E-3 4 SYSTEMATIC +BLANK card ending switch cards +14GEN 400. 50. 0.0 -1. +BLANK card ending source cards +$OPEN, UNIT=LUNIT9 FILE=systemat.lu9 STATUS=UNKNOWN FORM=FORMATTED ! + GEN SWIT CAP +BLANK card ending output variable requests (node voltages only, here) + PRINTER PLOT + 184 2. 4.0 10. CAP GEN SWIT +BLANK card ending plot cards (for base case only) +$CLOSE, UNIT=LUNIT9 STATUS=KEEP { Disconnect to prevent damage by stray WRITE +$OPEN, UNIT=LUNIT9 FILE=dum.lu9 STATUS=UNKNOWN FORM=FORMATTED ! +-2 500. CAP { Tabulate branch current of (CAP, TERRA) using I-base = 500. +BLANK card ending statistical tabulate (none possible, since no output variable) +BEGIN NEW DATA CASE +C 3rd of 3 subcases is same as 2nd except for the following changes: +C a) Add OMIT BASE CASE to drop the base case (no normal dT-loop output +C preceding the 4 energizations indicated by NENERG. +C b) IMAX, read from cols. 25-32 of the STATISTICS/SYSTEMATIC misc. data +C card, has value 2 to request the replacement of statistical extrema +C by normal, non-statistic extrema. +C c) Misc. data MAXOUT of column 40 is 1. But this makes no difference. +C d) Misc. data KSSOUT of column 32 is 2 as in DC-16. This omits the +C phasor branch flow of the preceding subcase. +OMIT BASE CASE { Energizations will not be preceded by normal dT-loop output + .000500 .010 +C IOUT IPLOT IDOUBL KSSOUT MAXOUT NENERG + 1 1 1 3 1 -1 -4 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 2 1 1 + 5 5 { Less dT-loop output after time step number 5 + GEN SWIT 1.0 1 + SWIT 1.0 + CAP 0.0 0.0 1.0E3 3 +BLANK card ending branch cards + SWIT CAP 5.E-3 1.E-3 4 SYSTEMATIC +BLANK card ending switch cards +14GEN 400. 50. 0.0 -1. +BLANK card ending source cards +C $OPEN, UNIT=LUNIT9 FILE=systemat.lu9 STATUS=UNKNOWN FORM=FORMATTED ! + GEN SWIT CAP +BLANK card ending output variable requests (node voltages only, here) +$DISABLE { Comment out this card, if a base case solution is to be added + PRINTER PLOT +BLANK card ending plot cards (for base case only) +$ENABLE { Comment out this card, if a base case solution is to be added +C $CLOSE, UNIT=LUNIT9 STATUS=KEEP { Disconnect to prevent damage by stray WRITE +-2 500. CAP { Tabulate branch current of (CAP, TERRA) using I-base = 500. +BLANK card ending statistical tabulate (none possible, since no output variable) +BEGIN NEW DATA CASE +BLANK +EOF diff --git a/benchmarks/dc17.dat b/benchmarks/dc17.dat new file mode 100644 index 0000000..3fb6e53 --- /dev/null +++ b/benchmarks/dc17.dat @@ -0,0 +1,101 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-17 +C Problem identical to DC-4, only here the data is modularized to two +C levels using $INCLUDE with arguments (both numeric and alphanumeric). +C March of 2006, modify to illustrate $INSERT with arguments and "/"-card +C sorting. In addition to the original data case, 4 more will be appended +C and each of these will have its own $INSERT disk file. As for the +C original first, it remains the same except that $INSERT has replaced +C the $INCLUDE use of years past. Arguments are unchanged, however. +C 4 May 2007, add following $PREFIX after modification of OVER1 and +C CIMAGE that moves CHAR*80 PREFIX into BLKCOM for use by $INSERT. +C This allows remote execution, from \UNFORM, without data modification. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +$INSERT, dc17ins.dat, 9, .005, TRAN##, + .005 4.0 + 1 1 1 1 1 -1 + 5 5 20 20 + TRAN LOADG 255. 5.E4 3 + LOADG 1.E-6 +BLANK card ending BRANCH cards +BLANK card ending SWITCH cards (none exists, for this case) +BLANK card ending SOURCE cards + GEN TRAN +BLANK card ending OUTPUT variable requests +BLANK card ending PLOT cards +BEGIN NEW DATA CASE +C 2nd of 5 subcases of DC-17 that illustrate $INSERT use. +C DC-26, 5th of 5 data subcases, modified. This is former DC17A.DAT +$INSERT, DC17AINS.DAT, { Move all data except misc. data into this file + .000200 .000 60. { T-max = 0 means that no transient solution follows + 1 1 1 0 1 +BLANK card ending branch cards. +BLANK card ending switch cards. +BLANK card terminating EMTP source cards. +BLANK card ending requests for output variables +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 5 subcases of DC-17 that illustrate $INSERT use. +C BENCHMARK DC-33, modified. This is former DC17B.DAT +$INSERT, DC17BINS.DAT, { All data except misc. data has been moved to here + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +BLANK card terminates all TACS data +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +C Total network loss P-loss by summing injections = 7.106450000000E-06 +C Inject: GEN 377. 377. .377E-7 2.6786345332877 +C Inject: 0.0 0.0 -2.678634533288 -89.9999992 +C ---- Initial flux of coil "GROUND" to "GEN " = 1.00000000E-09 +C +C Step Time GEN GROUND GROUND TACS TACS +C TERRA GEN FLUX GEN +C *** Phasor I(0) = 0.3770000E-07 Switch "GROUND" to " " closed +C 0 0.0 377. .377E-7 0.0 0.0 0.0 +C 1 .5E-4 376.9330268 .5235646391 -.523564601 .0094233257 376.9330268 +C 2 .1E-3 376.7321312 1.04694322 -1.04694318 .0282649546 376.7321312 +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 4th of 5 subcases of DC-17 that illustrate $INSERT use. +C BENCHMARK DC-33, 2nd of 3 subcases, modified. This is former DC17C.DAT +$INSERT, DC17CINS.DAT, { All data except misc. data has been moved to here + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +BLANK card terminates all MODELS data { 9 July 1995, MODELS replaces old +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +C Total network loss P-loss by summing injections = 7.106450000000E-06 +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 5th of 5 subcases of DC-17 that illustrate $INSERT use. +C DC-30, 6th of 6 subcases, modified. This is former DC17D.DAT +$INSERT, DC17DINS.DAT, + 1.E-6 5.E-6 { Only take 5 steps; these are plenty for illustration + 1 -1 +BLANK card terminates all TACS data +BLANK card ends all MODELS data +ENDMODELS +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +C Comment about 6 lines above. Note ENDMODELS has like the initiation +C word MODELS: there is only one of them, and has nothing to do with +C the actual modeling. It is part of the structure in which actual data +C is carried. Normally, ENDMODELS would precede the blank card ending +C MODELS, but with sorting that is not possible. /-card sorting will +C put the actual data there. If we raise ENDMODELS line by one row, +C it would precede all real MODELS data, and that would be completely +C wrong. So, we put it after the blank. Recall MODELS ignores blank +C lines, so the blank card ending MODELS is ignored. It is essential +C to the sorting, but then is ignored by MODELS itself. Since it was +C optional, anyway, this works well. +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc17ains.dat b/benchmarks/dc17ains.dat new file mode 100644 index 0000000..f529777 --- /dev/null +++ b/benchmarks/dc17ains.dat @@ -0,0 +1,22 @@ +/SOURCE +14WHITE 1.02 60. 0.0 -1. +/BRANCH + WHITE YELLOW .05 .20 + YELLOWGREEN .05 .20 + GREEN RED .05 .20 + RED BLUE .10 .40 +/LOAD FLOW +C Next come power constraints of the load flow. There will be one +C for each non-slack generator: + RED -0.4 -.14 .85 1.15 + GREEN 1.0 0.3 .85 1.15 + BLUE -.15 .025 .85 1.15 + YELLOW -0.6 -0.2 .85 1.15 +C The following load-flow miscellaneous data card has two peculiarities. The +C use of VSCALE = 1.414 is the special flag requesting RMS rather than peak +C voltages. The use of KTAPER = 0 ensures constant acceleration factors +C (this works for this data). +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 500 20 1 .00001 0.1 7.0 1.414 0 +/REQUEST +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. diff --git a/benchmarks/dc17bins.dat b/benchmarks/dc17bins.dat new file mode 100644 index 0000000..1f3741d --- /dev/null +++ b/benchmarks/dc17bins.dat @@ -0,0 +1,60 @@ +/SOURCE +14GEN 377. 60. -1. +/TACS +TACS HYBRID + 1FLUX +GEN + 1.0 + 0.0 1.0 +90GEN +91GROUND +99CURR -1.0* GROUND +33FLUX GEN GROUNDCURR +/OUTPUT + GEN +/PLOT +C Last step: 400 .02 116.4994069 2.765761424 -2.76576141 .9416257618 +C Last step continued .....: 116.4994069 2.765761424 -2.76576142 +C Final 5 max. : 3.499909256 .9905492104 376.9925583 3.499613141 3.499909256 +C Associated times : .0125 .00415 .01665 .00415 .0125 + CALCOMP PLOT + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + 194 2. 0.0 20. TACS CURR ABCDEFGHIJKLMNOP1234567890123456 + X-Y PLOT Horizontal Axis label123 + 10. -1.1 1.1 + 8. -4.0 4.0 + 194 4. 0.0 20. TACS FLUX TACS CURR Graph heading---Vertical axis la + X-Y PLOT Horizontal Axis label123 + 9999. -1.1 1.1 "9999." returns to conventional (vs. time) plotting + 8. -4.0 4.0 + PRINTER PLOT + 194 4. 0.0 20. TACS CURR { Axis limits: (-3.500, 3.500) +C Now that all plotting is done with, let's illustrate the three declarations +C that will choose the destination of any subsequent "CALCOMP PLOT" use: + SCREEN PLOT { If a vector plot were to follow, it would go only to the screen + PEN PLOT { If a vector plot were to follow, ... go only to CalComp plotter + SCREEN PEN { If a vector plot were to follow, .. go to both screen & plotter +C The preceding 3 declarations really could only be tested by a user who +C had both a vector-graphic screen and a CalComp plotter. Hence no use. +C The following active card of DC-33 must be disabled for $INSERT use. The +C problem is this. For $INCLUDE, the /LOAD FLOW disappears during data +C assembly, leaving just comment cards that have nothing to do with any load +C flow. So, they were tolerated. But not so for $INSERT which retains +C the data for this non-existent feature. So, remove entire block: +C /LOAD FLOW +/BRANCH +96GROUNDGEN 8888. 1.E-9 1 + 1.0 -0.7 + 2.0 0.9 + 3.5 1.0 + 9999. +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/INITIAL + 2GROUND 0. { Node voltage initial condition in fact changes nothing +C Initial conditions really are not a part of this problem, although we do want +C to illustrate that they, too, can be sorted, and inserted after /LOADFLOW +C The preceding redefinition of node voltage at GROUND changes zero to zero. +/SWITCH + GROUND MEASURING 1 diff --git a/benchmarks/dc17cins.dat b/benchmarks/dc17cins.dat new file mode 100644 index 0000000..5497e7c --- /dev/null +++ b/benchmarks/dc17cins.dat @@ -0,0 +1,60 @@ +/SOURCE +14GEN 377. 60. -1. +/MODELS { 9 July 1995, the former /TACS was changed to this new class +MODELS { Note the change; the 1st subcase had "TACS HYBRID" here +INPUT GEN {V(GEN)}, GROUND {I(GROUND)} +MODEL DC33 +INPUT gen, ground +VAR flux, curr +HISTORY gen {DFLT: 0}, flux {DFLT: 0}, ground {DFLT: 0} +INIT + curr:=0 +ENDINIT +EXEC + COMBINE AS INTEGRATOR + LAPLACE(flux/gen):=(1.0|S0)/(1.0|S1) + ENDCOMBINE + curr:=-ground +ENDEXEC +ENDMODEL +USE DC33 AS DC33 + INPUT GEN:=GEN, GROUND:=GROUND +ENDUSE +RECORD + DC33.FLUX AS FLUX + DC33.GEN AS GEN + DC33.GROUND AS GROUND + DC33.CURR AS CURR +ENDRECORD +ENDMODELS +/OUTPUT + GEN +/PLOT +C Last step: 400 .02 116.4994069 2.765761424 -2.76576141 .9604757618 +C Variable maxima : 377. 3.499613141 3.499909256 1.00939921 +C Times of maxima : 0.0 .00415 .0125 .00415 +C Variable minima : -376.992558 -3.49990926 -3.49961314 -.990568949 +C Times of minima : .00835 .0125 .00415 .0125 + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + CALCOMP PLOT + SCREEN PLOT + 194 2. 0.0 20. MODELSCURR ABCDEFGHIJKLMNOP1234567890123456 + X-Y PLOT Horizontal Axis label123 + 10. -1.1 1.1 + 8. -4.0 4.0 + 194 4. 0.0 20. MODELSFLUX MODELSCURR Graph heading---Vertical axis la + X-Y PLOT Horizontal Axis label123 + 9999. -1.1 1.1 "9999." returns to conventional (vs. time) plotting + 8. -4.0 4.0 +/BRANCH +96GROUNDGEN 8888. 1.E-9 1 + 1.0 -0.7 + 2.0 0.9 + 3.5 1.0 + 9999. +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/SWITCH + GROUND MEASURING 1 diff --git a/benchmarks/dc17dins.dat b/benchmarks/dc17dins.dat new file mode 100644 index 0000000..dd715bf --- /dev/null +++ b/benchmarks/dc17dins.dat @@ -0,0 +1,66 @@ +/MODELS +MODELS { Request to begin MODELS data appears just once +C End of fixed data. Begin variable /-cards, which can appear in any +C order. To illustrate that TACS data really will be sorted to precede +C MODELS data, note that /TACS follows /MODELS in the following. +C I.e., we rely on /-card sorting to correct this. TACS data is +C separate and distinct from MODELS data just as branch data is +C separate and distinct from switch or source data. +/MODELS +INPUT deltav {TACS(vsw)} +OUTPUT grid +MODEL dc30 + INPUT dv + VAR grid + OUTPUT grid + EXEC + IF abs(dv)>=1.5e8*t +1e5 THEN grid:=1 ELSE grid:=0 ENDIF + ENDEXEC +ENDMODEL +USE dc30 AS dc30 + INPUT dv:=deltav + OUTPUT grid:=grid +ENDUSE +RECORD + dc30.dv AS dv +/TACS +TACS HYBRID { Request to begin TACS data appears just once + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW = BUS2 - BUS3 +27DV { MODELS variable DV will define Type-27 TACS source of the same name +33BUS2 BUS3 VSW DV +/BRANCH + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +/SWITCH + BUS2 BUS3 -1. 1.E9 + NAME: Valve ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11BUS2R BUS3R 20. GRID 12 +/REQUEST +PRINTED NUMBER WIDTH, 11, 1, { Return to default column width and separation +/SOURCE +14GEN 66500. 50. -2.0508 -1. +/OUTPUT +C Step Time BUS2R TACS TACS TACS TACS MODELS +C BUS3R BUS2 BUS3 VSW DV DV +C *** Phasor I(0) = -1.5049840E+01 Switch "BUS2 " to "BUS3 " closed in the steady-state. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C *** Open switch "BUS2 " to "BUS3 " after 1.00000000E-06 sec. +C 1 .1E-5 0.0 64752.0751 64752.0751 0.0 0.0 0.0 +C 2 .2E-5 -506.98951 64680.6667 65187.6562 -506.98951 0.0 -506.98951 +C 3 .3E-5 -1509.364 64544.7937 66054.1577 -1509.364 -506.98951 -1509.364 +C 4 .4E-5 -2482.2238 64430.506 66912.7297 -2482.2238 -1509.364 -2482.2238 +C 5 .5E-5 -3414.3602 64348.9091 67763.2693 -3414.3602 -2482.2238 -3414.3602 +C End of /-card data. The only thing that remains are the various blank +C cards that terminate the various data classes. Note the one for MODELS +C (optional for MODELS, but necessary for sorting): diff --git a/benchmarks/dc17inc1.dat b/benchmarks/dc17inc1.dat new file mode 100644 index 0000000..4305690 --- /dev/null +++ b/benchmarks/dc17inc1.dat @@ -0,0 +1,19 @@ +KARD 2 8 8 +KARG 1 2 3 +KBEG 24 27 3 +KEND 24 32 8 +KTEX 0 0 1 +/REQUEST +C0 Level-zero comment that precedes the "DIAGNOSTIC" card +DIAGNOSTIC 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +C5 Level-five comment that follows the "DIAGNOSTIC" card +/BRANCH +$LISTOFF, ----- Preceding invisible (GEN, TRAN) and (TRAN, TERRA) branches + GEN TRAN 5.0 5.E4 3 + TRAN 1.E4 +$LISTON +C Ordinary comment card within "INCLDUM" (Blank col. 2) +93?????? ?????? 30. 3 +$INCLUDE dc17inc2 + TRAN LOADG 255. 5.E4 3 + LOADG 1.E-6 diff --git a/benchmarks/dc17inc2.dat b/benchmarks/dc17inc2.dat new file mode 100644 index 0000000..a1753ef --- /dev/null +++ b/benchmarks/dc17inc2.dat @@ -0,0 +1,11 @@ + -5.0 -100. + -.1 -50. + -.02 -45. + -.01 -40. + -.005 -30. + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 diff --git a/benchmarks/dc17ins.dat b/benchmarks/dc17ins.dat new file mode 100644 index 0000000..2059029 --- /dev/null +++ b/benchmarks/dc17ins.dat @@ -0,0 +1,44 @@ +KARD 14 14 +KARG 2 3 +KBEG 27 3 +KEND 32 8 +KTEX 0 1 +/SOURCE +14GEN 70. .1591549 -1. +/SWITCH +C1 The following extraneous switch is permanently open: + TRAN 99999. 1.E6 +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/PLOT + PRINTER PLOT { Avoid vector plot which would leave no trace in the .LIS file + 1931.0 0.0 7.0 TRAN { Axis limits: (-0.140, 3.031) + 193 1. 0.0 7.0 GEN TRAN { Axis limits: (-2.544, 3.289) +/BRANCH + GEN TRAN 5.0 5.E4 3 + TRAN 1.E4 +C Ordinary comment card ... +93?????? ?????? 30. 3 + -5.0 -100. + -.1 -50. + -.02 -45. + -.01 -40. + -.005 -30. +C Begin illustration of $DISABLE usage within an INCLUDE file (in fact, +C this is two levels down, since this INCLUDE is called by dc17inc1.dat). +C The comments now being read are not part of the test, so they will be seen +C (even though they have nothing to do with the data of the network). All of +C the remaining cards except the last one ($ENABLE) will be omitted as data +C is first read, so there will be no trace in the interpretation of EMTP data +C cards except for the final card, which will document the number involved. +$DISABLE +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa +bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb +cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc +$ENABLE + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 diff --git a/benchmarks/dc18.dat b/benchmarks/dc18.dat new file mode 100644 index 0000000..f833ce5 --- /dev/null +++ b/benchmarks/dc18.dat @@ -0,0 +1,384 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-18 +C Artificially concocted sample test of various logical operators of TACS. +C There is no electric network. Note the unusual use of the TSTART field +C (columns 61-70) and TSTOP (columns 71-80) of the TACS source cards, +C which turn the constant source amplitudes on and off during the several +C steps of this test. A study of the operations involved will show that +C the variables RESL1 and RESL2 are residuals which should always +C be zero by logical identity. See DCPR24.DAT for DIAGNOSTIC version. +C For a DIAGNOSTIC version of the very same data case, refer to DCPR-24. + 0.1 2.0 + 1 1 0 0 1 +TACS STAND ALONE + DUMMY +UNITY +11LGCL1 1. 0.25 +11FST 1. 0.05 0.15 +11SCND 1. 0.25 0.35 +99LGCL4 = FST + SCND +C 99LGCL4 FST + SCND +99LGCL2 .NOT. LGCL4 +98NAND LGCL1 .NAND.LGCL2 +98RESL1 .NOT. LGCL1 .OR. LGCL4 - NAND +98NOR LGCL1 .NOR. LGCL2 +98RESL2 .NOT. LGCL1 .AND. LGCL4 - NOR +33LGCL1 LGCL2 LGCL4 NAND NOR RESL1 RESL2 FST SCND +C Step Time TACS TACS TACS TACS TACS TACS TACS TACS TACS +C LGCL1 LGCL2 LGCL4 NAND NOR RESL1 RESL2 FST SCND +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 0.1 0.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 +C 2 0.2 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 +C 3 0.3 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 +C 4 0.4 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +BLANK card ending all TACS data cards +C 20 2.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C Variable maxima : 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 +C Times of maxima : 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.1 0.3 +C Variable minima : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C Times of minima : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 + PRINTER PLOT + 143 .2 0.0 1.0 LGCL1 NOR { Axis limits: (0.000, 1.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd subcase of DC-18 tests various free-format supplemental variables. +C There is no connection between this and the original test case data. +C Algebraic and trigonometric computation is done 2 ways: once in high- +C level expressions (TEST1, TEST2, TEST3), and a second time using a +C reordered low-level equivalents (X1, .... X11). The two are compared +C (residual RESID should in theory be zero). As for the following +C allocation of TACS tables, this is just a modification of the default +C sizes that were overflowed: 20 90 100 20 30 250 350 60 4 +C The complaint was about Table 6, so this was expanded at expense of 1. +C 11 March 2001, TACS table number 9 was added for Type-53 devices. +C This data involves none, so value is immaterial. Default is shown. +TACS WARN LIMIT, 5, 1.0, { No use other than to illustrate the declaration +ABSOLUTE TACS DIMENSIONS { Table #: 5 6 7 8 9 +C 10 90 100 20 30 400 350 60 4 +C Expand TACS Table 1 from 57 to 130 on 1 April 2007. Copy use from DC-2 +C without worrying about probably waste that might be involved: +C 57 256 285 36 85 713 998 171 --- default + 130 65 80 20 70 325 120 115 { From DC2.DAT + .02 2.0 { Even though no dynamics, vary time to produce nice plots! + 1 1 0 0 1 -1 + 5 5 +TACS STAND ALONE +99TEST1 = 10.0 * ( UNITY + TIMEX ) ** 2 + 50. { High-level, single-card result +99X1 = 1.0 + TIMEX { Expression within parentheses on preceding card +99X2 = X1 * X1 { Mimic exponentiation for special case of square +99X3 = 10 * X2 + 50 { 3rd of low-level, 3-card equivalent to TEST1 +99TEST2 = 1.E2 * COS ( 2.0 * PI * TEST1 / 100. ) { High-level d1-card result +99X4 = PI * TEST1 { Beginning terms of trigonometric argument +99X5 = X4 * .02 { Complete trig argument using modified form of 2/100 +99X6 = COS ( X5 ) +99X7 = X6 * 100. { 4th and final line of low-level equivalent gives TEST2 +99TEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( TEST2 ) ) +99X8 = ABS ( X7 ) +99X9 = SQRT ( X8 ) +99X10 = X9 * 5.5 * TIMEX +99X11 = X10 + 10 { 4th and final line of low-level equivalent gives TEST3 +99RESID = ABS ( TEST1 - X3 ) + ABS ( TEST2 - X7 ) + ABS ( TEST3 - X11 ) +99NORMAL = GAUSS ( 0.0 ) { Illustrate Gaussian random # generator. October 2010 + 1TEST4 +TEST3 + 1.0 + 0.0 1.0 +99TEST5 = 2.0 * PI * TEST1 / 100. +99TEST6 = SIN ( TEST5 ) +99UNITY? = 1.E-4 * ( TEST2 * TEST2 + 1.E4 * TEST6 * TEST6 ) +33TEST1 X3 TEST2 X7 TEST3 X11 TEST4 UNITY?RESID NORMAL +C Column headings for the 10 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 10 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS +C TEST1 X3 TEST2 X7 TEST3 X11 TEST4 UNITY? RESID NORMAL +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .02 60.404 60.404 -79.383758 -79.383758 10.9800732 10.9800732 .109800732 1.0 0.0 .890624441 +C 2 .04 60.816 60.816 -77.783088 -77.783088 11.9402839 11.9402839 .339004303 1.0 .30198E-13 -.26382016 +BLANK card ending all TACS data cards +C 95 1.9 134.1 134.1 -54.112125 -54.112125 86.8711868 86.8711868 88.6795836 1.0 0.0 -1.4747572 +C 100 2.0 140. 140. -80.901699 -80.901699 108.939909 108.939909 98.5281276 1.0 0.0 -.47311878 +C Variable maxima : 140. 140. 99.9938856 99.9938856 108.939909 108.939909 98.5281276 1.0 .33396E-12 2.73027422 +C Times of maxima : 2.0 2.0 1.24 1.24 2.0 2.0 2.0 .08 1.82 0.3 +C Variable minima : 0.0 0.0 -80.901699 -80.901699 0.0 0.0 0.0 0.0 0.0 -2.7809904 +C Times of minima : 0.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 1.7 + CALCOMP PLOT { Needed for 2nd stacked case; 1st ended with PRINTER PLOT use + 143 .2 0.0 2.0 TEST1 TEST2 TEST3 TEST4 + PRINTER PLOT + 143 .4 0.0 2.0 TEST1 TEST2 TEST4 { Axis limits: (-0.809, 1.400) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 5 subcases is identical to 2nd except that here the pocket +C calculator is used in place of Dube's logic for supplemental variables +C of TACS. Answers should be identical except for roundoff error. +C The plots will be omitted for simplicity. +C TACS ASSEMBLY LANGUAGE { Temporary request for use of pocket calculator +TACS POCKET CALCULATOR { 12 January 2001, this new line replaces preceding +TACS POCKET CALCULATOR ON { 1 February 2002, add this equivalent declaration +C The two preceding declarations have exactly the same effect. Either or both +C can be repeated any number of times. Either is simply a request to use the +C pocket calculator rather than Dube's logic. Making the request more than +C once has no effect. The ON alternative became effective 1 February 2002. +C 19 March 2009, add request to prohibit optimization by the pocket calculator. +C Addition here is purely illustrative. The answer changes only slightly, with +C near-zero RESID changing to exact zeros on two time steps (for Salford ATP). +C This is variable (TACS, RESID) which had nonzero values .14211E-13 and +C .14211E-13 for steps 60 and 70 when there was optimization. WSM. +$PARAMETER NOOPT=1 { Set optimization of pocket calculator compilation to none +ABSOLUTE TACS DIMENSIONS +C 10 90 100 20 30 400 350 60 +C Expand TACS Table 1 from 57 to 130 on 1 April 2007. Copy use from DC-2 +C without worrying about probably waste that might be involved: +C 57 256 285 36 85 713 998 171 --- default + 130 65 80 20 70 325 120 115 { From DC2.DAT + .02 2.0 { Even though no dynamics, vary time to produce nice plots! + 1 1 0 0 1 -1 + 5 5 +TACS STAND ALONE +99TEST1 = 10.0 * ( UNITY + TIMEX ) ** 2 + 50. { High-level, single-card result +99X1 = 1.0 + TIMEX { Expression within parentheses on preceding card +99X2 = X1 * X1 { Mimic exponentiation for special case of square +99X3 = 10 * X2 + 50 { 3rd of low-level, 3-card equivalent to TEST1 +99TEST2 = 1.E2 * COS ( 2.0 * PI * TEST1 / 100. ) { High-level d1-card result +99X4 = PI * TEST1 { Beginning terms of trigonometric argument +99X5 = X4 * .02 { Complete trig argument using modified form of 2/100 +99X6 = COS ( X5 ) +99X7 = X6 * 100. { 4th and final line of low-level equivalent gives TEST2 +99TEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( TEST2 ) ) +99X8 = ABS ( X7 ) +99X9 = SQRT ( X8 ) +99X10 = X9 * 5.5 * TIMEX +99X11 = X10 + 10 { 4th and final line of low-level equivalent gives TEST3 +99RESID = ABS ( TEST1 - X3 ) + ABS ( TEST2 - X7 ) + ABS ( TEST3 - X11 ) + 1TEST4 +TEST3 + 1.0 + 0.0 1.0 +99TEST5 = 2.0 * PI * TEST1 / 100. +99TEST6 = SIN ( TEST5 ) +99UNITY? = 1.E-4 * ( TEST2 * TEST2 + 1.E4 * TEST6 * TEST6 ) +33TEST1 X3 TEST2 X7 TEST3 X11 TEST4 UNITY?RESID +BLANK card ending all TACS data cards +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 5 subcases documents the data of MATHCOMP as first mentioned +C in the April, 1997 newsletter. The data shown here demonstrates use +C of the pocket calculator rather than compiled TACS, however. This is +C the data that was used to estimate improved speed compared with Dube's +C code for handling supplemental variables (see July, 2001, newsletter). +C TACS POCKET CALCULATOR { Use pocket calculator rather than Dube's logic (default) +C 2 February 2002, remove the preceding line by commenting. This has no +C effect on the answer. In fact, the TPC declaration of the 3rd subcase will +C remain in effect. The TPC declaration has an effect here if and only if no +C preceding subcase had one. Any TPC declaration remains in effect for all +C later data unless cancelled by a TPC OFF declaration (see DCN21.DAT). +C $DEPOSIT, KOMPAR=1 { Use SPY DEPOSIT to change STARTUP value so elapsed times +C For benchmark purposes, enable the preceding statement. Regardless +C of the value of KOMPAR in STARTUP, this will gives elapsed times at +C the end of execution. +C Add NLS (following 7 noncomment cards) on 8 March 2003 to prove it works. +C In fact, dimensions are unchanged from LISTSIZE.333 as used for RUN.BAT +NEW LIST SIZES { Request for a change to program table sizes (VARDIM input) +DEFAULT 3.0 { Any blank field will be converted to 3 times default value +BLANK card for lists 1-10. +BLANK card for lists 11-20. +BLANK card for lists 21-30. + 200 300 { Optional card for Lists 31, etc. + 240000 742 { Offsets for supporting programs (non-simulation overlays) +PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns) +ABSOLUTE TACS DIMENSIONS + 10 90 100 20 60 1600 350 120 +C .00002 2.0 { Original line gives 100K steps of July, 2001, newsletter + .002 2.0 { For standard test cases, speed execution by factor of 100 + 1 -11 0 0 1 -1 +C 5 5 20 20 100 100 1000 1000 10000 10000 + 5 5 20 20 100 100 { Preceding was for 100K steps +TACS STAND ALONE +99TEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99TEST2 = 1.E2 * COS ( 2.0 * 3.14159 * TEST1 / 100. ) +99TEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( TEST2 ) ) +99TEST5 = 2.0 * PI * TEST1 / 100. +99TEST6 = 2.0 * SIN ( TEST5 ) { Show that in-line comments are allowed +99TWOA = 2.E-4 * ( TEST2 * TEST2 + 2500. * TEST6 * TEST6 ) +99BEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99BEST2 = 1.E2 * COS ( 2.0 * 3.14159 * BEST1 / 100. ) +99BEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( BEST2 ) ) +99BEST5 = 2.0 * PI * BEST1 / 100. +99BEST6 = 2.0 * SIN ( BEST5 ) +99TWOB = 2.E-4 * ( BEST2 * BEST2 + 2500. * BEST6 * BEST6 ) +99ZEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99ZEST2 = 1.E2 * COS ( 2.0 * 3.14159 * ZEST1 / 100. ) +99ZEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( ZEST2 ) ) +99ZEST5 = 2.0 * PI * ZEST1 / 100. +99ZEST6 = 2.0 * SIN ( ZEST5 ) +99TWOC = 2.E-4 * ( ZEST2 * ZEST2 + 2500. * ZEST6 * ZEST6 ) +99REST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99REST2 = 1.E2 * COS ( 2.0 * 3.14159 * REST1 / 100. ) +99REST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( REST2 ) ) +99REST5 = 2.0 * PI * REST1 / 100. +99REST6 = 2.0 * SIN ( REST5 ) +99TWOD = 2.E-4 * ( REST2 * REST2 + 2500. * REST6 * REST6 ) +99DEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99DEST2 = 1.E2 * COS ( 2.0 * 3.14159 * DEST1 / 100. ) +99DEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( DEST2 ) ) +99DEST5 = 2.0 * PI * DEST1 / 100. +99DEST6 = 2.0 * SIN ( DEST5 ) +99TWOE = 2.E-4 * ( DEST2 * DEST2 + 2500. * DEST6 * DEST6 ) +99FEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99FEST2 = 1.E2 * COS ( 2.0 * 3.14159 * FEST1 / 100. ) +99FEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( FEST2 ) ) +99FEST5 = 2.0 * PI * FEST1 / 100. +99FEST6 = 2.0 * SIN ( FEST5 ) +99TWOF = 2.E-4 * ( FEST2 * FEST2 + 2500. * FEST6 * FEST6 ) +99GEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99GEST2 = 1.E2 * COS ( 2.0 * 3.14159 * GEST1 / 100. ) +99GEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( GEST2 ) ) +99GEST5 = 2.0 * PI * GEST1 / 100. +99GEST6 = 2.0 * SIN ( GEST5 ) +99TWOG = 2.E-4 * ( GEST2 * GEST2 + 2500. * GEST6 * GEST6 ) +99HEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99HEST2 = 1.E2 * COS ( 2.0 * 3.14159 * HEST1 / 100. ) +99HEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( HEST2 ) ) +99HEST5 = 2.0 * PI * HEST1 / 100. +99HEST6 = 2.0 * SIN ( HEST5 ) +99TWOH = 2.E-4 * ( HEST2 * HEST2 + 2500. * HEST6 * HEST6 ) +99LEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99LEST2 = 1.E2 * COS ( 2.0 * 3.14159 * LEST1 / 100. ) +99LEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( LEST2 ) ) +99LEST5 = 2.0 * PI * LEST1 / 100. +99LEST6 = 2.0 * SIN ( LEST5 ) +99TWOI = 2.E-4 * ( LEST2 * LEST2 + 2500. * LEST6 * LEST6 ) +99MEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99MEST2 = 1.E2 * COS ( 2.0 * 3.14159 * MEST1 / 100. ) +99MEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( MEST2 ) ) +99MEST5 = 2.0 * PI * MEST1 / 100. +99MEST6 = 2.0 * SIN ( MEST5 ) +99TWOJ = 2.E-4 * ( MEST2 * MEST2 + 2500. * MEST6 * MEST6 ) +33MEST1 MEST2 MEST3 MEST5 MEST6 TWOJ { Outputs are for 10th of 10 data sets +BLANK card ending all TACS data cards +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 5 subcases documents the use of IF blocks within TACS. This +C began 14 March 2001 when most-primitive IF-THEN-ELSE-ENDIF first +C produced correct answers. The pocket calculator is required (do not +C try to execute after removing the TPC declaration below). +C DIAGNOSTIC 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 9 { Make comment 22 Apr 07 +TACS POCKET CALCULATOR { Use pocket calculator for TACS supplemental variables + .02 .14 + 1 -1 +TACS STAND ALONE +C Begin with simplest of block IF statements: IF-THEN-ELSE-ENDIF: +IF( TIMEX .LE. 0.08 ) THEN { If simulation time T does not exceed 4 * dT: +99X1 = 1.0 + TIMEX { Formula for steps 1 thru 4 will produce a ramp up +ELSE { Alternatively (if simulation time T does exceed 4 * dT): +99X1 = 1.16 - TIMEX { Formula for steps 5, 6, and 7 will produce ramp down +ENDIF { Terminate 5-line block that chooses among 2 formulas for supplemental X1 +C As 2nd illustration, add ELSEIF to preceding illustration, and +C make the resulting signal more interesting. First, ramp it up. Then, +C in the middle, will be a flat top. Finally, ramp it back down to +C where it began. This enhancement became operational March 16th: +IF( TIMEX .LE. 0.04 ) THEN { If simulation time T does not exceed 2 * dT: +99X2 = 1.0 + TIMEX { For steps 1 and 2, assign values 1.02 and 1.04 +ELSEIF( TIMEX .LE. 0.08 ) THEN { If simulation time T is either 3*dT or 4*dT: +99X2 = 1.06 { For steps 3 and 4, assign flat top value of 1.06 +ELSE { Alternatively (if simulation time T does exceed 4 * dT): +99X2 = 1.06 - ( TIMEX - 0.08 ) { For steps 5 thru 7: 1.04, 1.02, and 1.0 +ENDIF { Terminate 7-line block that chooses among 3 formulas for supplemental X2 +28SOUR28 DEV69D { Cols. 41-46 carries user name +C Add the preceding Type-28 TACS source, which is defined in user-supplied TACS +C source code of SUBROUTINE DEVT69. This is disconnected from rest of data. +C Addition here on 30 January 2003 simply confirms function DEV69D of the UTPF. +C Since the Type-28 source is only defined within the dT loop, step 0 will +C show value zero. If the user is unhappy with this, the following initial +C condition (now commented out) will provide continuity: +C 77SOUR28 .75 { Initial condition on the Type-28 function avoids zero + 1TEST4 +X2 + 1.0 + 0.0 1.0 +33X1 X2 TEST4 SOUR28 +BLANK card ending all TACS data cards +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 6 subcases documents is the same as the 4th except that List 32 +C is made too small for the data. Added 9 March 2003, this demonstrates +C rejection if the new variable limit LSIZ32 is inadequate -- but only +C for F95 (Lahey). For F77, the 20 below is ignored. For F77, the size +C of tables of the pocket calculator remain fixed at 200. For F77, this +C data demonstrates that any attempt to restrict List 31 is ignored. To +C simplify, drop extrema and limit output to T-max = 10 * dT. +NEW LIST SIZES { Request for a change to program table sizes (VARDIM input) +DEFAULT 3.0 { Any blank field will be converted to 3 times default value +BLANK card for lists 1-10. +BLANK card for lists 11-20. +BLANK card for lists 21-30. + 200 20 { Optional card for Lists 31, etc. + 240000 742 { Offsets for supporting programs (non-simulation overlays) +PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns) +ABSOLUTE TACS DIMENSIONS + 10 90 100 20 60 1600 350 120 +C .00002 2.0 { Original line gives 100K steps of July, 2001, newsletter + .002 .02 { 10 steps is more than enough to demonstrate LSIZ32 limit + 1 -11 0 0 0 -1 + 5 5 +TACS STAND ALONE +99TEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99TEST2 = 1.E2 * COS ( 2.0 * 3.14159 * TEST1 / 100. ) +99TEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( TEST2 ) ) +99TEST5 = 2.0 * PI * TEST1 / 100. +99TEST6 = 2.0 * SIN ( TEST5 ) { Show that in-line comments are allowed +99TWOA = 2.E-4 * ( TEST2 * TEST2 + 2500. * TEST6 * TEST6 ) +99BEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99BEST2 = 1.E2 * COS ( 2.0 * 3.14159 * BEST1 / 100. ) +99BEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( BEST2 ) ) +99BEST5 = 2.0 * PI * BEST1 / 100. +99BEST6 = 2.0 * SIN ( BEST5 ) +99TWOB = 2.E-4 * ( BEST2 * BEST2 + 2500. * BEST6 * BEST6 ) +99ZEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99ZEST2 = 1.E2 * COS ( 2.0 * 3.14159 * ZEST1 / 100. ) +99ZEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( ZEST2 ) ) +99ZEST5 = 2.0 * PI * ZEST1 / 100. +99ZEST6 = 2.0 * SIN ( ZEST5 ) +99TWOC = 2.E-4 * ( ZEST2 * ZEST2 + 2500. * ZEST6 * ZEST6 ) +99REST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99REST2 = 1.E2 * COS ( 2.0 * 3.14159 * REST1 / 100. ) +99REST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( REST2 ) ) +99REST5 = 2.0 * PI * REST1 / 100. +99REST6 = 2.0 * SIN ( REST5 ) +99TWOD = 2.E-4 * ( REST2 * REST2 + 2500. * REST6 * REST6 ) +99DEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99DEST2 = 1.E2 * COS ( 2.0 * 3.14159 * DEST1 / 100. ) +99DEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( DEST2 ) ) +99DEST5 = 2.0 * PI * DEST1 / 100. +99DEST6 = 2.0 * SIN ( DEST5 ) +99TWOE = 2.E-4 * ( DEST2 * DEST2 + 2500. * DEST6 * DEST6 ) +99FEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99FEST2 = 1.E2 * COS ( 2.0 * 3.14159 * FEST1 / 100. ) +99FEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( FEST2 ) ) +99FEST5 = 2.0 * PI * FEST1 / 100. +99FEST6 = 2.0 * SIN ( FEST5 ) +99TWOF = 2.E-4 * ( FEST2 * FEST2 + 2500. * FEST6 * FEST6 ) +99GEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99GEST2 = 1.E2 * COS ( 2.0 * 3.14159 * GEST1 / 100. ) +99GEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( GEST2 ) ) +99GEST5 = 2.0 * PI * GEST1 / 100. +99GEST6 = 2.0 * SIN ( GEST5 ) +99TWOG = 2.E-4 * ( GEST2 * GEST2 + 2500. * GEST6 * GEST6 ) +99HEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99HEST2 = 1.E2 * COS ( 2.0 * 3.14159 * HEST1 / 100. ) +99HEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( HEST2 ) ) +99HEST5 = 2.0 * PI * HEST1 / 100. +99HEST6 = 2.0 * SIN ( HEST5 ) +99TWOH = 2.E-4 * ( HEST2 * HEST2 + 2500. * HEST6 * HEST6 ) +99LEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99LEST2 = 1.E2 * COS ( 2.0 * 3.14159 * LEST1 / 100. ) +99LEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( LEST2 ) ) +99LEST5 = 2.0 * PI * LEST1 / 100. +99LEST6 = 2.0 * SIN ( LEST5 ) +99TWOI = 2.E-4 * ( LEST2 * LEST2 + 2500. * LEST6 * LEST6 ) +99MEST1 = 10.0 * ( 1.0 + TIMEX ) ** 2 + 50. +99MEST2 = 1.E2 * COS ( 2.0 * 3.14159 * MEST1 / 100. ) +99MEST3 = 10.0 + 5.5 * TIMEX * SQRT ( ABS ( MEST2 ) ) +99MEST5 = 2.0 * PI * MEST1 / 100. +99MEST6 = 2.0 * SIN ( MEST5 ) +99TWOJ = 2.E-4 * ( MEST2 * MEST2 + 2500. * MEST6 * MEST6 ) +33MEST1 MEST2 MEST3 MEST5 MEST6 TWOJ { Outputs are for 10th of 10 data sets +BLANK card ending all TACS data cards +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc19.dat b/benchmarks/dc19.dat new file mode 100644 index 0000000..d803ae7 --- /dev/null +++ b/benchmarks/dc19.dat @@ -0,0 +1,355 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-19 +C Test of the control of TACS sources by node voltages and switch currents +C of the electric network. The electric network has no dynamics, with both +C the node voltage and switch current equal to one half, always. TACS +C supplemental variable GENT adds these to give unity. The output signal +C is then passed through a function block 1/(1+S) to give ELEMT, and +C through a S/(1+S) block to give GT/ELT. There also is a disconnected +C validation of the Type-17 electric network source, which provides for +C modulation of the following source function by a TACS variable. For use +C here, the TACS variable is the constant TWO = 2.0 --- easy to verify. + .05 2.0 + 1 1 1 1 1 +TACS HYBRID + 1ELEMT +GENT + 1.0 + 1.0 1.0 + 1GT/ELT +GENT + 1.0 + 1.0 1.0 +90BUS2 +91BUS1 +11TWO 2.0 { Constant for modulation of electric network COSINE +99GENT = BUS1 + BUS2 +33ELEMT GENT GT/ELTBUS1 BUS2 +BLANK card ending all TACS data + BUS3 BUS2 1.0 + BUS2 BUS1 1.0 + COSINE 1.0 { Dummy branch connects source of interest + SURGE 1.0 { Dummy branch connects Type-15 surge function + TAKUSG 1.0 { Dummy branch for Taku Noda's Type-15 surge +BLANK card ending electric network branches + BUS1 MEASURING 1 +BLANK card ending switches +11BUS3 1.0 +17TWO { The constant 2.0 of TACS multiplies following 1/2 to give unity: +14COSINE 0.5 0.5 { Cosine starts at peak 0.5, and also ends there +15SURGE 2.0 -1.0 -3.0 { Surge function is a smooth pulse > 0 +15TAKUSG 2.0 -1.0 -3.0 -6666. { Same except 2.0 = peak valu +BLANK card ending electric network source cards. +C Step Time BUS1 BUS2 BUS3 COSINE SURGE TAKUSG BUS1 TACS TACS TACS +C TERRA ELEMT GENT GT/ELT +C *** Switch "BUS1 " to " " closed before 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .05 0.0 0.5 1.0 0.0 .181042896 .470363242 0.5 .024390244 1.0 .975609756 + 1 +C 39 1.95 0.0 0.5 1.0 .987688341 .278788345 .724313367 0.5 .854137166 1.0 .145862834 +C 40 2.0 0.0 0.5 1.0 1.0 .265713062 .690342786 0.5 .861252427 1.0 .138747573 +C maxima : 0.0 0.5 1.0 1.0 .769799804 1.99999856 0.5 .861252427 1.0 .975609756 +C maxima : 0.0 .05 .05 2.0 .55 .55 .05 2.0 .05 .05 + PRINTER PLOT + 143 .4 0.0 2.0 SURGE COSINE { Axis limits: (-1.000, 1.000) + 193 .4 0.0 2.0 TACS GT/ELTTACS ELEMT { Axis limits: (0.000, 9.756) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 5 subcases of DC-19 tests important supplemental variable functions +C Unlike 1st, there is no electric network (in theory). In practice, ATP +C will automatically supply a dummy electric network. This is since around +C 1993 when TACS STAND ALONE was internally converted to TACS HYBRID. + .100 6.0 + 1 1 0 1 0 0 0 0 +TACS STAND ALONE + X2 -X3 +TQ 6.6667 -100. 0.2 + 1X3 +X2 0.0 1.05 + 1.0 + 0.0 1. +11TQ 1.0 0.0 +98SUPVAR = 0.4 * ( ABS(X3) + 1.E-6 ) ** 3.0 * 2.0 +26T { Type-26 is given value equal to ATP variable in columns 3-8 +33X2 X3 T SUPVAR +C Step Time TACS TACS TACS TACS +C X2 X3 T SUPVAR +C 0 0.0 0.0 0.0 0.0 0.0 +C 1 0.1 0.2 .01 0.1 .80024E-6 +C 2 0.2 0.2 .03 0.2 .216022E-4 +BLANK card ending all TACS data cards +C 58 5.8 .203206E-4 .999997968 5.8 .799997523 +C 59 5.9 .677346E-5 .999999323 5.9 .800000774 +C 60 6.0 .22578E-5 .999999774 6.0 .800001858 + PRINTER PLOT + 143 1. 0.0 6.0 X2 SUPVAR { Axis limits: (0.000, 8.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 5 subcases consists only of Type-15 lightning functions, including +C both old (the 2-exponential surge function) and new (Bernd Stein of FGH) +C models. Bernd's FGH improvement is documented in a letter dated 30.7.86 +C Smoothing of plot data points after 50 ups and downs is also illustrated. + 1.0E-8 3.E-6 + 1 1 1 1 1 -1 1 + 5 5 20 20 + LIGHTN 1.0 + ALGHTN 1.0 + LIGHT1 1.0 + ALGHT1 1.0 + ALGHT2 1.0 + ALGHT3 1.0 + STAN1 1.0 { Resistor for Standler surge added 29 Sept 00 + STAN2 1.0 { Resistor for 2nd Standler surge added 27 Oct 00 + TWOE1 1.0 { Resistor for TWO EXP surge added 19 Jan 01 + TWOE2 1.0 { Resistor for 2nd TWO EXP surge added 19 Jan 01 + HEID1 1.0 { Resistor for Heidler surge added 19 Jan 01 + HEID2 1.0 { Resistor for 2nd Heidler surge added 19 Jan 01 +C Orlando Hevia mentions legality and danger of negative L of series R-L-C. +C Add a branch to illustrate as mentioned in newsletter dated January, 2001 + HEVIA 10.E3 -3.0 { Series R-L with negative L } 1 +BLANK card ending electric network branches +BLANK card ending switches +15ALGHTN-1 1.0 2.E-6 50.E-6 5.0 +15LIGHTN-1 1.0 -20000. -500000. +15ALGHT2-1 1.0 2.E-6 50.E-6 10.0 +15ALGHT1-1 1.0 2.E-6 50.E-6 5.0 +15LIGHT1-1 1.0 -20000. -500000. +15ALGHT3-1 1.0 2.E-6 50.E-6 10.0 +C 345678901234567890123456789012345678901234567890 +C <--- Off-line Standler 3F10.0 -> +15STAN1 -1 0.6 20.E-6 0.04 Standler { "Standler" is same as -7777 +C C A B { Identify of 3 Standler parameters +C <--- In-line Standler 4F8.0 ---><-Request word-> < T-stop > +C T1 T2 Perc peak +15STAN2 -1 1.0E-6 20.0E-6 0.0 1.000 Standler in-line 0.0 1.0 +C +C <--- Off-line Two exp 3F10.0 -> +15TWOE1 -1 1.20 -36000.0 -5.0E+6 { it is an old two exp source +C C A B { Identify of 3 Two exp parameters +C <--- In-line Two exp 4F8.0 ---><-Request word-> < T-stop > +C T1 T2 Perc peak +15TWOE2 -1 1.0E-6 20.0E-6 0.0 1.0 Two exp in-line 0.0 1.0 +C +C <--- Off-line Heidler 3F10.0 --> +15HEID1 -1 0.6 1.0E-06 3.0E-5 5.0 { it is an old Heidler source +C C A B N { Identify of 4 Heidler parameters +C <-Heidler in line 4F8.0 ---><-key----------><>< T-stop > +C T1 T2 Perc peak N +15HEID2 -1 1.0E-6 20.0E-6 0.0 1.000 Heidler in-line 5 0.0 1.0 +C +14HEVIA 1.0 60. { Voltage source is shorted at 1 us } 1.E-6 +BLANK card ending electric network source cards. + STAN1 STAN2 ALGHT2ALGHT1LIGHT1ALGHTNLIGHTNALGHT3HEID1 HEID2 TWOE1 TWOE2 +C First 12 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time STAN1 STAN2 ALGHT2 ALGHT1 LIGHT1 ALGHTN LIGHTN ALGHT3 HEID1 HEID2 +C +C +C TWOE1 TWOE2 HEVIA +C TERRA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 +C 1 .1E-7 .442479244 .855069065 .25405E-20 .812971E-4 957.508161 .406485E-9 .004787541 .50811E-15 .930195E-8 .140651E-7 +C .058092768 .04993186 -.16949E-5 +C 2 .2E-7 .454691626 .88074615 .2601E-17 .002438392 -4.9670744 .130049E-7 .009550246 .51918E-12 .297563E-6 .449919E-6 +C .113331409 .097441938 -.51422E-5 +C 3 .3E-7 .461895211 .895961187 .14996E-15 .01470791 952.565899 .987364E-7 .01428824 .28952E-10 .225886E-5 .34153E-5 +C .165855128 .142646809 -.87063E-5 +C 4 .4E-7 .467007506 .906801471 .26623E-14 .048743046 -9.8846491 .415991E-6 .019001647 .473526E-9 .951554E-5 .143866E-4 +C .21579634 .185657436 -.12391E-4 +C 5 .5E-7 .470959015 .91521116 .2479E-13 .121908619 947.672889 .126925E-5 .023690588 .395202E-8 .290285E-4 .43887E-4 +C .263281003 .226579442 -.16201E-4 +BLANK card ending output requests +C 260 .26E-5 .48556872 .972472279 .991750958 -15.735499 -362.71992 .993881314 .676797074 -18.724315 .572623725 .949657569 +C 1.09277363 .94980214 -.55047746 +C 280 .28E-5 .482164403 .967184298 .987942471 -17.163302 -375.61152 .990578487 .698942172 -19.269102 .568828878 .942698718 +C 1.08493561 .942824605 -1.0722499 +C 300 .3E-5 .478686003 .961711993 .984066679 -17.995991 -387.2694 .987055255 .718634373 -19.452928 .565055727 .935784527 +C 1.07715275 .935897248 -2.0885866 +C Variable maxima : .506829483 1.00000002 1.0 1757.33053 957.508161 1.0 .718634373 2231.07839 0.6 1.0 +C 1.14948506 .999999945 0.0 +C Times of maxima : .8E-6 .1E-5 .2E-5 .7E-6 .1E-7 .2E-5 .3E-5 .113E-5 .1E-5 .1E-5 +C .99E-6 .1E-5 0.0 +C Variable minima : 0.0 0.0 0.0 -17.995991 -387.2694 0.0 0.0 -19.452928 0.0 0.0 +C 0.0 0.0 -2.0885866 +C Times of minima : 0.0 0.0 0.0 .3E-5 .3E-5 0.0 0.0 .3E-5 0.0 0.0 +C 0.0 0.0 .3E-5 + PRINTER PLOT + 145 .4 0.0 3.0 LIGHTNALGHTNALGHT2 { Plot limits: (0.000, 1.000) + 145 .4 0.0 3.0 LIGHT1ALGHT1ALGHT3 { Plot limits: (-0.110, 2.231) +C 145 .4 0.0 3.0 STAN1 STAN2 +C 145 .4 0.0 3.0 HEID1 HEID2 +C 145 .4 0.0 3.0 TWOE1 TWOE2 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 5 subcases was added 17 September 1999 to illustrate delayed +C opening of a Type-13 TACS-controlled switch. There are two parallel, +C identical circuits on the electrical side. A sinusoidal source drives +C current through a series R-L branch. The old logic is illustrated by +C the QUICK alternative whereas the new is the DELAY alternative. +C The new optional DO NOT OPEN UNTIL CURRENT 0 is illustrated by the +C latter of these two: opening will be delayed until current passes +C through zero. Both circuits oscillate following opening because both +C have a hanging inductor. But QUICK opens first, and it oscillates +C more. The graph is distinctive. +PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns) + .0004 .010 + 1 1 +TACS HYBRID +14CLAMP 100. 50. 30. 0. -1. +33CLAMP +BLANK card ending TACS + GEN QUICK 10. 4. { Series R-L will oscillate when opened + GEN DELAY 10. 4. +BLANK card ending branches +13DELAY Do not open until current 0 CLOSED CLAMP 11 +$DISABLE +C The preceding involves a high-level, English-language declaration. It +C is equivalent to the following low-level, numeric declation. +13RESIS -77333. CLOSED CLAMP 11 +C I.e., the data field of otherwise-unused columns 25-34 can be used to +C hold the special numeric value. About the English, this must begin +C to the right of column 24. If 55-60 are used as here for CLOSED, the +C beginning of "do not open until current 0" can be delayed at most 3 +C columns (note 3 blanks between ending 0 and start of CLOSED). Case is +C arbitrary (note 1st letter has been made upper case on switch card). +$ENABLE +13QUICK CLOSED CLAMP 11 +BLANK card ending switches +14GEN 100. 50. 0.0 0. -1. +BLANK card ending sources + GEN QUICK DELAY +BLANK card ending voltage printout + CALCOMP PLOT { Needed to cancel PRINTER PLOT of preceding subcase + SUPERIMPOSE 2 { Superimpose plots of the following 2 cards + 144 1. 0.0 10. GEN DELAY QUICK { First, three node voltages + 194 1. 0.0 10.-200.200.TACS CLAMP { 2nd of 2 in overlay is I-branch +BLANK card ending plot +BEGIN NEW DATA CASE +C 5th of 5 subcases was added 28 July 2002 to illustrate 3 new source +C types: CIGRE, CESI, and USRFUN. These are all special sub-types +C within the Type-15 source. The supporting code comes from Orlando P. +C Hevia of UTN in Santa Fe, Argentina. For an alternate and different +C illustration of the USRFUN alternative, see DC-5. For comments +C about required precision, see note following this subcase. + .05E-6 10.E-6 { Hevia used dT = 1.0E-9, but such detail is not needed + 1 1 1 1 -1 + 5 5 20 20 + CESI1 1.0 + CESI2 1.0 + CIGRE1 1.0 + CIGRE4 1.0 + USER2 1.0 + USER8 1.0 { Add another USRFUN test on 10 December 2002 +BLANK card ending branch cards +BLANK card ending switch cards (none for this data) +C CORRENTE DI CRESTA -0.001 [kA] +C TEMPO DI CRESTA 1 [us] +C TEMPO EMIVALORE 10 [us] +C GENERATORI EQUIVALENTI FRONTE +15CESI1 -1 1.5 1.0E-6 10.0-6 CESI +15CESI2 -1 -1.2 1.0E-6 10.0-6 CESI +15CIGRE1 1.0 1.0E-6 10.0E-6 CIGRE 20.0E+5 0.5E-6 9.5E-6 +15CIGRE4 1.0 1.0E-6 10.0E-6 CIGRE 50.0E+5 0.5E-6 9.5E-6 +15USER2 2.0 USRFUN +15USER8 8.0 USRFUN +BLANK card ending electric network sources + 1 { Request for all possible node voltage outputs (here, just 4) + CALCOMP PLOT + 145 .5 0.0 5.0 CESI1 CESI2 USER2 CIGRE1 +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF + +Warning about the preceding. The CIGRE1 output depends greatly on arithmetic +precision. Even 64 bits seems inadequate since turning the Salford debugger +on and off (minor update using SUBR5) results in the following differences. +Note that the 3rd row is what will be published in a future newsletter. The +CIGRE1 value on step 40 rises from .661 to .668 when the debugger is +turned on. + +FC version 2.0 - Copyright (c) 1990 Mike Albert Wed Aug 21 14:08:13 2002 +Options are: -c1 -ds5 -t8 + +Compare files: + dc19.lis 71885 8-21-102 2:07p + dc19.sal 71885 8-21-102 1:48p + +Changed lines 859-868 + > 15 .75E-6 1.000594 -.800475 .0648095 .0662431 .0783034 + > 20 .1E-5 1.477403 -1.18192 .1299899 .1324862 .1044063 + > 40 .2E-5 1.338601 -1.07088 .668485 .4280678 .2093254 + > 60 .3E-5 1.23813 -.990504 .9529333 .9505637 .3267037 + > 80 .4E-5 1.167656 -.934125 .8811803 .8800206 .5541328 + > 100 .5E-5 1.104946 -.883957 .8148301 .8147126 .9983771 + > 120 .6E-5 1.044245 -.835396 .7534758 .7542513 .9931261 + > 140 .7E-5 .9840634 -.787251 .6967413 .6982769 .9835613 + > 160 .8E-5 .9240164 -.739213 .6442788 .6464564 .9740871 + > 180 .9E-5 .8640042 -.691203 .5957665 .5984817 .9647042 +To + > 15 .75E-6 1.000594 -.800475 .0644145 .0662431 .0783034 + > 20 .1E-5 1.477403 -1.18192 .1291901 .1324862 .1044063 + > 40 .2E-5 1.338601 -1.07088 .661331 .4280678 .2093254 + > 60 .3E-5 1.23813 -.990504 .9533223 .9505637 .3267037 + > 80 .4E-5 1.167656 -.934125 .88154 .8800206 .5541328 + > 100 .5E-5 1.104946 -.883957 .8151627 .8147126 .9983771 + > 120 .6E-5 1.044245 -.835396 .7537834 .7542513 .9931261 + > 140 .7E-5 .9840634 -.787251 .6970257 .6982769 .9835613 + > 160 .8E-5 .9240164 -.739213 .6445418 .6464564 .9740871 + > 180 .9E-5 .8640042 -.691203 .5960097 .5984817 .9647042 + +Changed line 872 + >Variable maxima : 1.497392 0.0 .999673 .9989941 .9999945 +To + >Variable maxima : 1.497392 0.0 .9997968 .9989941 .9999945 + +Comparison complete + +21 August 2002, remove from before the 5th, which was not being executed: +BLANK ----------------- Protect following 4th data subcase from execution +C Note: Following is copy of 3rd subcase between October, 1990, and +C July, 1991. It was wrong during 9 months. The solution +C prior to October, 1990, was kept below here, and discovered +C to be correct once again on July 22, 1991. So, it would +C seem that Guido's "correction" of Oct, 1990, was wrong, and +C during the spring or summer of 1991 he merely corrected the +C correction. Well, as history, we keep the wrong data: +C 3rd of 3 subcases consists only of Type-15 lightning functions, including +C both old (the 2-exponential surge function) and new (Bernd Stein of FGH) +C models. Bernd's FGH improvement is documented in a letter dated 30.7.86 +C Smoothing of plot data points after 50 ups and downs is also illustrated. +C Comment cards altered 23 Oct 1990. Original contents preserved below +C as 4th data subcase until Bernd Stein approves of changes. + 1.E-8 300.E-8 + 1 1 1 1 1 -1 + 5 5 20 20 + LIGHTN 1.0 + ALGHTN 1.0 + LIGHT1 1.0 + ALGHT1 1.0 + ALGHT2 1.0 + ALGHT3 1.0 +BLANK card ending electric network branches +BLANK card ending switches +15ALGHTN-1 1.0 2.E-6 50.E-6 5.0 +15LIGHTN-1 1.0 -20000. -500000. +15ALGHT2-1 1.0 2.E-6 50.E-6 10.0 +15ALGHT1-1 1.0 2.E-6 50.E-6 5.0 +15LIGHT1-1 1.0 -20000. -500000. +15ALGHT3-1 1.0 2.E-6 50.E-6 10.0 +BLANK card ending electric network source cards. +C Step Time ALGHT2 ALGHT1 LIGHT1 ALGHTN LIGHTN ALGHT3 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .1E-7 .26503E-20 .853443E-4 957.508161 .426722E-9 .004787541 .53005E-15 +C 2 .2E-7 .27133E-17 .002559784 -4.9670744 .136524E-7 .009550246 .54161E-12 +C 3 .3E-7 .15643E-15 .015440124 952.565899 .103652E-6 .01428824 .30202E-10 +C 4 .4E-7 .27773E-14 .051169655 -9.8846491 .436701E-6 .019001647 .493979E-9 + 1 +C 300 .3E-5 1.02657121 -18.891898 -387.2694 1.03619451 .718634373 -20.293153 +C maxima : 1.04319273 1844.81694 957.508161 1.0497837 .718634373 2327.44477 +C Times of max : .2E-5 .7E-6 .1E-7 .2E-5 .3E-5 .113E-5 +C minima : 0.0 -18.891898 -387.2694 0.0 0.0 -20.293153 +C Times of min : 0.0 .3E-5 .3E-5 0.0 0.0 .3E-5 + PRINTER PLOT + 145 .4 0.0 3.0 LIGHTNALGHTNALGHT2 { Plot limits: (0.000, 1.050) + 145 .4 0.0 3.0 LIGHT1ALGHT1ALGHT3 { Plot limits: (-0.110, 2.327) +BLANK card ending plot cards +BEGIN NEW DATA CASE + diff --git a/benchmarks/dc2.dat b/benchmarks/dc2.dat new file mode 100644 index 0000000..228b3ef --- /dev/null +++ b/benchmarks/dc2.dat @@ -0,0 +1,1024 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-2 +C 2nd of 4 hvdc cases is for a 2-terminal, 2-pole representation like DC-1, +C only with just 2 of the 3 bridges used per pole, and with the 7th (bypass) +C valve removed from each bridge. Data is a little smaller, then. The end +C time of the simulation is much smaller -- only 10% -- so execution is fast. +ABSOLUTE TACS DIMENSIONS +C Expand TACS Table 1 from 57 to 130 on 1 April 2007. Model use after DC-1. +C Size List 19. Total floating-point TACS table space. 2926 4800 (LTACST) +C 57 256 285 36 85 713 998 171 --- default + 130 65 80 20 70 325 120 115 + .000050 .020 + 1 1 1 3 1 -1 + 5 5 20 20 100 100 +C DC LINE WITH 12-PULSE RECTIFIER/INVERTER OPERATION USING TACS ------------ +TACS HYBRID CASE FOR DC TERMINAL SIMULATION +C DC LINE WITH 12-PULSE RECTIFIER/INVERTER OPERATION USING TACS ------------ +C * * * * * * * GRID TIMING VOLTAGES * * * * * * * * * * * * * * + PHA-BS +GENAS -GENBS + PHB-AS +GENBS -GENAS + PHB-CS +GENBS -GENCS + PHC-BS +GENCS -GENBS + PHC-AS +GENCS -GENAS + PHA-CS +GENAS -GENCS + PHA-BR +GENAR -GENBR + PHB-AR +GENBR -GENAR + PHB-CR +GENBR -GENCR + PHC-BR +GENCR -GENBR + PHC-AR +GENCR -GENAR + PHA-CR +GENAR -GENCR + 4 +NOT13 + 9 +NOT18 + 14 +NOT23 + 19 +NOT28 + 24 +NOT3 + 29 +NOT8 + 4R +NOT13R + 9R +NOT18R + 14R +NOT23R + 19R +NOT28R + 24R +NOT3R + 29R +NOT8R +C ********* ZERO-ORDER BLOCK ON "TIMEX" FOR LIMIT OF 2 CYCLES ******* +C + TIMER +TIMEX 0.0 33.3-3 +90GENAS +90GENBS +90GENCS +90GENAR +90GENBR +90GENCR +C $$$$$$ DECREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +C +88ALPHAR -.1045045 * TIMER + 4.17-3 +C +C -------------- RECTIFIER CONTROL LOGIC FOLLOWS -------------------- +88SA-B 52 +UNITY 0.0 PHA-BS +88F1S 54 +SA-B 0.0 ALPHAR +88F1SII 4 .AND. F1S +88NOT3 .NOT. F1SII +88F1SI 54 +F1SII 1.4E-3 +88SB-A 52 +UNITY 0.0 PHB-AS +88F4S 54 +SB-A 0.0 ALPHAR +88F4SII 9 .AND. F4S +88NOT8 .NOT. F4SII +88F4SI 54 +F4SII 1.4E-3 +88SB-C 52 +UNITY 0.0 PHB-CS +88F3S 54 +SB-C 0.0 ALPHAR +88F3SII 14 .AND. F3S +88NOT13 .NOT. F3SII +88F3SI 54 +F3SII 1.4E-3 +88SC-B 52 +UNITY 0.0 PHC-BS +88F6S 54 +SC-B 0.0 ALPHAR +88F6SII 19 .AND. F6S +88NOT18 .NOT. F6SII +88F6SI 54 +F6SII 1.4E-3 +88SC-A 52 +UNITY 0.0 PHC-AS +88F5S 54 +SC-A 0.0 ALPHAR +88F5SII 24 .AND. F5S +88NOT23 .NOT. F5SII +88F5SI 54 +F5SII 1.4E-3 +88SA-C 52 +UNITY 0.0 PHA-CS +88F2S 54 +SA-C 0.0 ALPHAR +88F2SII 29 .AND. F2S +88NOT28 .NOT. F2SII +88F2SI 54 +F2SII 1.4E-3 +C $$$$$$ INCREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +C +88ALPHAI +.076276 * TIMER + 4.17-3 +C +C ----------------- INVERTER CONTROL LOGIC FOLLOWS ----------------- +88RA-B 52 +UNITY 0.0 PHA-BR +88F1R 54 +RA-B 0.0 ALPHAI +88F1RIV 4R .AND. F1R +88NOT3R .NOT. F1RIV +88F1RIII54 +F1RIV 1.4E-3 +88RB-A 52 +UNITY 0.0 PHB-AR +88F4R 54 +RB-A 0.0 ALPHAI +88F4RIV 9R .AND. F4R +88NOT8R .NOT. F4RIV +88F4RIII54 +F4RIV 1.4E-3 +88RB-C 52 +UNITY 0.0 PHB-CR +88F3R 54 +RB-C 0.0 ALPHAI +88F3RIV 14R .AND. F3R +88NOT13R .NOT. F3RIV +88F3RIII54 +F3RIV 1.4E-3 +88RC-B 52 +UNITY 0.0 PHC-BR +88F6R 54 +RC-B 0.0 ALPHAI +88F6RIV 19R .AND. F6R +88NOT18R .NOT. F6RIV +88F6RIII54 +F6RIV 1.4E-3 +88RC-A 52 +UNITY 0.0 PHC-AR +88F5R 54 +RC-A 0.0 ALPHAI +88F5RIV 24R .AND. F5R +88NOT23R .NOT. F5RIV +88F5RIII54 +F5RIV 1.4E-3 +88RA-C 52 +UNITY 0.0 PHA-CR +88F2R 54 +RA-C 0.0 ALPHAI +88F2RIV 29R .AND. F2R +88NOT28R .NOT. F2RIV +88F2RIII54 +F2RIV 1.4E-3 +C +C DELAY FIRING FOR BYPASS VALVES +C +88FIRE - UNITY +77PHA-BS +166.1710 +77PHB-AS -166.1710 +77PHB-CS -332.3420 +77PHC-BS +332.3420 +77PHC-AS +166.1710 +77PHA-CS -166.1710 +77PHA-BR +153.2873 +77PHB-AR -153.2873 +77PHB-CR -306.5746 +77PHC-BR +306.5746 +77PHC-AR +153.2873 +77PHA-CR -153.2873 +77FIRE -1.0 +BLANK card ending TACS initial conditions (and also all TACS data) +C +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 +C AC CIRCUIT OF POLE 4, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +C + 0GENAS BIGEA4 .01 + 0GENBS BIGEB4GENAS BIGEA4 + 0GENCS BIGEC4GENAS BIGEA4 + 0BIGEA4 .86 114. 2.46 + 0BIGEB4 BIGEA4 + 0BIGEC4 BIGEA4 + 0 BIGEA4 1.18 114. 1.28 + 0 BIGEB4 BIGEA4 + 0 BIGEC4 BIGEA4 + 0BIGEA413AC4 .02 1.56 + 0BIGEB413BC4 BIGEA413AC4 + 0BIGEC413CC4 BIGEA413AC4 + 013AC4 HPAC4 40. + 0HPAC4 13AC4 5.5 + 013BC4 HPBC4 13AC4 HPAC4 + 0HPBC4 13BC4 HPAC4 13AC4 + 013CC4 HPCC4 13AC4 HPAC4 + 0HPCC4 13CC4 HPAC4 13AC4 + 0HPAC4 3.9 + 0HPBC4 HPAC4 + 0HPCC4 HPAC4 + 0 13AC4 .93 44. .95 + 0 13BC4 13AC4 + 0 13CC4 13AC4 + 013AC4 11AC4 GENAS BIGEA4 + 013BC4 11BC4 GENAS BIGEA4 + 013CC4 11CC4 GENAS BIGEA4 + 011AC4 .82 44. 1.33 + 011BC4 11AC4 + 011CC4 11AC4 + 011AC4 AC6 GENAS BIGEA4 + 011BC4 BC6 GENAS BIGEA4 + 011CC4 CC6 GENAS BIGEA4 + 011AC4 AC2 GENAS BIGEA4 + 011BC4 BC2 GENAS BIGEA4 + 011CC4 CC2 GENAS BIGEA4 +C +C -------------------------------- GROUP 6, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0VI-1 VICA 3000. + 0VICA VI-1 1.0 + 0VI-3 VICB VI-1 VICA + 0VICB VI-3 VICA VI-1 + 0VI-5 VICC VI-1 VICA + 0VICC VI-5 VICA VI-1 + 0VI-4 AN6C VI-1 VICA + 0AN6C VI-4 VICA VI-1 + 0VI-6 AN6C VI-1 VICA + 0AN6C VI-6 VICA VI-1 + 0VI-2 AN6C VI-1 VICA + 0AN6C VI-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0CEL4 VDA6 1200. .1 + 0CEL4 VDB6 CEL4 VDA6 + 0CEL4 VDC6 CEL4 VDA6 + 0AN6C VDA6 CEL4 VDA6 + 0AN6C VDB6 CEL4 VDA6 + 0AN6C VDC6 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA6 VICA 1000. + 0VICA VDA6 .25 + 0VDB6 VICB VDA6 VICA + 0VICB VDB6 VICA VDA6 + 0VDC6 VICC VDA6 VICA + 0VICC VDC6 VICA VDA6 + 0CEL4 CTH6C VDA6 VICA + 0CTH6C CEL4 VICA VDA6 +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC6Y TXA6 .203 .7 + 0BC6Y TXB6 AC6Y TXA6 + 0CC6Y TXC6 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA6C VDA6 .202 .717 + 0TXB6C VDB6 TXA6C VDA6 + 0TXC6C VDC6 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA6 99300. +52TXA6C TXB6C 82715. 68946. +51TXB6 TXA6 +52TXB6C TXC6C +51TXC6 TXA6 +52TXC6C TXA6C +C +C ------------------------------------------------------------------------- +C -------------------------------- GROUP 2, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0II-1 IICA VI-1 VICA + 0IICA II-1 VICA VI-1 + 0II-3 IICB VI-1 VICA + 0IICB II-3 VICA VI-1 + 0II-5 IICC VI-1 VICA + 0IICC II-5 VICA VI-1 + 0II-4 AN2C VI-1 VICA + 0AN2C II-4 VICA VI-1 + 0II-6 AN2C VI-1 VICA + 0AN2C II-6 VICA VI-1 + 0II-2 AN2C VI-1 VICA + 0AN2C II-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN6C VDA2 CEL4 VDA6 + 0AN6C VDB2 CEL4 VDA6 + 0AN6C VDC2 CEL4 VDA6 + 0AN2C VDA2 CEL4 VDA6 + 0AN2C VDB2 CEL4 VDA6 + 0AN2C VDC2 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA2 IICA VDA6 VICA + 0IICA VDA2 VICA VDA6 + 0VDB2 IICB VDA6 VICA + 0IICB VDB2 VICA VDA6 + 0VDC2 IICC VDA6 VICA + 0IICC VDC2 VICA VDA6 + 0AN6C CTH2C VDA6 VICA + 0CTH2C AN6C VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC2Y TXA2 .22 2.07 + 0BC2Y TXB2 AC2Y TXA2 + 0CC2Y TXC2 AC2Y TXA2 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA2C VDA2 .07 .8343 + 0TXB2C VDB2 TXA2C VDA2 + 0TXC2C VDC2 TXA2C VDA2 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA2 99300. +52TXA2C NS2 47951. 23174. +51TXB2 TXA2 +52TXB2C NS2 +51TXC2 TXA2 +52TXC2C NS2 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS2 1.E+10 +C +C ------------------------------------------------------------------------- +C GROUND ELECTRODE CIRCUIT, CELILO + 0AN2C GR1C 1.0 + 0GR1C ELEC1 AN2C GR1C + 0GR1C .06 + 0ELEC1 GR2C AN2C GR1C + 0GR2C CELGR AN2C GR1C + 0GR2C GR1C + 0ELEC1 .43 22. +C ------------------------------------------------------------------------- +C AC CIRCUIT OF POLE 3, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +C + 0GENAS BIGEA3GENAS BIGEA4 + 0GENBS BIGEB3GENAS BIGEA4 + 0GENCS BIGEC3GENAS BIGEA4 + 0BIGEA3 BIGEA4 + 0BIGEB3 BIGEA4 + 0BIGEC3 BIGEA4 + 0 BIGEA3 BIGEA4 + 0 BIGEB3 BIGEA4 + 0 BIGEC3 BIGEA4 + 0BIGEA313AC3 BIGEA413AC4 + 0BIGEB313BC3 BIGEA413AC4 + 0BIGEC313CC3 BIGEA413AC4 + 013AC3 HPAC3 13AC4 HPAC4 + 0HPAC3 13AC3 HPAC4 13AC4 + 013BC3 HPBC3 13AC4 HPAC4 + 0HPBC3 13BC3 HPAC4 13AC4 + 013CC3 HPCC3 13AC4 HPAC4 + 0HPCC3 13CC3 HPAC4 13AC4 + 0HPAC3 HPAC4 + 0HPBC3 HPAC4 + 0HPCC3 HPAC4 + 0 13AC3 13AC4 + 0 13BC3 13AC4 + 0 13CC3 13AC4 + 013AC3 11AC3 GENAS BIGEA4 + 013BC3 11BC3 GENAS BIGEA4 + 013CC3 11CC3 GENAS BIGEA4 + 011AC3 11AC4 + 011BC3 11AC4 + 011CC3 11AC4 + 011AC3 AC3 GENAS BIGEA4 + 011BC3 BC3 GENAS BIGEA4 + 011CC3 CC3 GENAS BIGEA4 + 011AC3 AC5 GENAS BIGEA4 + 011BC3 BC5 GENAS BIGEA4 + 011CC3 CC5 GENAS BIGEA4 +C +C -------------------------------- GROUP 1, CELILO ---------------------- +C ####### ANODE REACTORS ############### +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ +C +C !!!!!!!!!!!!!!!!!!!!! SYMMETRY !!!!!!!!!!!!!!!! + 0AN5C CEL3 .01 +C !!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!! +C -------------------------------- GROUP 3, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0III-1 IIICA VI-1 VICA + 0IIICA III-1 VICA VI-1 + 0III-3 IIICB VI-1 VICA + 0IIICB III-3 VICA VI-1 + 0III-5 IIICC VI-1 VICA + 0IIICC III-5 VICA VI-1 + 0III-4 AN3C VI-1 VICA + 0AN3C III-4 VICA VI-1 + 0III-6 AN3C VI-1 VICA + 0AN3C III-6 VICA VI-1 + 0III-2 AN3C VI-1 VICA + 0AN3C III-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0CELGR VDA3 CEL4 VDA6 + 0CELGR VDB3 CEL4 VDA6 + 0CELGR VDC3 CEL4 VDA6 + 0AN3C VDA3 CEL4 VDA6 + 0AN3C VDB3 CEL4 VDA6 + 0AN3C VDC3 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA3 IIICA VDA6 VICA + 0IIICA VDA3 VICA VDA6 + 0VDB3 IIICB VDA6 VICA + 0IIICB VDB3 VICA VDA6 + 0VDC3 IIICC VDA6 VICA + 0IIICC VDC3 VICA VDA6 + 0CELGR CTH3C VDA6 VICA + 0CTH3C CELGR VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC3Y TXA3 AC2Y TXA2 + 0BC3Y TXB3 AC2Y TXA2 + 0CC3Y TXC3 AC2Y TXA2 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA3C VDA3 TXA2C VDA2 + 0TXB3C VDB3 TXA2C VDA2 + 0TXC3C VDC3 TXA2C VDA2 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA3 TXA2 +52TXA3C NS3 +51TXB3 TXA2 +52TXB3C NS3 +51TXC3 TXA2 +52TXC3C NS3 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS3 NS2 +C ------------------------------------------------------------------------- +C -------------------------------- GROUP 5, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0V-1 VCA VI-1 VICA + 0VCA V-1 VICA VI-1 + 0V-3 VCB VI-1 VICA + 0VCB V-3 VICA VI-1 + 0V-5 VCC VI-1 VICA + 0VCC V-5 VICA VI-1 + 0V-4 AN5C VI-1 VICA + 0AN5C V-4 VICA VI-1 + 0V-6 AN5C VI-1 VICA + 0AN5C V-6 VICA VI-1 + 0V-2 AN5C VI-1 VICA + 0AN5C V-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN3C VDA5 CEL4 VDA6 + 0AN3C VDB5 CEL4 VDA6 + 0AN3C VDC5 CEL4 VDA6 + 0AN5C VDA5 CEL4 VDA6 + 0AN5C VDB5 CEL4 VDA6 + 0AN5C VDC5 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA5 VCA VDA6 VICA + 0VCA VDA5 VICA VDA6 + 0VDB5 VCB VDA6 VICA + 0VCB VDB5 VICA VDA6 + 0VDC5 VCC VDA6 VICA + 0VCC VDC5 VICA VDA6 + 0AN3C CTH5C VDA6 VICA + 0CTH5C AN3C VICA VDA6 +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC5Y TXA5 AC6Y TXA6 + 0BC5Y TXB5 AC6Y TXA6 + 0CC5Y TXC5 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA5C VDA5 TXA6C VDA6 + 0TXB5C VDB5 TXA6C VDA6 + 0TXC5C VDC5 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA5 TXA6 +52TXA5C TXB5C +51TXB5 TXA6 +52TXB5C TXC5C +51TXC5 TXA6 +52TXC5C TXA5C +C +C +C SMOOTHING REACTOR, CELILO, POLE 4 =================== + 0CEL4 S4- 500. 1 +C ============================ +C DC FILTERS, CELILO, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0S4- ELEC1 6.3 280. .7 + 0S4- HP4C 2.5 + 0HP4C ELEC1 100. + 0ELEC1 HP4C 7.0 +C =========================================== +C SURGE CAPACITOR, CELILO, POLE 4 + 0S4- SURC4 .7 + 0SURC4 5. + 0SURC4 ELEC1 GENAS BIGEA4 +C ============================================================ +C SMOOTHING REACTOR, CELILO, POLE 3 =================== + 0CEL3 A3+ CEL4 S4- +C ============================ +C DC FILTERS, CELILO, POLE 3 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS + 0A3+ ELEC1 S4- ELEC1 + 0A3+ HP3C S4- HP4C + 0HP3C ELEC1 HP4C ELEC1 + 0ELEC1 HP3C ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, CELILO, POLE 3 + 0A3+ SURC3 S4- SURC4 + 0SURC3 SURC4 + 0SURC3 ELEC1 GENAS BIGEA4 +C ============================================================ +C +C ************************************************************************* +C CELILO - SYLMAR LINE, 846 MILES (1362 KM) +C ************************************************************************* +C +-1S4- 4-282 .02 6.56 .0142 282. +-2A3+ 3-282 .02 1.56 .0192 282. +-14-282 4-564 S4- 4-282 +-23-282 3-564 +-14-564 R4- S4- 4-282 +-23-564 R3+ +C +C +C SMOOTHING REACTOR, SYLMAR, POLE 4 =================== + 0AN6S SYL4 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R4- ELEC2 S4- ELEC1 + 0R4- HP4 S4- HP4C + 0HP4 ELEC2 HP4C ELEC1 + 0ELEC2 HP4 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 4 + 0R4- SURS4 S4- SURC4 + 0SURS4 SURC4 + 0SURS4 ELEC2 GENAS BIGEA4 +C ============================================================ +C SMOOTHING REACTOR, SYLMAR, POLE 3 =================== + 0CTH5S SYL3 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 3 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R3+ ELEC2 S4- ELEC1 + 0R3+ HP3 S4- HP4C + 0HP3 ELEC2 HP4C ELEC1 + 0ELEC2 HP3 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 3 + 0R3+ SURS3 S4- SURC4 + 0SURS3 SURC4 + 0SURS3 ELEC2 GENAS BIGEA4 +C ============================================================ +C +C LC CIRCUIT NEAR SMOOTHING REACTOR ON LINE AT SYLMAR ONLY .......... +C + 0R4- CAP4 GENAS BIGEA4 + 0CAP4 .06 + 0CAP4 SYL4 1.0 + 0R3+ CAP3 GENAS BIGEA4 + 0CAP3 CAP4 + 0CAP3 SYL3 CAP4 SYL4 +C +C +C AC CIRCUIT OF POLE 4, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. +C + 0AS6 11AS4 GENAS BIGEA4 + 0BS6 11BS4 GENAS BIGEA4 + 0CS6 11CS4 GENAS BIGEA4 + 0AS2 11AS4 GENAS BIGEA4 + 0BS2 11BS4 GENAS BIGEA4 + 0CS2 11CS4 GENAS BIGEA4 + 011AS4 L1A 1. + 011BS4 L1B 11AS4 L1A + 011CS4 L1C 11AS4 L1A + 0L1A A57-4 GENAS BIGEA4 + 0L1B B57-4 GENAS BIGEA4 + 0L1C C57-4 GENAS BIGEA4 + 0A57-4 4. 214. 1.32 + 0B57-4 A57-4 + 0C57-4 A57-4 + 0 A57-4 5.7 214. .67 + 0 B57-4 A57-4 + 0 C57-4 A57-4 + 0A57-4 A13-4 GENAS BIGEA4 + 0B57-4 B13-4 GENAS BIGEA4 + 0C57-4 C13-4 GENAS BIGEA4 + 0A13-4 1.8 44. 1.33 + 0B13-4 A13-4 + 0C13-4 A13-4 + 0 A13-4 2.2 44. .95 + 0 B13-4 A13-4 + 0 C13-4 A13-4 + 0A13-4 A4 34.5 + 0A4 A13-4 4.8 + 0A4 4.5 + 0B13-4 B4 A13-4 A4 + 0B4 B13-4 A4 A13-4 + 0B4 A4 + 0C13-4 C4 A13-4 A4 + 0C4 C13-4 A4 A13-4 + 0C4 A4 + 0A13-4 GENAR GENAS BIGEA4 + 0B13-4 GENBR GENAS BIGEA4 + 0C13-4 GENCR GENAS BIGEA4 +C +C ---------------------------------- GROUP 6, SYLMAR -------------------- +C ####### ANODE REACTORS ############### + 0AN6S 6-1 VI-1 VICA + 06-1 AN6S VICA VI-1 + 0AN6S 6-3 VI-1 VICA + 06-3 AN6S VICA VI-1 + 0AN6S 6-5 VI-1 VICA + 06-5 AN6S VICA VI-1 + 06SA 6-4 VI-1 VICA + 06-4 6SA VICA VI-1 + 06SB 6-6 VI-1 VICA + 06-6 6SB VICA VI-1 + 06SC 6-2 VI-1 VICA + 06-2 6SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN6S 6SA CEL4 VDA6 + 0AN6S 6SB CEL4 VDA6 + 0AN6S 6SC CEL4 VDA6 + 0CTH6S 6SA CEL4 VDA6 + 0CTH6S 6SB CEL4 VDA6 + 0CTH6S 6SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS6Y TXS6A AC6Y TXA6 + 0BS6Y TXS6B AC6Y TXA6 + 0CS6Y TXS6C AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA6 6SA TXA6C VDA6 + 0TXSB6 6SB TXA6C VDA6 + 0TXSC6 6SC TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS6A TXA6 +52TXSA6 TXSB6 +51TXS6B TXA6 +52TXSB6 TXSC6 +51TXS6C TXA6 +52TXSC6 TXSA6 +C +C +C RESISTOR SEPARATING VALVE GROUPS AT SYLMAR ONLY! +C +C -------------------------------- GROUP 4, SYLMAR ---------------------- + 0CTH6S AN2S .01 +C +C -------------------------------- GROUP 2, SYLMAR ---------------------- +C ####### ANODE REACTORS ############### + 0AN2S 2-1 VI-1 VICA + 02-1 AN2S VICA VI-1 + 0AN2S 2-3 VI-1 VICA + 02-3 AN2S VICA VI-1 + 0AN2S 2-5 VI-1 VICA + 02-5 AN2S VICA VI-1 + 02SA 2-4 VI-1 VICA + 02-4 2SA VICA VI-1 + 02SB 2-6 VI-1 VICA + 02-6 2SB VICA VI-1 + 02SC 2-2 VI-1 VICA + 02-2 2SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN2S 2SA CEL4 VDA6 + 0AN2S 2SB CEL4 VDA6 + 0AN2S 2SC CEL4 VDA6 + 0CTH2S 2SA CEL4 VDA6 + 0CTH2S 2SB CEL4 VDA6 + 0CTH2S 2SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS2Y TXS2A AC2Y TXA2 + 0BS2Y TXS2B AC2Y TXA2 + 0CS2Y TXS2C AC2Y TXA2 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA2 2SA TXA2C VDA2 + 0TXSB2 2SB TXA2C VDA2 + 0TXSC2 2SC TXA2C VDA2 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS2A TXA2 +52TXSA2 NR2 +51TXS2B TXA2 +52TXSB2 NR2 +51TXS2C TXA2 +52TXSC2 NR2 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NR2 NS2 +C ------------------------------------------------------------------------- +C +C ------------------------------------------------------------------------- +C GROUND ELECTRODE CIRCUIT, SYLMAR + 0CTH2S GR1S AN2C GR1C + 0GR1S ELEC2 AN2C GR1C + 0GR1S GR1C + 0ELEC2 GR2S AN2C GR1C + 0GR2S AN3S AN2C GR1C + 0GR2S GR1C + 0ELEC2 ELEC1 +C ------------------------------------------------------------------------- +C +C AC CIRCUIT OF POLE 3, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. +C + 0AS3 11AS3 GENAS BIGEA4 + 0BS3 11BS3 GENAS BIGEA4 + 0CS3 11CS3 GENAS BIGEA4 + 0AS5 11AS3 GENAS BIGEA4 + 0BS5 11BS3 GENAS BIGEA4 + 0CS5 11CS3 GENAS BIGEA4 + 011AS3 L2A 11AS4 L1A + 011BS3 L2B 11AS4 L1A + 011CS3 L2C 11AS4 L1A + 0L2A A57-3 GENAS BIGEA4 + 0L2B B57-3 GENAS BIGEA4 + 0L2C C57-3 GENAS BIGEA4 + 0A57-3 A57-4 + 0B57-3 A57-4 + 0C57-3 A57-4 + 0 A57-3 A57-4 + 0 B57-3 A57-4 + 0 C57-3 A57-4 + 0A57-3 A13-3 GENAS BIGEA4 + 0B57-3 B13-3 GENAS BIGEA4 + 0C57-3 C13-3 GENAS BIGEA4 + 0A13-3 A13-4 + 0B13-3 A13-4 + 0C13-3 A13-4 + 0 A13-3 A13-4 + 0 B13-3 A13-4 + 0 C13-3 A13-4 + 0A13-3 A3 A13-4 A4 + 0A3 A13-3 A4 A13-4 + 0A3 A4 + 0B13-3 B3 A13-4 A4 + 0B3 B13-3 A4 A13-4 + 0B3 A4 + 0C13-3 C3 A13-4 A4 + 0C3 C13-3 A4 A13-4 + 0C3 A4 + 0A13-3 GENAR GENAS BIGEA4 + 0B13-3 GENBR GENAS BIGEA4 + 0C13-3 GENCR GENAS BIGEA4 +C +C -------------------------------- GROUP 3, SYLMAR ---------------------- +C ####### ANODE REACTORS ## 0AN3S 3-1 VI-1 VICA + 03-1 AN3S VICA VI-1 + 0AN3S 3-3 VI-1 VICA + 03-3 AN3S VICA VI-1 + 0AN3S 3-5 VI-1 VICA + 03-5 AN3S VICA VI-1 + 03SA 3-4 VI-1 VICA + 03-4 3SA VICA VI-1 + 03SB 3-6 VI-1 VICA + 03-6 3SB VICA VI-1 + 03SC 3-2 VI-1 VICA + 03-2 3SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN3S 3SA CEL4 VDA6 + 0AN3S 3SB CEL4 VDA6 + 0AN3S 3SC CEL4 VDA6 + 0CTH3S 3SA CEL4 VDA6 + 0CTH3S 3SB CEL4 VDA6 + 0CTH3S 3SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS3Y TXS3A AC2Y TXA2 + 0BS3Y TXS3B AC2Y TXA2 + 0CS3Y TXS3C AC2Y TXA2 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA3 3SA TXA2C VDA2 + 0TXSB3 3SB TXA2C VDA2 + 0TXSC3 3SC TXA2C VDA2 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS3A TXA2 +52TXSA3 NR3 +51TXS3B TXA2 +52TXSB3 NR3 +51TXS3C TXA2 +52TXSC3 NR3 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NR3 NS2 +C ------------------------------------------------------------------------- +C +C RESISTOR SEPARATING VALVE GROUPS AT SYLMAR ONLY! + 0CTH3S AN5S .01 +C ---------------------------------- GROUP 5, SYLMAR -------------------- +C ####### ANODE REACTORS ############### + 0AN5S 5-1 VI-1 VICA + 05-1 AN5S VICA VI-1 + 0AN5S 5-3 VI-1 VICA + 05-3 AN5S VICA VI-1 + 0AN5S 5-5 VI-1 VICA + 05-5 AN5S VICA VI-1 + 05SA 5-4 VI-1 VICA + 05-4 5SA VICA VI-1 + 05SB 5-6 VI-1 VICA + 05-6 5SB VICA VI-1 + 05SC 5-2 VI-1 VICA + 05-2 5SC VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN5S 5SA CEL4 VDA6 + 0AN5S 5SB CEL4 VDA6 + 0AN5S 5SC CEL4 VDA6 + 0CTH5S 5SA CEL4 VDA6 + 0CTH5S 5SB CEL4 VDA6 + 0CTH5S 5SC CEL4 VDA6 +C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ NO BUSHING REACTORS AT SYLMAR +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AS5Y TXS5A AC6Y TXA6 + 0BS5Y TXS5B AC6Y TXA6 + 0CS5Y TXS5C AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXSA5 5SA TXA6C VDA6 + 0TXSB5 5SB TXA6C VDA6 + 0TXSC5 5SC TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXS5A TXA6 +52TXSA5 TXSB5 +51TXS5B TXA6 +52TXSB5 TXSC5 +51TXS5C TXA6 +52TXSC5 TXSA5 +C +C $$$$$$$$$$$$$$$$$$$$$$$$$ LEAKAGE CAPACITANCE ACROSS VALVES +C + 0VICA CTH6C .001 + 0VICB CTH6C VICA CTH6C + 0VICC CTH6C VICA CTH6C + 0AN6C VICA VICA CTH6C + 0AN6C VICB VICA CTH6C + 0AN6C VICC VICA CTH6C + 0IICA CTH2C VICA CTH6C + 0IICB CTH2C VICA CTH6C + 0IICC CTH2C VICA CTH6C + 0AN2C IICA VICA CTH6C + 0AN2C IICB VICA CTH6C + 0AN2C IICC VICA CTH6C + 0IIICA CTH3C VICA CTH6C + 0IIICB CTH3C VICA CTH6C + 0IIICC CTH3C VICA CTH6C + 0AN3C IIICA VICA CTH6C + 0AN3C IIICB VICA CTH6C + 0AN3C IIICC VICA CTH6C + 0VCA CTH5C VICA CTH6C + 0VCB CTH5C VICA CTH6C + 0VCC CTH5C VICA CTH6C + 0AN5C VCA VICA CTH6C + 0AN5C VCB VICA CTH6C + 0AN5C VCC VICA CTH6C + 06SA CTH6S VICA CTH6C + 06SB CTH6S VICA CTH6C + 06SC CTH6S VICA CTH6C + 0AN6S 6SA VICA CTH6C + 0AN6S 6SB VICA CTH6C + 0AN6S 6SC VICA CTH6C + 02SA CTH2S VICA CTH6C + 02SB CTH2S VICA CTH6C + 02SC CTH2S VICA CTH6C + 0AN2S 2SA VICA CTH6C + 0AN2S 2SB VICA CTH6C + 0AN2S 2SC VICA CTH6C + 03SA CTH3S VICA CTH6C + 03SB CTH3S VICA CTH6C + 03SC CTH3S VICA CTH6C + 0AN3S 3SA VICA CTH6C + 0AN3S 3SB VICA CTH6C + 0AN3S 3SC VICA CTH6C + 05SA CTH5S VICA CTH6C + 05SB CTH5S VICA CTH6C + 05SC CTH5S VICA CTH6C + 0AN5S 5SA VICA CTH6C + 0AN5S 5SB VICA CTH6C + 0AN5S 5SC VICA CTH6C +BLANK card ending electric network branch cards +C ((((((((((( BRIDGE CIRCUIT BREAKERS, CELILO )))))))))))))))))))) + AC6 AC6Y -10.E-3 10.E+3 + BC6 BC6Y -10.E-3 10.E+3 + CC6 CC6Y -10.E-3 10.E+3 + AC2 AC2Y -10.E-3 10.E+3 + BC2 BC2Y -10.E-3 10.E+3 + CC2 CC2Y -10.E-3 10.E+3 + AC3 AC3Y -10.E-3 10.E+3 + BC3 BC3Y -10.E-3 10.E+3 + CC3 CC3Y -10.E-3 10.E+3 + AC5 AC5Y -10.E-3 10.E+3 + BC5 BC5Y -10.E-3 10.E+3 + CC5 CC5Y -10.E-3 10.E+3 +C +C ((((((((((( BRIDGE CIRCUIT BREAKERS, SYLMAR )))))))))))))))))))) + AS6 AS6Y -10.E-3 10.E+3 + BS6 BS6Y -10.E-3 10.E+3 + CS6 CS6Y -10.E-3 10.E+3 + AS2 AS2Y -10.E-3 10.E+3 + BS2 BS2Y -10.E-3 10.E+3 + CS2 CS2Y -10.E-3 10.E+3 + AS3 AS3Y -10.E-3 10.E+3 + BS3 BS3Y -10.E-3 10.E+3 + CS3 CS3Y -10.E-3 10.E+3 + AS5 AS5Y -10.E-3 10.E+3 + BS5 BS5Y -10.E-3 10.E+3 + CS5 CS5Y -10.E-3 10.E+3 +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +C VALVES AT CELILO +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +11VI-1 CTH6C F2SI 1 +11VI-3 CTH6C F4SI 1 +11VI-5 CTH6C F6SI 13 +11VI-4 VICA F5SI 1 +11VI-6 VICB F1SI 1 +11VI-2 VICC F3SI 1 +11II-1 CTH2C F2SII 1 +11II-3 CTH2C F4SII 13 +11II-5 CTH2C F6SII 1 +11II-4 IICA F5SII 1 +11II-6 IICB F1SII 1 +11II-2 IICC F3SII 1 +11III-1 CTH3C F2SII 1 +11III-3 CTH3C F4SII 1 +11III-5 CTH3C F6SII 1 +11III-4 IIICA F5SII 1 +11III-6 IIICB F1SII 1 +11III-2 IIICC F3SII 1 +11V-1 CTH5C F2SI 13 +11V-3 CTH5C F4SI 1 +11V-5 CTH5C F6SI 1 +11V-4 VCA F5SI 1 +11V-6 VCB F1SI 1 +11V-2 VCC F3SI 1 +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +C VALVES AT SYLMAR +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +116-1 6SA F5RIII 1 +116-3 6SB F1RIII 1 +116-5 6SC F3RIII 1 +116-4 CTH6S F2RIII 1 +116-6 CTH6S F4RIII 1 +116-2 CTH6S F6RIII 1 +112-1 2SA F5RIV 1 +112-3 2SB F1RIV 1 +112-5 2SC F3RIV 1 +112-4 CTH2S F2RIV 1 +112-6 CTH2S F4RIV 1 +112-2 CTH2S F6RIV 1 +113-1 3SA F5RIV 1 +113-3 3SB F1RIV 1 +113-5 3SC F3RIV 1 +113-4 CTH3S F2RIV 1 +113-6 CTH3S F4RIV 1 +113-2 CTH3S F6RIV 1 +115-1 5SA F5RIII 1 +115-3 5SB F1RIII 1 +115-5 5SC F3RIII 1 +115-4 CTH5S F2RIII 1 +115-6 CTH5S F4RIII 1 +115-2 CTH5S F6RIII 1 +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +BLANK card ending switch and valve cards +14GENAS 191.88 60. - 90. -1. +14GENBS 191.88 60. 150. -1. +14GENCS 191.88 60. 30. -1. +14GENAR 177.00 60. - 90. -1. +14GENBR 177.00 60. 150. -1. +14GENCR 177.00 60. 30. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GENAS | BIGEA4*BIGEA3* +C BIGEA4 | TERRA *TERRA *GENAS *13AC4 * +C GENBS | BIGEB4*BIGEB3* +C BIGEB4 | TERRA *TERRA *GENBS *13BC4 * +C GENCS | BIGEC4*BIGEC3* +C BIGEC4 | TERRA *TERRA *GENCS *13CC4 * +BLANK card ending electric network source cards +C Pi-equivalent branches of distributed circuits ... ween indices 50 and 58. +C Total network loss P-loss by summing injections = 7.782692850288E-01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C AC6 AC6Y -1.75378290E-03 -1.51306605E-04 1.76029774E-03 +C BC6 BC6Y 7.45856087E-04 1.59447385E-03 1.76029774E-03 +C CC6 CC6Y 1.00792681E-03 -1.44316724E-03 1.76029774E-03 +C AC2 AC2Y -1.72569218E-03 -1.52548790E-04 1.73242161E-03 +C BC2 BC2Y 7.30734970E-04 1.57076766E-03 1.73242161E-03 +C < < Etc. for many more switches > > +C Step Time VI-5 II-3 V-1 S4- 4-282 4-564 +C CTH6C CTH2C CTH5C +C +C R3+ VI-5 II-3 V-1 CEL4 +C CTH6C CTH2C CTH5C S4- +C *** Phasor I(0) = -1.7537829E-03 Switch "AC6 " to "AC6Y " closed +C *** Phasor I(0) = 7.4585609E-04 Switch "BC6 " to "BC6Y " closed +C *** Phasor I(0) = 1.0079268E-03 Switch "CC6 " to "CC6Y " closed +C *** Phasor I(0) = -1.7256922E-03 Switch "AC2 " to "AC2Y " closed +C < < Etc. for many more switches > > +C 0 0.0 92.4476735 -80.392419 -46.233822 -.819E-12 -.1172E-13 .63533E-12 +C -.1507E-12 0.0 0.0 0.0 .75976E-15 +C 1 .5E-4 92.4314685 -81.253201 -44.71671 -.8331E-12 -.1594E-13 .6287E-12 +C -.1585E-12 0.0 0.0 0.0 .66724E-15 +C +C 60 .003 39.3727405 -76.238222 52.7516794 -.1792E-12 -.4468E-12 -.4678E-14 +C .13348E-12 0.0 0.0 0.0 .19966E-17 +C Valve "II-6 " to "IICB " closing after 3.85000000E-03 sec. +C Valve "III-6 " to "IIICB " closing after 3.85000000E-03 sec. +C 80 .004 10.9218031 -49.021132 82.2441262 .351391677 -.3948E-12 -.1425E-12 +C .27674E-12 0.0 0.0 0.0 .008847337 +C Valve "II-6 " to "IICB " opening after 4.40000000E-03 sec. +C Valve "III-6 " to "IIICB " opening after 4.40000000E-03 sec. +C Valve "2-3 " to "2SB " closing after 4.60000000E-03 sec. +C Valve "3-3 " to "3SB " closing after 4.60000000E-03 sec. +C 100 .005 -15.400648 -6.2930283 103.579402 .261261466 -.2871E-13 -.3294E-12 +C .480225773 0.0 0.0 0.0 -.00385764 + S4- 4-282 4-564 R4- A3+ 3-282 3-564 R3+ +BLANK card ending output variable requests (just node voltages, here) +C Valve "6-2 " to "CTH6S " closing after 1.95500000E-02 sec. +C Valve "5-2 " to "CTH5S " closing after 1.95500000E-02 sec. +C Valve "6-6 " to "CTH6S " opening after 1.96500000E-02 sec. +C Valve "5-6 " to "CTH5S " opening after 1.96500000E-02 sec. +C 400 .02 0.0 -54.075016 30.0149023 221.835361 219.299117 204.062343 +C -190.73923 .526719239 0.0 0.0 .534347606 +C Variable max:133.775933 148.031013 155.971885 221.835361 219.299117 204.062343 +C 4.32878878 .743966149 .528582385 .356896792 .59792085 +C Times of max : .01655 .0101 .0064 .02 .02 .02 +C .0082 .0168 .0103 .011 .0184 +C Variable min:-187.32326 -180.64358 -231.51084 -.1085E-11 -.5442E-12 -3.1712838 +C -190.73923 -.03732442 -.09128378 -.20023036 -.00626357 +C Times of min : .00665 .0155 .0117 .65E-3 .00345 .0082 +C .02 .0065 .01535 .01165 .0048 + PRINTER PLOT + 194 2. 0.0 20. VI-5 CTH6C { Axis limits : (-0.373, 7.440) + 144 2. 0.0 20. S4- { Axis limits : (0.000, 2.218) +BLANK card terminating batch-mode plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc20.dat b/benchmarks/dc20.dat new file mode 100644 index 0000000..8308fc5 --- /dev/null +++ b/benchmarks/dc20.dat @@ -0,0 +1,166 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-20 +C TACS test having no electric network. Three transfer functions are +C involved, with two being cascaded together (note OUT1 feeds OUT2). +C The third, OUT3, is of second order. Both sinusoidal (Type-14) and +C constant (Type-11) sources are involved, and both are present during +C the steady-state solution, although they are mathematically disconnected. +C 11 February 2001, add the following line to demonstrate that the +C answer does not change if Dube's logic for supplemental variables +C is replaced by the pocket calculator. On the other hand, this is +C no great feat since the data involves no supplemental variables! +C TACS ASSEMBLY LANGUAGE { Temporary request for use of pocket calculator +TACS POCKET CALCULATOR { 12 January 2001, this new line replaces preceding + .05 1.0 + 1 1 1 1 1 +TACS STAND ALONE + 1OUT1 +GEN + 1.0 + 1.0 1.0 + 1OUT2 +OUT1 + 1.0 + 1.0 + 1DC*10 +DC 10. + 1.0 1.0 + 1.0 + 2OUT3 +GEN + 1.0 + 1.0 2.0 1.0 +11DC 1.0 -1. +14GEN 100. 1.0 -1. +33OUT1 OUT2 DC*10 OUT3 TIMEX ISTEP DELTATFREQHZOMEGARZERO PLUS1 MINUS1UNITY +33INFNTYPI DC GEN +C The TACS ac steady-state phasor solution for frequency 1.00000000E+00 follo +C Name Real part Imaginary part Magnitude Degrees +C OUT3 -2.3483896115E+00 -7.6694251071E-01 2.4704523032E+00 -161.913878 +C DC*10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.000000 +C OUT2 9.7529547697E+01 1.5522309613E+01 9.8757049215E+01 9.043061 +C OUT1 2.4704523032E+00 -1.5522309613E+01 1.5717672548E+01 -80.956939 +C Zero-frequency (dc) steady-state solution for TACS follows. +C (Name) TACS value (Name) TACS value (Name) TACS value +C OUT3 0.00000000E+00 DC*10 1.00000000E+01 OUT2 0.00000000E+00 +C ISTEP 0.00000000E+00 DELTAT 5.00000000E-02 FREQHZ 1.00000000E+00 +C PLUS1 1.00000000E+00 MINUS1 -1.00000000E+00 UNITY 1.00000000E+00 +C DC 1.00000000E+00 GEN 0.00000000E+00 +BLANK card ending all TACS data cards + PRINTER PLOT +C 20 1.0 2.44544812 97.5545519 10. -2.2965486 1.0 20. .05 +C 1.0 -1. 1.0 .1E20 3.14159265 1.0 100. +C maxima : 15.4314771 97.5545519 10. 2.43100116 1.0 20. .05 +C 1.0 -1. 1.0 .1E20 3.14159265 1.0 100. +C Times of maxima : .25 1.0 0.0 .45 1.0 1.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C minima : -15.381996 -97.593085 10. -2.4154432 0.0 0.0 .05 +C 1.0 -1. 1.0 .1E20 3.14159265 1.0 -100. +C Times of minima : .75 0.5 0.0 .95 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 0.5 + 143 .2 0.0 1.0 OUT1 OUT2 OUT3 { Axis limits: (-9.759, 9.755) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 3 parts of DC-20. TACS-only, with multiple-frequency sinusoidal +C steady-state solution (400 and 10 Hz), plus constant (dc) solution. +C 1 February 2002, previously-neglected need to cancel TPC is satisfied +C by the following TPC OFF declaration. Of course, this has no effect +C since no supplemental variables are being used here, anyway. There is +C no pocket calculator use, so nothing to turn off, in fact. But we go +C through the motions, anyway, as an illustration of the new declaration: +TACS POCKET CALCULATOR OFF { 1 February 2002, illustrate this new cancellation + .0001 0.02 + 1 1 1 1 1 -1 + 10 10 100 100 +TACS STAND ALONE + 1OUT1 +GEN1 + 1.0 + 1.0 1.0 + 1OUT2 +GEN2 + 1.0 + 1.0 1.0 + 1OUT3 +DC + 1.0 + 1.0 1.0 + 1OUT4 +GEN1 +GEN2 +DC + 1.0 + 1.0 1.0 +11DC 1.0 -1. +14GEN1 10000. 400.0 -1. +14GEN2 1000. 10.0 -1. +33OUT1 OUT2 OUT3 OUT4 +C Step Time TACS TACS TACS TACS +C OUT1 OUT2 OUT3 OUT4 +C 0 0.0 .001583143 .253238813 1.0 1.25482196 +C 1 .1E-3 .985825353 .353207504 1.0 2.33903286 +BLANK card terminates the last TACS data card. + PRINTER PLOT +C 200 .02 .001582814 15.2109079 1.0 16.2124907 +C Variable maxima : 3.95021189 15.2109079 1.0 19.4959527 +C Times of maxima : .6E-3 .02 0.0 .0181 +C Variable minima : -3.9499822 .253238813 1.0 -.84075309 +C Times of minima : .0194 0.0 0.0 .0018 + 144 1. 0.0 10. OUT4 { Axis limits: (-0.084, 1.295) +BLANK card terminates all plot cards. +BEGIN NEW DATA CASE +C 3rd of 3 parts of DC-20. Continued test of multiple-frequency solution +C capability, only with the addition of an electric network. To the TACS +C generators of 400 and 10 Hz is added the 50 Hz of the electric network. + .0001 0.02 + 1 1 1 1 1 -1 + 10 10 100 100 +TACS HYBRID + 1OUT1 +GEN1 + 1.0 + 1.0 1.0 + 1OUT2 +GEN2 + 1.0 + 1.0 1.0 + 1OUT3 +DC + 1.0 + 1.0 1.0 + 1OUT4 +NOD1 + 1.0 + 1.0 1.0 + 1OUT5 +NOD2 + 1.0 + 1.0 1.0 + 1OUT6 +GEN1 +GEN2 +DC + 1.0 + 1.0 1.0 + 1OUT7 +DC +GEN1 +NOD1 +NOD2 +GEN2 + 1.0 + 1.0 1.0 +11DC 1.0 -1. +14GEN1 100000. 400.0 -1. +14GEN2 1000. 10.0 -1. +90NOD1 50.0 -1. +91NOD2 50.0 -1. +33OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 +BLANK card ends final TACS data + NOD1 NOD2 1.00 +BLANK card after last electric network branch + NOD2 -1.0 1.0 +BLANK card ends switches +14NOD1 -1 100.0 50.0 -1.0 +BLANK card after last electric network source + NOD1 +C Zero-frequency (dc) steady-state solution for TACS follows. +C (Name) TACS value (Name) TACS value (Name) TACS value +C OUT7 1.00000000E+00 OUT6 1.00000000E+00 OUT5 0.00000000E+00 +C OUT2 0.00000000E+00 OUT1 0.00000000E+00 TIMEX 0.00000000E+00 +C FREQHZ 4.00000000E+02 OMEGAR 2.51327412E+03 ZERO 0.00000000E+00 +C UNITY 1.00000000E+00 INFNTY 1.00000000E+19 PI 3.14159265E+00 +C GEN2 0.00000000E+00 NOD1 0.00000000E+00 NOD2 0.00000000E+00 +C Step Time NOD1 TACS TACS TACS TACS TACS +C OUT1 OUT2 OUT3 OUT4 OUT5 +C *** Phasor I(0) = 0.1000000E+03 Switch "NOD2 " to " " closed +C 0 0.0 100. .015831432 .253238813 1.0 .001013202 .001013202 +C 1 .1E-3 99.950656 9.85825353 .353207504 1.0 .011010133 .011010133 +BLANK card ends selective node voltage outputs +C Last step: 200 .02 100. .015828137 15.2109079 1.0 .001013198 +C Last step continued: .001013198 16.226736 16.2287624 +C Final 6 maxima : 15.2109079 1.0 .318280647 .318280647 55.0478571 54.6917329 +C Associated times : .02 0.0 .005 .005 .0181 .0181 + PRINTER PLOT + 194 1. 0.0 10. TACS OUT7 { Axis limits: (-3.599, 4.883) +BLANK card terminating plotting +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc21.dat b/benchmarks/dc21.dat new file mode 100644 index 0000000..4e8e80c --- /dev/null +++ b/benchmarks/dc21.dat @@ -0,0 +1,545 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-21 +C Test of various TACS devices, types 50-56. There is no electric network, +C and no physical or other coherent meaning. Components are disconnected. +C 1st of 9 subcases begins. Change 12 Jan 98: In STARTUP, TIMTAC is reduced +C from 1.0 to 0.99 in order to ensure the warning +C message of Type-50 device "DEV50I". It is on step 10 +C that the zero crossing is noted, and 10 * 0.1 may be less +C than TIMTAC = 1.0 (sometimes roundoff produced a message, at +C other times it did not). Reduce TIMTAC to eliminate the uncertainty. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +C Preceding line allows the SEEK file to be remote if this main data file is + 0.1 1.2 + 1 1 0 0 1 +TACS STAND ALONE +C 8 May 2011, add illustration of new "SEEK" option of Type-56 device. This +C uses the logic of Orlando Hevia's new MODELS "SEEK" function (which is just +C improved MODELS POINTLIST) instead of the usual TACS logic for nonlinear +C (X, Y) interpolation. Begin with the new optional TACS miscell. data card: +C 3456789012345678901234567890123456789012345678 -- Ruler for following optional +C < File Name> IPRMDL KOMPAC miscellaneous data card : +TACS MISC. DATA dc21seek. 0 0 + QUART +MIDDLE 0.5 + MIDDLE +UNITY 0.6 +14SOURCE 1.0.833333333 +88DEV50I50+SOURCE 0.8 3.0 { Apr 97, add 3% +88DEV50N50+SOURCE +88DEV51O51+UNITY 0.6 SOURCE +88DEV51C51+UNITY 1.MIDDLESOURCE +88DEV52C52+UNITY 0.6 1. SOURCE +88DEV52O52+UNITY MIDDLESOURCE +88DEV53F53+SOURCE 0.3 +88DEV53V53+SOURCE 0.6MIDDLE +88DEV54F54+DEV52C 0.3 +88DEV54V54+DEV52O -0.2 0.3 QUART +88DEV55 55+SOURCE + -1.0 + -0.5 + 0.0 + 0.5 + 1.0 + 9999. +88DEV56 56+SOURCE + -1.0 0.0 + -0.5 0.5 + 0.0 0.0 + 0.5 0.5 + 1.0 0.0 + 9999. +C 8 May 2011 WSM adds a second Type-56 device that is identical to the one just +C inputted. But this second is different in that it has no inline (X,Y) points. +C Instead, it uses Orlando Hevia's new "SEEK" function of MODELS to produce the +C identically-same answer. The characteristic of (X, Y) points has been moved +C to the separate disk file DC21SE45.DAT where root name DC21SEEK is defined +C by the optional TACS misc. data card. Integer 45 is the function number that +C is defined by device parameter "B" of columns 57-62. Finally, columns 69-80 +C are to be keyed with the special request word "MODELS SEEK " as shown : +C Type-56 device allows MODELS "SEEK" : SEEK function # Key word---> +88SEE56 56+SOURCE 45 MODELS SEEK +33QUART MIDDLETIMEX UNITY SOURCEDEV50IDEV50NDEV51ODEV51C +33DEV52CDEV52ODEV53FDEV53VDEV54FDEV54VDEV55 DEV56 SEE56 +77DEV52O 1.0 +77QUART 0.3 +77MIDDLE 0.6 +C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 18 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS +C QUART MIDDLE TIMEX UNITY SOURCE DEV50I DEV50N DEV51O DEV51C DEV52C +C +C TACS TACS TACS TACS TACS TACS TACS TACS +C DEV52O DEV53F DEV53V DEV54F DEV54V DEV55 DEV56 SEE56 +C 0 0.0 0.3 0.6 0.0 1.0 0.0 0.8 0.0 0.0 0.0 0.0 +C 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C MODELS "SEEK" function # 45 involves 5 pairs of (X,Y). These are stored in List-20 SCONST cells 3 through 12. +C 1 0.1 0.3 0.6 0.1 1.0 .866025404 0.8 0.0 1.0 0.0 0.0 +C 1.0 0.0 0.0 0.0 0.0 0.5 .133974596 .133974596 +C 2 0.2 0.3 0.6 0.2 1.0 0.5 0.8 0.0 0.0 1.0 1.0 +C 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 +BLANK card that ends TACS data cards +C 12 1.2 0.3 0.6 1.2 1.0 1.0 0.8 .833333333 1.0 0.0 0.0 +C 1.0 -.1885E-8 -1. 1.0 0.0 1.0 0.0 0.0 +C Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output. +C Variable maxima : 0.3 0.6 1.2 1.0 1.0 0.8 .833333333 1.0 1.0 1.0 +C 1.0 .866025404 .866025404 1.0 1.0 1.0 0.5 0.5 +C Times of maxima : 0.0 0.0 1.2 0.0 1.2 0.0 1.0 0.1 0.2 0.2 +C 0.0 0.4 0.7 0.5 0.4 1.2 0.2 0.2 +C Variable minima : 0.3 0.6 0.0 1.0 -1. 0.8 0.0 0.0 0.0 0.0 +C 0.0 -1. -1. 0.0 0.0 -1. 0.0 0.0 +C Times of minima : 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 +C 0.2 0.9 1.2 0.0 0.0 0.5 0.0 0.0 + PRINTER PLOT + 143 .4 0.0 1.2 DEV50IDEV53F { Axis limits: (-1.000, 0.866) +BLANK card ending plot cards +BEGIN NEW DATA CASE +PRINTED NUMBER WIDTH, 10, 1, { Request maximum precision (for 9 output columns) +C 2nd of 9 subcases of DC-21. Test TACS supplemental device types 57 and 58. +C Printout explanation is as follows: +C DEV1 = 1/S ON PLS1 UNTIL 0.010, THEN ZERO +C DEV2 = 1/S ON PLS1 UNTIL 0.010, THEN RESET TO MINUS1, INIT=3.0 +C DEV3 = 1.0 ON PLS2 UNTIL 0.010, THEN ZERO +C DEV4 = 5.0 ON PLS1 UNTIL 0.010, THEN ZERO +C DEV5 = COUNTER ON PLUS1, == ISTEP + 0.001 0.016 + 1 1 0 0 1 +TACS STAND ALONE + DUMMY +ZERO +23PLS1 1.0 0.004 0.002 +23PLS2 1.0 0.008 0.004 +11CTRL 1.0 0.010 +98SW1 57+PLUS1 + 0.002 + 0.004 + 0.005 + 9999 +98SW2 57+PLUS1 + 0.000 + 0.003 + 9999 +98DEV1 58+PLS1 0 0 1.0CTRL +98DEV2 58+PLS1 0 0 1.0CTRL MINUS1 +98DEV3 58+PLS2 1.0 1.0 0.001CTRL +98DEV4 58+PLS1 5.0 1.0 CTRL +98DEV5 58+PLUS1 COUNTR +C 26 August 2002, add a line from Orlando Hevia's EJEM58.DAT which had +C illustrated an error using compiled TACS. This exercises S.N. 7323 in +C TACSUP, which previously was in error yet was not being tested: +98S_INTE58+SOURCE 1. 1. +14SOURCE 0 1. 50. -1. 1. +C End addition on 26 August 2002. The preceding source card was an +C electric network source in Orlando's data, but then was passed to TACS +C via a Type-90 source. Here, directly make it a TACS source. +33SW1 SW2 PLS1 PLS2 CTRL DEV1 DEV2 DEV3 DEV4 DEV5 S_INTE +77SW2 1.0 +77DEV2 3.0 +C Next 11 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS +C SW1 SW2 PLS1 PLS2 CTRL DEV1 DEV2 DEV3 DEV4 DEV5 S_INTE +C 0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 +C 1 .1E-2 0.0 1.0 1.0 1.0 1.0 .5E-3 3.0005 .33333333 5.0 1.0 .47553E-3 +C 2 .002 1.0 1.0 0.0 1.0 1.0 .1E-2 3.001 .77777778 -.278E-15 2.0 .00135557 +C 3 .003 1.0 0.0 0.0 1.0 1.0 .1E-2 3.001 .92592593 .2776E-15 3.0 .00205397 +C 4 .004 0.0 0.0 1.0 0.0 1.0 .0015 3.0015 .64197531 5.0 4.0 .00250237 +BLANK card ending TACS data + PRINTER PLOT +C 16 .016 1.0 0.0 1.0 1.0 0.0 0.0 -1. 0.0 0.0 16. -.0035024 +C Variable maxima : 1.0 1.0 1.0 1.0 1.0 .0045 3.0045 .92592593 5.0 16. .00265688 +C Times of maxima : .002 0.0 .1E-2 .1E-2 .1E-2 .009 .009 .003 .1E-2 .016 .005 +C Variable minima : 0.0 0.0 0.0 0.0 0.0 0.0 -1. 0.0 -.278E-15 0.0 -.0036569 +C Times of minima : 0.0 .003 0.0 0.0 0.0 0.0 .01 0.0 .002 0.0 .015 + 144 3. 0.0 20. DEV2 DEV4 { Axis limits: (-1.000, 5.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 9 parts of DC-21. Test TACS supplemental device type 59 (derivative) +C 27 March 2010, the following LARGEST PRINTED STEP NUMBER (LPSN) is being +C added to illustrate suppression of the I7 step number after a while (step +C number 38 in this case). Steps 39 and 40 will have no step number. The 7 +C columns thereby gained allow 17 columns for time (encode using F17.3) +C 123456789012345678901234567890123456789012345678 +C NOTIME FMTIME +C < E8.0 > < A6 > +C LARGEST PRINTED STEP NUMBER 38 F17.3 +C The rules of preceding LPSN are unusual. Columns 33-40 give a step number +C either in normal I8 format or alternative E8.0 format. Zero or blank +C imply no LPSN use (to cancel preceding use). Minus one will suppress all +C printing of step number including step zero. Columns 41 and 42 are unused +C while 43-48 are reserved for an optional user-supplied format which might +C be either E-field or F-field. Use of FORMAT ( F17.3 ) this way serves to +C retain column alignment. Steps 39 and 40 will be encoded as 0.039 and 0.040 +C respectively. If columns 41-48 had been left blank, optimal encoding would +C have been used, with the result being .039 and .04 respectively. Note +C that in this case the decimal points would not be alligned. As for E-field, +C a preceding implied 1P will make the leading digit significant. About the +C new use of either E-format or I-format data, see also BENCHMARK DC-3. WSM +C A free-format alternative also is available. Switch to this 14 July 2010: +LARGEST PRINTED STEP NUMBER, 38, F17.3 { Same effect as preceding fixed-format +PRINTED NUMBER WIDTH, 11, 1, { Restore default after exceptional 2nd subcase + 0.001 0.04 + 1 1 0 0 1 +TACS STAND ALONE + DUMMY +ZERO +14SIN1 1.0 25. -90. +14COS1 1.0 25. 0. +14SIN2 1.0 25. -90. -1. +14COS2 1.0 25. 0. -1. +23PLSE 1.0 0.02 0.01 +24RAMP 10.0 0.01 0.03 +98DEV1 59+SIN1 +98DEV2 59+SIN1 +98DEV3 59+PLSE +98DEV4 59+RAMP +98DEVA 59+SIN1 +98DEVB 59+SIN2 +98DEVC 59+SIN1 +98DEVD 59+SIN2 +98DEVE 59+COS1 +98DEVF 59+COS2 +33SIN1 COS2 PLSE RAMP DEV1 DEV2 DEV3 DEV4 +33DEVA DEVB DEVC DEVD DEVE DEVF +77DEV2 1.0 +77DEVC 1.0 +77DEVD 1.0 +C Next 14 output variables belong to TACS (with "TACS" an internally +C Step Time TACS TACS TACS TACS TACS +C SIN1 COS2 PLSE RAMP DEV1 +C +C TACS TACS TACS TACS +C DEVC DEVD DEVE DEVF +C 0 0.0 0.0 1.0 0.0 0.0 0.0 +C 1.0 1.0 0.0 0.0 +C 1 .1E-2 .156434465 .987688341 1.0 1.0 156.434465 +C 156.434465 156.434465 987.688341 -12.311659 +C 2 .002 .309016994 .951056516 1.0 2.0 152.582529 +C 152.582529 152.582529 -36.631824 -36.631824 +BLANK card ending TACS data + PRINTER PLOT +C 0.039 -.15643447 .987688341 0.0 0.0 152.582529 152.582529 0.0 0.0 152.582529 152.582529 +C 152.582529 152.582529 36.6318243 36.6318243 +C 0.040 .43071E-14 1.0 1.0 0.0 156.434465 156.434465 1000. 0.0 156.434465 156.434465 +C 156.434465 156.434465 12.3116594 12.3116594 +C Variable maxima : 1.0 1.0 1.0 9.0 156.434465 +C 156.434465 156.434465 987.688341 156.434465 +C Times of maxima : .01 0.0 .1E-2 .029 .04 +C .04 .04 .1E-2 .03 +C Variable minima : -1. -1. 0.0 0.0 -156.43447 +C -156.43447 -156.43447 -156.43447 -156.43447 +C Times of minima : .03 .02 0.0 0.0 .02 +C .02 .02 .01 .01 + 144 8. 0.0 40. DEVF DEV3 { Axis limits: (-1.000, 1.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 9 in DC-21. Test TACS supplemental device types 60, 61, 62, and 63. +LARGEST PRINTED STEP NUMBER 0 { Cancel use of preceding subcase + 0.001 0.08 + 2 1 0 0 1 +TACS STAND ALONE + DUMMY +ZERO +14SIN 1.0 25. -90. +14COS 1.0 25. 0. +14SIN0 8.0 25. -90. +14SIN1 1.0 8.0 -90. +14SIN2 0.5 24.0 -90. +23PLS1 1.0 0.050 0.025 0.050 +23PLS2 1.0 0.025 0.015 0.050 0.075 +23PLS3 1.0 0.005 0.001 0.075 +98DEV1 60+MINUS1 +ZERO +PLUS1 -1.0 SIN PLUS1 +98DEV2 60+MINUS1 +ZERO +PLUS1 SIN +98DEV3 60+ZERO +ZERO +PI 20. ISTEP +98DEV4 61+MINUS1 +ZERO +PLUS1 +DELTAT -3. 222PI SIN0 +98CTRL = PLS1 + PLS2 + PLS3 +98TRCK 62+SIN1 +SIN2 CTRL +98SMPL 62+SIN1 +SIN2 CTRL +98PLOT = SIN1 + SIN2 +98MIN 63+SIN +COS -1. +98MAX 63+SIN +COS +1. +33SIN COS SIN0 DEV1 DEV2 DEV3 DEV4 MIN MAX +33CTRL PLOT TRCK SMPL SIN1 SIN2 PLS1 PLS2 PLS3 +C Step Time TACS TACS TACS TACS TACS TACS +C SIN COS SIN0 DEV1 DEV2 DEV3 +C +C TACS TACS TACS TACS TACS TACS +C PLOT TRCK SMPL SIN1 SIN2 PLS1 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 2 .002 .309016994 .951056516 2.47213595 1.0 1.0 0.0 +C .248882506 .248882506 .125357113 .100361715 .148520791 1.0 +BLANK card ending TACS data +C 80 .08 .85529E-14 1.0 .68423E-13 0.0 0.0 3.14159265 +C -1.0113901 -1.0113901 -1.0113901 -.77051324 -.24087684 0.0 +C Variable maxima : 1.0 1.0 8.0 1.0 1.0 3.14159265 +C 1.07581929 1.07581929 1.06331351 .999921044 .499960522 1.0 +C Times of maxima : .01 .04 .01 .1E-2 .1E-2 .021 +C .014 .014 .05 .031 .052 .1E-2 +C Variable minima : -1. -1. -8. -1. -1. 0.0 +C -1.0746121 -1.0633135 -1.0633135 -.77051324 -.49996052 0.0 +C Times of minima : .03 .02 .03 .021 .021 0.0 +C .076 .075 .075 .08 .073 0.0 + PRINTER PLOT + 144 8. 0.0 80. PLOT TRCK { Axis limits: (-1.075, 1.076) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 9 in DC-21. Test TACS supplemental device type 64 (min/max tracking) + 0.001 0.06 + 2 1 0 0 1 +TACS STAND ALONE + DUMMY +ZERO +14SIN1 1.0 50. -90. +23PLS 1.0 0.02 0.001 -0.01 +24RMP 8.0 0.08 +11HLD 1.0 0.03 +98MXTR1 64+RMP +SIN1 +1. +98MNTR2 64-RMP -SIN1 -1. +98MNTR3 64+RMP +SIN1 -1. 100.PLS +98MXTR4 64+RMP +SIN1 +1. HLD +98PLOT = RMP + SIN1 +33PLOT PLS HLD MXTR1 MNTR2 MNTR3 MXTR4 +77MNTR3 100. +C Next 7 output variables belong to TACS (with "TACS" an internally-added u +C Step Time TACS TACS TACS TACS TACS TACS +C PLOT PLS HLD MXTR1 MNTR2 MNTR3 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 100. +C 2 .002 .787785252 0.0 0.0 .787785252 -.78778525 .409016994 +BLANK card ending TACS data +C 60 .06 6.0 0.0 1.0 6.0 -6. 4.44894348 +C Variable maxima : 6.0 1.0 1.0 6.0 0.0 100. +C Times of maxima : .06 .01 .03 .06 0.0 0.0 +C Variable minima : 0.0 0.0 0.0 0.0 -6. .409016994 +C Times of minima : 0.0 0.0 0.0 0.0 .06 .1E-2 + PRINTER PLOT + 144 6. 0.0 60. PLOT MXTR4 { Axis limits: (0.000, 6.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 9 subcases of DC-21. Test the TACS supplemental device type 65 +C (accumulator/counter). Also, beginning 10 November 2002, add a +C request for relative table sizing. This may not be very practical, +C but it deserves to be illustrated. The proportions shown roughtly +C correspond to default dimensioning, so the effect should be neglible: +RELATIVE TACS DIMENSIONS + 11 15 7 7 3 8 21 28 1 + 0.001 0.04 + 2 1 0 0 1 +TACS STAND ALONE + DUMMY +ZERO +14SIN1 1.0 25. -90. +23PLS 1.0 0.02 0.01 +98ACC1 65+SIN1 +98ACC2 65+PLS +98DEL1 54+PLS DELTAT +98DRV = PLS - DEL1 +98RISE 60+ZERO +ZERO +PLUS1 DRV +98ACC3 65+RISE +98AVRG1 = ACC1 / ISTEP +98AVRG2 = ACC2 / ISTEP +33SIN1 PLS ACC1 ACC2 DEL1 DRV RISE ACC3 AVRG1 AVRG2 +C Next 10 output variables belong to TACS (with "TACS" an internally-adde +C Step Time TACS TACS TACS TACS TACS TACS +C SIN1 PLS ACC1 ACC2 DEL1 DRV +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 2 .002 .309016994 1.0 .465451459 2.0 1.0 0.0 +C 4 .004 .587785252 1.0 1.50722721 4.0 1.0 0.0 +BLANK card ending TACS data +C 38 .038 -.30901699 0.0 .156434465 19. 0.0 0.0 +C 40 .04 .43071E-14 1.0 .43071E-14 20. 0.0 1.0 +C Variable maxima : 1.0 1.0 12.7062047 20. 1.0 1.0 +C Times of maxima : .01 .1E-2 .019 .04 .002 .1E-2 +C Variable minima : -1. 0.0 0.0 0.0 0.0 -1. +C Times of minima : .03 0.0 0.0 0.0 0.0 .01 + PRINTER PLOT + 144 4. 0.0 40. AVRG1 AVRG2 RISE { Axis limits: (0.000, 1.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 7th of 9 subcases of DC-21. Test the TACS supplemental device type 69 +C which became available on 8 January 2003. The Type-68 TACS device is +C not being illustrated here because DCNEW-25 shows realistic use. Type +C 69 is for user-supplied source code as defined in SUBROUTINE DEVT69. +C The illustration here corresponds to logic of the UTPF, which defines +C just 2 simple functions: DEV69A = twice arg 1 plus arg 2 +C DEV69B = the square of arg 1 +PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 9 output columns) + 0.001 0.020 + 1 1 0 0 1 +TACS STAND ALONE +14SOURCE 1.0 50.0 -1. +88ARG2 = -0.5 * SOURCE +C The following 3 data cards are for Type-69 TACS devices, which first became +C available on 8 January 2003. Columns 1-10 are fixed format with the same +C rules as all other devices. Thereafter, data is free-format with one or +C more blanks separating each input. First comes the A6 function name (here +C we illustrate the 2 that are provided in SUBROUTINE DEVT69 of the UTPF). +C Note that constant arguments are allowed: +88USERA 69 DEV69A SOURCE ARG2 { Device type 69 is named USERA; 2 args follow +88USERB 69 DEV69A SOURCE 0.1 { Device type 69 is named USERB; 2 args follow +88USERC 69 DEV69B SOURCE { Device type 69 is named USERC; single arg follows +88USERD = 2.0 * USERC +88VALUE = 2.0 * SOURCE +C Should a single data card not provide enough space for all inputs of a +C Type-69 device, the addition of $$ anywhere on the right represents a +C request for continuation on the following data card. Let's illustrate +C this artificially. Note the following USERE should equal USERA. Also +C note that more than a single blank is used to separate names on the +C initial data card, and that the function name begins in column 11 (the +C previous illustrations did not have this): +88USERE 69DEV69A SOURCE $$ { Continuation mark can be anywhere on right + ARG2 { Inputs of a continuation line can begin as early as column 11 +C 27 January 2003, add 3rd function having 5 args and diagnostic print: +88THREE = 3.0 +88USERF 69 DEV69C UNITY 2.0 THREE 4.0 5.0 +88USERG 69 DEV69C 1.0 2.0 THREE 4.0 5.0 +88USERH 69 DEV69C .1E1 2.E0 30.E-1 .4E+1 0.05E+2 +33VALUE USERB ARG2 USERA USERE USERC USERD SOURCEUSERF USERG USERH +77USERA 1.5 { Initial condition on 1st of 2 function uses +77VALUE 2.0 { Initial condition on signal that is close to 2nd function +BLANK card ending TACS data + CALCOMP PLOT { Toggle plot mode to vector graphic (preceding was printer) + 144 2. 0.0 20. USERA USERD VALUE SOURCE +BLANK card ending plot cards +BEGIN NEW DATA CASE +PRINTED NUMBER WIDTH, 12, 2, { Keep dT loop precision the same, but 2 blank separators +C 8th of 9 subcases of DC-21. The first subcase illustrated the use of +C Type-56 TACS devices, including the new MODELS SEEK option. But that +C was without any MODELS. Now, 10 April 2011, we will demonstrate that +C such use is possible when MODELS is present. So, take the source and +C Type-56 device of the 1st subcase and add to them the matrix inversion +C using MODELS of the 14th subcase of DC-68. There is no interaction +C between the two types of modeling, of course. Because the time step +C and ending time are as used for the Type-56 device, matrix inversion +C will differ for all but the first use. Remember, the matrix depends on +C using simulation time T, and this will differ. But the 10th step here +C will be for 1 sec, so will coincide with the first step of DC-68. Thus +C the 10th step here will have the same inverse as the 1st step of DC-68. +C Rather than only one matrix inversion coinciding, two will. WSM. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +C Preceding line allows the SEEK file to be remote if this main data file is + 0.1 1.2 { Take 12 time steps exactly as was the case with subcase 1 + 1 -1 { Suppress accumulation of plot points, which are unused +TACS HYBRID { There will be a dummy electric network, too, as well as MODELS +C 3456789012345678901234567890123456789012345678 -- Ruler for following optional +C < File Name> IPRMDL KOMPAC miscellaneous data card : +C TACS MISC. DATA dc21seek. 0 0 +C Omit TACS misc. data since MODELS will follow, and can define the same data +14SOURCE 1.0.833333333 +88SEE56 56+SOURCE 45 MODELS SEEK +33SOURCESEE56 +BLANK card that ends TACS data cards +MODELS { Data for MODELS follows the preceding TACS data. Copy from DC-68 +C 3456789012345678901234567890123456789012345678 -- Ruler for following optional +C < File Name> IPRMDL KOMPAC miscellaneous data card : +MODELS MISC. DATA dc21seek. 0 0 +VAR a1, a2, a3, a4, a5, a6, a7, a8, a9 +MODEL invert FOREIGN invert {ixdata:1, ixin:9, ixout:9, ixvar:0} +USE invert AS invert + DATA xdata[1]:=3 -- Order of the matrices involved (here, 3) + INPUT xin[1..9] := [ 1.0, 2.0, 3.0, + 4.0, 2.0, 5.0, + 6.0, 3.0, 2.0 ] + t + OUTPUT a1:=xout[1],a2:=xout[2],a3:=xout[3], + a4:=xout[4],a5:=xout[5],a6:=xout[6], + a7:=xout[7],a8:=xout[8],a9:=xout[9] +ENDUSE +RECORD + a1 AS a11 + a2 AS a12 +C a3 AS a13 { DC-68 had more outputs, which we will not bother to show here +C a4 AS a21 { DC-68 had more outputs, which we will not bother to show here +C a5 AS a22 { DC-68 had more outputs, which we will not bother to show here +C a6 AS a23 { DC-68 had more outputs, which we will not bother to show here +C a7 AS a31 { DC-68 had more outputs, which we will not bother to show here + a8 AS a32 + a9 as a33 +ENDMODELS +C Electric network really is not used for anything. Define two series R-L-C: + GEN BUS1 15. + BUS1 2.9 +BLANK card terminates electric network branches +BLANK card ends all switches +C Finally, add a sinusoidal source to drive those dummy branches: +14GEN 100. 50. 0.0 -1. +BLANK card terminates electric network sources +BLANK card ending node voltage request +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 9th of 9 subcases of DC-21. This is a variation of the preceding 8th +C subcase. The Type-56 TACS data is similar but the matrix inversion of +C MODELS will be replaced by the SEEK function of subcase # 15 of DC-68. +C Thus both TACS and MODELS use SEEK. Both will load memory of List 20 +C from disk files DC68SExx.DAT where xx = 37 for TACS & 82 for MODELS. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +C Preceding line allows the SEEK files to be remote if this main data file is + 1.0 3.00 { Take 3 steps, from 1 second to 3 seconds. + 1 -1 { Print every step; do not bother saving points for plotting +TACS HYBRID +C 3456789012345678901234567890123456789012345678 -- Ruler for following optional +C < File Name> IPRMDL KOMPAC miscellaneous data card : +TACS MISC. DATA dc68seek. 0 0 +C About the preceding, note that here TACS will define the misc. data whereas +C the preceding subcase did this using MODELS. Either has the same effect. +C The user who wants to see diagnostic printout of SEEK can set IPRMDL = 9. +C This would be no problem for Salford ATP, as the extra output would merely +C be sent to the .DBG file. But for some other compilers, this would go +C to the .LIS file, and would be unsightly (beware). With just 3 time +C steps, however, the volume is easily tolerated. +14SOURCE 1.0.833333333 +C Type-56 device allows MODELS "SEEK" : SEEK function # Key word---> +88SEE37 56+TIMEX 37 MODELS SEEK +33SEE37 +BLANK card that ends TACS data cards +MODELS { Data for MODELS follows the preceding TACS data. Copy from DC-68 +MODEL SAMPLE +VAR X,Y,Z +FUNCTION seek FOREIGN seek {ixarg: 2} +EXEC +C The following three lines use SEEK function # 82, which is the same as #37. +C 82 does have a couple of redundant interior points to be discarded, though: +X:=SEEK(T, 82 ) +Y:=SQRT(X)*0.3 +Z:=SEEK(SQRT(X)*0.3, 82 ) +ENDEXEC +ENDMODEL +USE SAMPLE AS SAMPLE +ENDUSE +RECORD +SAMPLE.X AS SEE82 -- This will send X to LUNIT6 output of ATP as variable SEE82 +SAMPLE.Y AS Y +SAMPLE.Z AS Z +ENDRECORD +ENDMODELS +C Electric network really is not used for anything. Define two series R-L-C: + GEN BUS1 15. + BUS1 2.9 +BLANK card terminates electric network branches +BLANK card ends all switches +C Finally, add a sinusoidal source to drive those dummy branches: +14GEN 100. 50. 0.0 -1. +BLANK card terminates electric network sources +C Total network loss P-loss by summing injections = 0.000000000000E+00 +C 3 or more consecutive, identical Y has allowed the omission of 2 incoming (X,Y) points. The next line reflects this fact. +C MODELS "SEEK" function # 82 involves 7 pairs of (X,Y). These are stored in List-20 SCONST cells 3 through 16. +C Blank card ending requests for output variables. |BLANK card ending node voltage request +C Column headings for the 4 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Next 3 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Column headings for the 4 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Next 3 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time TACS MODELS MODELS MODELS +C SEE37 SEE82 Y Z +C 0 0.0 0.0 69. 2.49198716 72.6314093 +C TACS "SEEK" function # 37 involves 7 pairs of (X,Y). These are stored in List-20 SCONST cells 19 through 32. +C 1 1.0 59.5 59.5 2.31408729 64.4480155 +C 2 2.0 50. 50. 2.12132034 55.5807358 +C 3 3.0 96. 96. 2.93938769 93.2118338 +BLANK card ending node voltage request +C Note the preceding messages that report loading of SEEK functions # 82 & 37: +C MODELS "SEEK" function # 82 involves 7 pairs of (X,Y). ... cells 3 through 16. +C TACS "SEEK" function # 37 involves 7 pairs of (X,Y). .. cells 19 through 32. +C Each requires 14 cells for the 7 pairs of (X, Y) plus two extras (constant +C overhead) for a total of 16. Because initialization of MODELS occurs before +C the dT loop is entered, the message for MODELS appears first and it is the +C use of MODELS that grabs the first 16 cells. TACS use of SEEK first occurs +C on time step 1, so it follows. TACS loads the following 16 cells of List +C 20 (cells 17 thru 32). Were the TACS use to be changed from # 37 to # 82, +C there would be no second message (for TACS). In this case, TACS would be +C sharing the List-20 storage that was established by MODELS. +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc21se45.dat b/benchmarks/dc21se45.dat new file mode 100644 index 0000000..f8cd52e --- /dev/null +++ b/benchmarks/dc21se45.dat @@ -0,0 +1,5 @@ +-1.0, 0.0 +-0.5, 0.5 + 0.0, 0.0 + 0.5, 0.5 + 1.0, 0.0 diff --git a/benchmarks/dc22.dat b/benchmarks/dc22.dat new file mode 100644 index 0000000..78c1c87 --- /dev/null +++ b/benchmarks/dc22.dat @@ -0,0 +1,1713 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-22 +C Illustration of basic TACS logic that can be used to control the firing of +C valves (thyristers) of an ac/dc converter bridge. The electric network +C actually has no valves, however (TACS output signals are not used). The +C electric network passes balanced three-phase voltages to TACS via Type-90 +C sources. Summers convert to line-to-line voltages. A constant firing +C angle DELAY1 of 1.0 msec is used, for simplicity. TACS variables FIRE1 +C through FIRE6 should go back to electric network to control valves (only +C FIRE1 is passed back, and for simplicity, just to a Type-60 source). +C After this 1st small subcase, there is a 2nd, followed by 2 large subcases +C 11 November 1998, add Type-10 source to illustrate saw-toothed waveform +C Note: program created on this date, or later, is required for use. +C 26 January 1999, add Orlando Hevia's rectangular and positive-pulse +C waveforms. One new vector plot at end should be studied to understand. +PRINTED NUMBER WIDTH, 10, 2, + .000500 .040 { Double T-max on 26 Jan 99 to show repetition of Hevia signals + 1 1 1 1 1 -1 + 40 5 +TACS HYBRID + PHA-B +GENA -GENB + PHB-C +GENB -GENC + PHC-A +GENC -GENA +90GENA +90GENB +90GENC +98ZA-B 52+UNITY 1. 0. 0. PHA-B +98ZB-A 52+UNITY 1. 0. 1. PHA-B +98ZB-C 52+UNITY 1. 0. 0. PHB-C +98ZC-B 52+UNITY 1. 0. 1. PHB-C +98ZC-A 52+UNITY 1. 0. 0. PHC-A +98ZA-C 52+UNITY 1. 0. 1. PHC-A +98DELAY1 .001 +98FIRE1 54+ZA-B .001 DELAY1 +98FIRE4 54+ZB-A .001 DELAY1 +98FIRE3 54+ZB-C .001 DELAY1 +98FIRE6 54+ZC-B .001 DELAY1 +98FIRE5 54+ZC-A .001 DELAY1 +98FIRE2 54+ZA-C .001 DELAY1 +33PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B ZC-A ZA-C GENA GENB GENC FIRE1 +33FIRE4 FIRE3 FIRE6 FIRE5 +BLANK card ending all TACS data + 0GENA 1.0 + 0GENB 1.0 + 0GENC 1.0 + FIRE1 1.0 + SAW 1.0 { Load on sawtooth waveform } 1 + RECT 1.0 { Load on rectangular waveform } 1 + PULSE 1.0 { Load on positive pulse } 1 + SINE 1.0 { Load on reference sine wave } 1 +BLANK card ending branch cards of the electric network +BLANK card ending switch cards of the electric network +14GENA 1.0 60. -90. +14GENB 1.0 60. 30. +14GENC 1.0 60. 150. +60FIRE1 +C Prior to 11 November 1998, saw-toothed waveforms were not generated on the +C electrical side. If needed, they were generated in TACS and passed to the +C electrical side just as the preceding Type-60 source illustrates. Orlando +C Hevia contributed the following centered sawtooth waveform that is based on +C a Type-10 analytically-defined source. Note that the signal is directly +C generated on the electrical side (no need for TACS): +10SAW 100.0*(TIMEX-(TRUNC(TIMEX/0.010)*0.010))-0.5 { See Oct 98, newsletter +C Orlando Hevia contributes rectangular waveform and positive pulse on +C 26 January 1999. The rectangular waveform is trivial, so add it first: +10RECT 0.50*SIGN(SIN(TIMEX*314.1592)) +C The positive pulse is more involved. More precisely, documentation of +C the parameters is more involved. The following comment cards are from +C Mr. Hevia (hope they are self-explanatory). +C W= PULSE WIDTH (DEGREES) +C X= ARCCOS(W/2) +C X= ARCCOS(30/2)= 0.9659 +C P= PHASE IN DEGREES (THE START OF PULSE) +C Y= PHASE IN RADIANS +C Y= (P+W/2)*3.141592/180.0 +C Y= (45+30/2)*3.141592/180.0= 1.0472 +C PULSE= 0.50*SIGN(COS(TIMEX*314.1592-Y )-X )+0.5 +10PULSE 0.50*SIGN(COS(TIMEX*314.1592-1.0472)-0.9659)+0.5 +C 10PULSE -.25 { Offset the preceding downward by 1/4 to demonstrate superposition +C Preceding demonstrated the superposition of two sources on the same node. But +C 3 were mistreated prior to correction 12 May 2001. To prove that 3 now can +C be handled properly, split the preceding .25 into .10 and .15: +10PULSE -.10 { Offset the preceding downward by .10 to demonstrate superposition +10PULSE -.15 { Offset the preceding downward by .15 to demonstrate superposition +C Finally, let's add Mr. Hevia's reference waveform. This documents the +C sign and phase of the rectangular waveform. Plot will be beautiful. +10SINE SIN(TIMEX*314.1592) { Reference signal (RECT is 1/2 the sign of this) +BLANK card ending source cards of the electric network +C Next 4 output variables are branch currents (flowing from the upper node to the lower node); +C Next 17 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time SAW RECT PULSE SINE TACS TACS TACS TACS TACS TACS TACS +C TERRA TERRA TERRA TERRA PHA-B PHB-C PHC-A ZA-B ZB-A ZB-C ZC-B +C +C TACS TACS TACS TACS TACS TACS TACS TACS TACS TACS +C ZC-A ZA-C GENA GENB GENC FIRE1 FIRE4 FIRE3 FIRE6 FIRE5 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-3 -.45 0.5 -.25 .1564344 -.569614 1.701371 -1.13176 0.0 1.0 1.0 0.0 +C 0.0 1.0 .1873813 .7569951 -.944376 0.0 0.0 0.0 0.0 0.0 +C 2 .1E-2 -.4 0.5 -.25 .3090169 -.253023 1.61042 -1.3574 0.0 1.0 1.0 0.0 +C 0.0 1.0 .3681246 .6211478 -.989272 0.0 0.0 0.0 0.0 0.0 +BLANK card ending selective node voltage outputs (none) +C 80 .04 -.5 -.5 -.25 -.261E-5 1.582307 -1.40126 -.181049 1.0 0.0 0.0 1.0 +C 0.0 1.0 .5877853 -.994522 .4067366 1.0 0.0 0.0 1.0 0.0 +C Variable maxima : .45 0.5 .75 1.0 1.731671 1.728633 1.730532 1.0 1.0 1.0 1.0 +C 1.0 1.0 1.0 .9997807 .9991228 1.0 1.0 1.0 1.0 1.0 +C Times of maxima :.0395 .5E-3 .0025 .005 .0055 .0165 .011 .0015 .5E-3 .5E-3 .0045 +C .007 .5E-3 .0375 .032 .0265 .0035 .0025 .0025 .0065 .009 +C Variable minima : -.5 -.5 -.25 -1. -1.73167 -1.73205 -1.73167 0.0 0.0 0.0 0.0 +C 0.0 0.0 -1. -.999781 -.999781 0.0 0.0 0.0 0.0 0.0 +C Times of minima : .01 .0105 0.0 .015 .0305 .025 .0195 0.0 0.0 0.0 0.0 +C 0.0 0.0 .0125 .007 .018 0.0 0.0 0.0 0.0 0.0 + CALCOMP PLOT + 194 4. 0.0 40. -1.0 1.0BRANCH { Show 2 cycles of the 4 Type-10 Hevia signals + SINE RECT PULSE SAW + PRINTER PLOT + 194 2. 0.0 20. TACS PHA-B TACS FIRE1 { Axis limits: (-1.731, 1.732) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 5 subcases of DC-22 is a hybrid TACS example of the TACS-controlled +C resistance (Type-91 electric network branch type). All-resistive electric +C network allows easy checking with a pocket calculator at any step: For each +C branch, verify that program node voltages and branch currents correspond to +C the branch constraint equations v = R * i. There actually are two discon- +C nected subnetworks, with one having two TACS-controlled arcs (illustrating +C use of the multivariable solution code of "ZINCOX") and the other having 1. +PRINTED NUMBER WIDTH, 11, 1, { Reassert default choice (used before 25 Jan 99) +CHANGE PRINTOUT FREQUENCY + 5 5 + .02 2.0 { Step size is immaterial since network has no dynamics + 1 1 1 1 1 +TACS HYBRID { In a real case, arcs are on electric side, and equations in TACS +99RESIS = 1.0 + SIN ( 3.0 * TIMEX ) { 1st R(t) signal -- constant + sine wave +99RES = 1.0 + COS ( 3.0 * TIMEX ) { 2nd R(t) signal -- constant + cosine +33RESIS RES { Output the only 2 TACS variables: the 2 R(t) resistance functions +77RESIS 1.0 { Initial condition on 1st R(t) insures smooth start +77RES 2.0 { Initial condition on 1st R(t) insures smooth start +BLANK card ending all TACS data + BUS1 BUS2 1.0 { Master copy of five 1-ohm resistors } 1 + BUS2 BUS3 BUS1 BUS2 { 2nd of 3 linear branches in 1st subnetwork + BUS3 BUS1 BUS2 { 3rd of 3 linear branches in 1st subnetwork + BUS1 BUS4 BUS1 BUS2 { 1st of 2 linear branches in second subnetwork + BUS4 BUS1 BUS2 { 2nd of 2 linear branches in second subnetwork +91BUS2 TACS RESIS { R(t) controlled by TACS variable "RESIS" } 1 +91BUS3 TACS RES { R(t) controlled by TACS "RES" --- 2nd of 2 } 1 +91BUS4 TACS RES { R(t) within 2nd, isolated subnetwork } 1 +BLANK card ending electric network branches +BLANK card ending switches +11BUS1 1.0 { 1-volt battery excites ladder networks of both subnetw +BLANK card ending electric network source cards. +C Step Time BUS4 BUS3 BUS2 BUS1 BUS2 BUS3 +C TERRA TERRA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .02 0.4 .153846154 .384615385 1.0 .384615385 .076923077 +C 2 .04 .39992797 .157235276 .393158988 1.0 .3709173 .078688436 + 1 { Request all node voltage outputs. Just 4: BUS1 through BUS4 +C Last step: 100 2.0 .3976118 .127869158 .321592965 1.0 .484683228 +C Last step cont. ..... .065854649 .204776399 .678407035 .720584502 1.96017029 +C Variable max : 0.4 .175860563 .464962112 1.0 .999366283 .342009625 .999533993 +C Times of maxima : .02 .28 .44 .02 1.6 1.02 + PRINTER PLOT { Axis limits: (0.000, 2.000) + 193 .4 0.0 2.0 TACS RESIS TACS RES { 1st of 2 plots is two TACS R(t) + 193 .4 0.0 2.0 BRANCH { Axis limits: (0.000, 9.995) + BUS2 BUS3 BUS4 { 3 R(t) arc currents +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 5 subcases illustrates the EMTP simulation of a rail gun or mass +C driver. It was contributed by Wendell Neugebauer as described in his +C paper on the subject (published in the Sept, 1990, issue of EMTP News). +C AUGMENTED RAILGUN (Mass driver) Simulation +C CAPACITOR BANK DRIVE +C 65 CANS OF 65 kJ, 22kV FOR EACH OF 8 STAGES, TOTAL INITIAL ENERGY = 33.8 MJ +C Wendell NEUGEBAUER +C 586 Middle Line Rd. +C Ballston Spa, New York 12020 +C +C March 20, 1990 +C Tel. (518) 885-6050 (home) (evenings only) +C +C This is a simulation of a mass driver as energized from a bank of charged +C capacitors. The individual switches are timed in synchronism with the +C position of the mass along the rails. The physics of the driver itself +C are modelled under TACS using its pseudo FORTRAN equations to implement +C Newton's laws. The individual TACS statements are commented to show the +C particular variables being computed. The storage capacitors and the +C associated electrical network are modelled using standard EMTP components. +C Note about time-step size. Wendell Neugebauer's originally data +C case used DELTAT = 1.E-6 and TMAX = 5.5 msec as shown below on +C comment cards. But the simulation is slow. By multiplying DELTAT +C by 5, the simulation is speeded without significantly affecting the +C PRINTER PLOT of rail current. +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 +C 0 0 4700 0 0 0 0 0 12000 0 + 0 0 4700 0 0 0 0 10 5000 0 + 0 0 220 + 240000 +C Preceding dimensions are the same as used by the 4th subcase except that +C List 18 is increased from 0 (default 5) to 10 and List 19 is reduced to +C 5K from 12K. This addition of NLS is necessitated by the modification +C of ATD immediately below. In turn, that change was necessitated by the +C a change to SSTACS (for many years, TACS Table 1 has been overflowing). +ABSOLUTE TACS DIMENSIONS +C Expand TACS Table 1 from 60 to 90 on 29 March 2007. Orlando Hevia, +C using F95 GNU, discovered Table 1 need of 672 / 8 within SSTACS: +C 60 270 300 60 90 1250 550 180 + 85 270 300 60 90 1250 550 180 +UNIQUE TACS SWITCH { Halt if Type-91 or 93 TACS source is not uniquely defined +C The preceding UTS is added during July of 2003. The answer is unchanged. +C This data case was picked only because both Type-91 and 93 sources exist. +C 1.E-6 5.5E-3 0. 0. ------ Orig. misc. data card +C 1 11 1 0 1 -1 ------ Orig. misc. data card + 5.E-6 5.0E-3 0. 0. { Larger DELTAT speeds simulation + 1 3 1 0 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +C LIST OF INPUT CONSTANTS +C RAIL RESISTANCE COEFFICIENT (R. Hawkes method for including skin effect) +C with the units ohms/amperes**0.75 +11RRAIL0 5.53E-5 -1. +C RAIL INDUCTANCE GRADIENT, H/m +11LPRIME .5765E-6 -1. +C PROJECTILE MASS, kg +11MASS 2.500 -1. +C LENGTH OF RAIL, m +11XRAIL 8.0 -1. +C Muzzle discharge resistor, ohms +11RDUMP 8.E-3 -1. +C final rail inductance, H +11LRAILF 4.6E-6 -1. +C final rail resistance, ohms +11RRAILF 2.63E-4 -1. +C augmenting rail inductance, H +11LAUG 4.2E-6 -1. +C augmenting rail resistance, ohms +11RAUG 1.0E-4 -1. +C Mutual inductance gradient, augmenting to main rail, H/m +11DMDX .35E-6 -1. +C Friction approximation coefficient, fraction of applied force +11FMISC 0.2 -1. +C Initial projectile position, m +11XINIT 0. -1. +C Projectile initial velocity, m/s +11VINIT 738.0 -1. +C Rail mass ablation coefficient, kg/A/V/s +11ALPHA 49.E-9 -1. +C Threshold current for for computing effective arc drop +11ITHRES 100000. -1. +C Bore diameter, m +11BORE 0.09 -1. +C Velocity of sound in the medium within rails, m/s +11VSOUND 346.0 -1. +C Coefficient for computing shock force +11GAMMA 1.40 -1. +C Ambient pressure, N/m**2 +11PAMB 1.013E5 -1. +C positions of mass along the rails where the various switches close +11XA 0.25 -1. +11X2 .50 -1. +11X3 1.00 -1. +11X4 1.70 -1. +11X5 2.10 -1. +11X6 2.70 -1. +11X7 3.00 -1. +C +C THIS CONCLUDES THE TACS SOURCES. +C +C LIST OF EMTP SOURCES +C VBREECH FROM EMTP +90VBR +C IRAIL FROM EMTP +91IRAIL +C +C +C --- EMTP NODE VOLTAGES ON 8 CAPACITORS. USED TO TRIGGER CROWBAR DIODES. +90NODE01 +90NODE02 +90NODE03 +90NODE04 +90NODE05 +90NODE06 +90NODE07 +90NODE08 +C --- EMTP SWITCH STATUS 0 = OPEN 1 = CLOSED +C --- USED TO KEEP CROWBAR DIODES ON ONCE THEY ARE TRIGGERED. +93NODE17 +93NODE18 +93NODE19 +93NODE20 +93NODE21 +93NODE22 +93NODE23 +93NODE24 +C --- +C --- SUPPLEMENTAL DEVICES +C +C --- COMPUTE GRID SIGNALS FOR CROWBAR DIODES +C --- GRID SIGNALS (N1-N8) TURN ON WHEN THE CAPACITOR VOLTAGE IS LESS THAN 0. +88N1 = - NODE01 +88N2 = - NODE02 +88N3 = - NODE03 +88N4 = - NODE04 +88N5 = - NODE05 +88N6 = - NODE06 +88N7 = - NODE07 +88N8 = - NODE08 +C +C +C SUPPLEMENTAL DEVICES +C SIMPLE RAILGUN MECHANICS +C COMPUTE MECHANICAL FORCE ON THE PROJECTILE INCL. AUGMENTATION +88FMECH =.5*(1.0-FMISC)*(LPRIME+2.*DMDX)*ABS(IRAIL)**2-FSHOCK +C USE LINEAR MODEL FOR SOLID ARMATURE ARC VOLTAGE DROP +88GNARC =45.+31.43*TIMEX*1000. +C COMPUTE RATE OF MASS ABLATION FROM THE RAILS +88MDOT =(ALPHA*ABS(IRAIL)*ABS(GNVOLT))*FLAG1 +C COMPUTE VDOT = PROJECTILE ACCELERATION, INCLUDE TIME DELAY OF ONE +C STEP FOR STABILITY + VEL1 +VEL +88VDOT =((FMECH-VEL1*MDOT)/MASS1)*FLAG1 +C COMPUTE MACH NUMBER, PRESSURE RATIO, AND SHOCK FORCE +88MACH =VEL1/VSOUND +88PR =GAMMA*(GAMMA+1.)/4.*ABS(MACH)**2+1 +88PRATIO =PR+GAMMA*MACH*ABS(((ABS(MACH)**2*ABS((GAMMA+1.))**2/16.+1.)))**0.5 +88FSHOCK =PI*BORE**2/4*PRATIO*PAMB +C +C COMPUTE RESET SIGNAL FOR FIRST LAUNCH +C FLAG1 IS 1 AS LONG AS PROJECTILE IS IN BARREL +C Introduce one time step delay for stability of computation + X1 +X +88FLAG1 =(TIMEX .GT. (2.*DELTAT)).AND.(X1.LE.XRAIL) +88FLAG4 =(TIMEX .GT. (2.*DELTAT)) +88FLAG5 =NOT(FLAG1) +C +C COMPUTE MASS1, PROJECTILE PLUS ABLATED RAIL MASS +88MASS1 58+MDOT 1.0 0.0 1.0FLAG4 MASS +C INTEGRATE VDOT TO GET VELOCITY OF MASS +88VEL 58+VDOT 1.0 0.0 1.0FLAG4 VINIT +C INTEGRATE VELOCITY TO GET PROJECTILE POSITION +88X 58+VEL 1.0 0.0 1.0FLAG4 XINIT +C COMPUTE THE INSTANTANEOUS RAIL INDUCTANCE +88LRAIL =LPRIME*ABS(X1)*FLAG1+FLAG5*LRAILF +C COMPUTE THE INSTANTANEOUS RAIL RESISTANCE +88RRAIL =FLAG1*RRAIL0*ABS(X1)**0.75+FLAG5*RRAILF +C COMPUTE INSTANTANEOUS MUTUAL INDUCTANCE, AUGMENTING TO MAIN RAILS +88M =DMDX*(FLAG1*X1+FLAG5*XRAIL) +C +C CALCULATE THE POWER AND ENERGY DELIVERED TO THE RAILS +88PBR =VBR*IRAIL +88EBR 58+PBR 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE SHOCK POWER AND ENERGY +88PSHOCK =FSHOCK*VEL*FLAG1 +88ESHOCK58+PSHOCK 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE ARC POWER AND ENERGY +88PARC =IRAIL*GNVOLT*FLAG1 +88EARC 58+PARC 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE MIXING POWER AND ENERGY +88PMIX =0.5*VEL**2*MDOT*FLAG1 +88EMIX 58+PMIX 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE THE DUMP RESISTOR POWER AND ENERGY +88PMUZ =RDUMP*(ABS(IRAIL-I3A)**2) +88EMUZ 58+PMUZ 1.0 0.0 1.0FLAG5 ZERO +C CALCULATE PROJECTILE CHANGE IN KINETIC ENERGY +88DKE =0.5*MASS*(VEL**2-VINIT**2) +C CALCULATE ABLATED PLASMA CHANGE IN KINETIC ENERGY +88PLSMKE =0.5*(MASS1-MASS)*VEL**2 +C CALCULATE INSTANTANEOUS RAIL HEAT POWER AND ENERGY +88HPOWR =ABS(IRAIL)**2*RRAIL +88HEAT 58+HPOWR 1.0 0.0 1.0FLAG4 ZERO +C COMPUTE AUGMENTING RAIL LOSS +88PAUG =IRAIL*IRAIL*RAUG +88EAUG 58+PAUG 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE FRICTION POWER AND ENERGY +88PFRIC =VEL*0.25*FMISC*(FMECH+FSHOCK)*FLAG1 +88EFRIC 58+PFRIC 1.0 0.0 1.0FLAG4 ZERO +C CALCULATE TRAPPED MAGNETIC ENERGY WITHIN RAIL MATERIAL (ASSUMPTION) +88ETRAP =3.0*EFRIC +C COMPUTE ENERGY STORED IN RAIL AND MUTUAL INDUCTANCE +88ESTORE =(.5*LRAIL+.5*LAUG+M)*IRAIL*IRAIL +C COMPUTE ENERGY BALANCE DYNAMICALLY-should equal zero-conservation of energy +88EBAL =EBR-ETRAP-EFRIC-HEAT-PLSMKE-DKE-EMUZ-EMIX-EARC-ESHOCK-ESTORE-EAUG +C +C COMPUTE INJECTION CURRENTS I1, I2, I3 +C THESE CURRENTS EFFECTIVELY REPRESENT THE BACK EMF OF THE MOVING MASS +88I1 =(IRAIL*(RRAIL-RRAILF)/RRAILF)*FLAG1 +88I2A =(IRAIL*(LRAIL-LRAILF)/LRAILF)*FLAG1+M*IRAIL*FLAG4/LRAILF +88I2 =I2A-I1 +C Compute the effective arc voltage +88GNVOLT =SIGN(IRAIL)*GNARC*(1.-EXP(-ABS(IRAIL)/ITHRES)) +88I3A =((IRAIL*(-RDUMP)+GNVOLT)/RDUMP)*FLAG1 +88I3 =I3A-I2A +C COMPUTE INJECTION CURRENT DUE TO MUTUAL EFFECTS +88I4I =M*IRAIL/LAUG +88I4O =-I4I +C +C CAPACITOR SWITCHING FLAGS BASED UPON PROJECTILE POSITION +88FLAG11 =X .GT. XA +88FLAG12 =X .GT. X2 +88FLAG13 =X .GT. X3 +88FLAG14 =X .GT. X4 +88FLAG15 =X .GT. X5 +88FLAG16 =X .GT. X6 +88FLAG17 =X .GT. X7 +C +C TACS OUTPUTS +C 111111222222333333444444555555666666777777888888999999AAAAAABBBBBBCCCCCCDDDDDD +33VDOT VEL X MASS1 IRAIL I1 I2 I3 FMECH MDOT ESTOREVBR EAUG +33EBR ESHOCKEARC EMIX EMUZ DKE PLSMKEHEAT EFRIC ETRAP EBAL +BLANK card that ends TACS data cards +C EMTP CIRCUIT INPUT FOLLOWS +C --- ELECTRIC NETWORK BRANCHES. +C --- SERIES R-L-C BRANCHES +$VINTAGE, 1 +C --- RC SNUBBER ACROSS RAIL GUN +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0I1 0.033 4.5E2 4 +C --- RAIL FINAL RESISTANCE R_RF + 0I1 I2 2.63E-4 +C --- RAIL FINAL INDUCTANCE L_LF + 0I2 I3 4.6E-3 +C --- DUMP RESISTANCE R_DUMP + 0I3 8.0E-3 +C --- CAPACITORS C = 16116 MICRO FARADS , R_FUSE = 223 MICRO OHMS +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE01 223.E-6 17459. 4 + 0NODE02 NODE01 4 + 0NODE03 NODE01 4 + 0NODE04 NODE01 4 + 0NODE05 NODE01 4 + 0NODE06 NODE01 4 + 0NODE07 NODE01 4 + 0NODE08 NODE01 4 +C --- IGNITRON SWITCHES R_SWITCH = 30 MICRO OHMS, L_SWITCH = 0.35 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE09NODE25 30.E-6 0.35E-3 + 0NODE10NODE26NODE09NODE25 + 0NODE11NODE27NODE09NODE25 + 0NODE12NODE28NODE09NODE25 + 0NODE13NODE29NODE09NODE25 + 0NODE14NODE30NODE09NODE25 + 0NODE15NODE31NODE09NODE25 + 0NODE16NODE32NODE09NODE25 +C --- INDUCTORS R_IND = 250 MICRO OHMS, L_IND = 20 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE33NODE41 75.E-6 3.0E-3 + 0NODE34NODE41NODE33NODE41 + 0NODE35NODE41NODE33NODE41 + 0NODE36NODE41NODE33NODE41 + 0NODE37NODE41NODE33NODE41 + 0NODE38NODE41NODE33NODE41 + 0NODE39NODE41NODE33NODE41 + 0NODE40NODE41NODE33NODE41 +C --- INTERNAL BUSWORK R_INT = 25 MICRO OHMS L_INT = 1 MICRO HENRY +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE25NODE33 25.E-6 1.0E-3 + 0NODE26NODE34NODE25NODE33 + 0NODE27NODE35NODE25NODE33 + 0NODE28NODE36NODE25NODE33 + 0NODE29NODE37NODE25NODE33 + 0NODE30NODE38NODE25NODE33 + 0NODE31NODE39NODE25NODE33 + 0NODE32NODE40NODE25NODE33 +C --- DIODE IMPEDANCE: R_DIODE = 73 MICRO OHMS , L_DIODE = 0.2 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0 NODE17 73.E-6 0.2E-3 + 0 NODE18 NODE17 + 0 NODE19 NODE17 + 0 NODE20 NODE17 + 0 NODE21 NODE17 + 0 NODE22 NODE17 + 0 NODE23 NODE17 + 0 NODE24 NODE17 +C --- EXTERNAL BUSWORK: R_BUS = 37.3 MICRO OHMS, L_BUS = 0.47 MICRO HENRIES +C RRRRRRRRRRRRRRRRLLLLLLLLLLLLLLLLCCCCCCCCCCCCCCCC + 0NODE41VBR 37.3E-6 0.47E-3 + 0VBR I4I 1.E-4 + 0I4I I4O 4.2E-3 + 0I4O IRAIL 1.0E-9 +$VINTAGE, 0 +BLANK card after last electric network branch +C INPUT SWITCH CARDS HERE + IRAIL I1 -1.0 1000.00 1 +C --- SWITCH DATA. +C --- 8 IGNITRON SWITCHES +C --- <---TCLOSE<----TOPEN + NODE01NODE09 0. 50.E-3 +C --- TACS CONTROLLED SWITCHES USING FLAGS +13NODE02NODE10 FLAG11 1 +13NODE03NODE11 FLAG12 1 +13NODE04NODE12 FLAG13 1 +13NODE05NODE13 FLAG14 1 +13NODE06NODE14 FLAG15 1 +13NODE07NODE15 FLAG16 1 +13NODE08NODE16 FLAG17 1 +C +C --- DIODE DATA: 8 CROWBAR DIODES. (TACS CONTROLLED) +C --- GRID SIGNAL TURNS ON DIODE, TACS SIGNAL KEEPS THE DIODE ON REGARDLESS +C --- OF "RINGING VOLTAGE" ACROSS THE DIODE. THIS HELPS TO SMOOTH THE SOLUTION +C --- ESPECIALLY WHEN THE BANKS ARE TRIGGERED AT DIFFERENT TIMES. +C <---N1<---N2<------VON<----IHOLD<---TEDION CLOSED <-GRID<-TACS XX +11NODE17NODE25 0. 0. 0. N1 NODE17 10 +11NODE18NODE26 0. 0. 0. N2 NODE18 10 +11NODE19NODE27 0. 0. 0. N3 NODE19 10 +11NODE20NODE28 0. 0. 0. N4 NODE20 10 +11NODE21NODE29 0. 0. 0. N5 NODE21 10 +11NODE22NODE30 0. 0. 0. N6 NODE22 10 +11NODE23NODE31 0. 0. 0. N7 NODE23 10 +11NODE24NODE32 0. 0. 0. N8 NODE24 10 +BLANK card ends all switch cards +C SOURCE CARDS follow .... +C MASS DRIVER EQUIVALENT CURRENT SOURCES +60I1 -1 +60I2 -1 +60I3 -1 +60I4I -1 +60I4O -1 +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C I1 |TERRA *I2 *IRAIL * +C I2 |I1 *I3 * +C I3 |TERRA *I2 * +C NODE01 |TERRA *NODE09* +C NODE02 |TERRA *NODE10* +C NODE03 |TERRA *NODE11* +C NODE04 |TERRA *NODE12* +C NODE05 |TERRA *NODE13* +C NODE06 |TERRA *NODE14* +C NODE07 |TERRA *NODE15* +BLANK card after last electric network source +C --- INITIAL CONDITIONS: INITIAL VOLTAGE ON THE 8 CAPACITORS + 2NODE01 22.E3 + 2NODE02 22.E3 + 2NODE03 22.E3 + 2NODE04 22.E3 + 2NODE05 22.E3 + 2NODE06 22.E3 + 2NODE07 22.E3 + 2NODE08 22.E3 +C --- INITIAL CONDITIONS: LINEAR BRANCH CURRENTS + 3NODE01 0. 22.E3 + 3NODE02 0. 22.E3 + 3NODE03 0. 22.E3 + 3NODE04 0. 22.E3 + 3NODE05 0. 22.E3 + 3NODE06 0. 22.E3 + 3NODE07 0. 22.E3 + 3NODE08 0. 22.E3 +C --- LIST OF NODE VOLTAGE OUTPUT REQUESTS + NODE01I1 +C Step Time I1 NODE01 NODE02 NODE03 NODE04 NODE05 +C TERRA TERRA TERRA TERRA TERRA TERRA +C +C I1 IRAIL I1 NODE01 NODE02 NODE03 +C I1 TERRA TERRA TERRA TERRA +C +C NODE08 TACS TACS TACS TACS TACS +C TERRA VDOT VEL X MASS1 IRAIL +C +C TACS TACS TACS TACS TACS TACS +C MDOT ESTORE VBR EAUG EBR ESHOCK +C +C TACS TACS TACS TACS TACS +C PLSMKE HEAT EFRIC ETRAP EBAL +C *** Switch "IRAIL " to "I1 " closed before 0.00000000E+00 sec. +C *** Switch "NODE01" to "NODE09" closed after 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-5 .1346699E7 -.13272E9 .163913E-3 .163913E-3 .163913E-3 .163913E-3 +C 227.865632 6033.34599 3.36674866 -331.8007 .409782E-9 .409782E-9 +C .409782E-9 0.0 738. 0.0 2.5 6033.34599 +C 0.0 262.0891 10364.4902 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 -262.81712 +C 2 .1E-4 .1028069E8 -.35417E9 0.0 0.0 0.0 0.0 +C 663.274543 16104.2329 32.4352182 -1549.0272 .819564E-9 .819564E-9 +C .819564E-9 0.0 738. 0.0 2.5 16104.2329 +C 0.0 1867.29349 14205.3015 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 -1873.9365 +C Warning. The powers (NODE01, TERRA) through (NODE07, TERRA) should be +C ------- zero initially. But these are floating (near) zeros. The problem +C comes from the current. Turning the debugger on or off may change +C these from near zeros to exact zeros, or vice versa. The SUBTS2 +C computation involves the cancellation of 2 very large numbers to +C give the current. If numbers such as 1.E-4 are seen, this is the +C best that can be guaranteed using 64 bits. WSM + THL, 8 August 96 +BLANK card ending node voltage outputs +C Valve "NODE22" to "NODE30" closing after 2.56000000E-03 sec. +C Switch "NODE08" to "NODE16" closing after 2.61500000E-03 sec. +C Valve "NODE23" to "NODE31" closing after 2.93000000E-03 sec. +C Valve "NODE24" to "NODE32" closing after 3.10000000E-03 sec. +C 1000 .005 .9701709E8 .1788576E8 .114869E8 .3849588E9 -.530779E9 -.327226E9 +C 4394.39452 857904.981 5103.30646 -.415356E7 -.407104E7 -.389447E7 +C -.387852E7 0.0 2415.92363 8.18382873 2.53769379 857904.981 +C 0.0 .5299207E7 -4437.3114 872163.762 .1706545E8 272689.202 +C 110003.436 .1023366E7 353147.438 .1059442E7 181783.733 +C Variable max: .102486E9 .3091743E9 .141619E10 .316849E10 .38723E10 .31399E10 +C 4394.39452 .1634357E7 5103.30646 0.0 .286847E-7 .553206E-7 +C .214316E-6 534570.044 2415.92363 8.18382873 2.53769379 .1634357E7 +C 10.1502923 .9999568E7 22826.1693 872163.762 .170705E8 272689.202 +C 110003.436 .1023366E7 353147.438 .1059442E7 297386.202 +C Times of max: .00499 .001105 .00109 .0013 .00178 .00235 +C .005 .00152 .005 0.0 .35E-3 .675E-3 +C .002615 .001515 .00493 .005 .00493 .00152 +C .002975 .0029 .45E-4 .005 .004895 .00493 +C .00493 .005 .00493 .00493 .004925 + PRINTER PLOT + 194 1. 0.0 5.5 TACS IRAIL { Axis limits: (0.000, 1.634) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC). +C Contributed to ATP materials of the Can/Am user group February 1992 by: +C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant +C #203 - 1745 Martin Drive 705 Westtown Circle +C White Rock/ South Surrey B.C. West Chester, PA 19382 +C CANADA V4A 6Z1 USA +C Phone: 604-535-6540 Phone: 610-344-0432 +C FAX: 604-535-6548 +C In July of 1993, Mr. Furst revised it again in preparation for his use +C of it at Prof. Ned Mohan's University of Minnesota short course there. +C Size 1-10: 43 63 56 3 230 18 167 0 0 0 +C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0 +C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999 +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 + 0 0 4700 0 0 0 0 0 12000 0 + 0 0 220 + 240000 +C *********** A GENERIC 6 PULSE SVC MODEL ************************************ +C +C This is a conceptual model only, it must be refined +C for any specific system; the control algorithm can be greatly improved. +C +C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer; +C TCR's connected in delta. +C +C Thyristor gating pulses are phase locked to the current zero transition +C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT; +C individual phase open loop VAR control is used, with a superimposed. +C slow voltage control. +C +C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV +C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s +C value of the 34.5 kV phase to phase voltages, which are the TACS variables +C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC, +C the thyristors have to be blocked. One way of doing this is to punch +C 1000000. in col. 17-24 of the thyristor switches 11. +C +C To get the SVC overall response plot the transformer ph-ph r.m.s secondary +C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three +C ph-ph r.m.s. voltages +C +C To get the VAR import/phase through the transformer secondary +C plot QINA (TACS) +C +C To get the transformer secondary voltage (instant.) plot TRSA +C +C TRSA-XLA shows the switching of the phase to phase load +C +C RXAB-TRSB plots the current through one AB arm of the thyristor bridge +C +C For sake of simplicity, some of the TACS variables have not been +C initialized, so ignore the first 25 ms of the plots. +C +C If in the "Superimposed Voltage Control Section the gain +C of DVQ is set to zero, the model reverts to open loop VAR control +PRINTED NUMBER WIDTH, 13, 2, +ALLOW EVEN PLOT FREQUENCY { See April, 1998, newsletter (to allow IPLOT = 2 below) +C For best results, do not use a time step more than 1/2 Degree (23.148 +C microsec for 60 Hz). Here, to speed the illustration, we use twice that, +C & only simulate for half as long (extend to 0.5 sec for more transients). +C Free-format data input is used in order to specify DELTAT precisely: +C DELTAT TMAX XOPT COPT EPSILN TOLMAT +C .0000462962962962963, 0.25, 60., , , , , , , , , +C That was the old, brute-force way. Alternative finesse first was made +C available on 19 August 1998. As long as columns 1-16 involve no decimal +C point, dT and T-max are replaced by points/cycle & end time in cycles: + 360 15 60. { Points per cycle, simulation time in cycles, XOPT + 1 4 1 2 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +C +C Firing pulses are derived from the current through the measuring inductances +C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into +C TACS from the measuring switches connecting the RM's in delta, +C corresponding to the delta connected thyristor valves. +C +C The current lags the voltage 90 deg. and its zero transition produces +C the firing signal at an alpha of 90 deg. +C This is done by TACS level triggered switches Device 52. +C The firing pulse delay is calculated by the variables DELAB/BC/CA +C and implemented by TACS transport device Device 54; +C +C For convenience, the firing angle is initialized to alpha = 180 deg. +C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system. +C The required firing angle is then calculated backwards from the +C 180 deg. point, by using the variable DELYA(B,C). +C The actual firing angle is then DELAB = DELIN -DELYA etc. +C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms. +C Then DELAB= DELIN - DELYA =0.0 (90 deg.) +C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees. +C For 50 Hz, DELIN = 5.0 ms. +C +C *********** VOLTAGE AND REACTIVE REFERENCE ************* +11VREFD 1.0 +C VAR reference +C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.; +C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase; +C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV; +C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u. +88QTCR = 33.3*10**6 +C The VAR reference QREF should be determined so that the superimposed +C voltage control changes the VAR flow as little as possible +88QREF = 0.30 +C +C *********** VOLTAGES TRANSFERRED FROM NETWORK ************* +C +C ******* Import 34.5 kV phase voltages, get phase to phase and normalize ***** +C TRSA/B/C are the transformer secondary ph-g voltages +C 90 - TACS voltage source driven by an EMTP network node voltage +C (Rule Book p. 3-15) +90TRSA +90TRSB +90TRSC +C the phase to phase voltages +99TRAB = TRSA - TRSB +99TRBC = TRSB - TRSC +99TRCA = TRSC - TRSA +C normalize to get one p.u. for the phase to phase rms value +99TABX = TRAB/34500 +99TBCX = TRBC/34500 +99TCAX = TRCA/34500 +C get the rms value of the A-B phase to phase voltage +C Device 66 (Rule Book p. 3-32) +99TXNAB 66+TABX 60. +99TXNBC 66+TBCX 60. +99TXNCA 66+TCAX 60. +C +C ************** PHASE A FIRING PULSES ************************************** +C +C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15) +91RMAB +C send square impulse at current zero Device 52 (Rule B. p. 3-21) +88FAB1 52+UNITY 1. 0. 0 RMAB +88FAB2 52+UNITY 1. 0. -1 RMAB +C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23) +98FIAB1 54+FAB1 .0000 DELAB +98FIAB2 54+FAB2 .0000 DELAB +C for a 50 Hz system the constant .004167 below should be changed to 0.005 +88DELIN = .004167 { to initialize alpha to 180 deg. +C +C ************* PHASE B FIRING PULSES ************************************* +C +91RMBC +88FBC1 52+UNITY 1. 0. 0 RMBC +88FBC2 52+UNITY 1. 0. -1 RMBC +98FIBC1 54+FBC1 .0000 DELBC +98FIBC2 54+FBC2 .0000 DELBC +C +C ************ PHASE C FIRING PULSES ************************************* +C +91RMCA +88FCA1 52+UNITY 1. 0. 0 RMCA +88FCA2 52+UNITY 1. 0. -1 RMCA +98FICA1 54+FCA1 .0000 DELCA +98FICA2 54+FCA2 .0000 DELCA +C +C ************* OPEN LOOP VAR CONTROL ************************** +C **** WITH SUPERIMPOSED VOLTAGE CONTROL *********** +C +C the following will be repeated for all three phases as the SVC +C +C ************ RACTIVE POWER FLOWS ********* +C +C calclate VAR transfer at transf. secondary +91TRXA { 34.5 kV side current through transformer +C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22) +88TRIA 53+TRXA .00417 .0043 +88TRVA 53+TRSA .00417 .0043 +C the following equation for calculating VAR flow is from +C Miller: Reactive power Control etc. (text book) p. 321 +88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR +C +91TRXB +88TRIB 53+TRXB .00417 .0043 +88TRVB 53+TRSB .00417 .0043 +88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR +C +91TRXC +88TRIC 53+TRXC .00417 .0043 +88TRVC 53+TRSC .00417 .0043 +88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR +C +C ******************** SUPERIMPOSED VOLTAGE CONTROL ******************** +C +C ******** DELTA Q TO ADJUST VOLTAGE ************ +C the average value of phase to phase voltage is + 0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15 +C the difference between ref. and actual voltage is +C slow down the response by a (1/1+st) block + 1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0 + 1.0 + 1.0 0.500 +C the required VAR import taking voltage correction into account + 0QRNEW +QREF +DVQ +C ***************** PHASE A ERROR ****************************************** +C +C error in VAR import + 0ERRQA +QRNEW -QINA + 0QINCRA +ERRQA +C the new reactor output is then given by the Steinmetz Algorithm as +C the output at T-delT + QINCRA + QINCRB - QINCRC; +C as shown below in calculating the new SVC VAR's +C ****************** PHASE B ERROR **************************************** +C + 0ERRQB +QRNEW -QINB + 0QINCRB +ERRQB +C +C ****************** PHASE C ERROR ***************************************** +C + 0ERRQC +QRNEW -QINC +C + 0QINCRC +ERRQC +C +C +C **************** PHASE A PULSE DELAY CONTROL **************************** +C the current firing angle is DELAB, this corresponds to an old reactor +C p.u. current given by the following non linear relation corresponding +C to the x = sigma-sin(sigma) function +99DLA1 = 1 - DELAB/.004167 +C where DLA1 is the normalized conduction angle sigma between firing +C angle alpha 90 and 180 degrees. +C +99REOAB 56+DLA1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.0000 + 9999. +C the new reactor current demanded is the increment plus the old +C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0 +C this is applying the Steinmetz algorithm + 0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00 +C this is now reconverted into an angle, using the inverse of the +C above relation, and becomes the new DELAB; (Rule Book p. 3-25 ) +99DELYAA56+INREAB + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.0000 1.000 + 9999. +99DELYA =DELYAA * 0.004167 +C now smooth it out a bit + 1DELAB +DELIN -DELYA 1.0 .0040 + 1.0 + 1.0 0.015 +C +C ****************** PHASE B PULSE DELAY CONTROL ************************** +C +99DLB1 = 1 - DELBC/.004167 +C +99REOBC 56+DLB1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.000 + 9999. +C + 0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00 +C +99DELYBB56+INREBC + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.000 1.000 + 9999. +99DELYB =DELYBB * 0.004167 +C + 1DELBC +DELIN -DELYB 1.0 0.0040 + 1.0 + 1.0 0.015 +C +C *************** PHASE C PULSE DELAY CONTROL ****************************** +C +99DLC1 = 1 - DELCA/.004167 +C +99REOCA 56+DLC1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.000 + 9999. +C + 0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00 +C +99DELYCC56+INRECA + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.000 1.000 + 9999. +99DELYC =DELYCC * 0.004167 +C + 1DELCA +DELIN -DELYC 1.0 0.0040 + 1.0 + 1.0 0.015 +C +C ***************** REACTOR SWITCHING *************************************** +C +C control signals to switch reactive load 'XLA/B/C' on and off +C see TYPE 12 switches in power network. +C TACS source (Rule Book p. 3-14) +23FRLA 1000. 0.200 0.100 0.2 +23FRLB 1000. 0.200 0.100 0.2 +23FRLC 1000. 0.200 0.100 10.0 +C +C initializations +77VLLAVG 1.0 +77TXNAB 1.0 +77QRNEW .30 +77QINA .30 +77QINB .30 +77QINC .30 +C +C ********* TACS OUTPUTS ************ +C +33TXNAB TXNBC TXNCA ERRQA VLLAVG +33QRNEW DVQ QINA +BLANK end of TACS +C +C ************** NETWORK DATA ********************* +C +C ********* LINE TO SOURCE *********** +C +C transmission line (equivalent) from GEN source to transformer + GENA TRFA 4.5 25.0 + GENB TRFB 4.5 25.0 + GENC TRFC 4.5 25.0 +C fault level at trsf. 230 kV approx. 2083 MVA +C +C ************** MAIN TRANSFORMER ************** +C +C transformer capacitance to ground 10000pF +C a very simple model, can be replaced with any more complex model +C transformer 230000/34500 Y/D 100 MVA; In=250 A +C x = 7.0% on 100 MVA +C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance +C TRANSFORMER busref imag flux busin rmag empty +C ------------______------______------______------_____________________________- +C +C no saturation + TRANSFORMER 0.7 700.0 X + 0.7 700.0 { 100% + 9999 + 1TRPA 0.80 36.0 1330 + 2TRXA TRXB 1.00 385 {372 + TRANSFORMER X Y + 1TRPB + 2TRXB TRXC + TRANSFORMER X Z + 1TRPC + 2TRXC TRXA +C +C transformer capacitance to ground and ph - ph 10000pF + TRXA 0.01 + TRXB 0.01 + TRXC 0.01 +C capacitance between phases + TRXA TRXB 0.01 + TRXB TRXC 0.01 + TRXC TRXA 0.01 +C +C *********** HARMONIC FILTERS *************** +C +C 5th harmonic filter 20 MVAR + TRSA TF5 2.38 44.5 + TRSB TF5 2.38 44.5 + TRSC TF5 2.38 44.5 +C 7th harmonic filter 20 MVAR + TRSA TF7 1.21 44.5 + TRSB TF7 1.21 44.5 + TRUC TF7 1.21 44.5 +C +C ******** TRANSFORMER SECONDARY LOAD *************** +C 75 MW, 30 MVAR + TRSA ND 13.67 5.47 + TRSB ND 13.67 5.47 + TRSC ND 13.67 5.47 +C +C shunt capacitor 20 MVAR + TRSA 44.5 + TRSB 44.5 + TRSC 44.5 +C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* +C +C switched reactor .1 sec. on .1 sec. off +C see switch type 13 below and type 23 source in TACS +C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load + XLA NSR 34.00 34.00 + XLB NSR 34.00 34.00 + XLC NSR 34.00 34.00 +C +C +C ************** SNUBBERS ************** +C +C the snubber parameters shown below are not necessarily the +C values a manufacturer would choose for a 34.5 kV valve. +C The parameters were selected so that only a small currrent flows +C through the control reactor with the valves non conducting, +C and overvoltages and spikes interfering with the firing control +C are prevented. It is quite possible that a better combination +C than that shown exists. +C +C in series with valves +C + CATAB RXAB .1 + ANOAB RXAB .1 + CATAB RXAB 4.0 + ANOAB RXAB 4.0 +C + CATBC RXBC .1 + ANOBC RXBC .1 + CATBC RXBC 4.0 + ANOBC RXBC 4.0 +C + CATCA RXCA .1 + ANOCA RXCA .1 + CATCA RECA 4.0 + ANOCA RXCA 4.0 +C +C across valves +C + CATAB TRSA 2000. .1 + ANOAB TRSA 2000. .1 +C + CATBC TRSB 2000. .1 + ANOBC TRSB 2000. .1 +C + CATCA TRSC 2000. .1 + ANOCA TRSC 2000. .1 +C +C ************* SVC CONTROLLED REACTOR ************* +C +C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm + RXAB TRSB 0.1 35.71 1 + RXBC TRSC 0.1 35.71 + RXCA TRSA 0.1 35.71 +C +C *************** REACTOR FOR FIRING PULSE GENERATION ****** +C +C Fire angle reference measurement using delta connected reactors +C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus + TRSA RMXA 0.01 1 + TRSB RMXB 0.01 + TRSC RMXC 0.01 +C The reactors are delta connected through measuring switches below + RMAB RMXB 200. 20000. + RMBC RMXC 200. 20000. + RMCA RMXA 200. 20000. +C +BLANK end of branch data +C *************** SWITCH DATA ***************8 +C +C current measurement in the auxiliary reactor for firing pulse generation +C these switches complete the delta connection of the reactors +C (Rule Book p.6A-9) + RMXA RMAB MEASURING + RMXB RMBC MEASURING + RMXC RMCA MEASURING +C +C current measurement in the main transformer secondary + TRXA TRSA MEASURING 1 + TRXB TRSB MEASURING 0 + TRXC TRSC MEASURING 0 +C current measurement in the main transformer primary + TRFA TRPA MEASURING 1 + TRFB TRPB MEASURING 0 + TRFC TRPC MEASURING 0 +C +C switch for on/off switching the 17.5 MVAR resistive-reactive load +C (Rule Book p. 6C-1) +12TRSA XLA FRLA 11 +12TRSB XLB FRLB 10 +12TRSC XLC FRLC 10 +C +C VALVES +C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR +C Rule Book p. 6B-1 +11TRSA CATAB 00. 15.0 FIAB1 1 +11ANOAB TRSA 00. 15.0 FIAB2 1 +11TRSB CATBC 0000. 15.0 FIBC1 1 +11ANOBC TRSB 000. 15.0 FIBC2 1 +11TRSC CATCA 0000. 15.0 FICA1 1 +11ANOCA TRSC 000. 15.0 FICA2 1 +C +BLANK end of switch data +C +C AC sources +C 230 kV supply +14GENA 187794. 60. 0. -1. +14GENB 187794. 60. 240. -1. +14GENC 187794. 60. 120. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GENA |TRFA * +C TRFA |GENA *TRPA * +C GENB |TRFB * +C TRFB |GENB *TRPB * +C GENC |TRFC * +C TRFC |GENC *TRPC * +C X |TERRA *TERRA *TRPA * +C TRPA |TRFA * X* +C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA * +C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB * +BLANK end of source cards +C Total network loss P-loss by summing injections = 9.766831747973E+07 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04 +C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04 +C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04 +C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07 +C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07 +C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06 +C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07 +C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06 +C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06 +C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8 +C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951 + TRSA TRFA { Names of nodes for which voltage is to be outputted +C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS +C TRSA TRPA XLA TRSB RMXA TXNAB +C +C TACS TACS TACS TACS TACS TACS TACS +C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA +C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state. +C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state. +C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state. +C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state. +C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state. +C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state. +C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state. +C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state. +C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state. +C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% +C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = +C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN +C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. +C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0 +C 0.0 0.0 0.0 1.0 0.3 0.0 0.3 +C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562 +C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0 +C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec. +C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949 +C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0 +BLANK end of output requests +C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec. +C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec. +C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec. +C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec. +C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec. +C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec. +C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec. +C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec. +C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036 +C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946 +C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099 +C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066 +C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259 +C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481 +C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0 +C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0 +C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0 +C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4 + PRINTER PLOT + 193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient +BLANK end of plot requests +BEGIN NEW DATA CASE +C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC). +C This is very similar to the preceding 4th case except that here newer +C MODELS replaces TACS for the control system modeling. The same +C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed +C this during February of 1995 (see January and April newsletters). To +C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec. +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 + 0 0 4700 0 64800 0 0 0 0 0 +C 0 0 220 126000 + 0 0 220 30 126000 { 16 March 2007 +C About the preceding 2 lines, List 27 default = 26 resulted in TACS1 overflow +C Since year 1 (1995), this went undetected until Orlando Hevia's G95 testing + 240000 742 +PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations +C DELTAT TMAX XOPT COPT EPSILN TOLMAT +C 46.296-6 0.600 60. ---- Gabor Furst's original data card +.0000462962962962963, 0.100, 60., , , , , , , , , +C the time step is the cycle time 1/60 sec. divided by 360 degrees +C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP +C 9999 1 0 1 1 + 1 3 1 2 1 -1 + 5 5 20 20 100 100 500 500 +C The running of this MODELS file requires the latest version of TPbig +C with the increased list sizes for MODELS +C +C The example demonstrates a generic SVC connected to a 230/34.5 kV +C step-down transformer, with an SVC reactor rating of 100 MVA. +C The SVC is tested by switching on and off a 25 MVA 0.7 p.f. +C load on the 34.5 kV bus +C plot vatiable 'vllavg' for SVC response +C ============================================================================== +MODELS + INPUT trma {v(TRSA)} -- transf. sec. voltage + trmb {v(TRSB)} + trmc {v(TRSC)} +-- + irab {i(RMAB)} -- aux. reactor delata current + irbc {i(RMBC)} + irca {i(RMCA)} +-- + itra {i(TRXA)} -- transf. sec. current + itrb {i(TRXB)} + itrc {i(TRXC)} +-- + rxab {i(TRXA)} -- main reactor current + rxbc {i(TRXB)} + rxca {i(TRXC)} +-- + OUTPUT -- firing signals + FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals + FRLA, FRLB, FRLC -- reactor switching +-- +MODEL svcmod -- MODELS version of DC 22 subcase 4 +-- +-- +DATA omega {dflt: 2*pi*freq} + dt {dflt :0.25/freq} +-- +CONST freq {val: 60} + tper {val: 1/freq} + qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase + qref {val: 0.00} -- set 0 for this example + delin {val: 0.25/freq} -- initialization for firing delay (60Hz) + tpimp {val: 0.200} -- test reactor switching cycle + ton {val: 0.100} -- reactor on time + tstart {val: 0.3} -- start of switching reactors +-- +VAR + tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3 + dvq, error, fdb, vref, verr, inreact, delyi + vtrsec[1..3], vtrff[1..3] + f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3] + vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3] + errq[1..3], qincr[1..3] +-- + HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages + vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages +-- + dvq {dflt: 0} -- forward block output + error {dflt: 0} -- error signal + fdb {dflt: 0} -- feedback +-- + ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current + itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current + del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles +-- + INPUT trma {dflt: trma} -- trsf sec. voltage ph-g + trmb {dflt: trmb} + trmc {dflt: trmc} +-- + irab {dflt: irab} -- svc reactor currents + irbc {dflt: irbc} + irca {dflt: irca} +-- + itra {dflt: itra} -- transf. sec. current + itrb {dflt: itrb} + itrc {dflt: itrc} +-- + rxab {dflt: 0} -- main reactor delta current + rxbc {dflt: 0} + rxca {dflt: 0} +-- + OUTPUT + ficat[1..3], fian[1..3] -- firing signals to thyristors + ttt1, ttt2, ttt3 -- control signal to switch reactors +-- + INIT + vref:= 1.0 -- reference voltage + verr:= 0 -- voltage error + tt := timestep/tper -- integration multiplier + vrms[1..3] := 0 + ficat[1..3]:= 0 -- firing pulse to cathode + fian[1..3]:= 0 -- firing pulse to anode + qin[1..3]:= 0.3 -- rective power + ttt1:= 0 -- test rector breaker control +-- + ENDINIT +-- +DELAY CELLS DFLT: 100 + CELLS(vtrsec[1..3]):500 + CELLS(vtrff[1..3]):500 +-- +-- liearization of angel versus p.u. current through thyristors + FUNCTION dely POINTLIST +-- angle current + ( 0.0, 0.0) + ( 0.0022, 0.111) + ( 0.0176, 0.222) + ( 0.0575, 0.333) + ( 0.1306, 0.444) + ( 0.2414, 0.555) + ( 0.3900, 0.666) + ( 0.5718, 0.777) + ( 0.7783, 0.888) + ( 1.0000 1.000) +-- +-- ************** EXEC **************** +EXEC +-- convert to arrays + ir[1..3] := [irab, irbc, irca] + vtrsec[1..3] := [trma, trmb, trmc] +-- +-- control signals for the type 12 switches in EMTP +-- to switch test reactors +-- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s + ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart) + ttt2 := ttt1 + ttt3 := ttt1 +-- +-- form phase to phase voltages and normalize + vtrff[1] :=(trma - trmb)/34500 + vtrff[2] :=(trmb - trmc)/34500 + vtrff[3] :=(trmc - trma)/34500 +-- +-- calculation of voltage rms values + FOR i := 1 TO 3 DO + vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2)) + ENDFOR +-- +-- calculate reactive through transformer +-- qina, qinb, qinc +-- see DC22-3 for explanation + itr[1..3] := [itra, itrb, itrc] + FOR i:= 1 TO 3 DO + tri[i]:= delay(itr[i],tper/4) + trv[i]:= delay(vtrsec[i],tper/4) + qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr + ENDFOR +-- +-- generate firing pulses 500 microsec wide +-- + if t> timestep then +-- + FOR i := 1 TO 3 DO + f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 ) + f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 ) + ENDFOR +-- delayed pulses caclulated +-- by var and voltage control + FOR i:= 1 TO 3 DO + ficat[i] := delay(f1[i],del[i]) -- cathode + fian[i] := delay(f2[i],del[i]) -- anode + ENDFOR + endif +-- average ph-ph voltage normalized + vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85} +-- +-- alternative to above but not used in this model +-- 12 pulse rectfication with output smoothed alternative to rms signal +-- smoothing rough, should be done with 120 c/s filter, not used here +-- shown as possible alternative only +-- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41 +-- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 ) +-- +-- voltage error forward and feedback loop + verr:= vllavg - vref +-- combine endcombine used because forward - feedback loop + COMBINE AS first_group + error := sum( 1|vllavg - 1|vref - 1|fdb) +-- forward gain . 1/1+stdelay + laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1) +-- derivative feedback + claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 ) + ENDCOMBINE +-- + FOR i := 1 TO 3 DO +-- total error the qref - qin[i] component may be omitted +-- it is usefull for unbalanced loads + errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0} + ENDFOR +-- calculate new firing angles +-- phase A + FOR i:= 1 TO 3 DO + k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B + l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C +-- apply phase unbalance correction + inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0} +-- linearize and convert from firing angle to time delay + delyi := delin - dely(inreact ) * dt + claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:= + 1.0|s0/(1.0|s0 + 0.005|s1) + ENDFOR +-- +ENDEXEC +ENDMODEL +USE svcmod AS test + INPUT trma:= trma trmb:= trmb trmc:= trmc + irab:= irab irbc:= irbc irca:= irca + itra:= itra itrb:= itrb itrc:= itrc +-- + OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2] + FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3] + FRLA := ttt1 FRLB := ttt2 FRLC := ttt3 +ENDUSE +C +RECORD test.vrms[1] AS vrmsab + test.vrms[2] AS vrmsbc + test.vrms[3] AS vrmsca + test.vllavg AS vllavg + test.error AS error + test.dvq AS dvq + test.fdb AS fdb + test.verr AS verr +ENDMODELS +C ************** NETWORK DATA ********************* +C +C ********* LINE TO SOURCE *********** +C +C transmission line (equivalent) from GEN source to transformer + GENA TRFA 4.5 25.0 + GENB TRFB 4.5 25.0 + GENC TRFC 4.5 25.0 +C fault level at trsf. 230 kV approx. 2083 MVA +C +C ************** MAIN TRANSFORMER ************** +C +C transformer capacitance to ground 10000pF +C a very simple model, can be replaced with any more complex model +C transformer 230000/34500 Y/D 100 MVA; In=250 A +C x = 7.2% on 100 MVA +C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance +C TRANSFORMER busref imag flux busin rmag empty +C ------------______------______------______------_____________________________- +C +C no saturation + TRANSFORMER 0.7 700.0 X + 0.7 700.0 { 100% + 9999 + 1TRPA 0.80 36.0 1330 + 2TRXA TRXB 1.00 375 {385 + TRANSFORMER X Y + 1TRPB + 2TRXB TRXC + TRANSFORMER X Z + 1TRPC + 2TRXC TRXA +C +C transformer capacitance to ground and ph - ph 10000pF + TRXA 0.01 + TRXB 0.01 + TRXC 0.01 +C capacitance between phases + TRXA TRXB 0.01 + TRXB TRXC 0.01 + TRXC TRXA 0.01 +C +C *********** HARMONIC FILTERS *************** +C +C 5th harmonic filter 20 MVAR + TRSA TF5 2.38 44.6 1 + TRSB TF5 2.38 44.6 + TRSC TF5 2.38 44.6 +C 7th harmonic filter 10 MVAR + TRSA TF7 2.43 22.3 1 + TRSB TF7 2.43 22.3 + TRUC TF7 2.43 22.3 +C +C ******** TRANSFORMER SECONDARY LOAD *************** +C 70 MW, 30 MVAR + TRSA ND 13.67 5.47 + TRSB ND 13.67 5.47 + TRSC ND 13.67 5.47 +C +C shunt capacitor 20 MVAR + TRSA 44.5 + TRSB 44.5 + TRSC 44.5 +C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* +C +C switched .1 sec. on .1 sec. off +C see switch type 13 below and type 23 source in TACS +C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load +C + XLA NSR 34.0 34.0 + XLB NSR 34.0 34.0 + XLC NSR 34.0 34.0 +C +C ************** SNUBBERS ************** +C +C the snubber parameters shown below are not necessarily the +C values a manufacturer would choose for a 34.5 kV valve. +C The parameters were selected so that only a small currrent flows +C through the control reactor with the valves non conducting, +C and overvoltages and spikes interfering with the firing control +C are prevented. It is quite possible that a better combination +C than that shown exists. +C +C in series with valves +C + CATAB RXAB .1 + ANOAB RXAB .1 + CATAB RXAB 4.0 + ANOAB RXAB 4.0 +C + CATBC RXBC .1 + ANOBC RXBC .1 + CATBC RXBC 4.0 + ANOBC RXBC 4.0 +C + CATCA RXCA .1 + ANOCA RXCA .1 + CATCA RECA 4.0 + ANOCA RXCA 4.0 +C +C across valves +C + CATAB TRSA 2000. .1 + ANOAB TRSA 2000. .1 +C + CATBC TRSB 2000. .1 + ANOBC TRSB 2000. .1 +C + CATCA TRSC 2000. .1 + ANOCA TRSC 2000. .1 +C +C ************* SVC CONTROLLED REACTOR ************* +C +C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm + RXAB TRSB 0.1 35.71 1 + RXBC TRSC 0.1 35.71 + RXCA TRSA 0.1 35.71 +C +C *************** REACTOR FOR FIRING PULSE GENERATION ****** +C +C Fire angle reference measurement using delta connected reactors +C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus + TRSA RMXA 0.01 1 + TRSB RMXB 0.01 + TRSC RMXC 0.01 +C The reactors are delta connected through measuring switches below + RMAB RMXB 200. 20000. + RMBC RMXC 200. 20000. + RMCA RMXA 200. 20000. +C +BLANK end of branch data +C *************** SWITCH DATA ***************8 +C +C current measurement in the auxiliary reactor for firing pulse generation +C these switches complete the delta connection of the reactors +C (Rule Book p.6A-9) + RMXA RMAB MEASURING 1 + RMXB RMBC MEASURING 1 + RMXC RMCA MEASURING 1 +C +C current measurement in the main transformer secondary + TRXA TRSA MEASURING + TRXB TRSB MEASURING + TRXC TRSC MEASURING +C current measurement in the main transformer prinmary + TRFA TRPA MEASURING + TRFB TRPB MEASURING + TRFC TRPC MEASURING +C +C switch for on/off switching the 36.6 MVAR resistive-reactive load +C (Rule Book p. 6C-1) +12TRSA XLA FRLA 1 +12TRSB XLB FRLB 1 +12TRSC XLC FRLC 1 +C +C VALVES +C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR +C Rule Book p. 6B-1 +11TRSA CATAB 100. 35.0 FIAB1 1 +11ANOAB TRSA 100. 35.0 FIAB2 1 +11TRSB CATBC 100. 35.0 FIBC1 1 +11ANOBC TRSB 100. 35.0 FIBC2 1 +11TRSC CATCA 100. 35.0 FICA1 1 +11ANOCA TRSC 100. 35.0 FICA2 1 +C +BLANK end of switch data +C +C AC sources +C 230 kV supply +14GENA 187794. 60. 0. -1. +14GENB 187794. 60. 240. -1. +14GENC 187794. 60. 120. -1. +C --------------+------------------------------ +BLANK end of source cards +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04 +C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04 +C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04 +C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06 +C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06 +C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06 +C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06 +C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06 +C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06 +C TRSA XLA Open Open .... Etc. (all remaining switches) +C +C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8 +C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739 + TRSA TRFA { Node voltage output requests +C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB +C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA +C +C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS +C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC +C +C MODELS MODELS MODELS MODELS MODELS MODELS +C VRMSCA VLLAVG ERROR DVQ FDB VERR +C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state. +C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state. +C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state. +C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state. +C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state. +C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state. +C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state. +C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state. +C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state. +C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% +C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = +C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN +C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. +C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491 +C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15 +C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865 +C .046333037 .85 .007233288 -.37886586 -.15723329 -.15 +C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142 +C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15 +BLANK end of output requests +C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0 +C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633 +C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629 +C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119 +C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273 +C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165 +C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625 +C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407 +C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111 + PRINTER PLOT + 193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930) +BLANK end of plot requests +BEGIN NEW DATA CASE +BLANK +EOF + + 10 June 2002, WSM adds output to the screen in case of DISK use. +Without any EATS, this is simple as should be illustrated in the October +(or later) newsletter. But with EATS, there are variations depending upon: +1) the subcase number; and 2) whether NEW LIST SIZES (NLS) is being +used. The subject is mentioned here because the preceding data _does_ +involve NLS. So, if EATS is requested from STARTUP (FLZERO < 0), +expect the following new output to the screen: + ---- Begin EATS for subcase number KNTSUB = 1 + ---- Begin EATS for subcase number KNTSUB = 2 + ---- Begin EATS for subcase number KNTSUB = 3 + ---- Begin next subcase number KNTSUB = 4 + ---- Begin next subcase number KNTSUB = 5 +The NLS requests in the 4th and 5th subcases conflict with EATS, +and NLS takes precedence. diff --git a/benchmarks/dc22d.dat b/benchmarks/dc22d.dat new file mode 100644 index 0000000..2fb39c3 --- /dev/null +++ b/benchmarks/dc22d.dat @@ -0,0 +1,602 @@ +BEGIN NEW DATA CASE +C 4th of 5 subcases illustrates the modeling of Static Var Control (SVC). +C Contributed to ATP materials of the Can/Am user group February 1992 by: +C Gabor B. Furst Consultants Kurt G. Fehrle, Consultant +C #203 - 1745 Martin Drive 705 Westtown Circle +C White Rock/ South Surrey B.C. West Chester, PA 19382 +C CANADA V4A 6Z1 USA +C Phone: 604-535-6540 Phone: 610-344-0432 +C FAX: 604-535-6548 +C In July of 1993, Mr. Furst revised it again in preparation for his use +C of it at Prof. Ned Mohan's University of Minnesota short course there. +C Size 1-10: 43 63 56 3 230 18 167 0 0 0 +C Size 11-20: 0 15 3602 -9999 -9999 0 0 0110679 0 +C Size 21-29: 0 0 105 0 -9999 -9999 -9999 -9999 -9999 +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 + 0 0 4700 0 0 0 0 0 12000 0 + 0 0 220 + 240000 +C *********** A GENERIC 6 PULSE SVC MODEL ************************************ +C +C This is a conceptual model only, it must be refined +C for any specific system; the control algorithm can be greatly improved. +C +C 6 pulse 100 MVAR TCR-SVC connected to a 230/34.5 kV Y/D transformer; +C TCR's connected in delta. +C +C Thyristor gating pulses are phase locked to the current zero transition +C in an auxiliary reactor (RMAB,RMBC,RMCA), which could be an oversized PT; +C individual phase open loop VAR control is used, with a superimposed. +C slow voltage control. +C +C The disturbance is the on/off switching of a 52.3 MVA, 0.7 p.f., 34.5 kV +C load (XLA/B/C). The SVC response can be obtained by plotting the r.m.s +C value of the 34.5 kV phase to phase voltages, which are the TACS variables +C TXNAB/BC/CA. To obtain the response on the 34.5 kV bus without the SVC, +C the thyristors have to be blocked. One way of doing this is to punch +C 1000000. in col. 17-24 of the thyristor switches 11. +C +C To get the SVC overall response plot the transformer ph-ph r.m.s secondary +C voltage TXNA (TACS), or VILLAVG (TACS) for the av. value of the three +C ph-ph r.m.s. voltages +C +C To get the VAR import/phase through the transformer secondary +C plot QINA (TACS) +C +C To get the transformer secondary voltage (instant.) plot TRSA +C +C TRSA-XLA shows the switching of the phase to phase load +C +C RXAB-TRSB plots the current through one AB arm of the thyristor bridge +C +C For sake of simplicity, some of the TACS variables have not been +C initialized, so ignore the first 25 ms of the plots. +C +C If in the "Superimposed Voltage Control Section the gain +C of DVQ is set to zero, the model reverts to open loop VAR control +PRINTED NUMBER WIDTH, 13, 2, +C For best results, do not use a time step more than 1/2 Degree (23.148 +C microsec for 60 Hz). Here, to speed the illustration, we use twice that, +C & only simulate for half as long (extend to 0.5 sec for more transients). +C Free-format data input is used in order to specify DELTAT precisely: +C DELTAT TMAX XOPT COPT EPSILN TOLMAT +.0000462962962962963, 0.25, 60., , , , , , , , , + 1 -3 1 2 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +C +C Firing pulses are derived from the current through the measuring inductances +C RMAB, RMBC and RMCA as explained above. Device 91 imports the current into +C TACS from the measuring switches connecting the RM's in delta, +C corresponding to the delta connected thyristor valves. +C +C The current lags the voltage 90 deg. and its zero transition produces +C the firing signal at an alpha of 90 deg. +C This is done by TACS level triggered switches Device 52. +C The firing pulse delay is calculated by the variables DELAB/BC/CA +C and implemented by TACS transport device Device 54; +C +C For convenience, the firing angle is initialized to alpha = 180 deg. +C by the constant of DELIN, where DELA is 4.167 ms for a 60 Hz system. +C The required firing angle is then calculated backwards from the +C 180 deg. point, by using the variable DELYA(B,C). +C The actual firing angle is then DELAB = DELIN -DELYA etc. +C for the other phases. The minimum firing angle is limited by DELYA = 4.167 ms. +C Then DELAB= DELIN - DELYA =0.0 (90 deg.) +C DELIN = 4.167 ms.; DELAB =0.0 corresponds to minimum alpha 90 degrees. +C For 50 Hz, DELIN = 5.0 ms. +C +C *********** VOLTAGE AND REACTIVE REFERENCE ************* +11VREFD 1.0 +C VAR reference +C the TCR rating is 100 MVA 3ph; the per phase is 33.3 MVAR or 1.00 p.u.; +C initial load through the 230/34.5 kV tranformer is 45 MVAR or 15 MVAR/phase; +C equal to 0.45 p.u. giving approx. 90% bus voltage at 34.5 kV; +C this is taken as reference; Q divided by QTCR =33.3 MVAR will be Q p.u. +88QTCR = 33.3*10**6 +C The VAR reference QREF should be determined so that the superimposed +C voltage control changes the VAR flow as little as possible +88QREF = 0.30 +C +C *********** VOLTAGES TRANSFERRED FROM NETWORK ************* +C +C ******* Import 34.5 kV phase voltages, get phase to phase and normalize ***** +C TRSA/B/C are the transformer secondary ph-g voltages +C 90 - TACS voltage source driven by an EMTP network node voltage +C (Rule Book p. 3-15) +90TRSA +90TRSB +90TRSC +C the phase to phase voltages +99TRAB = TRSA - TRSB +99TRBC = TRSB - TRSC +99TRCA = TRSC - TRSA +C normalize to get one p.u. for the phase to phase rms value +99TABX = TRAB/34500 +99TBCX = TRBC/34500 +99TCAX = TRCA/34500 +C get the rms value of the A-B phase to phase voltage +C Device 66 (Rule Book p. 3-32) +99TXNAB 66+TABX 60. +99TXNBC 66+TBCX 60. +99TXNCA 66+TCAX 60. +C +C ************** PHASE A FIRING PULSES ************************************** +C +C 91 - TACS; current source driven by an EMTP network current (Rule B.p 3-15) +91RMAB +C send square impulse at current zero Device 52 (Rule B. p. 3-21) +88FAB1 52+UNITY 1. 0. 0 RMAB +88FAB2 52+UNITY 1. 0. -1 RMAB +C to shift impulse by DELAB delay required Type 54 (Rule B. p. 3-23) +98FIAB1 54+FAB1 .0000 DELAB +98FIAB2 54+FAB2 .0000 DELAB +C for a 50 Hz system the constant .004167 below should be changed to 0.005 +88DELIN = .004167 { to initialize alpha to 180 deg. +C +C ************* PHASE B FIRING PULSES ************************************* +C +91RMBC +88FBC1 52+UNITY 1. 0. 0 RMBC +88FBC2 52+UNITY 1. 0. -1 RMBC +98FIBC1 54+FBC1 .0000 DELBC +98FIBC2 54+FBC2 .0000 DELBC +C +C ************ PHASE C FIRING PULSES ************************************* +C +91RMCA +88FCA1 52+UNITY 1. 0. 0 RMCA +88FCA2 52+UNITY 1. 0. -1 RMCA +98FICA1 54+FCA1 .0000 DELCA +98FICA2 54+FCA2 .0000 DELCA +C +C ************* OPEN LOOP VAR CONTROL ************************** +C **** WITH SUPERIMPOSED VOLTAGE CONTROL *********** +C +C the following will be repeated for all three phases as the SVC +C +C ************ RACTIVE POWER FLOWS ********* +C +C calclate VAR transfer at transf. secondary +91TRXA { 34.5 kV side current through transformer +C Device 53 is transpoert delay or signal phase shifting (Rule Book p. 3-22) +88TRIA 53+TRXA .00417 .0043 +88TRVA 53+TRSA .00417 .0043 +C the following equation for calculating VAR flow is from +C Miller: Reactive power Control etc. (text book) p. 321 +88QINA =( -TRSA * TRIA * 0.5 + TRXA * TRVA * 0.5 ) / QTCR +C +91TRXB +88TRIB 53+TRXB .00417 .0043 +88TRVB 53+TRSB .00417 .0043 +88QINB =( -TRSB * TRIB * 0.5 + TRXB * TRVB * 0.5 ) / QTCR +C +91TRXC +88TRIC 53+TRXC .00417 .0043 +88TRVC 53+TRSC .00417 .0043 +88QINC =( -TRSC * TRIC * 0.5 + TRXC * TRVC * 0.5 ) / QTCR +C +C ******************** SUPERIMPOSED VOLTAGE CONTROL ******************** +C +C ******** DELTA Q TO ADJUST VOLTAGE ************ +C the average value of phase to phase voltage is + 0VLLAVG +TXNAB +TXNBC +TXNCA .3333 .85 1.15 +C the difference between ref. and actual voltage is +C slow down the response by a (1/1+st) block + 1DVQ +VLLAVG -VREFD 50.0 -1.0 1.0 + 1.0 + 1.0 0.500 +C the required VAR import taking voltage correction into account + 0QRNEW +QREF +DVQ +C ***************** PHASE A ERROR ****************************************** +C +C error in VAR import + 0ERRQA +QRNEW -QINA + 0QINCRA +ERRQA +C the new reactor output is then given by the Steinmetz Algorithm as +C the output at T-delT + QINCRA + QINCRB - QINCRC; +C as shown below in calculating the new SVC VAR's +C ****************** PHASE B ERROR **************************************** +C + 0ERRQB +QRNEW -QINB + 0QINCRB +ERRQB +C +C ****************** PHASE C ERROR ***************************************** +C + 0ERRQC +QRNEW -QINC +C + 0QINCRC +ERRQC +C +C +C **************** PHASE A PULSE DELAY CONTROL **************************** +C the current firing angle is DELAB, this corresponds to an old reactor +C p.u. current given by the following non linear relation corresponding +C to the x = sigma-sin(sigma) function +99DLA1 = 1 - DELAB/.004167 +C where DLA1 is the normalized conduction angle sigma between firing +C angle alpha 90 and 180 degrees. +C +99REOAB 56+DLA1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.0000 + 9999. +C the new reactor current demanded is the increment plus the old +C which is QINCRA + QINCRB - QINCRC + REOAB and is min. 0.0 max. 1.0 +C this is applying the Steinmetz algorithm + 0INREAB +QINCRA +REOAB +QINCRB -QINCRC 0.00 1.00 +C this is now reconverted into an angle, using the inverse of the +C above relation, and becomes the new DELAB; (Rule Book p. 3-25 ) +99DELYAA56+INREAB + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.0000 1.000 + 9999. +99DELYA =DELYAA * 0.004167 +C now smooth it out a bit + 1DELAB +DELIN -DELYA 1.0 .0040 + 1.0 + 1.0 0.015 +C +C ****************** PHASE B PULSE DELAY CONTROL ************************** +C +99DLB1 = 1 - DELBC/.004167 +C +99REOBC 56+DLB1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.000 + 9999. +C + 0INREBC +QINCRB +REOBC +QINCRC -QINCRA 0.00 1.00 +C +99DELYBB56+INREBC + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.000 1.000 + 9999. +99DELYB =DELYBB * 0.004167 +C + 1DELBC +DELIN -DELYB 1.0 0.0040 + 1.0 + 1.0 0.015 +C +C *************** PHASE C PULSE DELAY CONTROL ****************************** +C +99DLC1 = 1 - DELCA/.004167 +C +99REOCA 56+DLC1 + 0.0 0.0 + 0.111 0.0022 + 0.222 0.0176 + 0.333 0.0575 + 0.444 0.1306 + 0.555 0.2414 + 0.666 0.3900 + 0.777 0.5718 + 0.888 0.7783 + 1.000 1.000 + 9999. +C + 0INRECA +QINCRC +REOCA +QINCRA -QINCRB 0.00 1.00 +C +99DELYCC56+INRECA + 0.0 0.0 + 0.0022 0.111 + 0.0176 0.222 + 0.0575 0.333 + 0.1306 0.444 + 0.2414 0.555 + 0.3900 0.666 + 0.5718 0.777 + 0.7783 0.888 + 1.000 1.000 + 9999. +99DELYC =DELYCC * 0.004167 +C + 1DELCA +DELIN -DELYC 1.0 0.0040 + 1.0 + 1.0 0.015 +C +C ***************** REACTOR SWITCHING *************************************** +C +C control signals to switch reactive load 'XLA/B/C' on and off +C see TYPE 12 switches in power network. +C TACS source (Rule Book p. 3-14) +23FRLA 1000. 0.200 0.100 0.2 +23FRLB 1000. 0.200 0.100 0.2 +23FRLC 1000. 0.200 0.100 10.0 +C +C initializations +77VLLAVG 1.0 +77TXNAB 1.0 +77QRNEW .30 +77QINA .30 +77QINB .30 +77QINC .30 +C +C ********* TACS OUTPUTS ************ +C +33TXNAB TXNBC TXNCA ERRQA VLLAVG +33QRNEW DVQ QINA +BLANK end of TACS +C +C ************** NETWORK DATA ********************* +C +C ********* LINE TO SOURCE *********** +C +C transmission line (equivalent) from GEN source to transformer + GENA TRFA 4.5 25.0 + GENB TRFB 4.5 25.0 + GENC TRFC 4.5 25.0 +C fault level at trsf. 230 kV approx. 2083 MVA +C +C ************** MAIN TRANSFORMER ************** +C +C transformer capacitance to ground 10000pF +C a very simple model, can be replaced with any more complex model +C transformer 230000/34500 Y/D 100 MVA; In=250 A +C x = 7.0% on 100 MVA +C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance +C TRANSFORMER busref imag flux busin rmag empty +C ------------______------______------______------_____________________________- +C +C no saturation + TRANSFORMER 0.7 700.0 X + 0.7 700.0 { 100% + 9999 + 1TRPA 0.80 36.0 1330 + 2TRXA TRXB 1.00 385 {372 + TRANSFORMER X Y + 1TRPB + 2TRXB TRXC + TRANSFORMER X Z + 1TRPC + 2TRXC TRXA +C +C transformer capacitance to ground and ph - ph 10000pF + TRXA 0.01 + TRXB 0.01 + TRXC 0.01 +C capacitance between phases + TRXA TRXB 0.01 + TRXB TRXC 0.01 + TRXC TRXA 0.01 +C +C *********** HARMONIC FILTERS *************** +C +C 5th harmonic filter 20 MVAR + TRSA TF5 2.38 44.5 + TRSB TF5 2.38 44.5 + TRSC TF5 2.38 44.5 +C 7th harmonic filter 20 MVAR + TRSA TF7 1.21 44.5 + TRSB TF7 1.21 44.5 + TRUC TF7 1.21 44.5 +C +C ******** TRANSFORMER SECONDARY LOAD *************** +C 75 MW, 30 MVAR + TRSA ND 13.67 5.47 + TRSB ND 13.67 5.47 + TRSC ND 13.67 5.47 +C +C shunt capacitor 20 MVAR + TRSA 44.5 + TRSB 44.5 + TRSC 44.5 +C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* +C +C switched reactor .1 sec. on .1 sec. off +C see switch type 13 below and type 23 source in TACS +C 24.7 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load + XLA NSR 34.00 34.00 + XLB NSR 34.00 34.00 + XLC NSR 34.00 34.00 +C +C +C ************** SNUBBERS ************** +C +C the snubber parameters shown below are not necessarily the +C values a manufacturer would choose for a 34.5 kV valve. +C The parameters were selected so that only a small currrent flows +C through the control reactor with the valves non conducting, +C and overvoltages and spikes interfering with the firing control +C are prevented. It is quite possible that a better combination +C than that shown exists. +C +C in series with valves +C + CATAB RXAB .1 + ANOAB RXAB .1 + CATAB RXAB 4.0 + ANOAB RXAB 4.0 +C + CATBC RXBC .1 + ANOBC RXBC .1 + CATBC RXBC 4.0 + ANOBC RXBC 4.0 +C + CATCA RXCA .1 + ANOCA RXCA .1 + CATCA RECA 4.0 + ANOCA RXCA 4.0 +C +C across valves +C + CATAB TRSA 2000. .1 + ANOAB TRSA 2000. .1 +C + CATBC TRSB 2000. .1 + ANOBC TRSB 2000. .1 +C + CATCA TRSC 2000. .1 + ANOCA TRSC 2000. .1 +C +C ************* SVC CONTROLLED REACTOR ************* +C +C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm + RXAB TRSB 0.1 35.71 1 + RXBC TRSC 0.1 35.71 + RXCA TRSA 0.1 35.71 +C +C *************** REACTOR FOR FIRING PULSE GENERATION ****** +C +C Fire angle reference measurement using delta connected reactors +C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus + TRSA RMXA 0.01 1 + TRSB RMXB 0.01 + TRSC RMXC 0.01 +C The reactors are delta connected through measuring switches below + RMAB RMXB 200. 20000. + RMBC RMXC 200. 20000. + RMCA RMXA 200. 20000. +C +BLANK end of branch data +C *************** SWITCH DATA ***************8 +C +C current measurement in the auxiliary reactor for firing pulse generation +C these switches complete the delta connection of the reactors +C (Rule Book p.6A-9) + RMXA RMAB MEASURING + RMXB RMBC MEASURING + RMXC RMCA MEASURING +C +C current measurement in the main transformer secondary + TRXA TRSA MEASURING 1 + TRXB TRSB MEASURING 0 + TRXC TRSC MEASURING 0 +C current measurement in the main transformer primary + TRFA TRPA MEASURING 1 + TRFB TRPB MEASURING 0 + TRFC TRPC MEASURING 0 +C +C switch for on/off switching the 17.5 MVAR resistive-reactive load +C (Rule Book p. 6C-1) +12TRSA XLA FRLA 11 +12TRSB XLB FRLB 10 +12TRSC XLC FRLC 10 +C +C VALVES +C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR +C Rule Book p. 6B-1 +11TRSA CATAB 00. 15.0 FIAB1 1 +11ANOAB TRSA 00. 15.0 FIAB2 1 +11TRSB CATBC 0000. 15.0 FIBC1 1 +11ANOBC TRSB 000. 15.0 FIBC2 1 +11TRSC CATCA 0000. 15.0 FICA1 1 +11ANOCA TRSC 000. 15.0 FICA2 1 +C +BLANK end of switch data +C +C AC sources +C 230 kV supply +14GENA 187794. 60. 0. -1. +14GENB 187794. 60. 240. -1. +14GENC 187794. 60. 120. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GENA |TRFA * +C TRFA |GENA *TRPA * +C GENB |TRFB * +C TRFB |GENB *TRPB * +C GENC |TRFC * +C TRFC |GENC *TRPC * +C X |TERRA *TERRA *TRPA * +C TRPA |TRFA * X* +C TRXA |TERRA *TRXB *TRXB *TRXC *TRXC *TRSA * +C TRXB |TERRA *TRXA *TRXA *TRXC *TRXC *TRSB * +BLANK end of source cards +C Total network loss P-loss by summing injections = 9.766831747973E+07 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C RMXA RMAB -3.58276847E-01 -2.79310857E+00 2.81599321E+00 -97.3095 2.25048004E+04 3.95893953E+04 +C RMXB RMBC -2.15903199E+00 1.67914276E+00 2.73513063E+00 142.1267 2.24866103E+04 3.77703877E+04 +C RMXC RMCA 2.51730884E+00 1.11396581E+00 2.75277380E+00 23.8705 2.24781027E+04 3.69196208E+04 +C TRXA TRSA 1.87366412E+03 -5.12826995E+02 1.94257787E+03 -15.3071 2.92045856E+07 -1.15739798E+07 +C TRXB TRSB -1.84783216E+03 -1.48829687E+03 2.37265911E+03 -141.1510 3.63691255E+07 -1.14600036E+07 +C TRXC TRSC -2.58319590E+01 2.00112387E+03 2.00129059E+03 90.7396 3.11027262E+07 -4.48411843E+06 +C TRFA TRPA 3.59043573E+02 9.36972121E+01 3.71067992E+02 14.6259 3.34033086E+07 -1.05190303E+07 +C TRFB TRPB -1.76142866E+02 -3.36446952E+02 3.79766851E+02 -117.6338 3.53040617E+07 -3.27502311E+06 +C TRFC TRPC -1.82900707E+02 2.42749740E+02 3.03940957E+02 126.9963 2.81187847E+07 -4.63098619E+06 +C 1st gen: GENA 187794. 187794. 359.04357262628 371.06799188975 .337131143389E8 .348421712345E8 +C 1st gen: 0.0 0.0 93.697212129556 14.6259048 -.87978871273E7 0.9675951 + TRSA TRFA { Names of nodes for which voltage is to be outputted +C Step Time TRSA TRFA TRXA TRFA TRSA RXAB TRSA TACS +C TRSA TRPA XLA TRSB RMXA TXNAB +C +C TACS TACS TACS TACS TACS TACS TACS +C TXNBC TXNCA ERRQA VLLAVG QRNEW DVQ QINA +C *** Phasor I(0) = -3.5827685E-01 Switch "RMXA " to "RMAB " closed in the steady-state. +C *** Phasor I(0) = -2.1590320E+00 Switch "RMXB " to "RMBC " closed in the steady-state. +C *** Phasor I(0) = 2.5173088E+00 Switch "RMXC " to "RMCA " closed in the steady-state. +C *** Phasor I(0) = 1.8736641E+03 Switch "TRXA " to "TRSA " closed in the steady-state. +C *** Phasor I(0) = -1.8478322E+03 Switch "TRXB " to "TRSB " closed in the steady-state. +C *** Phasor I(0) = -2.5831959E+01 Switch "TRXC " to "TRSC " closed in the steady-state. +C *** Phasor I(0) = 3.5904357E+02 Switch "TRFA " to "TRPA " closed in the steady-state. +C *** Phasor I(0) = -1.7614287E+02 Switch "TRFB " to "TRPB " closed in the steady-state. +C *** Phasor I(0) = -1.8290071E+02 Switch "TRFC " to "TRPC " closed in the steady-state. +C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% +C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = +C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN +C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. +C 0 0.0 25855.428 188520.7342 1873.664121 359.0435726 0.0 .8977594404 -2.87558569 0.0 +C 0.0 0.0 0.0 1.0 0.3 0.0 0.3 +C 1 .46296E-4 26190.60084 188656.0309 1882.328634 357.3536908 0.0 .8251974241 -2.80696162 .0854224562 +C .050813098 .0346093582 .3019675015 .85 .3019675015 .0019675015 0.0 +C Valve "ANOBC " to "TRSB " closing after 9.25925926E-05 sec. +C 2 .92593E-4 26517.79623 188733.8621 1890.419856 355.5549605 0.0 .752384056 -2.73748258 .1209236949 +C .0710411015 .049896216 .301272907 .85 .301272907 .001272907 0.0 +BLANK end of output requests +C Valve "TRSB " to "CATBC " closing after 2.40231481E-01 sec. +C Valve "TRSA " to "CATAB " opening after 2.41388889E-01 sec. +C Valve "ANOAB " to "TRSA " closing after 2.42638889E-01 sec. +C Valve "ANOCA " to "TRSC " opening after 2.44351852E-01 sec. +C Valve "TRSC " to "CATCA " closing after 2.45138889E-01 sec. +C Valve "TRSB " to "CATBC " opening after 2.46574074E-01 sec. +C Valve "ANOBC " to "TRSB " closing after 2.48611111E-01 sec. +C Valve "ANOAB " to "TRSA " opening after 2.49675926E-01 sec. +C 5400 .25 24620.31357 180704.5964 887.7133221 311.5182977 310.0730625 18.04597752 -2.55047538 .999668036 +C 1.002620895 1.00418338 -.05590233 1.002057221 .5408201644 .2408201644 .5967224946 +C Variable maxima : 30965.63617 188749.4575 2719.683362 461.7713374 506.9005859 1315.892083 4.520536227 1.084424099 +C 1.091008223 1.08827864 .3019675015 1.085619064 .5823416906 .2823416906 .8205355066 +C Times of maxima : .0344444444 .1388889E-3 .2030092593 .2025 .235787037 .0044907407 .0224537037 .0396759259 +C .0401851852 .0358796296 .462963E-4 .0400925926 .1684722222 .1684722222 .2031481481 +C Variable minima : -31985.2128 -187338.374 -2784.38662 -483.591685 -508.17585 -1284.74425 -4.58557455 0.0 +C 0.0 0.0 -.564929157 .85 .1001935452 -.199806455 0.0 +C Times of minima : .0266666667 .0252314815 .2112962963 .2103703704 .2441203704 .19625 .0309259259 0.0 +C 0.0 0.0 .0118981481 .462963E-4 .0158333333 .0158333333 .462963E-4 + PRINTER PLOT + 193.02 0.0 .25 .94 1.0TACS TXNAB { Limits [.94, 1.0] amplify the transient +BLANK end of plot requests +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc22e.dat b/benchmarks/dc22e.dat new file mode 100644 index 0000000..13935e0 --- /dev/null +++ b/benchmarks/dc22e.dat @@ -0,0 +1,478 @@ +BEGIN NEW DATA CASE +C 5th of 5 subcases illustrates the modeling of Static Var Control (SVC). +C This is very similar to the preceding 4th case except that here newer +C MODELS replaces TACS for the control system modeling. The same +C Gabor Furst of suburban Vancouver, British Columbia, Canada contributed +C this during February of 1995 (see January and April newsletters). To +C speed the simulation, TMAX = 0.6 has been reduced to 0.10 sec. +NEW LIST SIZES + 0 0 68 8 450 35 285 0 0 0 + 0 0 4700 0 64800 0 0 0 0 0 + 0 0 220 126000 + 240000 742 +PRINTED NUMBER WIDTH, 11, 1, { Restore defaults after preceding aberations +C DELTAT TMAX XOPT COPT EPSILN TOLMAT +C 46.296-6 0.600 60. ---- Gabor Furst's original data card +.0000462962962962963, 0.250, 60., , , , , , , , , +C the time step is the cycle time 1/60 sec. divided by 360 degrees +C IOUT IPLOT IDOUBL KSSOUT MAXOUT IPUN MEMSAV ICAT NENERG IPRSUP +C 9999 1 0 1 1 + 1 -3 1 2 1 -1 + 5 5 20 20 100 100 500 500 +C The running of this MODELS file requires the latest version of TPbig +C with the increased list sizes for MODELS +C +C The example demonstrates a generic SVC connected to a 230/34.5 kV +C step-down transformer, with an SVC reactor rating of 100 MVA. +C The SVC is tested by switching on and off a 25 MVA 0.7 p.f. +C load on the 34.5 kV bus +C plot vatiable 'vllavg' for SVC response +C ============================================================================== +MODELS + INPUT trma {v(TRSA)} -- transf. sec. voltage + trmb {v(TRSB)} + trmc {v(TRSC)} +-- + irab {i(RMAB)} -- aux. reactor delata current + irbc {i(RMBC)} + irca {i(RMCA)} +-- + itra {i(TRXA)} -- transf. sec. current + itrb {i(TRXB)} + itrc {i(TRXC)} +-- + rxab {i(TRXA)} -- main reactor current + rxbc {i(TRXB)} + rxca {i(TRXC)} +-- + OUTPUT -- firing signals + FIAB1, FIAB2, FIBC1, FIBC2, FICA1, FICA2 -- firing signals + FRLA, FRLB, FRLC -- reactor switching +-- +MODEL svcmod -- MODELS version of DC 22 subcase 4 +-- +-- +DATA omega {dflt: 2*pi*freq} + dt {dflt :0.25/freq} +-- +CONST freq {val: 60} + tper {val: 1/freq} + qtcr {val: 33.3*1E+6} -- p.u. SVC reactor rating/phase + qref {val: 0.00} -- set 0 for this example + delin {val: 0.25/freq} -- initialization for firing delay (60Hz) + tpimp {val: 0.200} -- test reactor switching cycle + ton {val: 0.100} -- reactor on time + tstart {val: 0.3} -- start of switching reactors +-- +VAR + tt, vllavg, vllmax, vll12p , qrnew, ttt1, ttt2, ttt3 + dvq, error, fdb, vref, verr, inreact, delyi + vtrsec[1..3], vtrff[1..3] + f1[1..3], f2[1..3], ficat[1..3], fian[1..3],del[1..3],i,k,l,ir[1..3] + vrms[1..3], itr[1..3], tri[1..3], trv[1..3], qin[1..3] + errq[1..3], qincr[1..3] +-- + HISTORY vtrsec[1..3] {dflt:[0,0,0]} -- transf. ph-g voltages + vtrff[1..3] {dflt:[0,0,0]} -- transf. ph-ph voltages +-- + dvq {dflt: 0} -- forward block output + error {dflt: 0} -- error signal + fdb {dflt: 0} -- feedback +-- + ir[1..3] {dflt :[0,0,0]} -- aux. reactor delata current + itr[1..3] {dflt :[0,0,0]} -- trsf. sec. current + del[1..3] {dflt :[0,0,0]} -- firing pulse delay angles +-- + INPUT trma {dflt: trma} -- trsf sec. voltage ph-g + trmb {dflt: trmb} + trmc {dflt: trmc} +-- + irab {dflt: irab} -- svc reactor currents + irbc {dflt: irbc} + irca {dflt: irca} +-- + itra {dflt: itra} -- transf. sec. current + itrb {dflt: itrb} + itrc {dflt: itrc} +-- + rxab {dflt: 0} -- main reactor delta current + rxbc {dflt: 0} + rxca {dflt: 0} +-- + OUTPUT + ficat[1..3], fian[1..3] -- firing signals to thyristors + ttt1, ttt2, ttt3 -- control signal to switch reactors +-- + INIT + vref:= 1.0 -- reference voltage + verr:= 0 -- voltage error + tt := timestep/tper -- integration multiplier + vrms[1..3] := 0 + ficat[1..3]:= 0 -- firing pulse to cathode + fian[1..3]:= 0 -- firing pulse to anode + qin[1..3]:= 0.3 -- rective power + ttt1:= 0 -- test rector breaker control +-- + ENDINIT +-- +DELAY CELLS DFLT: 100 + CELLS(vtrsec[1..3]):500 + CELLS(vtrff[1..3]):500 +-- +-- liearization of angel versus p.u. current through thyristors + FUNCTION dely POINTLIST +-- angle current + ( 0.0, 0.0) + ( 0.0022, 0.111) + ( 0.0176, 0.222) + ( 0.0575, 0.333) + ( 0.1306, 0.444) + ( 0.2414, 0.555) + ( 0.3900, 0.666) + ( 0.5718, 0.777) + ( 0.7783, 0.888) + ( 1.0000 1.000) +-- +-- ************** EXEC **************** +EXEC +-- convert to arrays + ir[1..3] := [irab, irbc, irca] + vtrsec[1..3] := [trma, trmb, trmc] +-- +-- control signals for the type 12 switches in EMTP +-- to switch test reactors +-- the following is a pulse train 0.1/0.1 on/off starts at 0.2 s + ttt1:= AND((t-tstart) MOD tpimp < ton , t-tstart) + ttt2 := ttt1 + ttt3 := ttt1 +-- +-- form phase to phase voltages and normalize + vtrff[1] :=(trma - trmb)/34500 + vtrff[2] :=(trmb - trmc)/34500 + vtrff[3] :=(trmc - trma)/34500 +-- +-- calculation of voltage rms values + FOR i := 1 TO 3 DO + vrms[i]:= sqrt(vrms[i]**2 + tt*(vtrff[i]**2 - delay(vtrff[i], tper)**2)) + ENDFOR +-- +-- calculate reactive through transformer +-- qina, qinb, qinc +-- see DC22-3 for explanation + itr[1..3] := [itra, itrb, itrc] + FOR i:= 1 TO 3 DO + tri[i]:= delay(itr[i],tper/4) + trv[i]:= delay(vtrsec[i],tper/4) + qin[i] := (-vtrsec[i]*tri[i] * 0.5 + itr[i]* trv[i] * 0.5)/ qtcr + ENDFOR +-- +-- generate firing pulses 500 microsec wide +-- + if t> timestep then +-- + FOR i := 1 TO 3 DO + f1[i]:= AND(ir[i] >= 0, delay(ir[i],0.0005) < 0 ) + f2[i]:= AND(ir[i] <= 0, delay(ir[i],0.0005) > 0 ) + ENDFOR +-- delayed pulses caclulated +-- by var and voltage control + FOR i:= 1 TO 3 DO + ficat[i] := delay(f1[i],del[i]) -- cathode + fian[i] := delay(f2[i],del[i]) -- anode + ENDFOR + endif +-- average ph-ph voltage normalized + vllavg := 0.3333 * (vrms[1] + vrms[2] + vrms[3]) {max: 1.15 min : 0.85} +-- +-- alternative to above but not used in this model +-- 12 pulse rectfication with output smoothed alternative to rms signal +-- smoothing rough, should be done with 120 c/s filter, not used here +-- shown as possible alternative only +-- vllmax := (max(abs(vtrff[1]), abs(vtrff[2]), abs(vtrff[3])))/1.41 +-- laplace(vll12p/vllmax) := 1.0|s0 / ( 1|s0 + 0.030|s1 ) +-- +-- voltage error forward and feedback loop + verr:= vllavg - vref +-- combine endcombine used because forward - feedback loop + COMBINE AS first_group + error := sum( 1|vllavg - 1|vref - 1|fdb) +-- forward gain . 1/1+stdelay + laplace(dvq/error) := 400.0|s0/(1.0|s0 + 0.003|s1) +-- derivative feedback + claplace(fdb/dvq ) := 0.005|s1 / (1.0|s0 + 0.012|s1 ) + ENDCOMBINE +-- + FOR i := 1 TO 3 DO +-- total error the qref - qin[i] component may be omitted +-- it is usefull for unbalanced loads + errq[i] := (dvq + qref - qin[i]){ min:0 max:1.0} + ENDFOR +-- calculate new firing angles +-- phase A + FOR i:= 1 TO 3 DO + k:= (i+4) mod 3 if k=0 then k:=3 endif -- k is phase B + l := (i+5) mod 3 if l=0 then l:= 3 endif -- l is phase C +-- apply phase unbalance correction + inreact:= errq[i] + errq[k] -errq[l] {max: 1.0 min: 0.0} +-- linearize and convert from firing angle to time delay + delyi := delin - dely(inreact ) * dt + claplace(del[i]/delyi){dmax: (dt-0.0001) dmin: 0.0}:= + 1.0|s0/(1.0|s0 + 0.005|s1) + ENDFOR +-- +ENDEXEC +ENDMODEL +USE svcmod AS test + INPUT trma:= trma trmb:= trmb trmc:= trmc + irab:= irab irbc:= irbc irca:= irca + itra:= itra itrb:= itrb itrc:= itrc +-- + OUTPUT FIAB1 := ficat[1] FIAB2 := fian[1] FIBC1 := ficat[2] + FIBC2 := fian[2] FICA1 := ficat[3] FICA2 := fian[3] + FRLA := ttt1 FRLB := ttt2 FRLC := ttt3 +ENDUSE +C +RECORD test.vrms[1] AS vrmsab + test.vrms[2] AS vrmsbc + test.vrms[3] AS vrmsca + test.vllavg AS vllavg + test.error AS error + test.dvq AS dvq + test.fdb AS fdb + test.verr AS verr +ENDMODELS +C ************** NETWORK DATA ********************* +C +C ********* LINE TO SOURCE *********** +C +C transmission line (equivalent) from GEN source to transformer + GENA TRFA 4.5 25.0 + GENB TRFB 4.5 25.0 + GENC TRFC 4.5 25.0 +C fault level at trsf. 230 kV approx. 2083 MVA +C +C ************** MAIN TRANSFORMER ************** +C +C transformer capacitance to ground 10000pF +C a very simple model, can be replaced with any more complex model +C transformer 230000/34500 Y/D 100 MVA; In=250 A +C x = 7.2% on 100 MVA +C 230^2/100* 0.07 = 37.0 ohms trsf. leakage reactance +C TRANSFORMER busref imag flux busin rmag empty +C ------------______------______------______------_____________________________- +C +C no saturation + TRANSFORMER 0.7 700.0 X + 0.7 700.0 { 100% + 9999 + 1TRPA 0.80 36.0 1330 + 2TRXA TRXB 1.00 375 {385 + TRANSFORMER X Y + 1TRPB + 2TRXB TRXC + TRANSFORMER X Z + 1TRPC + 2TRXC TRXA +C +C transformer capacitance to ground and ph - ph 10000pF + TRXA 0.01 + TRXB 0.01 + TRXC 0.01 +C capacitance between phases + TRXA TRXB 0.01 + TRXB TRXC 0.01 + TRXC TRXA 0.01 +C +C *********** HARMONIC FILTERS *************** +C +C 5th harmonic filter 20 MVAR + TRSA TF5 2.38 44.6 1 + TRSB TF5 2.38 44.6 + TRSC TF5 2.38 44.6 +C 7th harmonic filter 10 MVAR + TRSA TF7 2.43 22.3 1 + TRSB TF7 2.43 22.3 + TRUC TF7 2.43 22.3 +C +C ******** TRANSFORMER SECONDARY LOAD *************** +C 70 MW, 30 MVAR + TRSA ND 13.67 5.47 + TRSB ND 13.67 5.47 + TRSC ND 13.67 5.47 +C +C shunt capacitor 20 MVAR + TRSA 44.5 + TRSB 44.5 + TRSC 44.5 +C ********** SWITCHED REACTOR FOR SVC RESPONSE TEST ********* +C +C switched .1 sec. on .1 sec. off +C see switch type 13 below and type 23 source in TACS +C 25.0 MVA, 0.7 p.f.,17.5 MW, 17.5 MVAR load +C + XLA NSR 34.0 34.0 + XLB NSR 34.0 34.0 + XLC NSR 34.0 34.0 +C +C ************** SNUBBERS ************** +C +C the snubber parameters shown below are not necessarily the +C values a manufacturer would choose for a 34.5 kV valve. +C The parameters were selected so that only a small currrent flows +C through the control reactor with the valves non conducting, +C and overvoltages and spikes interfering with the firing control +C are prevented. It is quite possible that a better combination +C than that shown exists. +C +C in series with valves +C + CATAB RXAB .1 + ANOAB RXAB .1 + CATAB RXAB 4.0 + ANOAB RXAB 4.0 +C + CATBC RXBC .1 + ANOBC RXBC .1 + CATBC RXBC 4.0 + ANOBC RXBC 4.0 +C + CATCA RXCA .1 + ANOCA RXCA .1 + CATCA RECA 4.0 + ANOCA RXCA 4.0 +C +C across valves +C + CATAB TRSA 2000. .1 + ANOAB TRSA 2000. .1 +C + CATBC TRSB 2000. .1 + ANOBC TRSB 2000. .1 +C + CATCA TRSC 2000. .1 + ANOCA TRSC 2000. .1 +C +C ************* SVC CONTROLLED REACTOR ************* +C +C reactor in TCR appr. 100.0 MVA Xr = 3 * 34.5^2/100 =35.71 ohm + RXAB TRSB 0.1 35.71 1 + RXBC TRSC 0.1 35.71 + RXCA TRSA 0.1 35.71 +C +C *************** REACTOR FOR FIRING PULSE GENERATION ****** +C +C Fire angle reference measurement using delta connected reactors +C TRSA - RMXA is just a dummy separation from the main 34.5 kV bus + TRSA RMXA 0.01 1 + TRSB RMXB 0.01 + TRSC RMXC 0.01 +C The reactors are delta connected through measuring switches below + RMAB RMXB 200. 20000. + RMBC RMXC 200. 20000. + RMCA RMXA 200. 20000. +C +BLANK end of branch data +C *************** SWITCH DATA ***************8 +C +C current measurement in the auxiliary reactor for firing pulse generation +C these switches complete the delta connection of the reactors +C (Rule Book p.6A-9) + RMXA RMAB MEASURING 1 + RMXB RMBC MEASURING 1 + RMXC RMCA MEASURING 1 +C +C current measurement in the main transformer secondary + TRXA TRSA MEASURING + TRXB TRSB MEASURING + TRXC TRSC MEASURING +C current measurement in the main transformer prinmary + TRFA TRPA MEASURING + TRFB TRPB MEASURING + TRFC TRPC MEASURING +C +C switch for on/off switching the 36.6 MVAR resistive-reactive load +C (Rule Book p. 6C-1) +12TRSA XLA FRLA 1 +12TRSB XLB FRLB 1 +12TRSC XLC FRLC 1 +C +C VALVES +C 6 valves, 2 per phase, 3ph. 6 pulse supply to TCR +C Rule Book p. 6B-1 +11TRSA CATAB 100. 35.0 FIAB1 1 +11ANOAB TRSA 100. 35.0 FIAB2 1 +11TRSB CATBC 100. 35.0 FIBC1 1 +11ANOBC TRSB 100. 35.0 FIBC2 1 +11TRSC CATCA 100. 35.0 FICA1 1 +11ANOCA TRSC 100. 35.0 FICA2 1 +C +BLANK end of switch data +C +C AC sources +C 230 kV supply +14GENA 187794. 60. 0. -1. +14GENB 187794. 60. 240. -1. +14GENC 187794. 60. 120. -1. +C --------------+------------------------------ +BLANK end of source cards +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C RMXA RMAB -3.17345114E-01 -2.67576742E+00 2.69452022E+00 -96.7637 2.09775607E+04 3.61648260E+04 +C RMXB RMBC -2.12134217E+00 1.60058257E+00 2.65743432E+00 142.9649 2.09695693E+04 3.53656824E+04 +C RMXC RMCA 2.43868728E+00 1.07518486E+00 2.66518633E+00 23.7920 2.09657040E+04 3.49791488E+04 +C TRXA TRSA 1.76533509E+03 -7.18577071E+02 1.90598032E+03 -22.1487 2.86013546E+07 -7.52002129E+06 +C TRXB TRSB -1.72807188E+03 -1.23147874E+03 2.12197369E+03 -144.5251 3.19664433E+07 -7.48308730E+06 +C TRXC TRSC -3.72632074E+01 1.95005582E+03 1.95041181E+03 91.0947 2.95359580E+07 -4.27738942E+06 +C TRFA TRPA 3.28283686E+02 4.77795448E+01 3.31742465E+02 8.2809 3.05772339E+07 -5.86201921E+06 +C TRFB TRPB -1.59252346E+02 -2.98767203E+02 3.38560410E+02 -118.0590 3.15136653E+07 -2.50950856E+06 +C TRFC TRPC -1.69031340E+02 2.50987658E+02 3.02599402E+02 123.9589 2.81393539E+07 -3.10623904E+06 +C TRSA XLA Open Open .... Etc. (all remaining switches) +C +C 1st gen: GENA 187794. 187794. 328.28368576688 331.74246523436 .308248532425E8 .311496222581E8 +C 0.0 0.0 47.779544776826 8.2808819 -.44863559159E7 0.9895739 + TRSA TRFA { Node voltage output requests +C Step Time TRSA TRFA RMXA RMXB RMXC TRSA TRSB TRSC TRSA ANOAB +C RMAB RMBC RMCA XLA XLB XLC CATAB TRSA +C +C TRSB ANOBC TRSC ANOCA TRSA TRSA RXAB TRSA MODELS MODELS +C CATBC TRSB CATCA TRSC TF5 TF7 TRSB RMXA VRMSAB VRMSBC +C +C MODELS MODELS MODELS MODELS MODELS MODELS +C VRMSCA VLLAVG ERROR DVQ FDB VERR +C *** Phasor I(0) = -3.1734511E-01 Switch "RMXA " to "RMAB " closed in the steady-state. +C *** Phasor I(0) = -2.1213422E+00 Switch "RMXB " to "RMBC " closed in the steady-state. +C *** Phasor I(0) = 2.4386873E+00 Switch "RMXC " to "RMCA " closed in the steady-state. +C *** Phasor I(0) = 1.7653351E+03 Switch "TRXA " to "TRSA " closed in the steady-state. +C *** Phasor I(0) = -1.7280719E+03 Switch "TRXB " to "TRSB " closed in the steady-state. +C *** Phasor I(0) = -3.7263207E+01 Switch "TRXC " to "TRSC " closed in the steady-state. +C *** Phasor I(0) = 3.2828369E+02 Switch "TRFA " to "TRPA " closed in the steady-state. +C *** Phasor I(0) = -1.5925235E+02 Switch "TRFB " to "TRPB " closed in the steady-state. +C *** Phasor I(0) = -1.6903134E+02 Switch "TRFC " to "TRPC " closed in the steady-state. +C %%%%% Floating subnetwork found! %%%%%% %%%%%% %%%%%% %%%%%% +C %%%%% The elimination of row "NSR " of nodal admittance matrix [Y] has produced a near-zero diagonal value Ykk = +C 0.00000000E+00 just prior to reciprocation. The acceptable minimum is ACHECK = 7.63336829E-12 (equal to EPSILN +C times the starting Ykk). This node shall now to shorted to ground with 1/Ykk = FLTINF. +C 0 0.0 24822.5855 187511.212 -.31734511 -2.1213422 2.43868728 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 326.187397 29.5320244 .821163836 -2.7560324 .081656838 .049551491 +C .032105347 .85 -.06597164 -.20205709 -.08402836 -.15 +C 1 .46296E-4 25143.8244 187629.636 -.27059939 -2.1489524 2.41955179 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 318.550308 25.5246044 .751598004 -2.6901512 .11560122 .069281865 +C .046333037 .85 .007233288 -.37886586 -.15723329 -.15 +C 2 .92593E-4 25457.4046 187690.907 -.22377124 -2.1759081 2.39967932 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 310.81619 21.5094097 .681803238 -2.6234506 .141715842 .083875142 +C .05788498 .85 -.00219819 -.35764251 -.14780181 -.15 +BLANK end of output requests +C 2160 0.1 25442.1108 187482.902 -.29572787 -2.0263455 2.32207338 0.0 0.0 0.0 0.0 0.0 +C 0.0 446.298599 628.655556 0.0 345.907577 19.1485236 1.55331048 -2.6178013 1.04264625 1.03011633 +C 1.03191977 1.03479063 .001835206 .694094165 .032955423 .034790629 +C Variable max : 32517.4234 188770.564 2.64330646 2.62732109 2.77231282 0.0 0.0 0.0 1348.22398 803.124119 +C 642.762722 650.617284 745.361533 2455.49747 704.329689 384.313276 1348.22403 4.4384447 1.11468111 1.09242273 +C 1.09954303 1.10117116 .007233288 .694094165 .100809554 .101171165 +C Times of max : .018842593 .033425926 .021018519 .026759259 .032268519 0.0 0.0 0.0 .004490741 .09625 +C .093333333 .085 .099027778 .007083333 .097222222 .013101852 .004490741 .022453704 .034768519 .037407407 +C .035046296 .034861111 .462963E-4 0.1 .034907407 .034861111 + PRINTER PLOT + 193.01 0.0 .10 MODELSDVQ { Limits: (-7.141, 6.930) +BLANK end of plot requests +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc23.dat b/benchmarks/dc23.dat new file mode 100644 index 0000000..4f576b1 --- /dev/null +++ b/benchmarks/dc23.dat @@ -0,0 +1,333 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-23 +C 1st of 2 parts: Simple TACS-only test including steady-state ac solution. +C 1st of 8 total subcases. Following 2 TACS data subcases, there will be 5 +C data subcases that illustrate Kizilcay frequency dependence (add May, 93). + 0.1 1.0 + 1 1 1 1 1 +TACS STAND ALONE + RES1=0 +1/1+S -1/S + RES2=0 +1/1+S +S/1+S -MIXER + 11/1+S +MIXER + 1. + 1. 1. + 11/S +S/1+S + 1. + 0. 1. + 1S/1+S +MIXER + 0. 1. + 1. 1. + MIXER +DC +AC +11DC 1.0 +14AC 1. -90. +33S/1+S 1/S 1/1+S RES1=0RES2=0MIXER DC AC +C Next 8 output variables belong to TACS (with "TACS" an internally-added +C Step Time TACS TACS TACS TACS TACS TACS +C S/1+S 1/S 1/1+S RES1=0 RES2=0 MIXER +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 0.1 .952380952 .047619048 .047619048 0.0 0.0 1.0 +C 2 0.2 .861678005 .138321995 .138321995 -.2776E-16 -.111E-15 1.0 +BLANK card ending all TACS data +C 10 1.0 .386918466 .613081534 .613081534 -.3331E-15 -.4441E-15 1.0 +C Variable max: .952380952 .613081534 .613081534 0.0 0.0 1.0 +C Times of max: 0.1 1.0 1.0 0.0 0.0 0.1 +C Variable min: 0.0 0.0 0.0 -.3331E-15 -.4441E-15 0.0 +C Times of min: 0.0 0.0 0.0 1.0 1.0 0.0 + PRINTER PLOT + 143 .2 0.0 1.0 S/1+S 1/S DC { Axis limits: (0.000, 1.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 8 cases: Simple TACS-only test of supplemental TACS device type 66 +ABSOLUTE TACS DIMENSIONS + 10 40 50 20 20 200 2000 100 +C TEST FOR DEVICE 66 + .0001 .03 + 1 1 1 1 1 -1 + 5 5 20 20 +TACS STAND ALONE + DUM +ZERO +11DC1 1.0 +11DC2 1.0 -1.0 +14AC1 1.0 50.0 +14AC2 1.0 50.0 -90. -1.0 +14AC3 1.0 100.0 -1.0 +88DV66A 66+AC1 +DC1 50. +88DV66B 66+AC2 +DC2 50. +88DV66C 66+AC2 -DC2 50. +88DV66D 66+AC2 +DC1 50. +88DV66E 66+AC1 +DC2 50. +88DV66F 66+AC2 +AC3 +DC2 50. +33DC1 DC2 AC1 AC2 DV66A DV66B DV66C DV66D DV66E DV66F +C Next 10 output variables belong to TACS (with "TACS" an internally-added u +C Step Time TACS TACS TACS TACS TACS TACS +C DC1 DC2 AC1 AC2 DV66A DV66B +C 0 0.0 0.0 1.0 0.0 .6123E-16 0.0 1.22474487 +C 1 .1E-3 1.0 1.0 .99950656 .031410759 .141386465 1.22474487 +C 2 .2E-3 1.0 1.0 .998026728 .06279052 .199876678 1.22474487 +BLANK card ending all TACS data +C 300 .03 1.0 1.0 -1. .39893E-13 1.22474487 1.22474487 +C Variable maxima : 1.0 1.0 1.0 1.0 1.22474487 1.22474487 +C Times of maxima : .1E-3 0.0 .02 .005 .0282 .03 +C Variable minima : 0.0 1.0 -1. -1. 0.0 1.22474487 +C Times of minima : 0.0 0.0 .01 .015 0.0 .0246 + PRINTER PLOT + 144 3. 0.0 30. DV66F DV66A { Axis limits: (0.000, 1.414) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 8 subcases begins the illustration and verification of Kizilcay +C frequency dependence, named after Dr. Mustafa Kizilcay of Lahmeyer +C International in Frankfurt, Germany. His doctoral dissertation at +C the University of Hannover was dominated by such modeling, although +C that work may have been restricted to Laplace transformation (possible +C alternate use of Z transformation is believed to be newer). In either +C case, TACS-like transfer functions are allowed not in TACS, but rather +C in the electric network. As subcases 3 through 6 are added to this +C standard test case on 8 May 1993, the most easily available reference +C for the average EMTP user would seem to be an 11-page contribution +C entitled "A New Branch in the ATP-EMTP: High-Order, Linear Admittance +C Model." This was published by LEC in its international journal titled +C EMTP News (see Vol. 6, No. 1, March 1993, pp. 19-29). In WordPerfect +C format, the associated disk file soon should be available from Prof. +C Bruce Mork's Fargo server of E-mail fame. Details should be found in +C the April, 1993, newsletter. +C Ordinary RLC branch representation +C Compare the results of this subcase with that of the following one. +C The circuit is driven by a voltage step (type-11 source). +C Series R-L-C branch has R = 0.05 ohm, L = 1 mH, C = 5 mF +C and the resistive load has RL = 0.05 ohm +C DELTAT TMAX XOPT COPT + .000500 .050 0. 0. +C IOUT IPLOT IDOUBL KSSOUT MAXOUT + 1 1 1 1 1 -1 + 5 5 10 10 + RES 0.05 + GEN RES 0.05 1.0 5000. 1 +BLANK card -- ending electrical branches -- +BLANK card -- ending switches -- +11GEN 10. +BLANK card -- ending sources -- +C Step Time RES GEN GEN +C RES +C 0 0.0 0.0 0.0 0.0 +C 1 .5E-3 .120481928 10. 2.40963855 +C 2 .1E-2 .349833067 10. 6.99666134 + 1 +C 100 .05 -.00286701 10. -.05734015 +C Variable maxima : .943967142 10. 18.8793428 +C Times of maxima : .0035 .5E-3 .0035 +C Variable minima : -.66356661 0.0 -13.271332 +C Times of minima : .0105 0.0 .0105 +BLANK card -- ending plot cards -- +BEGIN NEW DATA CASE +C 4th of 8 subcases is to be compared with the preceding 3rd. The two +C solutions should be identical. The same RLC circuit is represented +C here using a second order rational function as an admittance in the +C S-domain of Laplace transformation. This provides validation of +C Kizilcay frequency dependence for a very simple case where we have +C an alternate means of computing the transient. +C DELTAT TMAX XOPT COPT + .000500 .050 0. 0. +C IOUT IPLOT IDOUBL KSSOUT MAXOUT + 1 1 1 1 1 -1 + 5 5 10 10 + RES 0.05 +C -- preceding R branch defines node names and output option +C <....>: dummy value! + GEN RES 99. 1 +C The following illustrates F95 ability to size Kizilcay frequency-dependent +C tables. This documents the format. It is legal for F77, however, only +C because the 3 numbers shown equal the fixed, default dimensions. If any +C one of these numbers is changed for F77 use, an error termination should +C result. Any blank data field is converted automatically to the default +C value shown below. Change made 20 October 2000: +C MAXHAN MAXORD MAXTOT +C KIZILCAY F-DEPENDENT LIMITS 30 25 1000 +C The preceding has been moved downward 2 subcases. We want the first use +C of KFD not to have this declaration because lack of it caused trouble for +C F95 Lahey ATP prior to a correction to HANNFD on 19 November 2002. +C ---Request-------> < Order><------ Gain --------> | +KIZILCAY F-DEPENDENT 2 1.0 S-transform +C -coeff. of numerator--><-coeff. of denominator-> + 0.0 1.0 + 0.005 2.5E-4 + 0.0 5.0E-6 +BLANK card -- ending electrical branches -- +BLANK card -- ending switches -- +11GEN 10. +BLANK card -- ending sources -- +C Step Time RES GEN GEN +C RES +C 0 0.0 0.0 0.0 0.0 +C 1 .5E-3 .120481928 10. 2.40963855 +C 2 .1E-2 .349833067 10. 6.99666134 + 1 +C 100 .05 -.00286701 10. -.05734015 +C Variable maxima : .943967142 10. 18.8793428 +C Times of maxima : .0035 .5E-3 .0035 +C Variable minima : -.66356661 0.0 -13.271332 +C Times of minima : .0105 0.0 .0105 +BLANK card -- ending plot cards -- +BEGIN NEW DATA CASE +C 5th of 8 subcases continues illustration and verification of Kizilcay +C frequency dependence. Whereas subcases 3 and 4 considered only step +C excitation of the time-step loop beginning with 0 initial conditions, +C the concluding two cases will involve a continuation of the sinusoidal +C steady state. Here, we first establish a standard of comparison by +C using only tradition EMTP modeling. +C Ordinary RLC branch representation +C Compare the results of this subcase with that of the following subcase. +C The circuit is driven by a sinusoidal voltage source. +C Series R-L-C: R = 0.05 ohm, L = 1 mH, C = 5 mF +C and resistive load, RL = 0.05 ohm +C DELTAT TMAX XOPT COPT + .000500 .050 0. 0. +C IOUT IPLOT IDOUBL KSSOUT MAXOUT + 1 1 1 1 1 -1 + 5 5 10 10 + RES 0.05 + GEN RES 0.05 1.0 5000. 1 +BLANK card -- ending electrical branches -- +BLANK card -- ending switches -- +14GEN 10. 50. -1. +BLANK card -- ending sources -- +C Step Time RES GEN GEN +C RES +C 0 0.0 .438670455 10. 8.7734091 +C 1 .5E-3 .212452642 9.87688341 4.24905284 +C 2 .1E-2 -.01899859 9.51056516 -.3799719 + 1 +C 100 .05 -.44323561 -10. -8.8647122 +C Variable maxima : 1.48971876 10. 29.7943752 +C Times of maxima : .016 0.0 .016 +C Variable minima : -1.491383 -10. -29.827659 +C Times of minima : .026 .01 .026 +BLANK card -- ending plot cards -- +BEGIN NEW DATA CASE +C 6th of 8 subcases continues illustration of Kizilcay F-dependence. +C This shows KIZILCAY F-DEPENDENT modelling of the series RLC +C circuit in the Z-domain. The RLC circuit is represented by a second order +C rational function of admittance type in Z-transform. The coefficients are +C obtained by applying the bilinear transform to the rational function in +C Laplace domain. +C DELTAT TMAX XOPT COPT + 0.0005 0.05 50. +C IOUT IPLOT IDOUBL KSSOUT MAXOUT ICAT + 10 1 1 1 1 2 + RES 0.05 +C -- preceding R branch defines node names and output option +C <....>: dummy value! + GEN RES 99. 1 +C The following illustrates F95 ability to size Kizilcay frequency-dependent +C tables. This documents the format. It is legal for F77, however, only +C because the 3 numbers shown equal the fixed, default dimensions. If any +C one of these numbers is changed for F77 use, an error termination should +C result. Any blank data field is converted automatically to the default +C value shown below. Change made 19 November 2002: +C MAXHAN MAXORD MAXTOT +KIZILCAY F-DEPENDENT LIMITS 30 25 1000 +C ---Request-------> < Order><------ Gain --------> | +KIZILCAY F-DEPENDENT 2 1.0 Z-transform +C -coeff. of numerator--><-coeff. of denominator-> + 10.0 41.0 + 0.0 -79.0 + -10.0 40.0 +BLANK card -- ending electrical branches -- +BLANK card -- ending switches -- +14GEN 10. 50. -1. +BLANK card -- ending sources -- +C Step Time RES GEN GEN +C RES +C 0 0.0 .443567421 10. 8.87134842 +C 10 .005 -1.4216487 -.315E-14 -28.432974 + 1 +C 100 .05 -.44356742 -10. -8.8713484 +C Variable maxima : 1.48913814 10. 29.7827628 +C Times of maxima : .036 0.0 .016 +C Variable minima : -1.4891381 -10. -29.782763 +C Times of minima : .026 .01 .026 +BLANK card -- ending plot cards -- +BEGIN NEW DATA CASE +C 7th of 8 subcases illustrates higher-order Kizilcay F-dependence. +C It is a single-phase subset of the 3-phase data named KFDHEV.DAT +C that was received from Orlando Hevia attached to E-mail dated +C 23 November 2002. But Orlando said that he received it from Ricardo +C Ricardo Tenorio of ABB in Vasteras, Sweden. It seems this is a low- +C or intermediate-order approximation that was "derived from ATP +C simulations, although the system represented is a real one" (see +C E-mail dated 2002-12-11, 7:39). Mr. Tenorio was the first to report +C stability problems of KFD for high order and small dT as first +C mentioned in the January, 2003, newsletter. Well, that high-order +C data is proprietary (secret), so can not be disclosed. But the +C general phenomenon can be illustrated using the lower-order +C approximation of this subcase. Consider what happens if dT differs +C from the 2 microseconds (usec) of the miscellaneous data card: +C dT = 3 usec would be perfectly sinusoidal. That final cycle [60, 80] msec +C has maximum current = 4117 (at 61.06 msec) and min = -4112 (at 71.07 +C msec). This is very symmetrical and balanced. Also, the phasor solution +C has 4138, which seems plenty close. So all is well at dT = 3 usec using +C 64 bits of Salford precision. But 2 usec differs. It adjusts to sinusoid +C during 1st cycle. The phasor solution is not too different at 4138. But +C the dT loop is quite different. That final cycle [60, 80] msec has maximum +C current of only 3272 (at 61.24 msec) and min = -3322 (at 71.28). Yet, +C even with the obvious error (too small amplitude), stability seems good. +C Both 1.9 and 2.1 usec do _not_ adjust, but rather become highly distorted +C over the first 40 msec (1st of 2 plots). The second plot, over [40, 80], +C clearly is diverging. The amplitude of the current grows exponentially. +C So, on both sides of dT = 2.0 usec there is instability whereas dT = 2.0 +C seems perfectly stable & sinusoidal at 80 msec. All of this is using 64 +C bits of Salford EMTP precision. Using 128-bit Lahey, there is no hint of +C distortion anywhere. The graph for dT = 3.0 usec seems identical to 1.9 +C or 2.0 usec. Conclusion: for 64 bits, dT = 3 usec is close to the +C stability limits of the KFD model. +C Addition on 10 December 2002: Having tested Watcom, GNU Mingw32, and +C 64-bit F95 Lahey, it can be reported that all behave comparably, but +C differently. Each has different roundoff, so numbers are different. +C But the graphs look similar. So, be advised that one can not easily +C compare any two of the .LIS files using Mike Albert's FC. Human +C intelligence is required. But for larger time steps, comparisons are +C perfect. To see this, consider the 4th subcase of DC-48. This uses +C the same data, but a larger step size of dT = 100 usec. FC indicates +C perfect agreement in this case. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +BEGIN PEAK VALUE SEARCH .060 { Compare max & min over just 1 cycle +POWER FREQUENCY 50. { Nicer period than using Hevia's 60 Hz +.0000020 .080 + 1 7 1 1 1 -1 + 5 5 20 20 100 100 1000 1000 +C ONLY KFD ELEMENT IS HERE: THE CASE IS UNSTABLE FOR SMALL DELTAT +C NETWORK EQUIVALENT BY KFD +C <-BUS1<-BUS2<-BUS3<-BUS4<----R<----L<----C + SOURCA 99. 1 +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +KIZILCAY F-DEPENDENT 6 1.00000E+000 S + 2.55564999999999990E-002 1.00000000000000000E+000 + 2.58174256593059220E-006 1.26190169827623520E-003 + 3.44528114161255420E-008 6.56757488674167030E-007 + 2.16578732571550020E-012 6.22037676357393080E-010 + 7.77318622992575270E-015 1.10717058895704090E-013 + 2.25856143523397890E-019 5.18376352266273340E-017 + 3.19918022205034290E-022 4.41171918010679540E-021 +BLANK card ending branch cards +BLANK card ending switch cards (none) +14SOURCA 187794.214 50. 0. -1. +C 14SOURCA 187794.214 60. 90. { -1. +BLANK card ending source cards + SOURCA +BLANK card ending node voltage output requests + CALCOMP PLOT { Switch to screen from printer plot of a preceding subcase + 194 4. 0.0 40. SOURCA dT = 2.0 usec H(s) current + 194 4. 40. 80. SOURCA 2nd 40 msec H(s) current +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 8th of 8 subcases continues illustration of Kizilcay F-dependence. +C The following illustrates F95 ability to erase Kizilcay frequency-dependent +C tables. This documents the format. For F77, no storage actually is closed, +C however. For F77, the declaration has no effect on memory. + 0.0005 0.05 + 1 1 +C MAXHAN MAXORD MAXTOT +KIZILCAY F-DEPENDENT LIMITS -1 { Special 1st of 3 integers ==> close + DUMMY 1.0 { Dummy branch will confirm branch data input +$STOP { Since done showing cancellation of Kizilcay tables, terminate execution +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc24.dat b/benchmarks/dc24.dat new file mode 100644 index 0000000..bd2c786 --- /dev/null +++ b/benchmarks/dc24.dat @@ -0,0 +1,878 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-24 +C Monte Carlo simulation that is run in two parts. The original six +C energizations of "M39." stand-alone case have been reduced to 3, & +C the remaining 3 are performed in companion case DC-40, which is a +C "START AGAIN" continuation of this MEMSAV = 1 case. The use of +C standard random numbers and fixed seed gives results that should be +C repeatable & same for all computers of interest. But M39 differs! +C Note that this data case has no base case. However, if the user +C wants to add this, he need merely comment out the "OMIT BASE CASE" +C request card, and do likewise for the $DISABLE/ENABLE cards that +C precede statistics tabulation requests. Save the resulting binary +C disk file TPTABLES.BIN under the name dc24at40.bin for use by +C DC-40. For a "STATISTICS" random-opening data case, see DC-48. +C Beware of PARALLEL.LIS entry for same USERID that might modify NENERG! +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +C TRULY RANDOM NUMBERS { Same as NSEED=0 (this overrides stat misc. data card) +REPEATABLE RANDOM NUMBERS { Same as NSEED=1 (this overrides zero value below) +C CENTRAL STATISTICS FILE { Request word that precedes the disk file name +C %/wsm/parallel.atp ! { Leading percent sign avoids confusion of "/" in column 1 +C USER IDENTIFICATION Warsaw ! { Overrides A6 USERID of STARTUP for plots +C DIAGNOSTIC 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 +OMIT BASE CASE { Comment out this card, if a base case solution is to be added +C Request special output for MS Excel. EOFE service begins 20 July 2007. The +C output file name will be parallel to the input data, with distinctive type : +C Type --- Ruler for file type of Excel output file: +EXTREMA OUTPUT FOR EXCEL .exc { Columns 29-32 carry optional file type +C EXTREMA OUTPUT FOR EXCEL { Blank 29-32 will use default file type .xcl + 100.E-6 20.E-3 60. + 1 1 1 2 1 -1 1 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 0 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +C Next come 3 switches whose closing times are to be varied by rolling dice. +C The 1st of the 3 STATISTICS switches has type code "76" which means that +C the distribution is uniform with mean of 2 msec and standard deviation of +C 0.1 msec (columns 15 through 34). The 2nd and 3rd switches have type code +C zero, so use Gaussian distribution. The means are 4 and 6 msec, and the +C standard deviations are 1/2 and 1 msec, respectively. +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +C The following is DIAGNOSTIC from "RANDNZ" usage of overlay 12. Not a +C normal case output, this is useful in case switching times are incorrect: +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.296996800000000000E+07 +C 0.296996800000000000E+07 0.000691499561071 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.205132719793000000E+12 +C 0.326925688100000000E+10 0.761183183873072 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.225804303513790000E+15 +C 0.692893886000000000E+09 0.161326929461211 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.478574878121350000E+14 +C 0.296220010300000000E+10 0.689690956613049 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.204596198914108000E+15 +C 0.113680185200000000E+10 0.264682306908071 +C Last gen: ENDC -103.6321034277 303. -.710542736E-14 .7324106878E-14 +C Last gen: 284.72686409813 110.000 -.177635684E-14 -165.9637565 +C The following unit-9 connection could come earlier on this first subcase +C because of FORM=UNFORMATTED, which is compatible with VECRSV/VECISV of +C MS-DOS (which uses unit 9 for scratch storage). But the present location +C is always safe, so its use is good practice. It is mandatory for 3rd case. +$OPEN, UNIT=LUNIT9 FILE=dc24at40.ext STATUS=UNKNOWN FORM=UNFORMATTED RECL=1000 ! + ASW10 BSW10 CSW10 { Request for these node voltage outputs +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C +C GENB ENDA +C B1 A10 +C Random switching times for energization number 1 : +C 1 1.8826802E-03 2 4.2472809E-03 3 5.3713577E-03 +C 0.0 141.9164096 -72.1873524 -35.0598126 372.1266197 -429.52043 +C 1.257471517 -1.85970093 +C Times of maxima : .002 .0141 .0127 .0051 .0075 +C .02 .017 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.785177671157890000E+14 +C 0.146997761300000000E+10 0.342255833791569 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.101529883752298000E+15 +C 0.115184215400000000E+10 0.268184150103480 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.795565857346270000E+14 +C 0.906510819000000000E+09 0.211063497466967 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.626117957575120000E+14 +C 0.405748372000000000E+10 0.944706546142697 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.280246343056681000E+15 +C 0.402195997700000000E+10 0.936435530195013 +C Random switching times for energization number 2 : +C 1 1.8999095E-03 2 4.7979502E-03 3 7.5258324E-03 +C 0.0 141.9164096 61.55446116 -41.9189588 371.6253603 334.5616569 +C 1.207725131 -1.83695142 +C Times of maxima : .002 .0154 .0139 .0059 .0028 +C .0058 .017 +BLANK card ending the specification of program outputs (node voltages, here) +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.277792753651414000E+15 +C 0.285888072600000000E+10 0.665635039564222 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.197460032864095000E+15 +C 0.320639779100000000E+10 0.746547661488876 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.221462689026580000E+15 +C 0.129034293200000000E+10 0.300431375391781 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.891226959703090000E+14 +C 0.212457830900000000E+10 0.494666935177520 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.146742499224322000E+15 +C 0.646589186000000000E+09 0.150545776356012 +C Random switching times for energization number 3 : +C 1 1.9308674E-03 2 3.9933351E-03 3 4.9659084E-03 +C 0.0 136.7926646 -89.6601448 -53.6359842 437.6032257 -510.753735 +C 1.532437698 -1.74295212 +C Times of maxima : .0021 .0051 .0083 .0045 .0074 +C .0044 .0169 +C Cards associated with the base-case solution must not be present: +$DISABLE { Comment out this card, if a base case solution is to be added + PRINTER PLOT + 144 3. 0.0 20. ASW10 +BLANK card ending base-case plot cards +$ENABLE { Comment out this card, if a base case solution is to be added +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +C The following disconnects DC24.BIN to protect; automatic result of reopening: +$OPEN, UNIT=LUNIT2 STATUS=SCRATCH FORM=UNFORMATTED { Disconnect *.BIN on LUNIT2 +-1 100. GENA A1 +$CLOSE, UNIT=LUNIT9 STATUS=KEEP { Disconnect to prevent damage by stray WRITE +$OPEN, UNIT=LUNIT9 FILE=dc24dum.dum STATUS=SCRATCH ! +FIND { Enter interactive search for which shot and which variable gave extremum +HELP { Show the user that there is a summary explanation of "FIND" on-line +C Peak extremum of subset has value 5.62169583E+02 This occurred during +C energization 2 for the variable having names "CSW10 " and " ". +C This was variable 3 of 3 in the subset; 3 shots were searched. + ASW10 BSW10 CSW10 { Search these 3 node voltages for extremum +EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +C Peak extremum of subset has value 5.59424445E+02 This occurred during +C energization 1 for the variable having names "CSW10 " and " ". +C This was variable 3 of 3 in the subset; 2 shots were searched. +C Remember excluded shots are numbered 2 +C Add the following DISK command on 29 September 2002. Look in the January, +C 2003 or later newsletter for a summary. Only the framework of the feature +C now exists in DICTAB, but it is being illustrated here in order that it not +C be forgotten. The idea is this. Each EXCLUDE command excludes another shot +C (number 2 for the preceding). Deterministic simulation of this often is of +C interest, and DISK is designed to create such a data file. The name will +C be SHOT0002.DAT and this file will be located along with the .LIS file, +C assuming parallel naming. +C DISK { Create a disk file of data for deterministic simulation of EXCLUDEd shot +C 6 October 2002, the RESIMULATE command is working at home as illustrated +C by f:\data\DUM24.DAT First, the preceding DISK is enhanced by /LIST: +C 8 October 2002, /FULL is created to use full 10 bytes of T-close or open +C as opposed to the default 9, with one blank on the left as separator. +DISK /LIST /FULL { Create disk file of data for deterministic simulation of EXCLUDEd shot +C RESIMULATE { Abort this data case. Begin with SHOT0002.DAT just created by DISK +C If the preceding line is activated, all following data will be ignored as +C the present data is aborted in favor of the DISK-created SHOT0002.DAT But +C we do not want to lose all the following output. So, comment this line +C here and note that a new 4th subcase of DC-48 illustrates RESIMULATE use. +EXCLUDE { Excluding the shot of previous output means only one is left for use +C Peak extremum of subset has value 5.53096221E+02 This occurred during +C energization 3 for the variable having names "BSW10 " and " ". +C This was variable 2 of 3 in the subset; 1 shots were searched. +C Remember excluded shots are numbered 1 2 +RESET { Reinitialize by erasing history of previous selections +ALL { Next, consider searching all output variables of some class +8 { As with batch-mode plotting, "8" indicates branch voltages (search ALL) +C Peak extremum of subset has value 1.41916410E+02 This occurred during +C energization 1 for the variable having names "GENA " and "A1 ". +C This was variable 1 of 3 in the subset; 3 shots were searched. +EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +EXCLUDE { Excluding the shot of previous output means only one is left for use +EXCLUDE { Final attempt to exclude should lead to error message: nothing is left +ALL { Next, consider searching all output variables of some class +9 { As with batch-mode plotting, "9" indicates branch currents (search ALL) +EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +C $KEY { Un-comment to allow keyboard input (until "END") at this point +QUIT { Done locating extrema, so exit the "FIND" alternative +C &&&&&&&&&&&&& End request and documentation. Begin 3 coupled cards ...... +C 2 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +-1 GENA A1 CONT. +C 3 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENC " to "C1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 4 0.2000000 0.60600000E+02 0 0 +C 5 0.2500000 0.75750000E+02 2 2 +C 6 0.3000000 0.90900000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.45766731E-01 +C Variance = 8.33333333E-04 2.19347831E-03 +C Standard deviation = 2.88675135E-02 4.68345845E-02 +-1 GENC C1 CONT. +C 4 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "ENDA " to "A10 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 2 0.1000000 0.30300000E+02 0 0 +C 3 0.1500000 0.45450000E+02 2 2 +C 4 0.2000000 0.60600000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.41666667E-01 1.43690600E-01 +C Variance = 8.33333333E-04 9.61072666E-04 +C Standard deviation = 2.88675135E-02 3.10011720E-02 +-1 ENDA A10 +C 5 ) -------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 5 ) -------------------------------------------------------------------------- +C A distribution of peak values among all output branches of the last data card +C statistical distribution is for the maximum of the peaks at all of these outpu +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +C 3456789012345678901234567890123456789012345678 +C MODTAB AINCR XMAXMX +STATISTICS DATA 1 0.0 0.0 ---- Only individual +-1 GENC C1 { =.245766731, Variance=2.19347831E-3} CONT. +-1 ENDA A10 { 1.43690600E-01, 9.61072666E-04 +C 8 ) -------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 8 ) -------------------------------------------------------------------------- +C A distribution of peak values among all output branches of the last data card +C statistical distribution is for the maximum of the peaks at all of these outpu +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 4 0.2000000 0.60600000E+02 0 0 +C 5 0.2500000 0.75750000E+02 2 2 +C 6 0.3000000 0.90900000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.45766731E-01 +C Variance = 8.33333333E-04 2.19347831E-03 +C Standard deviation = 2.88675135E-02 4.68345845E-02 +STATISTICS DATA 2 0.0 0.0 ------ Only union of 2 curves +-1 GENC C1 CONT. +-1 ENDA A10 { See comments for solution +STATISTICS DATA 3 0.0 0.0 ---- Both individual & union +-1 GENC C1 { =.245766731, Variance=2.19347831E-3} CONT. +-1 ENDA A10 { 1.43690600E-01, 9.61072666E-04 +C 12 ) ------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENC " to "C1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 8 0.9131973 0.56211367E+02 0 0 +C 9 1.0273470 0.63237788E+02 1 1 +C 10 1.1414966 0.70264209E+02 0 1 +C 11 1.2556463 0.77290630E+02 1 2 +C 12 1.3697959 0.84317051E+02 0 2 +C 13 1.4839456 0.91343472E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.19857145E+00 1.20977941E+00 +C Variance = 5.21205808E-02 5.31495428E-02 +C Standard deviation = 2.28299323E-01 2.30541846E-01 +STATISTICS DATA 3 -5.0 0.0 ---- Fixed number of 5 boxes +-1 GENC C1 { See preceding comments for 1st of 3} CONT. +-1 ENDA A10 +STATISTICS DATA 3 .05 0.0 ---- Restore STARTUP values +-1 GENC C1 ENDA A10 { =2.45766731E-1, Variance = 2.19347831E-3 + 0 ASW10 BSW10 CSW10 { Mean=1.40245965E+0, Variance = 8.47042357E-2 +C 1st of 4 tables is documented on preceding request; the 4th of 4 follows: +C 21 ) ------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 21 ) ------------------------------------------------------------------------- +C The following is a distribution of peak overvoltages among all output nodes of +C This distribution is for the maximum of the peaks at all output nodes with V- +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 36 1.8000000 0.54540000E+03 0 0 +C 37 1.8500000 0.56055000E+03 2 2 +C 38 1.9000000 0.57570000E+03 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.84166667E+00 1.84234351E+00 +C Variance = 8.33333333E-04 2.35830395E-04 +C Standard deviation = 2.88675135E-02 1.53567703E-02 +C &&&&&&&&& End documentation of node voltage tabulations (4th of 4 tables) +STATISTICS DATA 3 -4.0 0.0 ---- Fixed number of 4 boxes +C 22 ) ------------------------------------------------------------------------- +C Statistical distribution of peak power for branch "B1 " to "BSW1 ". +C Interval power power in Frequency Cumulative +C number in per unit physical units (density) frequency +C 16 0.9468728 0.35188195E+03 0 0 +C 17 1.0060524 0.37387457E+03 2 2 +C 18 1.0652319 0.39586719E+03 0 2 +C 19 1.1244115 0.41785981E+03 0 2 +C 20 1.1835910 0.43985244E+03 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.03564214E+00 1.05962916E+00 +C Variance = 1.05066576E-02 1.04274409E-02 +C Standard deviation = 1.02501988E-01 1.02114842E-01 +-3 B1 BSW1 { See preceding comments for this branch power table +-2 0. GENB B1 ENDA A10 { =1.10335104E+0, Variance = 2.09698061E-2 +-4 0. B1 BSW1 { Ungroup: Mean=1.16595031E+0, Variance = 3.80542557E-2 +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 2nd of 6 subcases repeats the preceding problem exactly, only instead +C of rolling dice to find the switch closing times, such times will be +C read from a user-supplied disk file dc24lun8.dat (see $OPEN use). +C The solution of this 2nd subcase should exactly agree with the first. +C However , for variety , a base case solution (missing from the first +C subcase) and a character plot have been added to this 2nd subcase. +C Also, the ".PL4" plot file (actually, just the header) is saved +C permanently for later re-connection using the 4th subcase of DC-40. +PRINTED NUMBER WIDTH, 11, 1, { Set dT-loop column width as done b4 by STARTUP +C $STARTUP, dc37star.dat { Use disk file for re-initialization at this point +C This is a Monte Carlo case, for which TENERG is critical. But this +C parameter is initialized only in the STARTUP file. For this 2nd or +C later data case, we reinitialize via the preceding $STARTUP request +USER SUPPLIED SWITCH TIMES { Bypass the dice, reading TCLOSE & TOPEN from LUNIT8 +C The following connection of unit 2 is required only because this is the +C 2nd subcase. It follows a case in which MEMSAV=1 dumps tables via I/O +C unit LUNIT2=2, and then this file is disconnected. Without the manual +C connection that follows, nothing would be connected, and execution would +C die for Apollo in "SUBR5" where REWIND LUNIT2 is found. So connect it: +$OPEN, UNIT=LUNIT8 FILE=dc24lun8.dat FORM=FORMATTED STATUS=OLD RECL=80 ! { Case +$OPEN, UNIT=LUNIT2 FORM=UNFORMATTED STATUS=SCRATCH RECL=16000 +C $STARTUP, dc37star.dat { Re-initialize is required to set TENERG for table dump +C { This is a peculiarity of having "STATISTICS" as the +C { 2nd or later data subcase within a single disk file. +C DISK PLOT DATA { Toggle the Apollo default of LUNIT4 = -4 to +4 (use disk) +$CLOSE, UNIT=LUNIT4 STATUS=DELETE { Destroy empty date/time plot file of "SYSDEP" +$OPEN, UNIT=LUNIT4 FILE=dc24b40d.pl4 ! { All we need for C-like case +C Before continuing with case, let's document the contents of that unit-8 file: +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 1: +C 1.882680E-03 4.247281E-03 5.371358E-03 7.95E-3 9.95E-3 +C 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: +C .1E-3 0.5E-3 1.E-3 1.0 1.0 +C 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 2: +C 1.899909E-03 4.797950E-03 7.525832E-03 7.95E-3 9.95E-3 +C 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: +C .1E-3 0.5E-3 1.E-3 1.0 1.0 +C 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 3: +C 1.930867E-03 3.993335E-03 4.965908E-03 7.95E-3 9.95E-3 +C 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: +C .1E-3 0.5E-3 1.E-3 1.0 1.0 +C 1.0 +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 +C Cancel special output for MS Excel of 1st subcase. Addition on 20 July 2007: +C Type --- Ruler for file type of Excel output file: +EXTREMA OUTPUT FOR EXCEL .off { Columns 29-32 carry optional file type + 100.E-6 20.E-3 60. + 1 1 1 2 1 -1 0 2 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 1.95E-3 .1E-3 STATISTICS + B1 BSW1 3.95E-3 0.5E-3 STATISTICS 4 + C1 CSW1 5.95E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +C Last gen: ENDC -103.6321034277 303. -.710542736E-14 .7324106878E-14 +C Last gen: 284.72686409813 110.000 -.177635684E-14 -165.9637565 + ASW10 BSW10 CSW10 +C Step Time GENA GENC ENDA B1 ASW10 BSW10 +C A1 C1 A10 BSW1 +C 0 0.0 -.5684E-13 .28422E-13 -.5684E-13 -151.5 0.0 0.0 +C 1 .1E-3 .56843E-13 .29559E-11 -.2842E-12 0.0 0.0 0.0 +C 2 .2E-3 0.0 -.2927E-11 .28422E-12 0.0 0.0 0.0 +BLANK card ending the specification of program outputs (node voltages, here) +C Last step: 200 .02 1.60684633 5.46144739 15.5569682 209.921255 126.692915 +C Variable max:136.792665 67.5308064 48.9224823 437.603226 320.835627 553.096221 +C Times of max: .0021 .0061 .0093 .0045 .0029 .0049 +C Variable min:-100.37615 -85.515782 -58.824356 -292.03358 -548.79093 -353.02344 +C Times of min: .0033 .0127 .0084 .0056 .0074 .0141 + PRINTER PLOT + 144 1. 0.0 10. ASW10 { Plot limits: (-5.488, 3.208) +$CLOSE, UNIT=LUNIT4 STATUS=KEEP +$OPEN, UNIT=LUNIT4 FILE=dc24bdum.pl4 ! { All we need for C-like case +BLANK card ending base-case plot cards +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C Random switching times for energization number 1 : +C 1 1.8826800E-03 2 4.2472810E-03 3 5.3713580E-03 +C 0.0 141.91641 -72.187352 -35.059813 372.12662 -429.52043 422.745884 +C Times of maxima : .002 .0141 .0127 .0051 .0075 .0051 +C +C Random switching times for energization number 2 : +C 1 1.8999090E-03 2 4.7979500E-03 3 7.5258320E-03 +C 0.0 141.91641 61.5544612 -41.918959 371.62536 334.561657 497.525193 +C Times of maxima : .002 .0154 .0139 .0059 .0028 .0065 +C +C Random switching times for energization number 3 : +C 1 1.9308670E-03 2 3.9933350E-03 3 4.9659080E-03 +C 0.0 136.792665 -89.660145 -53.635984 437.603226 -510.75374 +C cont. 553.096221 513.648909 .96346791 1.5324377 -1.7429521 +C .0021 .0051 .0083 .0045 .0074 +C cont. .0049 .011 .02 .0044 .0169 +C Cards associated with the base-case solution must not be present: +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 { See preceding comments that document this tabulation +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 3rd of 6 subcases repeats the first subcase exactly, only instead of +C dumping full tables, MEMSAV = 2 (columns 49-56) means that only +C the extrema and switching times are to be dumped, and +C this will be FORMATTED rather than UNFORMATTED (for +C this change, only $OPEN is changed). The resulting card-image file +C named dc24ct40.lis is used by the 2nd and later subcases of DC-40. +C Also, as an illustration, time-step loop output of all energizations +C will be shown (because column-48 variable KSTOUT is zero not blank), +C and the miniature character plots of switch times will be suppressed. +PRINTED NUMBER WIDTH, 11, 1, { Set dT-loop column width as done b4 by STARTUP +C $STARTUP, dc37star.dat { Use disk file for re-initialization at this point +C This is a Monte Carlo case, for which TENERG is critical. But this +C parameter is initialized only in the STARTUP file. For this 2nd or +C later data case, we reinitialize via the preceding $STARTUP request +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 1 2 1 -1 2 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED +C 1 1 0 0 1 0 { STATIST. misc. data card } 1 + 1 1 0 0 2309 0 { STATIST. misc. data card } 1 + 2 2 10 10 { Printout frequency change for all soutions +C Preceding STATISTICS miscellaneous data card is handled differently beginning +C 23 September 2005 as new reserved value IDICE = 2309 is introduced as a +C request for alternative, computer-dependent dice. This is to satisfy Apple +C Macintosh G5 as used by Stu Cook of JUST Services in Ontario, Canada. As of +C this date, Mac G5 ATP is the only version to honor the 2309 alternative. +C For all versions, any other IDICE value (including the value unity shown) +C is treated the same as zero or blank. I.e., any other value does nothing. +C Henceforth, IDICE = 2309 is a request for alternative, computer-dependent +C random numbers (dice) of the operating system's library. So, we illustrate +C use here to document the two associated warning lines immediately before the +C input of branch data begins. If Stu Cook wants to compare his results with +C everybody else's, he should restore the value IDICE = 1 (alternatively, +C zero or blank would be equivalent). Salford ATP output follows: +C Statistics data. 1 1 0 0 2309 1 | 1 1 ... +C Printout : 2 2 10 10 0 0 | 2 2 ... +C Computer-dependent (not universal) dice have been requested for this +C Monte Carlo study by reserved value IDICE = 2309. +C Sorry, no alternative computer-dependent dice are available. ATP will +C ignore this request. Universal dice will be used. +C Series R-L-C. 0.000E+00 1.857E-02 0.000E+00 | 0GENA A1 ... + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +C Last gen: ENDC -103.6321034277 303. -.710542736E-14 .7324106878E-14 +C Last gen: 284.72686409813 110.000 -.177635684E-14 -165.9637565 +C The following unit-9 connection must not be made earlier, since the same +C I/O channel is used as UNFORMATTED by VECRSV/VECISV of MS-DOS. This is +C different than the first subcase (read those comments), note: +$OPEN, UNIT=LUNIT9 FILE=dc24ct40.lis STATUS=UNKNOWN FORM=FORMATTED ! + ASW10 BSW10 CSW10 { Request for these node voltage outputs +C GENA GENC ENDA B1 ASW10 BSW10 +C Reference angle A1 C1 A10 BSW1 +C Random switching times for energization number 1 : +C 1 1.8826802E-03 2 4.2472809E-03 3 5.3713577E-03 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .1E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 2 .2E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 4 .4E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 6 .6E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 8 .8E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 10 .001 0.0 0.0 0.0 0.0 0.0 0.0 +C ==== Table dumping for all subsequent restorations. Time [sec] = 1.8000E-03 +C *** Close switch "A1 " to "ASW1 " after 1.90000000E-03 sec. +C 20 .002 141.91641 0.0 0.0 0.0 0.0 0.0 +C 30 .003 -34.73764 0.0 0.0 0.0 318.450266 -159.22513 +BLANK card ending the specification of program outputs (node voltages, here) +C 190 .019 -8.1503339 19.8420817 .549065534 24.9565797 230.197042 85.0661304 +C 200 .02 .352725683 14.1822201 13.4881293 207.346558 128.761754 181.144509 +C 201 .0201 -.23343325 23.5035485 8.73828958 199.126365 123.327149 204.30575 +C Extrema of output variables follow. Order and column positioning are the sam +C Variable max:136.792665 56.3388361 40.5581876 437.603226 320.835627 553.096221 +C Times of max: .0021 .0053 .0092 .0045 .0029 .0049 +C Variable min:-100.37615 -89.660145 -53.635984 -272.03803 -510.75374 -342.9791 +C Times of min: .0033 .0051 .0083 .0055 .0074 .014 +C Warning! No statistical tabulations are allowed here because of our use +C ------- of output file LUNIT9 = 9 being "FORMATTED". Any attempted +C tabulation will die in "MCBANK" called by "DICTAB". 7 Dec 88 +C -1 100. GENA A1 +$CLOSE, UNIT=LUNIT9 STATUS=KEEP { Disconnect to prevent damage by stray WRITE +$OPEN, UNIT=LUNIT9 FILE=dc24dum.dum STATUS=UNKNOWN FORM=FORMATTED RECL=1000 ! +C The preceding $OPEN is added 11 October 2010 as required by new 4th subcase +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +C Column positioning of "NO SWITCH PLOTS" on blank terminator is arbitrary: +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE +C 4th of 6 subcases produces simulations that are identical to the 2nd. +C However, output looks substantially different because STATISTICS +C switches are not used. Instead of USER SUPPLIED SWITCH TIMES to +C define the closing times of switches, the SELECT function of the +C pocket calculator will be used. Structural differences include lack +C of a base case (the 2nd subcase had 1) preceding the 3 energizations +C Output of connectivity and the phasor solution will be suppressed so +C as not to be repeated 3 times (boring). Batch-mode plotting will be +C omitted for the same reason. Finally, output of the dT-loop will be +C be made less frequent. Data is added 10 October 2010. WSM. +PRINTED NUMBER WIDTH, 11, 1, { Set dT-loop column width as done b4 by STARTUP +C Controls of following request card: MAXKNT IOPCVP NOSTAT { Loop 3 times with +POCKET CALCULATOR VARIES PARAMETERS 3 0 0 { full printout + 100.E-6 20.E-3 60. + 20 1 0 0 1 + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b +TCLOSE_AAA = SELECT ( KNT ) { Closing time of phase "a" is taken from following: + .00188268.001899909.001930867 { Data is 3E10.0 for 3 energizations of phase a +C Pass 1>< Pass 2 >< Pass 3 > Ruler for preceding 3 T-close values of phase a +TCLOSE_BBB = SELECT ( KNT ) { Closing time of phase "b" is taken from following: +.004247281 .00479795.003993335 { Data is 3E10.0 for 3 energizations of phase b +C Pass 1>< Pass 2 >< Pass 3 > Ruler for preceding 3 T-close values of phase b +TCLOSE_CCC = SELECT ( KNT ) { Closing time of phase "c" is taken from following: +.005371358.007525832.004965908 { Data is 3E10.0 for 3 energizations of phase c +C Pass 1>< Pass 2 >< Pass 3 > Ruler for preceding 3 T-close values of phase c +BLANK card ends $PARAMETER definitions that are processed just b4 branch card +C Switch cards begin with the 3 STATISTICS switches of the 2nd subcase, which +C are being converted to deterministic switches with T-close of columns 15- +C 24 defined by the preceding $PARAMETER block. T-open has been set to 99 +C seconds (never reached) to ensure that the switches never open: +C 76A1 ASW1 1.95E-3 .1E-3 STATISTICS + A1 ASW1 TCLOSE_AAA 99.0 +C B1 BSW1 3.95E-3 0.5E-3 STATISTICS 4 + B1 BSW1 TCLOSE_BBB 99.0 4 +C C1 CSW1 5.95E-3 1.E-3 STATISTICS + C1 CSW1 TCLOSE_CCC 99.0 + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +C The following start of the dT-loop output is for the 1st of the 3 passes: +C Column headings for the 10 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 7 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Branch power consumption (power flow, if a switch) is treated like a branch voltage for this grouping (1 variables); +C Branch energy consumption (energy flow, if a switch) is treated like a branch current for this grouping (1 variables). +C Step Time GENA GENC ENDA B1 ASW10 BSW10 CSW10 B1 GENB ENDA +C A1 C1 A10 BSW1 BSW1 B1 A10 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C *** Close switch "A1 " to "ASW1 " after 1.90000000E-03 sec. +C 20 .002 141.91641 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 40 .004 2.37028418 0.0 0.0 0.0 -46.220806 23.1104031 23.1104031 0.0 0.0 0.0 +C *** Close switch "B1 " to "BSW1 " after 4.30000000E-03 sec. +C *** Close switch "C1 " to "CSW1 " after 5.40000000E-03 sec. +C 60 .006 -15.795936 10.618273 0.0 -123.04522 -168.96416 422.15175 -253.18759 .357709401 -.40883323 0.0 + ASW10 BSW10 CSW10 +BLANK card ending the specification of program outputs (node voltages, here) +C 180 .018 7.07846743 32.9539555 -12.904568 -.92594731 299.739293 -60.943514 -240.37687 .62556771 .018267223 -1.498213 +C 200 .02 5.74620332 -11.67979 16.6256782 248.357719 125.624205 168.195467 -283.39188 .769701668 1.25747152 -1.2455527 +C Variable maxima : 141.91641 56.029476 33.4968354 372.12662 334.561657 422.745884 559.424445 .769701668 1.25747152 .049072408 +C Times of maxima : .002 .0122 .0092 .0051 .0028 .0051 .0114 .02 .02 .0095 +C Variable minima : -103.91401 -72.187352 -35.059813 -191.64938 -429.52043 -351.293 -316.83918 0.0 -1.0806309 -1.8597009 +C Times of minima : .0032 .0141 .0127 .0159 .0075 .0142 .0191 0.0 .0109 .017 +BLANK card ending batch-mode plot cards +C Following statistical tabulation is identical to that of 2nd subcase of DC-24: +C 1 ) ------------------------------------------------------------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". Base voltage for per unit output = 1.00000000E+02 +C Interval voltage voltage in Frequency Cumulative Per cent +C number in per unit physical units (density) frequency .GE. current value +C 27 1.3500000 1.35000000E+02 0 0 100.000000 +C 28 1.4000000 1.40000000E+02 1 1 66.666667 +C 29 1.4500000 1.45000000E+02 2 3 .000000 +C Summary of preceding table follows: Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 { See preceding comments that document this tabulation +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 5th of 6 subcases produces simulations that are identical to the 4th. +C However, instead of the SELECT function (which is a generalization +C of USER SUPPLIED SWITCH TIMES), dice will be rolled just as was the +C case for the 1st subcase. Yes, the same dice, with the RAN function +C and the GAUSS function of the pocket calculator replacing internal +C rolling that ATP performs in support of STATISTICS switches. Within +C the PCVP loop, the user must roll his own dice after first ensuring +C that seeding of the random number generator is identical to what ATP +C does for the 1st subcase. Data is added 16 October 2010. WSM. +PRINTED NUMBER WIDTH, 11, 1, { Set dT-loop column width as done b4 by STARTUP +REPEATABLE RANDOM NUMBERS { Needed since no NSEED of STATISTICS misc. data card +C Note about preceding line. Without it, dice no longer will be deterministic +C and the resulting .LIS file should change every time data is simulated. +C That assumes KOMPAR of STARTUP is small enough (e.g., value unity) so that +C the program date and time are real. But for KOMPAR = 4, all simulations +C will be identical because seeding of the number generator then will depend +C on a fixed time (the WW I Armistice time) and zero elapsed CP time. I.e., +C program output will be deterministic although different from the output for +C the data as shown. That is because the fixed seed of RRN differs from the +C fixed seed that results from the WW I time. Complicated, eh? +C Controls of following request card: MAXKNT IOPCVP NOSTAT { Loop 3 times with +POCKET CALCULATOR VARIES PARAMETERS 3 0 0 { full printout + 100.E-6 20.E-3 60. + 20 1 0 0 1 + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b +C Diagnostic printout of the 1st subcase reveals that dice are rolled 5 times +C prior to each energization. There are 3 STATISTICS switches, so 3 of the 5 +C are used for them. But prior to these, there are 2 more. First, there is +C a wasted roll that is used for nothing. This has been known for many years +C but was not removed for reasons of historical continuity. Second, there is +C a roll that is used for the uniform bias that might, if the user wants it, +C be added to the closing times of all switches. So, here are the 5 rolls : +UNUSE1of2 = GAUSS ( 0.0 ) { OVER12 wastes 1 use for no good reason if STATISTIC +UNUSE2of2 = GAUSS ( 0.0 ) { OVER12 rolls a 2nd time for bias if STATISTICS case +C Now we are ready for the 3 switches. The 1st has type code 76, which means +C a uniform distribution. This is a little involved because it is low level. +C The 1st subcase uses a mean of 2 msec and a standard deviation of 0.1 msec. +C But the RAN function produces a uniform distribution over (0, 1). To map +C the RAN output RNG into the desired closing time, OVER12 uses this code: +C RNG = TIMEV + BIAS + SQRT3 * ABSZ ( TOPEN(NDXI) ) * ( 2.0 * RNG - 1.0 ) +C For this case, there is no bias BIAS, TIMEV is the mean equal to 2 msec, +C SQRT3 is the square root of 3, and TOPEN is the standard deviation. So: +TCLOSE_AAA = 2.0E-3 + 0.17320508E-3 * ( 2.0 * RAN ( 0.0 ) - 1.0 ) { Uniform closing time of phase "a" +C This is slightly more efficient, using the constant 0.17320508E-3 rather +C than scaling an ATP variable. But the answers should be identical. ATP is +C smart enough to recognize SQRT3 as a program variable, and use the full, +C internal precision associated with it. Program output will be unchanged if +C the preceding were replaced by: +C TCLOSE_AAA = 2.0E-3 + SQRT3 * 1.E-4 * ( 2.0 * RAN ( 0.0 ) - 1.0 ) { Uniform closing time of phase "a" +C Switches 2 and 3 (phases b and c) are easier since they are Gaussian: +TCLOSE_BBB = 4.0E-3 + 0.5E-3 * GAUSS ( 0.0 ) { Gauss closing time of phase "b" +TCLOSE_CCC = 6.0E-3 + 1.0E-3 * GAUSS ( 0.0 ) { Gauss closing time of phase "c" +BLANK card ends $PARAMETER definitions that are processed just b4 branch card +C 76A1 ASW1 2.E-3 .1E-3 STATISTICS + A1 ASW1 TCLOSE_AAA 99.0 +C B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + B1 BSW1 TCLOSE_BBB 99.0 4 +C C1 CSW1 6.E-3 1.E-3 STATISTICS + C1 CSW1 TCLOSE_CCC 99.0 + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards + ASW10 BSW10 CSW10 +BLANK card ending the specification of program outputs (node voltages, here) +BLANK card ending batch-mode plot cards +C Following statistical tabulation is identical to that of 4th subcase of DC-24: +C 1 ) ------------------------------------------------------------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". Base voltage for per unit output = 1.00000000E+02 +C Interval voltage voltage in Frequency Cumulative Per cent +C number in per unit physical units (density) frequency .GE. current value +C 27 1.3500000 1.35000000E+02 0 0 100.000000 +C 28 1.4000000 1.40000000E+02 1 1 66.666667 +C 29 1.4500000 1.45000000E+02 2 3 .000000 +C Summary of preceding table follows: Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 { See preceding comments that document this tabulation +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 6th of 6 subcases is added 24 July 2011 to illustrate the new +C protection against overflow of List 23. Data is the same as for +C subcase 1 although the base case has been activated to prove that +C omission is not a requirement. Note the NENERG = 90K shots of +C the integer misc. data card. For other translations, this is a +C case of overkill. But for Salford ATP, ordered COMMON blocks +C result in an enormous List 23 in excess of a million words. For +C Salford ATP, such huge NENERG is necessary. WSM. + 100.E-6 20.E-3 60. + 50000 20001 0 2 1 -1 1 0 90000 +C Interpretation of the preceding integer misc. data card is improved on +C 7 August 2011 when alternative variable-width encoding and the use of "K" +C allow the handling of much larger integers. The old format was (2I5, 8I3) +C which resulted in overflow for NENERG > 999. The new is not troubled : +C Misc. data. 1.000E-04 2.000E-02 6.000E+01 | 100.E-6 20.E-3 60. +C Misc. data. 50K 20K 0 2 1 -1 1 0 90K 0 | 50000 20001 ... +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 0 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards + ASW10 BSW10 CSW10 { Request for these node voltage outputs +BLANK card ending the specification of program outputs (node voltages, here) +C Overflow of List 23. General information follows. Specifically, here in SUBR15 prior to entry into the time-step loop, the demand +C for storage that is required for a Monte Carlo (or a SYSTEMATIC) study has been computed, and has been found to be inadequate. +C Total working space is L23TOT = 1502629 cells whereas each shot requires NDX1 = 24 cells. For all NENERG = 90000 shots +C requested, at least 2160000 will be needed for List 23. But recall that a Monte Carlo study can be simulated in pieces using two +C or more separate ATP executions. It is safer not to place all eggs in one basket. Also, simulation should be faster if two or +C more central processors are used simultaneously. CENTRAL STATISTICS FILE is the request word for such operation as illustrated by +C BENCHMARK DC-66. +C ------------------------------------------------------------------------------------------------------------------------------------ +C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ +C Etc. (the familiar KILL = 1 error termination). +BLANK card ending base-case plot cards +-1 GENA A1 +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc24clik.dat b/benchmarks/dc24clik.dat new file mode 100644 index 0000000..4675a80 --- /dev/null +++ b/benchmarks/dc24clik.dat @@ -0,0 +1,555 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-24 +C Monte Carlo simulation that is run in two parts. The original six +C energizations of "M39." stand-alone case have been reduced to 3, & +C the remaining 3 are performed in companion case DC-40, which is a +C "START AGAIN" continuation of this MEMSAV = 1 case. The use of +C standard random numbers and fixed seed gives results that should be +C repeatable & same for all computers of interest. But M39 differs! +C Note that this data case has no base case. However, if the user +C wants to add this, he need merely comment out the "OMIT BASE CASE" +C request card, and do likewise for the $DISABLE/ENABLE cards that +C precede statistics tabulation requests. Save the resulting binary +C disk file TPTABLES.BIN under the name dc24at40.bin for use by +C DC-40. For a "STATISTICS" random-opening data case, see DC-48. +C Beware of PARALLEL.LIS entry for same USERID that might modify NENERG! +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +C TRULY RANDOM NUMBERS { Same as NSEED=0 (this overrides stat misc. data card) +REPEATABLE RANDOM NUMBERS { Same as NSEED=1 (this overrides zero value below) +C CENTRAL STATISTICS FILE { Request word that precedes the disk file name +C %/wsm/parallel.atp ! { Leading percent sign avoids confusion of "/" in column 1 +C USER IDENTIFICATION Warsaw ! { Overrides A6 USERID of STARTUP for plots +C DIAGNOSTIC 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 1 2 1 -1 1 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 0 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +C The following is DIAGNOSTIC from "RANDNZ" usage of overlay 12. Not a +C normal case output, this is useful in case switching times are incorrect: +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.296996800000000000E+07 +C 0.296996800000000000E+07 0.000691499561071 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.205132719793000000E+12 +C 0.326925688100000000E+10 0.761183183873072 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.225804303513790000E+15 +C 0.692893886000000000E+09 0.161326929461211 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.478574878121350000E+14 +C 0.296220010300000000E+10 0.689690956613049 +C "RFUNL1/RANDNZ". KNT = 1. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.204596198914108000E+15 +C 0.113680185200000000E+10 0.264682306908071 +C Last gen: ENDC -103.6321034277 303. -.710542736E-14 .7324106878E-14 +C Last gen: 284.72686409813 110.000 -.177635684E-14 -165.9637565 +C The following unit-9 connection could come earlier on this first subcase +C because of FORM=UNFORMATTED, which is compatible with VECRSV/VECISV of +C MS-DOS (which uses unit 9 for scratch storage). But the present location +C is always safe, so its use is good practice. It is mandatory for 3rd case. +$OPEN, UNIT=9 FILE=dc24at40.ext STATUS=UNKNOWN FORM=UNFORMATTED RECL=1000 ! + ASW10 BSW10 CSW10 { Request for these node voltage outputs +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C +C GENB ENDA +C B1 A10 +C Random switching times for energization number 1 : +C 1 1.8826802E-03 2 4.2472809E-03 3 5.3713577E-03 +C 0.0 141.9164096 -72.1873524 -35.0598126 372.1266197 -429.52043 +C 1.257471517 -1.85970093 +C Times of maxima : .002 .0141 .0127 .0051 .0075 +C .02 .017 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.785177671157890000E+14 +C 0.146997761300000000E+10 0.342255833791569 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.101529883752298000E+15 +C 0.115184215400000000E+10 0.268184150103480 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.795565857346270000E+14 +C 0.906510819000000000E+09 0.211063497466967 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.626117957575120000E+14 +C 0.405748372000000000E+10 0.944706546142697 +C "RFUNL1/RANDNZ". KNT = 2. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.280246343056681000E+15 +C 0.402195997700000000E+10 0.936435530195013 +C Random switching times for energization number 2 : +C 1 1.8999095E-03 2 4.7979502E-03 3 7.5258324E-03 +C 0.0 141.9164096 61.55446116 -41.9189588 371.6253603 334.5616569 +C 1.207725131 -1.83695142 +C Times of maxima : .002 .0154 .0139 .0059 .0028 +C .0058 .017 +BLANK card ending the specification of program outputs (node voltages, here) +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.277792753651414000E+15 +C 0.285888072600000000E+10 0.665635039564222 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.197460032864095000E+15 +C 0.320639779100000000E+10 0.746547661488876 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.221462689026580000E+15 +C 0.129034293200000000E+10 0.300431375391781 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.891226959703090000E+14 +C 0.212457830900000000E+10 0.494666935177520 +C "RFUNL1/RANDNZ". KNT = 3. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.146742499224322000E+15 +C 0.646589186000000000E+09 0.150545776356012 +C Random switching times for energization number 3 : +C 1 1.9308674E-03 2 3.9933351E-03 3 4.9659084E-03 +C 0.0 136.7926646 -89.6601448 -53.6359842 437.6032257 -510.753735 +C 1.532437698 -1.74295212 +C Times of maxima : .0021 .0051 .0083 .0045 .0074 +C .0044 .0169 +C Cards associated with the base-case solution must not be present: +$DISABLE { Comment out this card, if a base case solution is to be added + PRINTER PLOT + 144 3. 0.0 20. ASW10 +BLANK card ending base-case plot cards +$ENABLE { Comment out this card, if a base case solution is to be added +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +C The following disconnects DC24.BIN to protect; automatic result of reopening: +C $OPEN, UNIT=22 STATUS=SCRATCH FORM=UNFORMATTED { Disconnect *.BIN on LUNIT2 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect to prevent damage by stray WRITE +$OPEN, UNIT=22 STATUS=SCRATCH FILE=dumxx.bin ! { Reconnect dummy .BIN on LUNIT2 +-1 100. GENA A1 +$CLOSE, UNIT=9 STATUS=KEEP { Disconnect to prevent damage by stray WRITE +$OPEN, UNIT=9 FILE=dc24dum.dum STATUS=SCRATCH ! +FIND { Enter interactive search for which shot and which variable gave extremum +HELP { Show the user that there is a summary explanation of "FIND" on-line +C Peak extremum of subset has value 5.62169583E+02 This occurred during +C energization 2 for the variable having names "CSW10 " and " ". +C This was variable 3 of 3 in the subset; 3 shots were searched. + ASW10 BSW10 CSW10 { Search these 3 node voltages for extremum +EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +C Peak extremum of subset has value 5.59424445E+02 This occurred during +C energization 1 for the variable having names "CSW10 " and " ". +C This was variable 3 of 3 in the subset; 2 shots were searched. +C Remember excluded shots are numbered 2 +EXCLUDE { Excluding the shot of previous output means only one is left for use +C Peak extremum of subset has value 5.53096221E+02 This occurred during +C energization 3 for the variable having names "BSW10 " and " ". +C This was variable 2 of 3 in the subset; 1 shots were searched. +C Remember excluded shots are numbered 1 2 +RESET { Reinitialize by erasing history of previous selections +ALL { Next, consider searching all output variables of some class +8 { As with batch-mode plotting, "8" indicates branch voltages (search ALL) +C Peak extremum of subset has value 4.37603226E+02 This occurred during +C energization 3 for the variable having names "B1 " and "BSW1 ". +C This was variable 4 of 4 in the subset; 3 shots were searched. +EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +EXCLUDE { Excluding the shot of previous output means only one is left for use +EXCLUDE { Final attempt to exclude should lead to error message: nothing is left +ALL { Next, consider searching all output variables of some class +9 { As with batch-mode plotting, "9" indicates branch currents (search ALL) +EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +C $KEY { Un-comment to allow keyboard input (until "END") at this point +QUIT { Done locating extrema, so exit the "FIND" alternative +C &&&&&&&&&&&&& End request and documentation. Begin 3 coupled cards ...... +C 2 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +-1 GENA A1 CONT. +C 3 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENC " to "C1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 4 0.2000000 0.60600000E+02 0 0 +C 5 0.2500000 0.75750000E+02 2 2 +C 6 0.3000000 0.90900000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.45766731E-01 +C Variance = 8.33333333E-04 2.19347831E-03 +C Standard deviation = 2.88675135E-02 4.68345845E-02 +-1 GENC C1 CONT. +C 4 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "ENDA " to "A10 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 2 0.1000000 0.30300000E+02 0 0 +C 3 0.1500000 0.45450000E+02 2 2 +C 4 0.2000000 0.60600000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.41666667E-01 1.43690600E-01 +C Variance = 8.33333333E-04 9.61072666E-04 +C Standard deviation = 2.88675135E-02 3.10011720E-02 +-1 ENDA A10 +C 5 ) -------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 5 ) -------------------------------------------------------------------------- +C A distribution of peak values among all output branches of the last data card +C statistical distribution is for the maximum of the peaks at all of these outpu +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +C 3456789012345678901234567890123456789012345678 +C MODTAB AINCR XMAXMX +STATISTICS DATA 1 0.0 0.0 ---- Only individual +-1 GENC C1 { =.245766731, Variance=2.19347831E-3} CONT. +-1 ENDA A10 { 1.43690600E-01, 9.61072666E-04 +C 8 ) -------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 8 ) -------------------------------------------------------------------------- +C A distribution of peak values among all output branches of the last data card +C statistical distribution is for the maximum of the peaks at all of these outpu +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 4 0.2000000 0.60600000E+02 0 0 +C 5 0.2500000 0.75750000E+02 2 2 +C 6 0.3000000 0.90900000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.45766731E-01 +C Variance = 8.33333333E-04 2.19347831E-03 +C Standard deviation = 2.88675135E-02 4.68345845E-02 +STATISTICS DATA 2 0.0 0.0 ------ Only union of 2 curves +-1 GENC C1 CONT. +-1 ENDA A10 { See comments for solution +STATISTICS DATA 3 0.0 0.0 ---- Both individual & union +-1 GENC C1 { =.245766731, Variance=2.19347831E-3} CONT. +-1 ENDA A10 { 1.43690600E-01, 9.61072666E-04 +C 12 ) ------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENC " to "C1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 8 0.9131973 0.56211367E+02 0 0 +C 9 1.0273470 0.63237788E+02 1 1 +C 10 1.1414966 0.70264209E+02 0 1 +C 11 1.2556463 0.77290630E+02 1 2 +C 12 1.3697959 0.84317051E+02 0 2 +C 13 1.4839456 0.91343472E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.19857145E+00 1.20977941E+00 +C Variance = 5.21205808E-02 5.31495428E-02 +C Standard deviation = 2.28299323E-01 2.30541846E-01 +STATISTICS DATA 3 -5.0 0.0 ---- Fixed number of 5 boxes +-1 GENC C1 { See preceding comments for 1st of 3} CONT. +-1 ENDA A10 +STATISTICS DATA 3 .05 0.0 ---- Restore STARTUP values +-1 GENC C1 ENDA A10 { =2.45766731E-1, Variance = 2.19347831E-3 + 0 ASW10 BSW10 CSW10 { Mean=1.40245965E+0, Variance = 8.47042357E-2 +C 1st of 4 tables is documented on preceding request; the 4th of 4 follows: +C 21 ) ------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 21 ) ------------------------------------------------------------------------- +C The following is a distribution of peak overvoltages among all output nodes of +C This distribution is for the maximum of the peaks at all output nodes with V- +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 36 1.8000000 0.54540000E+03 0 0 +C 37 1.8500000 0.56055000E+03 2 2 +C 38 1.9000000 0.57570000E+03 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.84166667E+00 1.84234351E+00 +C Variance = 8.33333333E-04 2.35830395E-04 +C Standard deviation = 2.88675135E-02 1.53567703E-02 +C &&&&&&&&& End documentation of node voltage tabulations (4th of 4 tables) +STATISTICS DATA 3 -4.0 0.0 ---- Fixed number of 4 boxes +C 22 ) ------------------------------------------------------------------------- +C Statistical distribution of peak power for branch "B1 " to "BSW1 ". +C Interval power power in Frequency Cumulative +C number in per unit physical units (density) frequency +C 16 0.9468728 0.35188195E+03 0 0 +C 17 1.0060524 0.37387457E+03 2 2 +C 18 1.0652319 0.39586719E+03 0 2 +C 19 1.1244115 0.41785981E+03 0 2 +C 20 1.1835910 0.43985244E+03 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.03564214E+00 1.05962916E+00 +C Variance = 1.05066576E-02 1.04274409E-02 +C Standard deviation = 1.02501988E-01 1.02114842E-01 +-3 B1 BSW1 { See preceding comments for this branch power table +-2 0. GENB B1 ENDA A10 { =1.10335104E+0, Variance = 2.09698061E-2 +-4 0. B1 BSW1 { Ungroup: Mean=1.16595031E+0, Variance = 3.80542557E-2 +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 2nd of 3 subcases repeats the preceding problem exactly, only instead +C of rolling dice to find the switch closing times, such times will be +C read from a user-supplied disk file dc24lun8.dat (see $OPEN use). +C The solution of this 2nd subcase should exactly agree with the first. +C However , for variety , a base case solution (missing from the first +C subcase) and a character plot have been added to this 2nd subcase. +C Also, the ".PL4" plot file (actually, just the header) is saved +C permanently for later re-connection using the 4th subcase of DC-40. +PRINTED NUMBER WIDTH, 11, 1, { Set dT-loop column width as done b4 by STARTUP +C $STARTUP, dc37star.dat { Use disk file for re-initialization at this point +C This is a Monte Carlo case, for which TENERG is critical. But this +C parameter is initialized only in the STARTUP file. For this 2nd or +C later data case, we reinitialize via the preceding $STARTUP request +USER SUPPLIED SWITCH TIMES { Bypass the dice, reading TCLOSE & TOPEN from LUNIT8 +C The following connection of unit 2 is required only because this is the +C 2nd subcase. It follows a case in which MEMSAV=1 dumps tables via I/O +C unit LUNIT2=2, and then this file is disconnected. Without the manual +C connection that follows, nothing would be connected, and execution would +C die for Apollo in "SUBR5" where REWIND LUNIT2 is found. So connect it: +$OPEN, UNIT=8 FILE=dc24lun8.dat FORM=FORMATTED STATUS=OLD RECL=80 ! { Case +C $OPEN, UNIT=22 FORM=UNFORMATTED STATUS=SCRATCH RECL=16000 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect to prevent damage by stray WRITE +$OPEN, UNIT=22 STATUS=SCRATCH FILE=dumxx.bin ! { Reconnect dummy .BIN on LUNIT2 +C $STARTUP, dc37star.dat { Re-initialize is required to set TENERG for table dump +C { This is a peculiarity of having "STATISTICS" as the +C { 2nd or later data subcase within a single disk file. +C DISK PLOT DATA { Toggle the Apollo default of LUNIT4 = -4 to +4 (use disk) +$CLOSE, UNIT=4 STATUS=DELETE { Destroy empty date/time plot file of "SYSDEP" +$OPEN, UNIT=4 FILE=dc24b40d.pl4 ! { All we need for C-like case +C Before continuing with case, let's document the contents of that unit-8 file: +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 1: +C 1.882680E-03 4.247281E-03 5.371358E-03 7.95E-3 9.95E-3 +C 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: +C .1E-3 0.5E-3 1.E-3 1.0 1.0 +C 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 2: +C 1.899909E-03 4.797950E-03 7.525832E-03 7.95E-3 9.95E-3 +C 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: +C .1E-3 0.5E-3 1.E-3 1.0 1.0 +C 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 3: +C 1.930867E-03 3.993335E-03 4.965908E-03 7.95E-3 9.95E-3 +C 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: +C .1E-3 0.5E-3 1.E-3 1.0 1.0 +C 1.0 +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + 100.E-6 20.E-3 60. + 1 1 1 2 1 -1 0 2 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 1.95E-3 .1E-3 STATISTICS + B1 BSW1 3.95E-3 0.5E-3 STATISTICS 4 + C1 CSW1 5.95E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +C Last gen: ENDC -103.6321034277 303. -.710542736E-14 .7324106878E-14 +C Last gen: 284.72686409813 110.000 -.177635684E-14 -165.9637565 + ASW10 BSW10 CSW10 +C Step Time GENA GENC ENDA B1 ASW10 BSW10 +C A1 C1 A10 BSW1 +C 0 0.0 -.5684E-13 .28422E-13 -.5684E-13 -151.5 0.0 0.0 +C 1 .1E-3 .56843E-13 .29559E-11 -.2842E-12 0.0 0.0 0.0 +C 2 .2E-3 0.0 -.2927E-11 .28422E-12 0.0 0.0 0.0 +BLANK card ending the specification of program outputs (node voltages, here) +C Last step: 200 .02 1.60684633 5.46144739 15.5569682 209.921255 126.692915 +C Variable max:136.792665 67.5308064 48.9224823 437.603226 320.835627 553.096221 +C Times of max: .0021 .0061 .0093 .0045 .0029 .0049 +C Variable min:-100.37615 -85.515782 -58.824356 -292.03358 -548.79093 -353.02344 +C Times of min: .0033 .0127 .0084 .0056 .0074 .0141 + PRINTER PLOT + 144 1. 0.0 10. ASW10 { Plot limits: (-5.488, 3.208) +$CLOSE, UNIT=4 STATUS=KEEP +$OPEN, UNIT=4 FILE=dc24bdum.pl4 ! { All we need for C-like case +BLANK card ending base-case plot cards +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C Random switching times for energization number 1 : +C 1 1.8826800E-03 2 4.2472810E-03 3 5.3713580E-03 +C 0.0 141.91641 -72.187352 -35.059813 372.12662 -429.52043 422.745884 +C Times of maxima : .002 .0141 .0127 .0051 .0075 .0051 +C +C Random switching times for energization number 2 : +C 1 1.8999090E-03 2 4.7979500E-03 3 7.5258320E-03 +C 0.0 141.91641 61.5544612 -41.918959 371.62536 334.561657 497.525193 +C Times of maxima : .002 .0154 .0139 .0059 .0028 .0065 +C +C Random switching times for energization number 3 : +C 1 1.9308670E-03 2 3.9933350E-03 3 4.9659080E-03 +C 0.0 136.792665 -89.660145 -53.635984 437.603226 -510.75374 +C cont. 553.096221 513.648909 .96346791 1.5324377 -1.7429521 +C .0021 .0051 .0083 .0045 .0074 +C cont. .0049 .011 .02 .0044 .0169 +C Cards associated with the base-case solution must not be present: +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 { See preceding comments that document this tabulation +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 3rd of 3 subcases repeats the first subcase exactly, only instead of +C dumping full tables, MEMSAV = 2 (columns 59-56) means that only +C the extrema and switching times are to be dumped, and +C this will be FORMATTED rather than UNFORMATTED (for +C this change, only $OPEN is changed). The resulting card-image file +C named dc24ct40.lis is used by the 2nd and later subcases of DC-40. +C Also, as an illustration, time-step loop output of all energizations +C will be shown (because column-48 variable KSTOUT is zero not blank), +C and the miniature character plots of switch times will be suppressed. +PRINTED NUMBER WIDTH, 11, 1, { Set dT-loop column width as done b4 by STARTUP +C $STARTUP, dc37star.dat { Use disk file for re-initialization at this point +C This is a Monte Carlo case, for which TENERG is critical. But this +C parameter is initialized only in the STARTUP file. For this 2nd or +C later data case, we reinitialize via the preceding $STARTUP request +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 1 2 1 -1 2 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 0 { STATIST. misc. data card } 1 + 2 2 10 10 { Printout frequency change for all soutions + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards +C Last gen: ENDC -103.6321034277 303. -.710542736E-14 .7324106878E-14 +C Last gen: 284.72686409813 110.000 -.177635684E-14 -165.9637565 +C The following unit-9 connection must not be made earlier, since the same +C I/O channel is used as UNFORMATTED by VECRSV/VECISV of MS-DOS. This is +C different than the first subcase (read those comments), note: +$OPEN, UNIT=9 FILE=dc24ct40.lis STATUS=UNKNOWN FORM=FORMATTED ! + ASW10 BSW10 CSW10 { Request for these node voltage outputs +C GENA GENC ENDA B1 ASW10 BSW10 +C Reference angle A1 C1 A10 BSW1 +C Random switching times for energization number 1 : +C 1 1.8826802E-03 2 4.2472809E-03 3 5.3713577E-03 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .1E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 2 .2E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 4 .4E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 6 .6E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 8 .8E-3 0.0 0.0 0.0 0.0 0.0 0.0 +C 10 .001 0.0 0.0 0.0 0.0 0.0 0.0 +C ==== Table dumping for all subsequent restorations. Time [sec] = 1.8000E-03 +C *** Close switch "A1 " to "ASW1 " after 1.90000000E-03 sec. +C 20 .002 141.91641 0.0 0.0 0.0 0.0 0.0 +C 30 .003 -34.73764 0.0 0.0 0.0 318.450266 -159.22513 +BLANK card ending the specification of program outputs (node voltages, here) +C 190 .019 -8.1503339 19.8420817 .549065534 24.9565797 230.197042 85.0661304 +C 200 .02 .352725683 14.1822201 13.4881293 207.346558 128.761754 181.144509 +C 201 .0201 -.23343325 23.5035485 8.73828958 199.126365 123.327149 204.30575 +C Extrema of output variables follow. Order and column positioning are the sam +C Variable max:136.792665 56.3388361 40.5581876 437.603226 320.835627 553.096221 +C Times of max: .0021 .0053 .0092 .0045 .0029 .0049 +C Variable min:-100.37615 -89.660145 -53.635984 -272.03803 -510.75374 -342.9791 +C Times of min: .0033 .0051 .0083 .0055 .0074 .014 +C Warning! No statistical tabulations are allowed here because of our use +C ------- of output file LUNIT9 = 9 being "FORMATTED". Any attempted +C tabulation will die in "MCBANK" called by "DICTAB". 7 Dec 88 +C -1 100. GENA A1 +$CLOSE, UNIT=9 STATUS=KEEP { Disconnect to prevent damage by stray WRITE +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +C Column positioning of "NO SWITCH PLOTS" on blank terminator is arbitrary: +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc24clu8.dat b/benchmarks/dc24clu8.dat new file mode 100644 index 0000000..64efbbb --- /dev/null +++ b/benchmarks/dc24clu8.dat @@ -0,0 +1,16 @@ +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 4: + 2.1466476E-03 4.4995694E-03 8.0648931E-03 7.95E-3 9.95E-3 + 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: + .1E-3 0.5E-3 1.E-3 1.0 1.0 + 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 5: + 2.0344905E-03 3.8690347E-03 6.3961916E-03 7.95E-3 9.95E-3 + 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: + .1E-3 0.5E-3 1.E-3 1.0 1.0 + 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 6: + 2.0043546E-03 4.3397550E-03 5.2772330E-03 7.95E-3 9.95E-3 + 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: + .1E-3 0.5E-3 1.E-3 1.0 1.0 + 1.0 +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 diff --git a/benchmarks/dc24lun8.dat b/benchmarks/dc24lun8.dat new file mode 100644 index 0000000..fa7f8fd --- /dev/null +++ b/benchmarks/dc24lun8.dat @@ -0,0 +1,16 @@ +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 1: + 1.882680E-03 4.247281E-03 5.371358E-03 7.95E-3 9.95E-3 + 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: + .1E-3 0.5E-3 1.E-3 1.0 1.0 + 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 2: + 1.899909E-03 4.797950E-03 7.525832E-03 7.95E-3 9.95E-3 + 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: + .1E-3 0.5E-3 1.E-3 1.0 1.0 + 1.0 +C Marker preceding TCLOSE(1:6) and TOPEN(1:6) for energization 3: + 1.930867E-03 3.993335E-03 4.965908E-03 7.95E-3 9.95E-3 + 11.95E-3 { End of TCLOSE; TOPEN begin on the next line: + .1E-3 0.5E-3 1.E-3 1.0 1.0 + 1.0 +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 diff --git a/benchmarks/dc25.dat b/benchmarks/dc25.dat new file mode 100644 index 0000000..3a9ba12 --- /dev/null +++ b/benchmarks/dc25.dat @@ -0,0 +1,553 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-25 +C Test of Type-59 S.M., with two connected in parallel. Problem came from +C Chuck Wolf of AEP on 14 Feb 1977. See Vol. VII EMTP Memoranda, 28 +C January 1978, pages TDCE-13 through 16. Results of this simulation +C correspond to Fig. 4 --- the case of an untransposed 765-kV line using +C Procedure 1 initialization. The unbalanced Pi-circuit of transmission +C line produces an unbalanced phasor solution. Load flow ("FIX SOURCE") +C usage begins from power constraints for "M39." and later solutions. +C For other Type-59 S.M. usage, see cases DC-26, DC-53, and DCNEW-11. +C Modified with Guido's and Juan Martinez's approval during Oct., 1990. +C Answers have changed. The original data case is unexecuted at end. +C Answers change again 10 February 1999 following the massive changes from +C TEPCO (Tokyo Electric Power Company) in Japan. See April newsletter. +C But changes are negligible physically. The 2 printer plots are identical +C (demonstrating 4 digit agreement for the variables considered), and most +C extrema numbers differ only in the 5th or 6th decimal place. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns +FIX SOURCE { Declared intention to use load flow (phasor power constraints) + .000200 .100 60. 60. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +C 11 PI SECTIONS OF THE R-JEF CKT + 1 ROCA RJ0A 9.04 44.88 351.28 + 2 ROCB RJ0B 7.84 19.04 -57.6 9.2 44.56 360.88 + 3 ROCC RJ0C 7.68 14.96 -14.967.84 19.04 -57.6 9.04 44.88 351.28 + 1 RJ0A RJ1A ROCA RJ0A + 2 RJ0B RJ1B + 3 RJ0C RJ1C + 1 RJ1A JEFA ROCA RJ0A + 2 RJ1B JEFB + 3 RJ1C JEFC +C SYS IMP MATRIX + INFA JEFA 4.891757.845 + INFB JEFB 4.891757.845 + INFC JEFC 4.891757.845 +C LINEAR SHUNT REACTORS 300MVAR AT EACH END + 0 ROCACOMROC 1950. 1 + 0 ROCBCOMROC 1950. 1 + 0 ROCCCOMROC 1950. + 0COMROC 700.0 + 0 JEFACOMJEF 1950.0 + 0 JEFBCOMJEF 1950.0 + 0 JEFCCOMJEF 1950.0 + 0COMJEF 700.0 +C STEP-UP TRANSFORMER AT ROCKPORT + TRANSFORMER TRAN A + 9999 + 1 MACA1 MACC1 .00071.0436824.63 + 2 ROCA .2280414.054441.7 + TRANSFORMER TRAN A TRAN B + 1 MACB1 MACA1 + 2 ROCB + TRANSFORMER TRAN A TRAN C + 1 MACC1 MACB1 + 2 ROCC +C GENERATOR'S CAPACITANCE TO GROUND + 0 MACA1 50.0 + 0 MACB1 50.0 + 0 MACC1 50. +BLANK card ending all branch cards + RJ0A .0501 10. 1 +BLANK card ending all switch cards +14 INFA 624619. 60. -2.2 -1.0 +14 INFB 624619. 60. -122.2 -1.0 +14 INFC 624619. 60. 117.8 -1.0 +59 MACA1 22000. 60.0 60.0 + MACB1 + MACC1 +TOLERANCES { Only change columns 51-60: NIOMAX = 20 } 20 +PARAMETER FITTING 2.0 + 1 1 21. 1. 722. 26. 1750. 1950. 3200. +BLANK card for the Q-axis +.001720594.19 1.92 1.85 .31 0.6 .26 .26 +4.8 1.0 .04 .053 .12 .000001 .000001 + 1 1.0 .87 .0001 +BLANK card ending mass cards + 51 + 11 + 21 + 31 +BLANK card ending output specifications for this S.M. only + FINISH PART { End of 1st of 2 machines in parallel on the same 3-phase bus +PARAMETER FITTING 2.0 + 1 1 21. 1. 722. 26. 1750. 1950. 3200. +BLANK card for the Q-axis +.001720594.19 1.92 1.85 .31 0.6 .26 .26 +4.8 1.0 .04 .053 .12 .000001 .000001 + 1 1.0 .87 .0001 +BLANK card ending mass cards + 51 + 11 + 2 1 + 31 +BLANK card ending output specifications for this S.M. only + FINISH { End of 2nd of 2 machines in parallel on the same 3-phase bus +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C ROCA | TERRA * RJ0A*COMROC* +C RJ0A | TERRA * ROCA* RJ1A* +C ROCB | TERRA * RJ0B*COMROC* +C RJ0B | ROCB* RJ1B* +C ROCC | TERRA * RJ0C*COMROC* +C RJ0C | ROCC* RJ1C* +C < < Etc. This is 1st 1/3-rd or so of table. > > +BLANK card ending all source cards + MACA1 MACB1 MACC1 2803162500.0 1383483900.0 20000. 25000. 50.0 80.0 +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 1 0.001 2 +C Max del-V: .1803 .1777 .1752 .1727 .1702 .1678 .1654 .163 .1607 .1584 +C Source No. -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 +C Exit the load flow iteration loop with counter NEKITE = 310. If no w +C Total network loss P-loss by summing injections = 1.193636643443E+08 +C 1st gen : MACA1 7882.1299837372 22944.294576661 63529.229081234 91991.00055512 +C 1st gen : 21547.915921037 69.9077094 66531.054669802 46.3221669 +C Id Iq Io +C -5.17606386485E+04 1.11953458746E+04 -9.24170739175E-11 +C Field current of the generator: 7.6127807443E+03 7.7516029040E+03 +C Electromechanical torque ... : 3.4914826741E+00 3.7272751437E+00 + JEFA JEFB JEFC ROCA ROCB ROCC MACA1 MACB1 MACC1 { Node voltage outputs +C Step Time JEFA JEFB JEFC ROCA ROCB +C +C MACC1 RJ0A ROCA ROCB MACH 1 +C TERRA COMROC COMROC ID +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IKD IG IKQ IA IB +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 2 +C MANG TQ GEN ANG 1 VEL 1 ID +C +C MACH 2 MACH 2 MACH 2 MACH 2 MACH 2 +C IKD IG IKQ IA IB +C +C MACH 2 MACH 2 MACH 2 MACH 2 +C MANG TQ GEN ANG 1 VEL 1 +C 0 0.0 595063.429 -170038.378 -430408.555 567829.8077 41131.95807 +C -22602.1076 0.0 195.2036215 -347.379708 -51760.6386 +C -119.013056 20.25252059 123.7786761 31764.61454 9524.516392 +C .6120416955 3.491581073 210.5205098 -.56843E-13 -51760.6386 +C -119.013056 20.25252059 123.7786761 31764.61454 9524.516392 +C .6120416955 3.491581073 210.5205098 -.56843E-13 +C 1 .2E-3 582660.0376 -124400.236 -463854.309 538020.6136 90826.69064 +C -22226.8015 0.0 216.5639977 -344.847463 -51644.9311 +C -124.178599 17.6951304 102.1960096 29275.66489 12850.10176 +C .6122312386 3.504607103 210.5205169 .0012501818 -51644.9311 +C -124.178599 17.6951304 102.1960096 29275.66489 12850.10176 +C .6122312386 3.504607103 210.5205169 .0012501818 +BLANK card ending selective node voltage output requests +C Last step begins: 500 0.1 422565.4027 -113969.735 -360716.4 184973.5528 +C Last step begins: -14207.4222 8830.876534 127.5541446 -304.110445 -70239.5493 +C Last step begins: 434.079499 436.7069486 -1114.11685 41302.06075 15848.22263 +C Last step begins: .5709140724 4.269726268 212.0409714 1.274775215 -70239.5493 +C Last step begins: 434.079499 436.7069486 -1114.11685 41302.06075 15848.22263 +C Last step begins: .5709140724 4.269726268 212.0409714 1.274775215 +C Variable max : 614175.4675 689830.8087 698890.353 693955.4017 682007.8375 +C 23072.26231 12386.83878 350.8889637 346.8138015 -32475.6958 +C 2497.939838 999.6504516 5424.112392 45447.13214 46674.47781 +C .6757375048 6.372899605 212.0409714 1.281702728 -32475.6958 +C 2497.939838 999.6504516 5424.112392 45447.13214 46674.47781 +C .6757375048 6.372899605 212.0409714 1.281702728 +C Times of max : .0326 .0544 .0602 .0484 .004 +C .0412 .0856 .0026 .0082 .0642 +C .0594 .095 .062 .0478 .0866 +C .0576 .0576 0.1 .0992 .0642 +C .0594 .095 .062 .0478 .0866 +C .0576 .0576 0.1 .0992 + PRINTER PLOT + 144 2. 0.0 20. MACA1 MACB1 MACC1 { Axis span: (-2.318, 2.320) + 19410. 0.0100. MACH 1TQ GENMACH 2TQ GEN { Axis span: (-1.028, 6.373) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C Second of 3 subcases of DC-25 replaces the generator delta-Wye stepup +C transformers (3 separate, 2-winding saturable TRANSFORMERS, originally) +C by 3 Type-18 ideal transformers. Leakage is ignored during conversion. +C Also, for simplicity, the Type-59 S.M. is removed, and values of the +C replacement Type-14 sources are set equal to the load flow solution. +C 23 February 1994, replace the three pairs of Type-14 and Type-18 +C source cards by the equivalent, new IDEAL TRANSFORMER components. +C 9 November 2010, replace the explicit node names 18TYP1, 18TYP2, +C and 18TYP3 by blanks on the winding cards of IDEAL TRANSFORMER +C components. These are default names, so ATP will supply them, and +C the resulting simulation should not change in any way. The only +C change to the .LIS file is on lines that document data input. +C Connectivity, phasor branch flow, dT-loop heading, and batch-mode +C plotting all involve these names, but are unchange. This change +C is made as new logic is added to SUBR5 and OVER16 to guarantee +C that ATP-supplied names do not conflict with user bus names. WSM. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns + .000200 .015 60. 60. + 1 1 1 1 1 -1 + 5 5 10 10 + IDEAL TRANSFORMER { Each ideal Xformer begins with this request card + 1 J2A L2A 36.0 { Winding 1 has rated voltage 36 +C 2 K1A M1A18TYP1 2.0 { Winding 2 has rated voltage 2 + 2 K1A M1A 2.0 { Winding 2 has rated voltage 2 + IDEAL TRANSFORMER + 1 J2B L2B 18.0 { Only the voltage ratio matters +C 2 K1B M1B18TYP2 1.0 { and it is the same for all 3 + 2 K1B M1B 1.0 { and it is the same for all 3 + IDEAL TRANSFORMER + 1 J2C L2C 54.0 +C 2 K1C M1C18TYP3 3.0 + 2 K1C M1C 3.0 +C 11 PI SECTIONS OF THE R-JEF CKT + 1 ROCA RJ0A 9.04 44.88 351.28 + 2 ROCB RJ0B 7.84 19.04 -57.6 9.2 44.56 360.88 + 3 ROCC RJ0C 7.68 14.96 -14.967.84 19.04 -57.6 9.04 44.88 351.28 + 1 RJ0A RJ1A ROCA RJ0A + 2 RJ0B RJ1B + 3 RJ0C RJ1C + 1 RJ1A JEFA ROCA RJ0A + 2 RJ1B JEFB + 3 RJ1C JEFC +C SYS IMP MATRIX + INFA JEFA 4.891757.845 + INFB JEFB 4.891757.845 + INFC JEFC 4.891757.845 +C LINEAR SHUNT REACTORS 300MVAR AT EACH END +C 34567890123456789012345678901234567890123456789012345678901234567890 + 0 K1A MACA1 .00071.04368 + 0 K1B MACB1 .00071.04368 + 0 K1C MACC1 .00071.04368 + 0 J2A ROCA .2280414.054 + 0 J2B ROCB .2280414.054 + 0 J2C ROCC .2280414.054 + 0 L2AGROUND 1.E-6 + 0 L2BGROUND 1.E-6 + 0 L2CGROUND 1.E-6 + 0 M1A MACC1 1.E-6 + 0 M1B MACA1 1.E-6 + 0 M1C MACB1 1.E-6 + 0 GROUND 1.E-6 + 0 ROCACOMROC 1950. 1 + 0 ROCBCOMROC 1950. 1 + 0 ROCCCOMROC 1950. + 0COMROC 700.0 + 0 JEFACOMJEF 1950.0 + 0 JEFBCOMJEF 1950.0 + 0 JEFCCOMJEF 1950.0 + 0COMJEF 700.0 +C GENERATOR'S CAPACITANCE TO GROUND + 0 MACA1 50.0 + 0 MACB1 50.0 + 0 MACC1 50. +BLANK card ending all branch cards + RJ0A .0501 10. 1 +BLANK card ending all switch cards +C Begin Type-18 sources (ideal transformers) that distinguish this subcase: +C 14 J2A 1.E-20 60.0 +C 18 L2A 18.0 K1A M1A18TYP1 +C 14 J2B 1.E-20 60.0 +C 18 L2B 18.0 K1B M1B18TYP2 +C 14 J2C 1.E-20 60.0 +C 18 L2C 18.0 K1C M1C18TYP3 +14 INFA 624619. 60. -2.2 -1.0 +14 INFB 624619. 60. -122.2 -1.0 +14 INFC 624619. 60. 117.8 -1.0 +14 MACA1 22944.3 60. 69.9077 -1.0 +14 MACB1 22944.3 60. -50.0922 -1.0 +14 MACC1 22944.3 60. -170.0922 -1.0 +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 1.199128383848E+08 +C Last gen: MACC1 -22602.10667558 22944.3 -82940.75280602 86941.876492988 +C Last gen: -3947.869845313 -170.0922 26071.467394327 162.5500619 + JEFA JEFB JEFC ROCA ROCB ROCC18TYP118TYP218TYP3 +C Step Time JEFA JEFB JEFC ROCA ROCB +C +C 18TYP3 RJ0A ROCA ROCB +C TERRA COMROC COMROC +C 0 0.0 595774.3334 -170010.161 -431151.342 569612.3085 41241.0688 +C 1889.574253 0.0 195.7951564 -348.444415 +C 1 .2E-3 583329.625 -124300.015 -464630.148 539239.5467 92279.01704 +C 2052.380386 0.0 217.2131016 -345.88244 +BLANK card ending selective node voltage output requests +C Last step: 75 .015 565929.8878 -490595.576 -77916.3691 685283.5922 -365950.758 +C Last step: 216.6873929 0.0 -13.0438646 -294.203105 + PRINTER PLOT + 144 2. 0.0 20. 18TYP118TYP218TYP3 { Axis span: (-3.033, 3.035) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C Third of 3 subcases of DC-25 is unrelated to preceding two. It +C does use saturable TRANSFORMERs, however. It is unusual in that it +C uses the "TRANSFORMER THREE PHASE" option. From LEC, December, 88 + .10E-3 80.E-3 + 1 1 1 3 1 -1 + 5 5 20 20 100 100 + GEN1 BAS1 1. -4 3 + GEN2 BAS2 1. -4 3 + GEN3 BAS3 1. -4 3 + NULP 1. -4 1 + TRANSFORMER THREE PHASE T4 .001 + TRANSFORMER 2.0 1137. T1 0.00E5 3 + 2. 26. + 5. 63. + 10. 122. + 20. 225. + 50. 459. + 100. 702. + 200. 956. + 500. 1220. + 1000. 1343. + 2000. 1415. + 5000. 1462. + 10000. 1478.6 + 9999 + 1BAS1 NULP .00 1. -43.03E5 1 + 2BASA NULP .00 1. -43.03E5 + TRANSFORMER 1.0 1137. T2 0.00E5 3 + 1. 26. + 2.5 63. + 5. 122. + 10. 225. + 25. 459. + 50. 702. + 100. 956. + 250. 1220. + 500. 1343. + 1000. 1415. + 2500. 1462. + 5000. 1478.6 + 9999 + 1BAS2 NULP .00 1. -43.03E5 1 + 2BASB NULP .00 1. -43.03E5 + TRANSFORMER 2.0 1137. T3 0.00E5 3 + 2. 26. + 5. 63. + 10. 122. + 20. 225. + 50. 459. + 100. 702. + 200. 956. + 500. 1220. + 1000. 1343. + 2000. 1415. + 5000. 1462. + 10000. 1478.6 + 9999 + 1BAS3 NULP .00 1. -43.03E5 1 + 2BASC NULP .00 1. -43.03E5 +BLANK card terminates electric network branches +BLANK card ends all switches +14GEN1 460000. 50. 20. -1. +14GEN2 460000. 50. 140. -1. +14GEN3 460000. 50. 260. -1. +BLANK card terminates electric network sources +C Total network loss P-loss by summing injections = -6.154425427667E-03 +C Last gen: GEN3 -79878.16172679 460000. -2.536462187767 2.5755913419774 +C Last gen: -453011.5663856 -100.0000000 .44724750518799 169.9999828 +C ---- Initial flux of coil "T1 " to "NULP " = 5.00794608E+02 +C ---- Initial flux of coil "T2 " to "NULP " = 9.41185994E+02 +C ---- Initial flux of coil "T3 " to "NULP " = -1.44198060E+03 +C Step Time GEN1 GEN2 GEN3 T1 T2 +C BAS1 BAS2 BAS3 NULP NULP +C +C BASA BAS3 BAS2 BAS1 T2 +C +C T3 GEN1 GEN2 GEN3 T1 +C NULP +C +C GEN2 GEN3 NULP BAS1 BAS2 +C BAS2 BAS3 TERRA T1 T2 +C 0 0.0 .8809037E-4 .8277799E-4 -.253646E-3 432258.6055 -352380.444 +C 432258.6054 -79878.1615 -352380.444 432258.6055 -352380.444 +C -79878.1615 432258.6056 -352380.444 -79878.1617 39.55469448 +C .827779877 -2.53646213 -.827780115 .8809052313 .8277787585 +C 1 .1E-3 .004398076 .0036655092 -.011739905 427103.3935 -361494.243 +C 427103.3898 -65609.2978 -361494.175 427103.476 -361494.246 +C -65609.0681 427103.4804 -361494.171 -65609.3095 44.90081121 +C 36.65509168 -117.399051 -36.7631993 43.98076016 36.65509158 + 1 { Request for all node voltage outputs +C !!! Tracking trouble ... number I = 0. 0.2E+01 -0.20562E+02 -0.17753E+01 +C !!! Tracking trouble ... number I = 0. -0.2E+01 0.51513E+01 0.52578E+00 +C 800 .08 .0055358232 .0091582724 -.372219109 432259.2816 -352380.249 +C 432258.9241 -79877.7895 -352380.453 432258.6 -352380.607 +C -79872.5219 432258.6056 -352380.444 -79878.1617 57.81704152 +C 91.58272413 -3722.19109 -3575.25014 55.35823213 91.58272332 + PRINTER PLOT + 144 1. 60. 70. NULP { Axis span: ( -5.455, 5.480) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + + +BEGIN NEW DATA CASE +C BENCHMARK DC-25 +C Test of Type-59 S.M., with two connected in parallel. Problem came from +C Chuck Wolf of AEP on 14 Feb 1977. See Vol. VII EMTP Memoranda, 28 +C January 1978, pages TDCE-13 through 16. Results of this simulation +C correspond to Fig. 4 --- the case of an untransposed 765-kV line using +C Procedure 1 initialization. The unbalanced Pi-circuit of transmission +C line produces an unbalanced phasor solution. Load flow ("FIX SOURCE") +C usage begins from power constraints for "M39." and later solutions. +C For other Type-59 S.M. usage, see cases DC-26, DC-53, and DCNEW-11. +C This is old data case, as it existed prior to October, 1990 changes. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns +FIX SOURCE { Declared intention to use load flow (phasor power constraints) + .000200 .100 60. 60. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +C 11 PI SECTIONS OF THE R-JEF CKT + 1 ROCA RJ0A 9.04 44.88 351.28 + 2 ROCB RJ0B 7.84 19.04 -57.6 9.2 44.56 360.88 + 3 ROCC RJ0C 7.68 14.96 -14.967.84 19.04 -57.6 9.04 44.88 351.28 + 1 RJ0A RJ1A ROCA RJ0A + 2 RJ0B RJ1B + 3 RJ0C RJ1C + 1 RJ1A JEFA ROCA RJ0A + 2 RJ1B JEFB + 3 RJ1C JEFC +C SYS IMP MATRIX + INFA JEFA 4.891757.845 + INFB JEFB 4.891757.845 + INFC JEFC 4.891757.845 +C LINEAR SHUNT REACTORS 300MVAR AT EACH END + 0 ROCACOMROC 1950. 1 + 0 ROCBCOMROC 1950. 1 + 0 ROCCCOMROC 1950. + 0COMROC 700.0 + 0 JEFACOMJEF 1950.0 + 0 JEFBCOMJEF 1950.0 + 0 JEFCCOMJEF 1950.0 + 0COMJEF 700.0 +C STEP-UP TRANSFORMER AT ROCKPORT + TRANSFORMER TRAN A + 9999 + 1 MACA1 MACC1 .00071.0436824.63 + 2 ROCA .2280414.054441.7 + TRANSFORMER TRAN A TRAN B + 1 MACB1 MACA1 + 2 ROCB + TRANSFORMER TRAN A TRAN C + 1 MACC1 MACB1 + 2 ROCC +C GENERATOR'S CAPACITANCE TO GROUND + 0 MACA1 50.0 + 0 MACB1 50.0 + 0 MACC1 50. +BLANK card ending all branch cards + RJ0A .0501 10. 1 +BLANK card ending all switch cards +14 INFA 624619. 60. -2.2 -1.0 +14 INFB 624619. 60. -122.2 -1.0 +14 INFC 624619. 60. 117.8 -1.0 +59 MACA1 22000. 60.0 60.0 + MACB1 + MACC1 +TOLERANCES { Only change columns 51-60: NIOMAX = 20 } 20 +PARAMETER FITTING 2.0 + 1 1 21. 1. 722. 26. 1750. 1950. 3200. +BLANK card for the Q-axis +.001720594.19 1.92 1.85 .31 0.6 .26 .26 +4.8 1.0 .04 .053 .12 .000001 .000001 + 1 1.0 .87 .0001 +BLANK card ending mass cards + 51 + 11 + 21 + 31 +BLANK card ending output specifications for this S.M. only + FINISH PART { End of 1st of 2 machines in parallel on the same 3-phase bus +PARAMETER FITTING 2.0 + 1 1 21. 1. 722. 26. 1750. 1950. 3200. +BLANK card for the Q-axis +.001720594.19 1.92 1.85 .31 0.6 .26 .26 +4.8 1.0 .04 .053 .12 .000001 .000001 + 1 1.0 .87 .0001 +BLANK card ending mass cards + 51 + 11 + 2 1 + 31 +BLANK card ending output specifications for this S.M. only + FINISH { End of 2nd of 2 machines in parallel on the same 3-phase bus +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C ROCA | TERRA * RJ0A*COMROC* +C RJ0A | TERRA * ROCA* RJ1A* +C ROCB | TERRA * RJ0B*COMROC* +C RJ0B | ROCB* RJ1B* +C ROCC | TERRA * RJ0C*COMROC* +C RJ0C | ROCC* RJ1C* +C < < Etc. This is 1st 1/3-rd or so of table. > > +BLANK card ending all source cards + MACA1 MACB1 MACC1 2803162500.0 1383483900.0 20000. 25000. 50.0 80.0 +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 0.001 2 +C 1 0.001 { Load flow misc. data card +C Max del-V: .1803 .1777 .1752 .1727 .1702 .1678 .1654 .163 .1607 .1584 +C Source No. -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 +C Exit the load flow iteration loop with counter NEKITE = 310. If no w +C Total network loss P-loss by summing injections = 1.193636643443E+08 +C 1st gen : MACA1 7882.1299837372 22944.294576661 63529.229081234 91991.00055512 +C 1st gen : 21547.915921037 69.9077094 66531.054669802 46.3221669 +C Id Iq Io +C -5.17606386485E+04 1.11953458746E+04 -9.24170739175E-11 +C Field current of the generator: 7.6127807443E+03 7.7516029040E+03 +C Electromechanical torque ... : 3.4914826741E+00 3.7272751437E+00 + JEFA JEFB JEFC ROCA ROCB ROCC MACA1 MACB1 MACC1 { Node voltage outputs +C Step Time JEFA JEFB JEFC ROCA ROCB +C +C MACC1 RJ0A ROCA ROCB MACH 1 +C TERRA COMROC COMROC ID +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IKD IG IKQ IA IB +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 2 +C MANG TQ GEN ANG 1 VEL 1 ID +C +C MACH 2 MACH 2 MACH 2 MACH 2 MACH 2 +C IKD IG IKQ IA IB +C +C MACH 2 MACH 2 MACH 2 MACH 2 +C MANG TQ GEN ANG 1 VEL 1 +C 0 0.0 595063.429 -170038.378 -430408.555 567829.8077 41131.95807 +C -22602.1076 0.0 195.2036215 -347.379708 -51760.6386 +C -109.687843 23.46046976 120.5175269 31764.61454 9524.516392 +C .6133720135 3.491482674 210.5205098 0.0 -51760.6386 +C -109.687843 23.46046976 120.5175269 31764.61454 9524.516392 +C .6133720135 3.491482674 210.5205098 0.0 +C 1 .2E-3 582660.0313 -124400.23 -463854.308 538017.7227 90829.37154 +C -22226.4607 0.0 216.563941 -344.847412 -51636.0369 +C -114.822396 20.58268373 99.63923976 29275.32656 12850.25969 +C .6135456896 3.503754264 210.5205169 .0012527763 -51636.0369 +C -114.822396 20.58268373 99.63923976 29275.32656 12850.25969 +C .6135456896 3.503754264 210.5205169 .0012527763 +BLANK card ending selective node voltage output requests +C Last step begins: 500 0.1 422384.6068 -116060.664 -360408.406 181592.8113 +C Last step begins: -14206.7591 8837.628536 127.4636953 -301.640745 -70527.6268 +C Last step begins: 403.5072445 488.6707412 -1237.27694 41166.26379 16455.65357 +C Last step begins: .5742173844 4.349309756 212.0422101 1.276736936 -70527.6268 +C Last step begins: 403.5072445 488.6707412 -1237.27694 41166.26379 16455.65357 +C Last step begins: .5742173844 4.349309756 212.0422101 1.276736936 +C Variable max : 613982.7179 691015.2085 697406.805 693742.3285 682016.8965 +C 23071.3002 12401.73671 350.8166252 346.8830178 -32144.4616 +C 2306.637425 1158.85933 5312.553787 45431.60834 47102.76399 +C .677541522 6.397682896 212.0422101 1.285133368 -32144.4616 +C 2306.637425 1158.85933 5312.553787 45431.60834 47102.76399 +C .677541522 6.397682896 212.0422101 1.285133368 +C Times of max : .0326 .0544 .0602 .0484 .004 +C .0412 .0856 .0026 .0416 .0642 +C .0594 .095 .0618 .0478 .0866 +C .0576 .0576 0.1 .0992 .0642 +C .0594 .095 .0618 .0478 .0866 +C .0576 .0576 0.1 .0992 + PRINTER PLOT + 144 2. 0.0 20. MACA1 MACB1 MACC1 { Axis span: (-2.318, 2.320) + 19410. 0.0100. MACH 1TQ GENMACH 2TQ GEN { Axis span: (-1.066, 6.398) +BLANK card ending plot cards + diff --git a/benchmarks/dc26.dat b/benchmarks/dc26.dat new file mode 100644 index 0000000..9793f5d --- /dev/null +++ b/benchmarks/dc26.dat @@ -0,0 +1,551 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-26 +C Test of Type-59 S.M. dynamics, with load flow ("FIX SOURCE" request) +C determination of initial conditions that observe given power constraints. +C 1st of 5 subcases involving load flow solutions; 1st of 2 machine cases. +C Answers change slightly on 10 February 1999 following the massive +C changes from TEPCO (Tokyo Electric Power Company) in Japan. See April +C newsletter. Most extrema agree to 5 or 6 decimal digits. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. +POWER FREQUENCY, 50.0, { Avoid warning message about suspicious XOPT, COPT. + .000200 .500 50. 50. + 1 1 0 { test } 1 -1 + 5 5 20 20 100 100 + A1 A2 0.1 1 + B1 B2 0.1 1 + C1 C2 0.1 1 +51A2 B2 .00528 571.5428 +52A3 -.029 3125.811 .1582 17115.12 +51B2 C2 A2 B2 +52B3 +51C2 A2 A2 B2 +52C3 + A2 31.416 + B2 31.416 + C2 31.416 + 1A3 A4 43.342 + 2B3 B4 12.546 43.342 + 3C3 C4 12.546 12.546 43.342 +BLANK card ending branch cards. +C The next card has T-open = 80 msec minus DELTAT/2 in order to avoid +C delayed opening (1/2 cycle) for PRIME and Burroughs. WSM. 27 FEB 1982. + A3 .01990 .0799 1 +BLANK card ending switch cards. +14A4 112.059 50. -20. -1. +14B4 112.059 50. -140. -1. +14C4 112.059 50. 100. -1. +C 59A1 11.3901 50.0 - 30.0 (before FIX SOURCE use) +$DEPOSIT, NOSM59=-1 { Special value will change Type-58 S.M. to Type-59 S.M. +C Note about preceding and following. Beginning 27 March 2000, this new +C variable NOSM59 of STARTUP can be used either to convert or to trap +C Type-58 or Type-59 S.M. type codes. Five values are recognized: +C NOSM59 = 0 ===> no change. Preserve the original meaning. +C 1 convert any Type-59 S.M. to Type-58 S.M. +C 2 trap any Type-59 S.M. (halt after all are counted). +C -1 convert any Type-58 S.M. to Type-59 S.M. +C -2 trap any Type-58 S.M. (halt after all are counted). +C So, the following machine really is Type-59. But 58 is used because ATP +C automatically will convert this to 59 as a result of preceding NOSM59 = -1 +C This preserves the old answers, which will remain unchanged. +58A1 11.0 50.0 -40.0 +58B1 +58C1 +C TOLERANCES 200. { Columns 11-20 EPSUPA = 200 } 20 { 51-60: NIOMAX=20 +C 14 October 2001, define NIOMIN of columns 41-50 so Watcom agrees with Mingw32 +C and Salford. This _does_ help. Value 8 provides better FC agreement than 5. +C Previously, Watcom was iterating a different number of times, & was producing +C a slightly different answer. So, we slow execution artificially: +TOLERANCES 200. 8 20 { 51-60: NIOMAX=20 +PARAMETER FITTING 1.0 + 1 1 2 1.0 1.0 150.0 13.8 600.0 600.0 720.0 +BLANK card for quadrature axis of machine. + 0.0014 0.175 1.85 1.76 0.2575 1.76 0.18 0.18 + 5.74757 0.051142 0.382609 0.197985 + 1 1.0 50.0 1.0 +BLANK card ending all (here, just one) mass cards. + 12 + 21 + 3 1 +BLANK card terminating all (here, three) S.M. output requests. + FINISH +BLANK card terminating all EMTP source cards. + A1 39.98755 -4.507399 10.0 12.0 -60. + B1 39.98755 -4.507399 10.0 12.0 -180. -120. + C1 39.98755 -4.507399 10.0 12.0 60.0 120. +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 1000 20 1 0.00001 0.1 2.0 2 +C Max del-V: .7E-5 .7E-5 .6E-5 .6E-5 .5E-5 .5E-5 .5E-5 .4E-5 .4E-5 .4E-5 .3E-5 +C Source No. -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 +C Exit the load flow iteration loop with counter NEKITE = 133. If no warning +C Row Node Name Voltage magnit Degrees Real power P Reactive power +C 4 8 A1 1.13901111E+01 -30.00022 3.99871502E+01 -4.50736252E+00 +C 5 9 B1 1.13901111E+01 -150.00022 3.99871502E+01 -4.50736252E+00 +C 6 10 C1 1.13901111E+01 89.99978 3.99871502E+01 -4.50736252E+00 +C Total network loss P-loss by summing injections = 8.018000511887E+00 +C Step Time C2 B2 A2 A3 C3 +C +C C1 A4 B4 C4 A3 +C TERRA +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C ID IQ I0 IF IKD +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IB IC EFD MFORCE MANG +C 0 0.0 .0791881332 -9.29565074 9.216462609 102.5472108 -37.8516127 +C .4577064E-4 105.3010154 -85.8421743 -19.4588411 0.0 +C -6.82107489 5.325616419 .391002E-14 1.014337449 -.76501E-15 +C -5.68498411 -.791423626 -.176005017 .60792369 .887825386 +C 1 .2E-3 -.592823298 -8.9455915 9.538414794 103.3173764 -43.8432677 +C -.715886965 107.4997647 -81.1499746 -26.3497901 0.0 +C -6.82114583 5.325512789 -.4718E-14 1.014337757 .6231167E-5 +C -5.41035524 -1.23063667 -.176005017 .6079236529 .8878253793 + 1 { Request for the output of all node voltages +C Last step begin: 2500 0.5 .1013093411 -9.26844034 9.167130999 16.94173877 +C Last step begin: .0149766932 105.3010154 -85.8421743 -19.4588411 0.0 +C Last step begin: -6.73361875 5.375255555 -.34086E-14 1.004763786 -.001205227 +C Last step begin: -5.61469909 -.863326479 -.176005017 .6045428409 .889016932 +C Variable max : 11.6152661 11.51967968 12.3018062 204.4814649 119.2607541 +C 12.40458274 112.0153099 112.0562692 112.0480769 6.3761474 +C -2.00131682 9.101894661 .13086E-13 1.315246828 1.316347492 +C 12.08207638 7.893166343 -.176005017 .60792369 .8935781536 +C Times of max : .0938 .1282 .0806 .0802 .0934 +C .0938 .4812 .4878 .2344 .0252 +C .0782 .0708 .1114 .074 .0332 +C .033 .0938 0.0 0.0 .0226 + PRINTER PLOT + 19410. 0. 120. MACH 1ID MACH 1IQ { Plot limits: (-2.301, 0.910) +C Note: Former IG (next plot) now (after Prof. Juan Martinez's changes of +C October, 1989) becomes IKQ. The eddy-current coil of the Q axis +C formerly was coil "KQ", now is "G". WSM and JM, 13 October 90 + 19410. 0. 120. MACH 1IF MACH 1IKQ { Plot limits: (-0.425, 1.636) + 19410. 0. 120. BRANCH { Plot limits: (-1.874, 1.755) + A1 A2 B1 B2 C1 C2 +$DEPOSIT, NOSM59=0 { Cancel special value that was set earlier in this subcase +BLANK card terminating all plot cards. +BEGIN NEW DATA CASE +C 2nd of 6 data subcases. +C Same as preceding case, only with significant imbalance in the steady +C state due to change of generator at "A4" from -20 to -10 degrees. +C The load flow does not converge, and case is only run 5 steps. The +C idea is to force use of negative-sequence correction logic of SMINIT +C of overlay 11. No other test cases do this. Eventually, replace by +C a meaningful case. 2nd of 4 subcases (2nd of two machine cases). +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. +POWER FREQUENCY, 50.0, { Avoid warning message about suspicious XOPT, COPT. + .000200 .001 50. 50. + 1 1 0 { test } 0 -1 + 5 5 20 20 100 100 + A1 A2 0.1 1 + B1 B2 0.1 1 + C1 C2 0.1 1 +51A2 B2 .00528 571.5428 +52A3 -.029 3125.811 .1582 17115.12 +51B2 C2 A2 B2 +52B3 +51C2 A2 A2 B2 +52C3 + A2 31.416 + B2 31.416 + C2 31.416 + 1A3 A4 43.342 + 2B3 B4 12.546 43.342 + 3C3 C4 12.546 12.546 43.342 +BLANK card ending branch cards. +C The next card has T-open = 80 msec minus DELTAT/2 in order to avoid +C delayed opening (1/2 cycle) for PRIME and Burroughs. WSM. 27 FEB 1982. + A3 .01990 .0799 1 +BLANK card ending switch cards. +14A4 112.059 50. -10. { Change -20 to -10 } -1. +14B4 112.059 50. -140. -1. +14C4 112.059 50. 100. -1. +C 59A1 11.3901 50.0 - 30.0 (before FIX SOURCE use) +59A1 11.0 50.0 -40.0 +59B1 +59C1 +TOLERANCES 200. { Columns 11-20 EPSUPA = 200 } 20 { 51-60: NIOMAX=20 +PARAMETER FITTING 1.0 + 1 1 2 1.0 1.0 150.0 13.8 600.0 600.0 720.0 +BLANK card for quadrature axis of machine. + 0.0014 0.175 1.85 1.76 0.2575 1.76 0.18 0.18 + 5.74757 0.051142 0.382609 0.197985 + 1 1.0 50.0 1.0 +BLANK card ending all (here, just one) mass cards. + 12 + 21 + 3 1 +BLANK card terminating all (here, three) S.M. output requests. + FINISH +BLANK card terminating all EMTP source cards. + A1 39.98755 -4.507399 10.0 12.0 -60. + B1 39.98755 -4.507399 10.0 12.0 -180. -120. + C1 39.98755 -4.507399 10.0 12.0 60.0 120. +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 100 20 1 0.00001 0.1 2.0 2 +C Max del-V: .0016 .0015 .0013 .0011 .001 .9E-3 .8E-3 .6E-3 .5E-3 .4E-3 .4E-3 +C //. Warning! Divergence of the EMTP load flow has occurred. In the hope +C initialization continues, however. +C Exit the load flow iteration loop with counter NEKITE = 100. If no warning +C Row Node Name Voltage magnit Degrees Real power P Reactive power +C 4 8 A1 1.00000000E+01 -20.91363 3.45426843E+01 -2.24391750E+00 +C 5 9 B1 1.20000000E+01 -150.14225 4.22174603E+01 -6.71602291E+00 +C 6 10 C1 1.20000000E+01 90.73965 3.92028723E+01 -5.90634496E+00 +C Total network loss P-loss by summing injections = 7.625614104022E+00 + 1 { Request for the output of all node voltages +C Step Time C2 B2 A2 A3 C3 +C +C C1 A4 B4 C4 A3 +C TERRA +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C ID IQ I0 IF IKD +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IB IC EFD MFORCE MANG +C 0 0.0 -.048041917 -9.85266713 8.679836062 104.3486527 -36.7261188 +C -.154907255 110.356572 -85.8421743 -19.4588411 0.0 +C -6.92581041 5.259477223 -.445329E-4 .9859361614 .0320876279 +C -5.54502117 -1.06865338 -.170793823 .5995965889 .8894202603 +C 1 .2E-3 -1.16677225 -7.85747584 10.21232132 103.2738496 -48.1646884 +C -1.32143162 111.3606393 -81.1499746 -26.3497901 0.0 +C -6.87231021 5.289979997 .0014353419 .9858026654 .0272832017 +C -5.20835729 -1.54659375 -.170793823 .5996092398 .8894186749 +C Last step follows: +C 5 .001 -3.69592471 -6.2063594 10.61819433 99.27645368 -67.8903465 +C -4.03363622 110.9684495 -59.3822228 -52.6085139 0.0 +C -6.76271705 5.471445353 .0060095523 .9856033893 .017362355 +C -3.71587997 -3.37711507 -.170793823 .5996729546 .8894772231 + PRINTER PLOT +BLANK card terminating all plot cards. +BEGIN NEW DATA CASE +C 5-bus, 1-phase loadflow example from "Elements of Power System Analysis" +C by William D. Stevenson. McGraw-Hill Book Company, 2nd Edition (1962). +C The Gauss-Seidel solution is contained in Example 10.1, page 219 onward. +C Data is given in per unit, and we can use this directly (pretend that +C the base voltage, current, and power are all unity). We need XOPT = 60 +C since impedances are in ohms. Voltages could be multiplied by 1.414 to +C give the peak values required by the EMTP, but instead we use the VSCALE +C option that takes RMS (the square root of 2 is supplied internally) as +C input and produces RMS output (at least for the load flow solution table +C if not for EMTP branch flows). Bus number one, WHITE, is taken as the +C slack bus (the only bus without a power constraint). This is the 3rd of +C 5 subcases. It has no machine dynamics at all (unlike the preceding 2). +C This data case was 1st considered by Profs. Saul Goldberg & Bill Horton +C of Cal Poly in San Luis Obispo, California, for June, 1988, EMTP course. +C Answers change 10 February 1999 following the massive changes from +C TEPCO (Tokyo Electric Power Company) in Japan. See April newsletter. +C Convergence has been slowed substantially (when time, consider this). +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. +$ERASE { Erase punched cards, created by preceding subcases, from punch buffer + .000200 .000 60. { T-max = 0 means that no transient solution follows + 1 1 1 0 1 + WHITE RED .10 .40 +C Stevenson's line between WHITE and BLUE appears on the final comment +C card of this comment block. For more generality, I have introduced an +C intermediate node DUMMY that is unconstrained. The solution of the +C network should be unchanged, of course. It is (original is ok, too). +C WHITE BLUE .15 .60 + WHITE DUMMY .15 .30 { 1st of 2 halves: all of R and 1/2 of X + DUMMY BLUE .30 { 2nd of 2 halves: zero R and 1/2 of X + WHITE YELLOW .05 .20 + RED GREEN .05 .20 + RED BLUE .10 .40 + GREEN YELLOW .05 .20 +BLANK card ending branch cards. +BLANK card ending switch cards. +C The following 2 cards would be used if peak rather than RMS input data: +C 14WHITE 1.4425 60. 0.0 -1. +C 14GREEN 1.4708 60. 2.0 -1. +14WHITE 1.02 60. 0.0 -1. +14GREEN 1.04 60. 2.0 -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C WHITE |RED *DUMMY *YELLOW* +C RED |WHITE *BLUE *GREEN * +C DUMMY |WHITE *BLUE * +C BLUE |RED *DUMMY * +C YELLOW |WHITE *GREEN * +C GREEN |RED *YELLOW* +C --------------+------------------------------ +BLANK card terminating all EMTP source cards. +C Next come power constraints of the load flow. There will be one +C for each non-slack generator. So, 3 of them will apply to nodes +C that have no Type-14 source as required by the algorithm. The +C program will define these internally. Yet, this is only possible +C for TMAX non-positive (no transient continuation). If data is +C modified to make TMAX > 0, a KILL = 40 error termination will +C will result. Yet, the transient simulation is possible as a +C 2nd simulation that replaces the power constraints at load nodes +C by constant-impedance loads. Branch cards for these will be +C punched by the present subcase, and the transient continuation +C will be illustrated by the following (4th of 4) subcase. +C The following 4 cards would be used if peak rather than RMS input data. +C Note that average of Vmin & Vmax = 0.5 ( 1.0 + 1.828428 ) = 1.414212 +C (power constraints RED, BLUE, and YELLOW), and 1.4708 = 1.414 * 1.02 +C RED -0.6 -0.3 1.01.828428 +C 1GREEN 1.0 1.4708 -20. 20. +C BLUE -0.4 -0.1 1.01.828428 +C YELLOW -0.6 -0.2 1.01.828428 +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + RED -0.6 -0.3 .85 1.15 + 1GREEN 1.0 1.02 -20. 20. + BLUE -0.4 -0.1 .85 1.15 + YELLOW -0.6 -0.2 .85 1.15 +C Max del-V: .0293 .0153 .0141 .0138 .0118 .0096 .0085 .0076 .0068 .0061 .0055 +C Source No. -2 -3 -4 -1 -3 -3 -3 -3 -3 -3 -3 +C Max del-V: .0023 .0021 .002 .0018 .0017 .0016 .0015 .0014 .0013 .0012 .0011 +C Source No. -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 +C Max del-V: .6E-3 .5E-3 .5E-3 .5E-3 .4E-3 .4E-3 .4E-3 .4E-3 .4E-3 .3E-3 .3E-3 +C Source No. -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 +C The following load-flow miscellaneous data card has two peculiarities. The +C use of VSCALE = 1.414 is the special flag requesting RMS rather than peak +C voltages. The use of KTAPER = 0 ensures constant acceleration factors +C (this works well for this problem whether RMS or peak values are used). +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 500 20 1 .00001 0.0 0.0 1.414 0 +C Max del-V: .6E-6 .6E-6 .6E-6 .5E-6 +C Source No. -3 -3 -3 -3 +C Exit the load flow iteration loop with counter NEKITE = 164. If no warning +C Row Node Name Voltage magnit Degrees Real power P Reactive power +C 3 3 RED 9.41780959E-01 -3.81708 -5.99988408E-01 -2.99999500E-01 +C 2 7 GREEN 1.02000000E+00 2.43465 1.00001182E+00 3.82676335E-01 +C 4 5 BLUE 9.15105791E-01 -8.02053 -3.99985812E-01 -9.99988825E-02 +C 5 6 YELLOW 9.82613423E-01 -1.92907 -5.99992780E-01 -1.99999933E-01 +C Total network loss P-loss by summing injections = 5.282912652566E-02 +C Next, show the punched cards that $PUNCH (next) will display: +C $UNITS card should give X, C units XUNITS, CUNITS = 2.6526E-03 1.0000E-06 +C Following are branch cards for either loads or generator impedances: +C $VINTAGE, 1, +C Polar V, P, Q = 9.41780959E-01 -3.81708 -5.99988408E-01 -2.99999500E-01 +C RED .591308166 .295659302 +C Polar V, P, Q = 1.02000000E+00 2.43465 1.00001182E+00 3.82676335E-01 +C GREEN -.45374803 15276.6334 +C Polar V, P, Q = 9.15105791E-01 -8.02053 -3.99985812E-01 -9.99988825E-02 +C BLUE .985230493 .246313607 +C Polar V, P, Q = 9.82613423E-01 -1.92907 -5.99992780E-01 -1.99999933E-01 +C YELLOW .724153874 .241387449 +C $VINTAGE, -1, { Last of punched cardss that the following $PUNCH will display +$PUNCH { Flush punched cards: R-L branches for equivalent impedance loads +C Note about preceding card. Since no images anyway, remove. WSM. 15 Mar 98 +BLANK card ending requests for output variables +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 6 data subcases is a continuation of the 3rd into the time-step +C loop. The network differs in that constant-impedance loads (using the +C branch cards that were punched by execution of the 3rd subcase) replace +C the original power constraints at nodes without Type-14 sources. The +C time-step size DELTAT and end-time TMAX have been arbitrarily to +C selected to show that the transient continuation is smooth for just over +C a cycle. Note that this continuation involves a load flow, too, since +C otherwise angles of the Type-14 generators would not correspond to the +C network solution. The load flow could be omitted if the user were +C willing to re-key generator angles, but it generally is easier to let +C the computer solve the load flow a second time (this time with constant- +C impedance loads). +C Branch voltage output of the time-step loop, if declared by a 2-punch +C in column 80, was incompatible with load flow prior to 21 July 2002. +C So, to prove it now works, add 2-punch to 1st branch on this date. An +C older version of the program will simply ignore the column-80 punch. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. + .000200 .020 60. { T-max = 0 means that no transient solution follows + 1 1 1 0 1 -1 + 5 5 20 20 + WHITE RED .10 .40 2 + WHITE DUMMY .15 .30 { 1st of 2 halves: all of R and 1/2 of X + DUMMY BLUE .30 { 2nd of 2 halves: zero R and 1/2 of X + WHITE YELLOW .05 .20 + RED GREEN .05 .20 + RED BLUE .10 .40 + GREEN YELLOW .05 .20 +C <++++++> Cards punched by support routine on 20-Oct-90 05.01.52 <++++++> +$UNITS, 0.0, 0.0 { 1st of cards punched by preceding 3rd subcase: mHenry, microF +$VINTAGE, 1, { 2nd of cards punched by preceding 3rd subcase: use wide formt +C Polar V, P, Q = 9.41780959E-01 -3.81708 -5.99988408E-01 -2.99999500E-01 + RED 1.18261633E+00 1.56852131E+00 +C Polar V, P, Q = 9.15105791E-01 -8.02053 -3.99985812E-01 -9.99988825E-02 + BLUE 1.97046099E+00 1.30673427E+00 +C Polar V, P, Q = 9.82613423E-01 -1.92907 -5.99992780E-01 -1.99999933E-01 + YELLOW 1.44830775E+00 1.28060019E+00 +$UNITS, -1, -1 { Restore whatever XOPT and COPT existed before preceding $UNITS +$VINTAGE, 0, { Last of cards punched by preceding 3rd subcase +BLANK card ending branch cards. +BLANK card ending switch cards. +14WHITE 1.02 60. 0.0 -1. +14GREEN 1.04 60. 2.0 -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C WHITE |RED *DUMMY *YELLOW* +C RED |TERRA *WHITE *BLUE *GREEN * +C DUMMY |WHITE *BLUE * +C BLUE |TERRA *RED *DUMMY * +C YELLOW |TERRA *WHITE *GREEN * +C GREEN |RED *YELLOW* +C TERRA |RED *BLUE *YELLOW* +C --------------+------------------------------ +BLANK card terminating all EMTP source cards. +C Max del-V: .0282 .0015 .0013 .0011 1.E-3 .9E-3 .8E-3 .7E-3 .6E-3 .5E-3 .4E-3 +C Source No. -1 1 1 1 1 1 1 1 1 1 1 +C Max del-V: .1E-3 .9E-4 .8E-4 .7E-4 .6E-4 .5E-4 .5E-4 .4E-4 .4E-4 .3E-4 .3E-4 +C Source No. 1 1 1 1 1 1 1 1 1 1 1 +C Max del-V: .7E-5 .6E-5 .5E-5 .4E-5 .4E-5 .3E-5 .3E-5 .3E-5 .2E-5 .2E-5 .2E-5 +C Source No. 1 1 1 1 1 1 1 1 1 1 1 +C Exit the load flow iteration loop with counter NEKITE = 58. If no warning o +C Row Node Name Voltage magnit Degrees Real power P Reactive power +C 2 7 GREEN 1.02000000E+00 2.43435 9.99985664E-01 3.82679671E-01 +C Total network loss P-loss by summing injections = 1.652795946964E+00 +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + 1GREEN 1.0 1.02 -20. 20. +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 500 20 1 .00001 0.0 0.0 1.414 0 +C Step Time YELLOW BLUE DUMMY RED WHITE +C +C 0 0.0 1.38883765 1.28149564 1.336017508 1.328924768 1.442497834 +C 1 .2E-3 1.388413609 1.291450977 1.337993527 1.331824678 1.438399553 +C 2 .4E-3 1.380101179 1.294070033 1.332367678 1.32715794 1.426128 +C 3 .6E-3 1.363947438 1.289337599 1.319171785 1.314950922 1.405752903 + 1 { Request for the output of all node voltages +C 100 .02 .4736844387 .567774976 .485772514 .4950043848 .4457563449 +C Variable max: 1.389411211 1.294070033 1.33815194 1.331824678 1.442497834 +C Times of max: .0168 .4E-3 .0168 .2E-3 0.0 +C Variable min: -1.38955118 -1.29326058 -1.33749084 -1.33106894 -1.44204228 +C Times of min: .0084 .0088 .0084 .0086 .0084 + PRINTER PLOT + 144 2. 0.0 20. RED { Axis limits: (-1.331, 1.332) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 6 data subcases is a variation of the 3rd and 4th. One line +C was omitted from the 5-bus network in order to make a radial system. +C Specifically, the connection (WHITE, BLUE) was removed, leaving just +C 4 lines connecting the 5 busses. I.e., there is no loop. The solution +C should not be much changed since loads of the two connecting nodes were +C increased or decreased by the known amount of the branch flow. Yet, a +C 2nd change must be mentioned: conversion of bus GREEN from a generator +C to a load. This was to make the present case more like NINEBUS from +C Jian Jiang of Clemson University in South Carolina. See EEUG list server +C mail dated October 7th. WSM, 10 October 2001. +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. + .000200 .000 60. { T-max = 0 means that no transient solution follows + 1 1 1 0 1 + WHITE YELLOW .05 .20 + YELLOWGREEN .05 .20 + GREEN RED .05 .20 + RED BLUE .10 .40 +BLANK card ending branch cards. +BLANK card ending switch cards. +14WHITE 1.02 60. 0.0 -1. +BLANK card terminating EMTP source cards. +C Next come power constraints of the load flow. There will be one +C for each non-slack generator: + RED -0.4 -.14 .85 1.15 + GREEN 1.0 0.3 .85 1.15 + BLUE -.15 .025 .85 1.15 + YELLOW -0.6 -0.2 .85 1.15 +C The following load-flow miscellaneous data card has two peculiarities. The +C use of VSCALE = 1.414 is the special flag requesting RMS rather than peak +C voltages. The use of KTAPER = 0 ensures constant acceleration factors +C (this works for this data). +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 500 20 1 .00001 0.1 7.0 1.414 0 +C Max del-V: .0249 .0254 .0259 .0216 .0158 .0092 .0059 .006 .0039 .004 .0059 .0038 .0037 .0031 .002 .0025 .0022 .0028 .0018 .0015 +C Source No. 2 2 2 -3 2 -3 4 2 -2 -1 -2 -1 -2 -2 -1 -2 -1 -2 -1 -1 +C Max del-V: .0016 .0012 .0013 .0011 .0012 .001 1.E-3 .9E-3 .9E-3 .9E-3 .8E-3 .8E-3 .8E-3 .7E-3 .7E-3 .7E-3 .7E-3 .6E-3 .6E-3 .6E-3 +C Source No. -2 -1 -2 -1 -2 -3 -1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 ... (etc.) +C Max del-V: .2E-5 .2E-5 .2E-5 .2E-5 .2E-5 .1E-5 .1E-5 .1E-5 .1E-5 +C Source No. -3 -3 -3 -3 -3 -3 -3 -3 -3 +C Exit the load flow iteration loop with counter NEKITE = 169. If no warning on the preceding line, convergence was attained. +C Row Node Name Voltage magnit Degrees Real power P Reactive power +C 2 5 RED 9.61553517E-01 -3.15303 -4.00001772E-01 -1.39992436E-01 +C 3 4 GREEN 1.02208195E+00 2.93622 9.99997725E-01 3.00004959E-01 +C 4 6 BLUE 9.54082493E-01 -7.05955 -1.50001447E-01 2.50097905E-02 +C 5 3 YELLOW 9.83589266E-01 -1.67083 -6.00000908E-01 -1.99997137E-01 +BLANK card ending requests for output variables +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 6 data subcases is a variation of the 3rd. The solution is +C identical. But punched cards differ because T-stop of Type-14 source +C GREEN is nonzero. Previously, this data field was left blank. Nonzero +C T-stop is a flag that affects only the punched output. A nonzero value +C in columns 71-80 is taken to be internal source reactance. Instead of an +C equivalent impedance load, ATP will create an equivalent Type-14 voltage +C source behind this reactance. The A6 bus name will have "G" appended +C to it on the right to produce the name of the internal node. Thus GREEN +C yields GREENG as the internal node. Should the original name involve +C all 6 bytes, the last will be overlaid (e.g., PURPLE would be changed +C to PURPLG). This is for every Type-14 source except the one that will +C be used as the slack bus. The slack bus (here, WHITE) is the exception, +C and no output is created for it. This is why T-stop of WHITE has +C been left blank. Adding reactance to WHITE will not change the output. +C Let's summarize the change. Using X = 0.5 will change the following +C two 2 punched cards that follow the ruler: +C 12345678901234567890123456789012345678901234567890123456789012345678901234 +C Polar V, P, Q = 1.02000000E+00 2.43465 1.00001182E+00 3.82676335E-01 +C GREEN -.45374803 15276.6334 +C (one comment card followed by one wide-format R-C branch card) to: +C 14GREENG 1.84312934 60.24.5286405 -1.0 +C GREENGGREEN 0.0 0.5 +C (one Type-14 source card followed by one R-L branch card). +C Note that reactance X normally will be positive, and the R-L branch +C card carries this positive value in columns 43-58. This differs from +C the preceding equivalent impedance which might be either R-L or R-C +C depending on the power factor. Finally, note the raised voltage. Most +C of the increase from 1.02 to 1.84 is due to the need for peak rather +C than RMS on the Type-14 source card. As the reactance approaches zero, +C the voltage should approach 1.02 * 1.414 (square root of 2). This 6th +C subcase is being added 8 August 2007 following an inquiry by Prof. +C Mustafa Kizilcay of the University of Siegen in Germany. The use of +C T-stop > 0 was never documented in the ATP Rule Book. Neither was it +C illustrated in standard test case. That is why this subcase now is +C being added. WSM. +C Previous comment about the slack bus being missing is correct for normal +C data. But another undocumented option allows the user to name his slack +C bus manually at the end of power constraints. If this is done, there will +C be output for the slack generator, too. This option depends on the request +C "last is slack bus" which can appear in any case and any location to the +C right of the name field in columns 3-8. WSM. 9 August 2007 +C The preceding continues to be honored, but is believed to be clumsy. +C The more modern way to name the slack bus omits one of the 2 associated +C data cards by use of a special, in-line comment. The interpretation is +C improved at the same time. WSM. 15 August 2007 +C Final improvement was suggested by Prof. Kizilcay, who wondered why the +C user should be forced to sort the punched output manually. Prof. Kizilcay +C suggested that /SOURCE might precede each Type-14 source card & /BRANCH +C might follow it. Done. WSM. 15 August 2007. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision for 8 output columns +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. +$ERASE { Erase punched cards, created by preceding subcases, from punch buffer + .000200 .000 60. { T-max = 0 means that no transient solution follows + 1 1 1 0 1 + WHITE RED .10 .40 + WHITE DUMMY .15 .30 { 1st of 2 halves: all of R and 1/2 of X + DUMMY BLUE .30 { 2nd of 2 halves: zero R and 1/2 of X + WHITE YELLOW .05 .20 + RED GREEN .05 .20 + RED BLUE .10 .40 + GREEN YELLOW .05 .20 +BLANK card ending branch cards. +BLANK card ending switch cards. +14WHITE 1.02 60. 0.0 -1. 0.4 +14GREEN 1.04 60. 2.0 -1. 0.5 +BLANK card terminating all EMTP source cards. + RED -0.6 -0.3 .85 1.15 + 1GREEN 1.0 1.02 -20. 20. + BLUE -0.4 -0.1 .85 1.15 + YELLOW -0.6 -0.2 .85 1.15 + WHITE { Slack bus for punched output +C The preceding special in-line comment identifies the name of the slack bus. +C The older way, which continues to be honored, is to follow the slack bus name +C by a 2nd card which carries the special text (any case) "last is slack bus" +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 500 20 1 .00001 0.0 0.0 1.414 0 +$PUNCH { Flush punched cards: R-L branches for equivalent impedance loads +BLANK card ending requests for output variables +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF diff --git a/benchmarks/dc27.dat b/benchmarks/dc27.dat new file mode 100644 index 0000000..9ea0614 --- /dev/null +++ b/benchmarks/dc27.dat @@ -0,0 +1,524 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-27 +C Test of "CABLE CONSTANTS", 1st for an underground cable, then for an +C overhead line. For the cable, two of the phases have both cores and +C sheaths, whereas the 3rd has only the core. A homogeneous earth model is +C assumed. Both modal and phase-domain output is illustrated. +C DIAGNOSTIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 +C 2 August 2002, add plot of cable cross-section on the screen: +C $DEPOSIT, KROSEC=1, { Use SPY DEPOSIT to change this variable of STARTUP +CABLE CONSTANTS + 2 -1 3 0 1 1 1 + 2 2 1 + 25.4E-3 45.6E-3 50.8E-3 55.9E-3 + 6.8912E-8 1. 1. 3.52 6.8662E-7 1. 1. 3.3 + 25.4E-3 45.6E-3 50.8E-3 55.9E-3 + 6.8912E-8 1. 1. 3.52 6.8662E-7 1. 1. 3.3 + 25.4E-3 45.6E-3 + 6.8912E-8 1. 1. 3.52 + 0.75 0.0 0.75 0.3 0.75 0.15 + 20.0 1000.0 +C Impedance matrix [ Z ] in [ohm/m] follows : +C 1.0871342E-03 9.7123603E-04 9.7126618E-04 9.7295525E-04 9.7123603E-04 +C 1.0433822E-02 7.2285319E-03 8.0995634E-03 9.5255505E-03 7.2285319E-03 +C Admittance matrix [ Y ] in [mho/m] follows : +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 2.1027008E-06 0.0000000E+00 0.0000000E+00 -2.1027006E-06 0.0000000E+00 +C Transpose of the current transformation matrix [Ti] follows. This is the inve +C 0.0019301 0.0019301 0.0795508 0.4608603 0.4608604 +C 94.5057220 94.5057220 1.0795423 -0.4399059 -0.4399060 +C Voltage transformation matrix [Tv]. This gives the mapping from modal to phas +C 0.9983159 0.9985634 0.1872344 1.0000001 0.9999997 +C 1.3742625 11.7389965 -128.8459167 -0.0000002 0.0000385 +C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: +C 46.5745659 11.1852903 15.2132778 24.9359932 11.2755394 +C -4.8109016 -1.6719475 -2.0647478 -0.4119074 -1.1299886 +C Modal Propagation Modal impedance Modal +C Mode attenuation velocity real imaginary susceptance +C [ db/km ] [ m/sec ] [ ohms / meter ] [mho/meter] +C 1 2.81088E-01 1.34059E+07 1.188315E-03 8.349145E-03 2.617198E-05 +C 2 1.38270E-01 3.78950E+07 2.186609E-04 1.137942E-03 2.394342E-05 +C 3 3.73454E-02 8.94327E+07 3.196348E-04 2.227090E-03 2.201588E-06 +C 4 1.05997E-01 1.34007E+08 3.100181E-04 4.750426E-04 4.128194E-06 +C 5 1.10538E-01 1.35064E+08 3.239154E-04 4.686100E-04 4.072995E-06 +BLANK card ending frequency cards +C $DEPOSIT, KROSEC=0, { Use SPY DEPOSIT to cancel the change at start of subcase +C Begin 2nd subcase, for overhead line. This is untransposed, with one +C conductor per phase. This is a single 3-phase circuit with two ground +C wires. The 3-layer ("Nakagawa") stratified earth model is assumed. + 1 0 1 99 1 + 3 2 4 1 + 8.74E-3 1.974E-3 6.18E-3 0. 0.4 6.78E-3 + 3.78E-8 1. 5.36E-8 1. + 25. 12.5 0. 25. 12.5 14. + 25. 12.5 28. 35. 17.5 3. + 35. 17.5 25. + 200. 1.E+05 80000. + .5 2.5 200. 1000. + 1.0 1.0 1.0 10.0 10.0 10.0 +C Resistance [ R ] in [ohm/m] and inductance [ L ] in [henry/m] follows : +C 3.6631241E-02 3.3899128E-02 3.0530494E-02 +C 1.0974409E-06 2.2856192E-07 1.1843866E-07 +C Conductance [ G ] in [mho/m] and capacitance [ C ] in [farad/m] follows : +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 1.1469370E-11 -1.4910953E-12 -3.6612786E-13 +C Transpose of the current transformation matrix [Ti] follows. This is the inve +C 0.3508662 0.3422453 0.3508658 +C 0.2195983 2.4146881 0.2195537 +C Voltage transformation matrix [Tv]. This gives the mapping from modal to phas +C 0.9379887 0.9999999 0.4877141 +C -1.4748241 0.0000000 -177.8047791 +C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: +C 312.2572632 53.8941574 24.6474152 +C -7.9390864 -7.2640944 -6.5128512 +C Modal Propagation Modal impedance Modal +C Mode attenuation velocity real imaginary susceptance +C [ db/km ] [ m/sec ] [ ohms / meter ] [mho/meter] +C 1 1.10051E+00 2.69766E+08 2.544782E-02 3.395038E-01 1.597196E-05 +C 2 9.21221E-02 2.93771E+08 3.050453E-03 3.075625E-01 1.487293E-05 +C 3 1.39649E-02 2.99027E+08 9.903153E-03 3.568964E-01 1.236180E-05 +BLANK card ending frequency cards +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C August, 1994. Prof. Akihiro Ametani has left after 3 weeks of work +C at BPA to install his new CABLE PARAMETERS program. There are 18 +C standard test cases for this, and these will be split between the +C ends of DC-27 and DC-28. Begin with the 6 examples for overhead +C lines: 11A, 11G0, 11G1, 11G3, 11Y2, and 11A' (with prime meaning +C modification). Then will come 4 pipe-type cable examples. +C 1st of 6 overhead line examples: CASE11A.DAT +CABLE CONSTANTS +CABLE PARAMETERS +C KOLW27 KOLS27 E also? +MATRIX PRECISION 10 1 { Optimally encode old F-field +C 4 December 2003, optional local KOLWID and KOLSEP of optimal encoding +C are read from columns 25-40. Variables are local to overlay 27, and are +C carried in LABL27. The default values (for default use, see DC-28) are +C KOLW27 = 10 and KOLS27 = 2 (column width of 10 including 2 blanks to +C separate matrix columns). Here, using KOLS27 = 1 gives one more digit +C of precision at the expense of blank column separation. Since matrices +C are visually more appealing with 2 blank separator bytes, the default +C values will be reset on the following subcase. +C Ze +C MATRIX OUTPUTS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +C 22 December 2003, optional preceding definition of KZFL27(16) is added. +C This integer vector controls which matrices are to be outputed (to either +C LUNIT6 or separate disk files, or both), and what coordinates are to be +C used (e.g., a COMPLEX matrix, a matrix of real parts, a matrix of +C imaginary parts, a matrix of magnitudes, or a matrix of angles). +C Index Cols. Symbol Labeling of matrix in the LUNIT6 file +C ---------------------------------------------------------------------- +C 1 17-20 P Complex potential coefficient +C 2 21-24 Pt Transposed potential coefficient +C 3 25-28 Ze Earth impedance ZE, in ohm/m +C 4 29-32 Zc Conductor internal impedance ZC, in ohm/m +C 5 33-36 Zs Space impedance ZS, in ohm/m +C 6 37-40 Presently unused (reserved for later use) +C 7 41-44 Zt Total impedance [Zc], in ohm/m +C 8 45-48 Yt Total admittance [Yc], in mho/m +C 9 49-52 Zph Characteristic impedance matrix [Zc] in phase variables, in [ohm] +C 10 53-56 Ti The current transformation matrix [Ti] follows. ... +C 11 57-60 Tv Voltage transformation matrix [Tv]. ... +C ---------------------------------------------------------------------- +C 12 61-64 Comp Complex matrix, with each cell a complex pair +C 13 65-68 Real Only the real part of the complex matrix +C 14 69-72 Imag Only the imaginary part of the complex matrix +C 15 73-76 Mag Only the magnitudes of the complex elements +C 16 77-80 Angle Only the angles in degrees of the complex elements + 1 0 2 0 1 1 0 0 0 1 0 0 + 3 0 1 0 +79.9916E-631.7050E-3 +23.7025E-5 1.0 + 1 0 1 0 +19.6350E-615.7080E-3 +90.5019E-5 1.0 + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 4.0E06 +C Total impedance [Zc] +C 3.81674E-01 3.64103E-01 3.63346E-01 3.49908E-01 +C 4.26910E+01 1.82546E+01 1.47757E+01 1.54036E+01 +C +C Total admittance [Yc] +C 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 +C 2.18090E-04 -6.35291E-05 -3.38427E-05 -3.80217E-05 +C +C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: +C 506.78659 215.40545 173.91332 181.49599 +C -2.25771 -2.15298 -2.14844 -2.06889 +C +C Modal transformation matrices follow. These are complex, with the real part displayed above the imaginary part. +C Transpose of the current transformation matrix [Ti] follows. This is the inverse of the voltage transformation matrix. +C By definition, [Ti] gives the mapping from modal to phase variables: i-phase = [Ti] * i-mode +C 0.27659 -0.26181 -0.34850 -0.50000 +C 0.00030 0.00062 -0.00015 0.00000 +C +C Voltage transformation matrix [Tv]. This gives the mapping from modal to phase variables: v-phase = [Tv] * v-mode +C 1.00000 -0.29619 -0.41855 -1.00000 +C 0.00038 0.00155 -0.00035 0.00000 +C +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 5.74605E+00 297.25 3.68397E-01 2.35412E+01 0.00000E+00 3.03655E-04 +C 2 3.60799E-01 299.64 2.43100E-02 2.45439E+01 0.00000E+00 2.86632E-04 +C 3 2.70957E-01 299.68 1.29042E-02 1.73460E+01 0.00000E+00 4.05472E-04 +C 4 2.39123E-01 299.69 9.16390E-03 1.39576E+01 0.00000E+00 5.03865E-04 +BLANK card ending frequency cards within CABLE PARAMETERS +C 27 December 2003, changes to MAIN27 made it possible to stack subcases +C within CABLE PARAMETERS. To demonstrate this, the following exit and +C re-entry (4 non-comment data cards) will be commented out. The answer +C is unchanged. Although not recommended, such stacking does now work. +C BLANK card ending CABLE CONSTANTS data subcases +C BEGIN NEW DATA CASE +C CABLE CONSTANTS +C CABLE PARAMETERS +C KOLW27 KOLS27 E also? +MATRIX PRECISION 10 2 { Optimally encode old F-field +C 4 December 2003, optional local KOLWID and KOLSEP of optimal encoding +C are read from columns 25-40. Values 10 and 2 above serve to restore the +C default values. These replace values 10 and 1 of the preceding subcase. + 1 0 2 0 1 0 0 0 0 0 0 0 + 3 0 1 0 + 5.046E-3 0.0 + 1.896E-8 1.0 + 1 0 1 0 + 2.50E-3 0.0 + 1.777E-8 1.0 + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 4.0E06 +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 5.74605E+00 297.25 3.68397E-01 2.35412E+01 0.00000E+00 3.03655E-04 +C 2 3.60799E-01 299.64 2.43100E-02 2.45439E+01 0.00000E+00 2.86632E-04 +C 3 2.70957E-01 299.68 1.29042E-02 1.73460E+01 0.00000E+00 4.05472E-04 +C 4 2.39123E-01 299.69 9.16391E-03 1.39576E+01 0.00000E+00 5.03865E-04 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 3rd of 6 overhead line examples: CASE11G1.DAT +CABLE CONSTANTS +CABLE PARAMETERS + 1 0 2 0 1 0 0 0 1 0 0 0 + 3 0 1 0 + 5.046E-3 0.0 + 1.896E-8 1.0 + 1 0 1 0 + 2.50E-3 0.0 + 1.777E-8 1.0 + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 4.0E06 +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 3.17679E+00 298.37 1.79566E-01 2.06778E+01 0.00000E+00 3.43133E-04 +C 2 2.70975E-01 299.68 1.30187E-02 1.74987E+01 0.00000E+00 4.01933E-04 +C 3 2.39123E-01 299.69 9.16391E-03 1.39576E+01 0.00000E+00 5.03865E-04 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 4th of 6 overhead line examples: CASE11G3.DAT +CABLE CONSTANTS +CABLE PARAMETERS + 1 0 2 0 1 0 0 0 3 0 0 0 + 3 0 1 0 + 5.046E-3 0.0 + 1.896E-8 1.0 + 1 0 1 0 + 2.50E-3 0.0 + 1.777E-8 1.0 + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 4.0E06 +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. REAL IMAG. REAL IMAG. +C 1 8.29798E-01 299.42 7.35361E-02 3.23051E+01 0.00000E+00 2.18090E-04 384.874 -0.438 2.59825E-03 2.95720E-06 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 5th of 6 overhead line examples: CASE11Y2.DAT +CABLE CONSTANTS +CABLE PARAMETERS + 1 0 2 0 1 0 0 0 0 0 2 0 + 3 0 1 0 + 5.046E-3 0.0 + 1.896E-8 1.0 + 1.E-15 0.0 1.E-15 0.0 1.E-15 0.0 + 1 0 1 0 + 2.50E-3 0.0 + 1.777E-8 1.0 + 8.333E-4 0.0 + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 4.0E06 +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 1.11101E+03 165.22 3.71110E-01 4.66305E+01 8.33317E-04 1.52015E-04 +C 2 3.17749E+00 298.37 1.79366E-01 2.06500E+01 0.00000E+00 3.43588E-04 +C 3 2.70975E-01 299.68 1.30187E-02 1.74987E+01 0.00000E+00 4.01933E-04 +C 4 2.39123E-01 299.69 9.16391E-03 1.39576E+01 0.00000E+00 5.03865E-04 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 6th of 6 overhead line examples: CASE11A'.DAT +CABLE CONSTANTS +CABLE PARAMETERS + 1 0 1 0 1 0 0 0 0 1 0 0 + 3 1 1 1 +79.9916E-631.7050E-30.0000E+0019.6350E-615.7080E-3 0.0 +23.7025E-5 1.090.5019E-5 1. + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 4.0E06 +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 3.17679E+00 298.37 1.79566E-01 2.06778E+01 0.00000E+00 3.43134E-04 +C 2 2.70975E-01 299.68 1.30186E-02 1.74987E+01 0.00000E+00 4.01933E-04 +C 3 2.39123E-01 299.69 9.16390E-03 1.39576E+01 0.00000E+00 5.03865E-04 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 1st of 4 pipe-type cable examples: CASE3G0.DAT +C Results of this case changed on March 2, 2001 after implementing the +C correction that Prof. Ametani made on February 17, 2001. +C This correction only affects cables having 3 layers of conductors: core, +C sheath and armor. +CABLE CONSTANTS +CABLE PARAMETERS +C Beginning 28 September 2002, users are allowed to monitor convergence of +C Prof. Ametani's eigenvalue calculation. For high order, this will be seen +C automatically. This is important because computation may be slow. But how +C large is large? MONMIN is the variable, and the user has control via a +C new optional declaration that must (if present) precede miscellaneous data. +C In the following, MAXITR = maximum number of iterations for an eigenvalue; +C MONMIN = minimum order for the new eigenvalue printout; +C ITROUT = frequency of printout within eigenval iteration; +C EPSLNA = convergence tolerance for eigenvalue iteration. +C This data subcase is of order 10, so is big enough for meaningful printout. +C Default values are: 100 50 1 1.E-8 +C MAXITR MONMIN ITROUT EPSLNA +EIGEN CONTROLS 85 5 1 1.E-8 +C 3 -1 3 0 0 0 0 1 0 0 0 0 + 3 -1 3 0 1 0 0 1 0 0 0 0 + 1.850 1.860 1.870 1.00E-7 1.0 1. 1. +1.17183738-29.9354891.18391480-38.1912031.32171262-33.629952 + 3 3 3 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 20.0 0.0 + 33. 500.0E03 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 2nd of 4 pipe-type cable examples: CASE3G1.DAT +C Results of this case changed on March 2, 2001 after implementing the +C correction that Prof. Ametani made on February 17, 2001. +C This correction only affects cables having 3 layers of conductors: core, +C sheath and armor. +CABLE CONSTANTS +CABLE PARAMETERS +C MAXITR MONMIN ITROUT EPSLNA +EIGEN CONTROLS -85 -5 -1 -1.E-8 +C Default values are: 100 50 1 1.E-8 +C 17 January 2004, the preceding is added to illustrate rejection of any bad +C value. Here, a minus sign has been added to each parameter. Each will be +C rejected, and this means no change. So, MAXITR will remain at value 85, +C MONMIN will remain at value 5 (compare with default values of 100 and 50, +C respectively). +C 3 -1 3 0 0 0 0 1 1 0 0 0 + 3 -1 3 0 1 0 0 1 1 0 0 0 + 1.850 1.860 1.870 1.00E-7 1.0 1. 1. +1.17183738-29.9354891.18391480-38.1912031.32171262-33.629952 + 3 3 3 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 20.0 0.0 + 33. 500.0E03 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 3rd of 4 pipe-type cable examples: CASE3G4.DAT +CABLE CONSTANTS +CABLE PARAMETERS +C KOLW27 KOLS27 E also? +MATRIX PRECISION 10 2 BOTH { Optimally encode both E & F +C About preceding 2 lines, which were added 6 December 2003: KOLW27 and KOLS27 +C are unchanged. But added BOTH in 45-48 is the request to have the real part +C optimally encoded rather than ordinary E-field encoded. I.e., treat the real +C part the same as the imaginary part of the matrix for printed output. +C 3 -1 3 0 0 0 0 1 4 0 0 0 + 3 -1 3 0 1 1 0 1 4 0 0 0 + 1.850 1.860 1.870 1.00E-7 1.0 1. 1. +1.17183738-29.9354891.18391480-38.1912031.32171262-33.629952 + 3 3 3 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 20.0 0.0 + 33. 500.0E03 +C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: +C 33.72483 0.00000 0.00000 4.62992 0.00000 0.00000 +C -0.11456 -0.00001 -0.00001 -0.06850 -0.00001 -0.00001 +C +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 2.18897E-01 197.36 1.46645E-03 4.63124E-01 0.00000E+00 5.47097E-04 +C 2 2.18897E-01 197.36 1.46645E-03 4.63124E-01 0.00000E+00 5.47097E-04 +C 3 2.18897E-01 197.36 1.46645E-03 4.63124E-01 0.00000E+00 5.47097E-04 +C 4 1.36719E+00 295.29 1.45751E-03 4.92463E-02 0.00000E+00 2.29785E-03 +C 5 1.36719E+00 295.29 1.45751E-03 4.92463E-02 0.00000E+00 2.29785E-03 +C 6 1.36719E+00 295.29 1.45751E-03 4.92463E-02 0.00000E+00 2.29785E-03 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 4th of 4 pipe-type cable examples: CASE3NP0.DAT +C Results of this case changed on March 2, 2001 after implementing the +C correction that Prof. Ametani made on February 17, 2001. +C This correction only affects cables having 3 layers of conductors: core, +C sheath and armor. +CABLE CONSTANTS +CABLE PARAMETERS +C KOLW27 KOLS27 E also? +MATRIX PRECISION 8 1 BOTH { Optimally encode both E & F +C About preceding 2 lines, which were added 8 December 2003. This is the same +C as the preceding subcase, but with the width minimized as an illustration. +C There is no need; this is just an illustration. +C 3 0 3 0 0 0 0 0 0 0 0 0 + 3 0 3 0 1 0 0 0 0 0 0 0 + 1.850 1.00E-7 1.0 1. 1. +1.17183738-29.9354891.18391480-38.1912031.32171262-33.629952 + 3 3 3 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 33. 500.0E03 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C Use preceding data of the 1st of 6 overhead line examples ( CASE11A.DAT ) +C to illustrate fitting associated with new frequency-dependence of Taku Noda +C 1st of 2 NODA SETUP examples that are being added 6 October 1994 +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's ARMA model fitter. No printout of F-scan + { Output file name (blank requests use of default TAKUNODA.CCC) +2nd of 2 such lines (any number are allowed). +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +CABLE CONSTANTS +CABLE PARAMETERS +C KOLW27 KOLS27 E also? +MATRIX PRECISION 10 2 BOTH { Optimally encode both E & F +C The preceding 2 lines were added 8 December 2003. They cancel the narrow +C columns of the preceding subcase. This is a return to default values. + 1 0 2 0 1 0 0 0 0 1 0 0 + 3 0 1 0 +79.9916E-631.7050E-3 +23.7025E-5 1.0 + 1 0 1 0 +19.6350E-615.7080E-3 +90.5019E-5 1.0 + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 10. 5 10 600. + 50. 1.E8 600. +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 2nd of 2 NODA SETUP examples that are being added 6 October 1994 +C The preceding was for an overhead line. This is for a single-phase +C cable (core and sheath). Cable data came from CESI (see DCNEW-6). +NODA SETUP { Request Taku Noda's fitter, for which data follows + { Output file name (blank requests use of default TAKUNODA.CCC) +2nd of 2 +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +CABLE CONSTANTS +CABLE PARAMETERS { Transfer to new (August, 1994) cable constants code +C MISCELLANEOUS DATA CARD + 2 -1 1 0 1 0 0 0 +C CARDS INDICATING NUMBER OF CONDUCTORS PER SC COAXIAL CABLE + 2 +C GEOMETRICAL AND PHYSICAL DATA CARDS + .0206 .02865 .06395 .0689 .0775 + 1.775E-8 1. 1. 3.5 9.1E-8 1. 1. 2.25 +C CROSS-SECTION LOCATION CARD + 1.05 0. +C EARTH RESISTIVITY AND FREQUENCY CARDS + 300. 10. 5 10 600. + 300. 1.E8 600. +BLANK card ending frequency cards of imbedded "LINE PARAMETERS" data case +BLANK card ending "CABLE PARAMETERS" data cases +BLANK card ending "CABLE CONSTANTS" data cases +BEGIN NEW DATA CASE +C Final subcase is same as 1st subcase of CABLE PARAMETERS except that +C it illustrates omission of preceding CABLE CONSTANTS and following +C blank to terminate that otherwise-unused routine. See October, 1997, +C newsletter story explaining this improvement. WSM, 13 August 1997 +CABLE PARAMETERS { Note there is no preceding CABLE CONSTANTS request + 1 0 2 0 1 0 0 0 0 1 0 0 + 3 0 1 0 +79.9916E-631.7050E-3 +23.7025E-5 1.0 + 1 0 1 0 +19.6350E-615.7080E-3 +90.5019E-5 1.0 + 11.35 11.35 -0.65 11.35 11.35 0.00 + 11.35 11.35 0.65 12.35 12.35 0.00 + 50. 4.0E06 +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending "CABLE PARAMETERS" data cases +BEGIN NEW DATA CASE +C This is an example of a system which is a combination of an +C overhead line and an underground line. +C In October, 1998, Prof. Aki Ametani provided this data case as an +C illustration for the calculation of the mutual earth-return +C impedance of a system which is a combination of overhead and +C underground conductors (lines or cables). A paper, co-authored +C by Prof. Ametani, S. Yamaguchi, and N. Nagaoka, titled "Mutual +C Impedance between Overhead and Underground Cables" is to be +C presented at the 1998 EEUG meeting on November 9-10 +C +CABLE CONSTANTS +CABLE PARAMETERS + 1 0 1 0 1 0 0 0 0 0 0 0 +C ITY ISYS NPC IEAR KMOD + 2 0 1 0 +C NP NG KBP KBG + .4300E-01 0.00 0.0 0.0 0.0 0.0 +C ROUTp RINp ROUTg RINg SEPp SEPg + .1690E-07 1.0 +C RHOp MUp RHOg MUg + 1.00 1.00 0.00 -0.1 -0.1 0.0 +C VTOWER1 VMID1 HORIZ1 VTOWER2 VMID2 HORIZ2 + 100. 10.000 8 1 +C RHO FREQ IDEC IPNT +BLANK card ending frequency cards within CABLE PARAMETERS +BLANK card ending "CABLE PARAMETERS" data cases +BLANK card ending "CABLE CONSTANTS" data cases +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc28.dat b/benchmarks/dc28.dat new file mode 100644 index 0000000..c304d5d --- /dev/null +++ b/benchmarks/dc28.dat @@ -0,0 +1,511 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-28 +C "CABLE CONSTANTS" illustration begins with a finite, overhead pipe that +C encloses a 3-phase cable system. Each phase consists of a core only. +C For nodes of punched cards, the cable stretches from end "1" to end "2". +C The cable length (872 meters) is used only for this special output. +C 1st of 4 subcases. +CABLE CONSTANTS +$ERASE { Empty punch buffer as precautionary measure (maybe preceding case) +BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 PIPE1 PIPE2 + 3 1 3 1 1 1 1 + 0.381 0.401 0.421 2.E-7 300. 1. 3. + 0.19393 0. 0.19393 120. 0.19393 240. + 1 1 1 + 25.4E-3 + 6.8912E-8 1. + 25.4E-3 + 6.8912E-8 1. + 25.4E-3 + 6.8912E-8 1. + 1.0 0.0 + 20.0 10. 872. { Cable length = 872 meters +C Impedance matrix [ Z ] in [ohm/m] follows : +C 8.5303094E-05 4.9395039E-05 4.9395039E-05 2.9513780E-05 +C 1.7535768E-04 1.3713248E-04 1.3713248E-04 1.1639059E-04 +C Admittance matrix [ Y ] in [mho/m] follows : +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 1.4843948E-09 -1.4823084E-10 -1.4823084E-10 -1.1879330E-09 +C Voltage transformation matrices follow. These are complex, with the mag +C 0.0034957 0.0034958 0.0034959 1.0099676 +C -162.8209534 -162.8215332 -162.8218384 0.1735267 +C Transformation [A], from modal to phase variables: +C 0.9937597 0.9999998 0.4999998 1.0000000 +C -0.1112594 0.0000057 -179.9999847 0.0000000 +C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: +C 447.5839844 280.9452515 280.9451599 230.7716522 +C -115.0411224 -49.0479126 -49.0479584 -28.8765430 +C Modal Propagation Modal impedance Modal +C Mode attenuation velocity real imaginary susceptance +C [ db/km ] [ m/sec ] [ ohms / meter ] [mho/meter] +C 1 5.49837E-04 1.22476E+08 2.925856E-05 1.167339E-04 2.220200E-09 +C 2 1.29433E-03 1.66288E+08 3.202234E-05 3.470583E-05 3.493539E-09 +C 3 9.35837E-04 2.30950E+08 2.393871E-05 2.548347E-05 2.448938E-09 +C 4 9.35837E-04 2.30950E+08 1.795402E-05 1.911261E-05 3.265251E-09 +$PUNCH, dc28a.pch ! { Exclamation holds lower case +BLANK card ending frequency cards +C $VINTAGE, 1 +C -1CORA1 CORA2 2.92540E-05 2.29300E+02 1.22476E+08-8.72000E+02 1 4 +C -2CORB1 CORB2 3.22334E-05 9.93885E+01 1.66288E+08-8.72000E+02 1 4 +C -3CORC1 CORC2 2.39387E-05 1.02010E+02 2.30950E+08-8.72000E+02 1 4 +C -4PIPE1 PIPE2 1.79540E-05 7.65071E+01 2.30950E+08-8.72000E+02 1 4 +C $VINTAGE, 0 +C -0.00334000 -0.00333993 -0.00334000 1.00996333 +C -0.00103249 -0.00103249 -0.00103246 0.00307810 +C 0.33665633 0.33665612 0.33665576 -1.00366375 +C -0.00000644 -0.00000645 -0.00000664 0.00196862 +C -0.33333370 -0.33333334 0.66666698 0.00000001 +C -0.00000003 -0.00000004 -0.00000004 0.00000023 +C -0.50000012 0.50000012 -0.00000004 0.00000016 +C -0.00000005 -0.00000005 0.00000001 0.00000022 +C 2nd fourth of test involves a submarine cable donated by BC Hydro. It is +C modeled as a single-phase, 3-conductor cable. There is a core, a sheath, +C and armor, with the armor grounded. + 2 -1 1 1 1 1 2 + 3 + 0.01 0.02525 0.0518 0.055553 0.0675 0.0735 + 1.78E-8 1.0 1.0 3.5 2.8E-7 1.0 1.0 3.5 + 7.54E-8 1.0 + 0.2 0.0 + 0.21 10.0000 5 1 +C From final calculation of logarithmic looping, 1.00000000E+06 Hertz. : +C Impedance matrix [ Z ] in [ohm/m] follows : +C 9.1996193E-03 4.3044090E-03 +C 1.1569544E+00 2.4907887E-01 +C Admittance matrix [ Y ] in [mho/m] follows : +C 0.0000000E+00 0.0000000E+00 +C 1.7025936E-03 -1.7025938E-03 +C Voltage transformation matrices follow. These are complex, with the magnitud +C Transformation [AI], from phase to modal variables: +C 0.0000011 1.0000008 +C -135.8211517 0.0000440 +C Transformation [A], from modal to phase variables: +C 0.9999925 1.0000000 +C -0.0004397 0.0000000 +C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: +C 29.3894901 6.2976413 +C -0.1167270 -0.0544422 +C ..... Modal Characteristic impedance Characteristic admittance +C ..... susceptance real imaginary real imaginary +C ..... [mho/meter] SQRT ( z / y ) in [ohm] SQRT ( y / z ) in [mho] +C ..... 6.280722E-03 6.297670E+00 -5.441193E-02 1.587770E-01 1.371835E-03 +C ..... 1.702591E-03 2.309191E+01 -6.221918E-02 4.330489E-02 1.166813E-04 +BLANK card ending frequency cards +C 3rd of 4 subcases generates PI-circuit modeling of a crossbonded cable +C having one major section. Armor is solidly grounded, and sheaths are +C cross-bonded. TEPCO OF275KV SC CABLE. MAY 17, 1985 +$ERASE { Empty punch buffer as precautionary measure (maybe preceding case) +C BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 SHEA1 SHEA2 SHEB1 SHEB2 SHEC1 SHEC2 +C Ashok Parsotam of Vector Limited in Auckland, New Zealand, inspired a rule +C change for BRANCH data that eliminates the former need for name packing. +C 26 December 2008, WSM replaces preceding packed card by the new equivalent +C form which ignores imbedded blank name pairs. This improves readability & +C makes easier any later addition or subtraction of conductors. In order to +C handle the rare case where both ends of a conductor are grounded, replace +C the former 12 blank bytes by "TERRA TERRA " (upon recognition, this will +C be replaced by the two desired blank names). Another special case is that +C where a name pair has not been defined. Most commonly this will be due to +C a user who supplies no BRANCH declaration at all. But in the more general +C case, the user may simply not have supplied enough non-blank name pairs to +C cover all phases. In either case, any unnamed phase will be labeled using +C the 2A6 default name pair "NoNameNoName". +BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 { All cores are numbered first, note +BRANCH SHEA1 SHEA2 SHEB1 SHEB2 SHEC1 SHEC2 { Next in the numbering: all sheaths +PUNCH { Request for punched output of PI-circuits that are to be determined + 2 -1 3 0 1 1 1 2 + -1 1 0 1.E3 1.E-1A + 3 3 3 + 0.0132 0.0249 0.0542 0.057 0.063 0.066 0.072 + 1.89E-8 1.0 1.0 2.30 3.00E-8 1.0 1.0 3.50 + 3.E-8 1.0 1.0 3.50 + 0.0132 0.0249 0.0542 0.057 0.063 0.066 0.072 + 1.89E-8 1.0 1.0 2.30 3.00E-8 1.0 1.0 3.50 + 3.E-8 1.0 1.0 3.50 + 0.0132 0.0249 0.0542 0.057 0.063 0.066 0.072 + 1.89E-8 1.0 1.0 2.30 3.00E-8 1.0 1.0 3.50 + 3.E-8 1.0 1.0 3.50 + 2. 0. 1.8095 0.11 2. .22 + 1.E2 1.E3 +$PUNCH { Actual punching of card images that by now must be in punch buffer +C $VINTAGE, 1 +C AIN 4 1.0000000E-01 +C 1AIN 1A 11 1 3.2000030E-02 6.5728021E-02 5.4835246E-02 +C 2AIN 2A 11 2 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 3.1999972E-02 6.5727922E-02 5.4835246E-02 +C 3AIN 3A 11 3 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 3.1999991E-02 6.5727972E-02 5.4835246E-02 +C 4AIN 4A 11 4 1.1000064E-02 9.2998579E-03 -5.4835252E-02 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 2.0414416E-02 8.7684233E-03 7.0333978E-01 +C 5AIN 4A 11 5 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 1.1000006E-02 9.2997591E-03 -5.4835252E-02 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 2.0414358E-02 8.7683245E-03 7.0333978E-01 +C 6AIN 4A 11 6 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 1.1000026E-02 9.2998085E-03 -5.4835252E-02 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 2.0414377E-02 8.7683739E-03 7.0333978E-01 +C 1A 11 1A 12 1AIN 1A 11 1 +C 2A 11 2A 12 2 +C 3A 11 3A 12 3 +C 4A 11 6A 12 4 +C 5A 11 4A 12 5 +C 6A 11 5A 12 6 +C 1A 12 1AOUT 1AIN 1A 11 1 +C 2A 12 2AOUT 2 +C 3A 12 3AOUT 3 +C 4A 12 6AOUT 4 +C 5A 12 4AOUT 4 +C 6A 12 5AOUT 4 +C AOUT 4 AIN 4 +C $VINTAGE, 0 +BLANK CARD ENDING FREQUENCY CARDS +C 4th of 4 subcases. A three phase cable enclosed in a pipe with infinite +C thickness. This case was brought to us by Prof. Aki Ametani in September +C of 1993. Warning! Prof. Ametani spent 3 weeks at BPA during the summer +C of 1994, and warned that this solution is wrong. The same data can be +C found in 4th of 4 pipe-type illustrations of CABLE PARAMETERS that have +C been appended to DC-27. Note the number of phases below is 8 whereas the +C correct number is 9 (each of 3 phases has 3 conductors; the pipe does not +C contribute because it is infinitely thick). THL, 17 Aug 1994. +C Results of this case changed on March 2, 2001 after implementing the +C correction that Prof. Ametani made on February 17, 2001. +C This correction only affects cables having 3 layers of conductors: core, +C sheath and armor. +BRANCH CORA1 CORA2 CORB1 CORB2 CORC1 CORC2 SHEA1 SHEA2 SHEB1 SHEB2 SHEC1 SHEC2 +BRANCH ARMA1 ARMA2 ARMB1 ARMB2 ARMC1 ARMC2 + 3 -1 3 0 1 1 1 0 1 + 1.850 1.860 1.870 33.0 1.0 1. 1. +1.17183738-29.9354891.18391480-38.1912031.32171262-33.629952 + 3 3 3 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 11.0E-3 30.60E-3 63.80E-3 65.80E-3 71.00E-3 71.80E-3 76.80E-3 + 1.8365E-8 1.0 1.0 2.3 1.8365E-8 1.0 1.0 1. + 10.00E-8 1.0 1.0 8.0 + 33.0 100.0E03 +$PUNCH +BLANK card ending frequency cards +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C August, 1994. Prof. Akihiro Ametani has left after 3 weeks of work +C at BPA to install his new CABLE PARAMETERS program. There are 18 +C standard test cases for this, and these will be split between the +C ends of DC-27 and DC-28. See DC-27 for the 6 files CASE1*.DAT +C for overhead lines (11A, 11G0, 11G1, 11G3, 11Y2, and 11A') and the +C 4 files CASE3#.DAT for pipe-type cables (3G0, 3G1, 3G4, and 3NP0). +C Those totaled 10 of 18. Here we add the remaining 8, CASE2*.DAT : +C 1st of 8 examples of cables without pipe: CASE21G0.DAT +CABLE CONSTANTS +CABLE PARAMETERS +C KOLW27 KOLS27 +MATRIX PRECISION 0 0 { Optimally encode old F-field values +C 4 December 2003, optional local KOLWID and KOLSEP of optimal encoding +C are read from columns 25-40. Variables are local to overlay 27, and are +C carried in LABL27. The default values (for default use, see DC-28) are +C KOLW27 = 10 and KOLS27 = 2 (column width of 10 including 2 blanks to +C separate matrix columns). Normally, if this is what the user wants, he +C would have no MATRIX PRECISION request. But we can produce the same +C effect by specifying illegal values (0 and 0). Both integers must be +C positive, so the zero values shown above will be rejected and data card +C interpretation should confirm default values KOLW27 = 10 & KOLSEP = 2. +C MATRIX OUTPUTS 1 + 2 -1 3 0 1 0 0 0 0 0 0 0 + 2 2 2 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 2.500 0.0 2.730 0.0 2.960 0.0 + 100. 50.E03 +C Total impedance [Zc] +C 4.63767E-02 4.55563E-02 4.55049E-02 4.57808E-02 4.55563E-02 4.55049E-02 +C 4.74692E-01 3.12743E-01 2.69461E-01 4.07294E-01 3.12743E-01 2.69461E-01 +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 1.27756E+01 14.46 4.84121E-02 3.55829E-01 0.00000E+00 1.31982E-03 +C 2 6.55379E-02 39.08 1.29966E-04 6.92398E-02 0.00000E+00 9.33476E-04 +C 3 8.29132E-02 51.43 1.61257E-04 5.15928E-02 0.00000E+00 7.23141E-04 +C 4 7.73951E-02 153.52 5.86972E-04 6.73995E-02 0.00000E+00 6.21266E-05 +C 5 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +C 6 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +BLANK card ending frequency cards +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 2nd of 8 examples of cables without pipe: CASE21G3.DAT +CABLE CONSTANTS +CABLE PARAMETERS +C 2 -1 3 0 0 0 0 0 3 0 0 0 + 2 -1 3 0 1 0 0 0 3 0 0 0 + 2 2 2 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 2.500 0.0 2.730 0.0 2.960 0.0 + 100. 50.E03 +C Total admittance [Yc] +C 0.00000E+00 0.00000E+00 0.00000E+00 +C 6.21268E-05 0.00000E+00 0.00000E+00 +C .... ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) +C .... REAL IMAG. REAL IMAG. REAL IMAG. +C .... 0.00000E+00 6.21268E-05 32.938 -0.143 3.03598E-02 1.32197E-04 +C .... 0.00000E+00 6.21268E-05 32.938 -0.143 3.03598E-02 1.32197E-04 +C .... 0.00000E+00 6.21268E-05 32.938 -0.143 3.03598E-02 1.32197E-04 +BLANK card ending frequency cards +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 3rd of 8 examples of cables without pipe: CASE21S1.DAT +CABLE CONSTANTS +CABLE PARAMETERS +C 2 -1 3 0 0 0 0 -99 0 0 0 0 + 2 -1 3 0 1 0 0 -99 0 0 0 0 + 2 2 2 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 2.500 0.0 2.730 0.0 2.960 0.0 + 100. 50.E03 +C Characteristic impedance matrix [Zc] in phase variables, in [ohm]: +C 58.63021 10.39525 10.39524 25.69268 10.39520 10.39519 +C -1.20548 -1.04447 -1.04448 -1.06129 -1.04478 -1.04480 +C +C .... ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) +C .... REAL IMAG. REAL IMAG. REAL IMAG. +C .... 0.00000E+00 1.40154E-03 15.494 -1.050 6.42445E-02 4.35431E-03 +C .... 0.00000E+00 7.00772E-04 10.198 -0.010 9.80544E-02 9.95546E-05 +C .... 0.00000E+00 9.34367E-04 7.649 -0.008 1.30740E-01 1.32736E-04 +C .... 0.00000E+00 6.21267E-05 32.938 -0.143 3.03598E-02 1.32197E-04 +C .... 0.00000e+00 6.21267E-05 32.938 -0.143 3.03598E-02 1.32197E-04 +C .... 0.00000E+00 6.21267E-05 32.938 -0.143 3.03598E-02 1.32197E-04 +BLANK card ending frequency cards +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 4th of 8 examples of cables without pipe: CASE21S2.DAT +CABLE CONSTANTS +CABLE PARAMETERS +C KOLW27 KOLS27 Only F? +MATRIX PRECISION 10 2 BOTH { Optimally encode both E and F +C About preceding 2 lines, which were added 7 December 2003: KOLW27 and KOLS27 +C are default values. BOTH in 45-48 is the request to have optimal encoding +C replace both alternative formats (ordinary E-field matrices as well as +C F-field matrices). Matrices have order 12, so without this treatment, +C E-field matrices would require multiple rows (first 10 columns, then 2 +C columns). Using BOTH, these multiple lines are avoided. 12 columns of +C 10 bytes each easily fit within the 131-byte limit. In fact, there is +C room for labeling on the right. +C 2 -1 6 0 0 0 0 -99 0 0 0 0 + 2 -1 6 0 1 0 0 -99 0 0 0 0 + 2 2 2 2 2 2 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 2.500 0.0 2.730 0.0 2.960 0.0 2.50 1.0 + 2.730 1.0 2.960 1.0 + 100. 50.E03 +C Modal transformation matrices follow. These are complex, with the real part displayed above the imaginary part. +C Transpose of the current transformation matrix [Ti] follows. This is the inverse of the voltage transformation matrix. +C By definition, [Ti] gives the mapping from modal to phase variables: i-phase = [Ti] * i-mode +C 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 +C 0.00000 0.00000 0.00000 -0.00001 0.00000 0.00000 0.00000 0.00000 +C .... 0.00000 0.00000 0.00000 0.00000 +C .... 0.00000 0.00000 0.00000 0.00000 +C +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. REAL IMAG. REAL IMAG. +C 1 1.98193E+01 11.24 4.54985E-02 2.76775E-01 0.00000E+00 2.80308E-03 +C 2 1.07741E-01 24.61 1.13061E-04 5.81815E-02 0.00000E+00 2.80120E-03 +C 3 6.30266E-02 43.96 1.48041E-04 7.29050E-02 0.00000E+00 7.00585E-04 +C 4 6.30266E-02 43.96 1.48002E-04 7.28856E-02 0.00000E+00 7.00772E-04 +C 5 6.30266E-02 43.96 1.11090E-04 5.47081E-02 0.00000E+00 9.33614E-04 +C 6 6.30266E-02 43.96 1.11001E-04 5.46642E-02 0.00000E+00 9.34363E-04 +C 7 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +C 8 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +C 9 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +C 10 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +C 11 7.73951E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +C 12 7.73950E-02 153.52 5.86971E-04 6.73994E-02 0.00000E+00 6.21267E-05 +BLANK card ending frequency cards +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 5th of 8 examples of cables without pipe: CASE22Y0.DAT +CABLE CONSTANTS +BRANCH CORA1 CORA2 SHEA1 SHEA2 +CABLE PARAMETERS +C KOLW27 KOLS27 Only F? +MATRIX PRECISION 10 2 +C The preceding 2 lines, added 7 Dec. 2003, restore the default choice. Note +C that there is no optional BOTH in columns 45-48 (see preceding subcase). +C 2 1 1 0 0 0 0 0 0 0 0 2 IPUNCH gone +C 2 1 1 0 0 0 0 0 0 0 0 + 2 1 1 0 1 0 0 0 0 0 0 +C 1 2.00 A + 2 + 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 + 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 + 0.9 0.0 + 1.E-8 10.E06 1000. 2 +C Voltage transformation matrix [Tv]. This gives the mapping from modal to phase variables: v-phase = [Tv] * v-mode +C 1.00000 1.00000 +C 0.00000 0.00000 +C 0.00000 1.00000 +C 0.00000 0.00000 +C +C ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) +C REAL IMAG. REAL IMAG. REAL IMAG. +C .... 0.00000E+00 3.74095E-03 57.817 -0.055 1.72959E-02 1.64284E-05 +C .... 0.00000E+00 8.54359E-04 245.415 -0.014 4.07472E-03 2.33098E-07 +BLANK card ending frequency cards +$PUNCH, case22y0.pch ! { Of the 18 examples, this is 1st of 2 that punch +C $VINTAGE, 1 +C -1CORA1 CORA2 2.37561E-02 5.78171E+01 2.90497E+08-1.00000E+03 1 2 +C -2SHEA1 SHEA2 5.88727E-03 2.45415E+02 2.99666E+08-1.00000E+03 1 2 +C $VINTAGE, 0 +C 1.00000000 0.00000000 +C 0.00000000 0.00000000 +C -1.00000000 1.00000000 +C 0.00000000 0.00000000 +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 6th of 8 examples of cables without pipe: CASE22Y1.DAT +CABLE CONSTANTS +BRANCH CORA1 CORA2 SHEA1 SHEA2 +CABLE PARAMETERS +C 2 1 1 0 0 1 0 0 0 0 1 2 +C 2 1 1 0 0 1 0 0 0 0 1 + 2 1 1 0 1 1 0 0 0 0 1 +C 1 2.00 A + 2 + 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 + 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 + 0.0 1.0E-15 0.0 0.055E-9 + 0.9 0.0 + 1.E-8 10.E06 1000. 2 +C EARTH IMPEDANCE ZE +C 1.11110E-04 1.11110E-04 +C 1.11111E-04 1.11111E-04 +C +C CONDUCTOR INTERNAL IMPEDANCE ZC +C 2.95323E-02 5.77615E-03 +C 1.29231E+01 4.17823E-01 +C +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 2.34005E-01 133.42 5.88727E-03 5.14569E+01 0.00000E+00 4.31011E-03 +C 2 1.78448E+00 290.49 2.37561E-02 1.25053E+01 0.00000E+00 3.74102E-03 +BLANK card ending frequency cards +$PUNCH, case22y1.pch ! { Of the 18 examples, this is 2nd of 2 that punch +C $VINTAGE, 1 +C -1CORA1 CORA2 5.88727E-03 1.09264E+02 1.33418E+08-1.00000E+03 1 2 +C -2SHEA1 SHEA2 2.37561E-02 5.78166E+01 2.90494E+08-1.00000E+03 1 2 +C $VINTAGE, 0 +C 0.00000000 1.00000000 +C 0.00000000 0.00000000 +C 1.00000000 -1.00000000 +C 0.00000000 0.00000000 +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 7th of 8 examples of cables without pipe: CASE22Y2.DAT +CABLE CONSTANTS +CABLE PARAMETERS +C 2 1 1 0 0 0 0 0 0 0 2 0 + 2 1 1 0 1 0 0 0 0 0 2 0 + 2 + 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 + 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 + 0.1E-14 0. 5.E-5 0. + 0.9 0.0 + 1.E-8 10.E06 1000. 1 +C ADMITTANCE (S/M) CHARACT. IMP. (OHM) CHARACT. ADMIT. (S) +C REAL IMAG. REAL IMAG. REAL IMAG. +C .... 0.00000E+00 3.74095E-03 57.817 -0.055 1.72959E-02 1.64284E-05 +C .... 5.00000E-05 8.54359E-04 245.101 7.152 4.07647E-03 -1.18949E-04 +BLANK card ending frequency cards +$PUNCH { Show Pi-circuit branch cards (1-punch in col 58 of frequency card) +C PI-EQUIVALENT MODEL WITH LENGTH= 0.100E+04(M) +C $VINTAGE, 1 +C 1 2.96433904E+01 1.01799070E+00 5.95391119E-02 +C 2 5.88726509E+00 8.18962579E-01 -5.95391119E-02 +C 5.88726509E+00 8.18962579E-01 7.31366522E-02 +C $VINTAGE, 0 +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 8th of 8 examples of cables without pipe: CASE22Y3.DAT +CABLE CONSTANTS +CABLE PARAMETERS + 2 1 1 0 0 0 0 0 0 0 3 0 + 2 + 0.8E-2 1.00E-2 2.70E-2 3.00E-2 3.10E-2 + 3.000E-8 1.0 1.0 1.063 3.000E-8 1.0 1.0 1.1 + 0.1E-14 1.0E-15 5.E-5 0.055E-9 + 0.9 0.0 + 1.E-8 10.E06 0 +C MODE ATTENUATION VELOCITY IMPEDANCE (OHM/M) ADMITTANCE (S/M) +C NO. (DB/KM) (M/MIC.S) REAL IMAG. REAL IMAG. +C 1 2.39603E+01 133.42 5.88727E-03 5.14569E+01 5.00000E-05 4.31011E-03 +C 2 1.78448E+00 290.49 2.37561E-02 1.25053E+01 0.00000E+00 3.74102E-03 +BLANK card ending frequency cards +BLANK card ending "CABLE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C First of two examples of cables sent by Prof. Ametani on Feb. 17, 2001 +C that he used for verifying the correction he made in the calculation of +C conductor internal impedance of a cable having 3 layers of conductors, +C core, sheath, and armor. +C This is a one-phase SC cable with core and sheath only +CABLE PARAMETERS + 2 -1 1 0 1 1 0 0 0 0 0 + 2 + .7000E-01 .8000E-01 .9000E-01 .1000 .1100 + .1728E-07 1.000 1.000 2.200 .1728E-07 1.000 1.000 2.200 + 1.500 .0000 + 100.000 50.0000 0 0 0 +BLANK card ending frequency cards +BLANK card ending "CABLE PARAMETERS" data subcases +BEGIN NEW DATA CASE +C Second of two examples of cables sent by Prof. Ametani on Feb. 17, 2001 +C This is a one-phase SC cable with core, sheath, and armor. This data +C is almost the same as the previous one except having 3 conductors, and +C the physical configuration of the sheath and armor here is the same as +C the core and sheath of the previous case +CABLE PARAMETERS +C 2 -1 1 0 1 1 0 1 0 0 0 0 + 2 -1 1 0 1 1 0 0 0 0 0 + 3 + .5000E-01 .6000E-01 .7000E-01 .8000E-01 .9000E-01 .1000 .1100 + .1728E-07 1.000 1.000 2.200 .1728E-07 1.000 1.000 2.200 + .1728E-07 1.000 1.000 2.200 + 1.500 .0000 + 100.000 50.0000 0 0 0 +BLANK card ending frequency cards +BLANK card ending "CABLE PARAMETERS" data subcases +BEGIN NEW DATA CASE +BLANK +EOF + + + diff --git a/benchmarks/dc29.dat b/benchmarks/dc29.dat new file mode 100644 index 0000000..7c8ab31 --- /dev/null +++ b/benchmarks/dc29.dat @@ -0,0 +1,276 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-29 +C Test of "SEMLYEN SETUP" for 138-mile, single-circuit, 500-kV overhead +C line that connects "John Day" with "Lower Monumental" (BPA substations). +C There are 2 ground wires (both eliminated), and each phase consists of a +C bundle of 2 conductors. Punched LUNIT7 branch cards contribute to DC-31. +C 1st of 3 subcases. 2nd is for Pi-equiv. output (fast). 3rd is bypassed. +C Solution changed on 23 Oct 1990 due to Mustafa Kizilcay's modifications +C (preceding commented data has been copied to bottom for preservation). +SEMLYEN SETUP +$ERASE +BRANCH JDA LMA JDB LMB JDC LMC +TOLERANCES 10 5000. { Illustration only; value of FMED actually unchanged +C 345678901234567890123456789012345678901234567890 +C 60 80 230 1 7 7777 0 { Semlyen miscellaneous data +C 60 80 1 230 1 7 7777 0 { Semlyen miscellaneous data +C Guido: whenever n4=0(col 26), n1 (col 21) should be 1 !! avoid kill=152 + 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous data +C Guido: overhead lines; rule of thumb: NOO=100-300, NPOINT=150 +C Note: Guido modifies Semlyen misc. data card above on 23 Oct 1990 following +C the addition of Mustafa Kizilcay's latest changes. The old one gave +C an early KILL code. Later (November 7th), WSM and THL convert the +C "1 " of columns 21-22 to "10" to make it universal. Although the +C VAX had no trouble reading 10 from the original as I2 information, +C Sun (which agreed with Apollo, so Apollo most likely also was wrong) +C erroneously read unity! Sun seems to ignore blanks in "I" FORMATs. +LINE CONSTANTS + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK card ending conductor cards within "LINE CONSTANTS" data +C 27. 5000. 1 138. { Transient frequency +C 27. 60.00 1 138. { Phasor solution frequency +C 27. 6.00 1 138. 6 20 { log looping + 27. 5000. 138. { Transient frequency + 27. 60.00 138. { Phasor solution frequency + 27. 6.00 138. 6 20 { log looping +BLANK card ending frequency cards of "LINE CONSTANTS" data +C Frequency = 5.00000000E+03 +C -------------------------- +C Impedance matrix Admittance matrix +C (ohm/mile) (mho/mile) +C +C 3.2463317E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 +C 6.3079678E+01 5.2869139E-04 -8.2803449E-05 -6.2048083E-05 +C +C 2.3065452E+00 2.0246396E+00 0.0000000E+00 0.0000000E+00 +C 1.4273670E+01 5.9110509E+01 5.3917160E-04 -8.2803449E-05 +C +C 2.9595110E+00 2.3065452E+00 3.2463317E+00 0.0000000E+00 +C 1.4114577E+01 1.4273670E+01 6.3079678E+01 5.2869139E-04 +BLANK card ending "LINE CONSTANTS" data cases +C The following values are computed on the basis of exact diagonalization of the +C Mode to phase voltage Mode to phase current +C transformation matrix transformation matrix +C +C 1.000000 -1.000000 -0.266985 0.420272 -0.500000 -0.299082 +C 0.000000 0.000000 0.019744 0.007566 0.000000 0.006219 +C +C 0.711142 0.000000 1.000000 0.224711 0.000000 0.840545 +C -0.027600 0.000000 0.000000 -0.012556 0.000000 0.015131 +C +C 1.000000 1.000000 -0.266985 0.420272 0.500000 -0.299082 +C 0.000000 0.000000 0.019744 0.007566 0.000000 0.006219 +C +C Alpha Beta Attenuation +C Mode (neper/mi) (radians/mi) (db/mi) +C 1 0.8245225702687424E-02 0.1861008889722703E+00 0.7161712049448019E-01 +C 2 0.4981192766022477E-03 0.1700760589248700E+00 0.4326609063159914E-02 +C 3 0.4573686287515477E-03 0.1691150685564419E+00 0.3972653433249082E-02 +C Number of frequencies = 121 Starting and ending Hz = 6.0000E+00 6.000E+06 +C Fitting of the propagation step response for mode number 1 : +C Iteration Amplitude X(1) X(2) X(3) Error +C 1 7.26461134E-1 1.32035374E+1 1.17295449E+0 2.21313604E-2 7.35218983E-04 +C 1 7.13648369E-1 1.45238912E+1 1.17295449E+0 2.21313604E-2 1.23450128E-03 +C 1 7.02961062E-1 1.58442449E01 1.17295449E+0 2.21313604E-2 1.78841949E-03 +C < < Etc. until final (23-rd) such entries, which is: +C 3 7.67204181E-1 1.05695813E+1 1.17465822E+0 2.53215686E-2 3.72675596E-05 +C Successful convergence .... SUBROUTINE TDFIT. Tolerance EPS = 5.00000000E-05 +C ++++ Warning! TDFIT can not adjust time-domain step response to fit exactly +C Instead, the initial fitting will be used. +C Amplitude 1 Time const. 1 Amplitude 2 Time const. 2 Delay time +C 7.6720418E-01 7.0400012E-05 2.3279582E-01 6.3345970E-04 7.7782236E-04 +C Mode 1, time step = 3.72049322E-06 Symbols : "." = Semlyen approximation +C Error Time 0.0 8.93193367E-01 +C .1........1........1........1........1........1.. +C 0.00000E+00 7.62701E-04 .* +C 0.00000E+00 7.66422E-04 ..0 +C 0.00000E+00 7.70142E-04 ..0 +C 0.00000E+00 7.73863E-04 .. 0 +C 0.00000E+00 7.77583E-04 .. 0 +C -2.07761E-02 7.81304E-04 . . 0 +C -4.84345E-03 7.85024E-04 . * +C 6.50870E-03 7.88745E-04 . 0. +C 1.41364E-02 7.92465E-04 . 0. +C 1.88276E-02 7.96186E-04 . 0. +C 2.12721E-02 7.99906E-04 . 0 . +C 2.20463E-02 8.03627E-04 . 0 . +C 2.16177E-02 8.07347E-04 . 0 . +C 2.03607E-02 8.11068E-04 . 0 . +C 1.85647E-02 8.14788E-04 . 0 . +C 1.64473E-02 8.18509E-04 . 0. +C 1.41747E-02 8.22229E-04 . 0 . +C 1.18700E-02 8.25949E-04 . 0. C 9.61526E-03 8.29670E-04 . 0. +C 7.46654E-03 8.33390E-04 . 0. +$PUNCH +C -1JDA LMA 5.72862E-03 7.77822E-04 1 1 2 2 3 +C 1.76406006E+01 9.04231135E+01-1.97906661E-04 1.44978522E-03 6.00000000E+01 +C 0.00000E+00 1.42045E+04 7.67204E-01 0.00000E+00 1.57863E+03 2.32796E-01 +C 0.00000E+00 1.70053E+05-7.75536E-04 0.00000E+00 5.92740E+02-1.43454E-03 +C -1JDB LMB 7.00175E-03 7.40982E-04 2 2 2 2 3 +C 5.19844042E-01 4.16341654E+01-1.59314154E-05 1.96071950E-03 6.00000000E+01 +C 0.00000E+00 1.82512E+05 9.69335E-01 0.00000E+00 2.58428E+03 3.06652E-02 +C 0.00000E+00 9.60136E+03-1.29672E-04 0.00000E+00 5.91248E+01-4.28783E-04 +C -1JDC LMC 4.11495E-03 7.40975E-04 3 3 2 2 3 +C 2.42272029E+00 7.27673245E+01-1.71561794E-05 1.15316857E-03 6.00000000E+01 +C 0.00000E+00 4.30709E+05 9.63717E-01 0.00000E+00 1.32518E+03 3.62828E-02 +C 0.00000E+00 2.12922E+03-1.21998E-04 0.00000E+00 8.97571E+01-3.32339E-04 +C Prior to improvement on 27 November 2000, zero imaginary parts were +C included, and this forced low precision of 6E12.5: +C 1.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00-2.66985E-01 0.00000E+00 +C 7.11142E-01 0.00000E+00-1.02636E-14 0.00000E+00 1.00000E+00 0.00000E+00 +C 1.00000E+00 0.00000E+00-1.00000E+00 0.00000E+00-2.66985E-01 0.00000E+00 +C 4.20272E-01 0.00000E+00 5.00000E-01 0.00000E+00-2.99082E-01 0.00000E+00 +C 2.24711E-01 0.00000E+00-5.36721E-15 0.00000E+00 8.40545E-01 0.00000E+00 +C 4.20272E-01 0.00000E+00-5.00000E-01 0.00000E+00-2.99082E-01 0.00000E+00 +C Beginning 27 November 2000, the zero imaginary parts are implied, +C giving the following 3E26.18 output following a new request word. A +C big paragraph about this is planned for the April, 2001, newsletter: +C NO IMAGINARY PART +C 1.0000000000000000E+00 1.0000000000000000E+00 -2.6698449851193501E-01 +C 7.1114175640039812E-01 -1.1764114701044076E-14 1.0000000000000000E+00 +C 9.9999999999999945E-01 -9.9999999999999467E-01 -2.6698449851194972E-01 +C 4.2027250134843613E-01 5.0000000000000333E-01 -2.9908213367540470E-01 +C 2.2471123211965521E-01 -6.1556662545037000E-15 8.4054500269687149E-01 +C 4.2027250134843563E-01 -4.9999999999999922E-01 -2.9908213367541620E-01 +BLANK card ending "SEMLYEN SETUP" data cases +BEGIN NEW DATA CASE +C BENCHMARK DC-29 +C 2nd of 3 subcases illustrates punching of Pi-equivalents on LUNIT8. +C Feature added by Mustafa Kizilcay of University of Hannover, Oct 88. +C There is no rational function fitting, so execution is fast. Also, +C the time spent in LINE CONSTANTS is minimal: 2 decades, 1 pt/dec. +C { Running interactively ("SPY DC29.") gave debug on second subcase: +DIAGNOSTIC { Somehow needed to erase overlay-25 diagnostic. ???? 9 July 1989 +SEMLYEN SETUP +$OPEN, UNIT=8 FILE=dc29out.lis STATUS=UNKNOWN FORM=FORMATTED ! { Pi-equivalents will go here +C 345678901234567890123456789012345678901234567890 + 60 80 230 3 1 7 4100 4100 { Semlyen miscellaneous data +LINE CONSTANTS + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK card ending conductor cards within "LINE CONSTANTS" data + 27. 5000. 138. { Transient frequency + 27. 50.00 138. { Phasor solution frequency + 27. 6.00 138. 2 1 { log looping +BLANK card ending frequency cards of "LINE CONSTANTS" data +BLANK card ending "LINE CONSTANTS" data cases +$CLOSE, UNIT=8 STATUS=KEEP { Disconnect file now containing Pi-equivalents +BLANK card ending "SEMLYEN SETUP" data cases +C Transfer [Y] of equivalent Pi for F = 5.0000E+01 Hz. 23-Oct-90 19.45.28 +C 1.151519555275E-3 -1.137441619542E-02 -1.060634758717E-04 3.491463556430E-03 +C 3.537076770591E-4 3.210624087768E-03 -1.060634758717E-04 3.491463556430E-03 +C 2.050900981651E-3 -1.162860843144E-02 -1.060634758717E-04 3.491463556430E-03 +C 3.537076770591E-4 3.210624087768E-03 -1.060634758717E-04 3.491463556430E-03 +C 1.151519555275E-3 -1.137441619542E-02 +C Shunt [Y] of equivalent Pi for F = 5.0000E+01 Hz. +C -8.541869714622E-6 3.665747845891E-04 6.607667284137E-06 -5.660142619185E-05 +C -8.648581530269E-6 -4.295696271522E-05 6.607667284137E-06 -5.660142619185E-05 +C -2.342599469890E-5 3.722080025785E-04 6.607667284137E-06 -5.660142619185E-05 +C -8.648581530269E-6 -4.295696271522E-05 6.607667284137E-06 -5.660142619185E-05 +C -8.541869714623E-6 3.665747845891E-04 +C Transfer [Y] of equivalent Pi for F = 6.0000E+00 Hz. 23-Oct-90 19.45.28 +C 3.262709023195E-2 -7.809118174262E-02 -1.341276675346E-02 2.522775392732E-02 +C -1.150007192882E-2 2.343312809664E-02 -1.341276675346E-02 2.522775392732E-02 +C 3.436831351543E-2 -7.888248987903E-02 -1.341276675347E-02 2.522775392732E-02 +C -1.150007192882E-2 2.343312809664E-02 -1.341276675347E-02 2.522775392732E-02 +C 3.262709023195E-2 -7.809118174262E-02 +C Shunt [Y] of equivalent Pi for F = 6.0000E+00 Hz. +C -3.427096070385E-8 4.377964661972E-05 2.594787689802E-08 -6.855484667815E-06 +C -3.570745329639E-8 -5.136885722574E-06 2.594787689802E-08 -6.855484667815E-06 +C -9.461439943596E-8 4.464722732424E-05 2.594787689809E-08 -6.855484667815E-06 +C -3.570745329639E-8 -5.136885722574E-06 2.594787689809E-08 -6.855484667815E-06 +C -3.427096070393E-8 4.377964661972E-05 +C Transfer [Y] of equivalent Pi for F = 6.0000E+01 Hz. 23-Oct-90 19.45.28 +C 9.441668531285E-4 -9.566451344743E-03 -7.083376044220E-05 2.864853469711E-03 +C 3.766916044259E-4 2.651337447173E-03 -7.083376044220E-05 2.864853469711E-03 +C 1.809395347023E-3 -9.800403930488E-03 -7.083376044219E-05 2.864853469711E-03 +C 3.766916044259E-4 2.651337447173E-03 -7.083376044219E-05 2.864853469711E-03 +C 9.441668531284E-4 -9.566451344743E-03 +C Shunt [Y] of equivalent Pi for F = 6.0000E+01 Hz. +C -1.202671448681E-5 4.408181056666E-04 9.416194169739E-06 -6.772347154278E-05 +C -1.218469464166E-5 -5.164200772177E-05 9.416194169739E-06 -6.772347154278E-05 +C -3.311677630903E-5 4.467905957272E-04 9.416194169739E-06 -6.772347154278E-05 +C -1.218469464166E-5 -5.164200772177E-05 9.416194169739E-06 -6.772347154278E-05 +C -1.202671448681E-5 4.408181056666E-04 +C Transfer [Y] of equivalent Pi for F = 6.0000E+02 Hz. 23-Oct-90 19.45.28 +C -3.712845487162E-3 -5.603787237254E-03 -1.561079196979E-03 4.482090715102E-03 +C -3.184914860379E-3 5.584231439014E-03 -1.561079196979E-03 4.482090715102E-03 +C -4.822417739649E-4 -7.822757815584E-03 -1.561079196979E-03 4.482090715102E-03 +C -3.184914860379E-3 5.584231439014E-03 -1.561079196979E-03 4.482090715102E-03 +C -3.712845487162E-3 -5.603787237254E-03 +C Shunt [Y] of equivalent Pi for F = 6.0000E+02 Hz. +C 7.516929477229E-3 1.093259393216E-02 3.157367799464E-03 -8.756571161718E-03 +C 6.427094062687E-3 -1.089709886987E-02 3.157367799464E-03 -8.756571161718E-03 +C 1.100477005468E-3 1.520008342172E-02 3.157367799464E-03 -8.756571161718E-03 +C 6.427094062687E-3 -1.089709886987E-02 3.157367799464E-03 -8.756571161718E-03 +C 7.516929477229E-3 1.093259393216E-02 +BEGIN NEW DATA CASE +C 3rd of 3 subcases illustrates SEMLYEN SETUP for two of the actual +C 3 phases of the 500-kV line data of the 1st subcase. Results will +C be used in the 4th subcase of DC-41 to illustrate selective branch +C current output. This addition is made 11 December 2000. +SEMLYEN SETUP +$ERASE +BRANCH JDA LMA JDB LMB { Note only 2 of the actual 3 phases are used +TOLERANCES 10 5000. { Illustration only; value of FMED actually unchanged + 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous data +LINE CONSTANTS + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C Following two conductor cards for phase "c" are omitted to create 2-phase line +C 3.3636 .05215 4 1.602 19.25 50. 50. ---- omit phase "c" +C 3.3636 .05215 4 1.602 20.75 50. 50. ---- omit phase "c" + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK card ending conductor cards within "LINE CONSTANTS" data + 27. 5000. 138. { Transient frequency + 27. 60.00 138. { Phasor solution frequency + 27. 6.00 138. 6 20 { log looping +BLANK card ending frequency cards of "LINE CONSTANTS" data +BLANK card ending "LINE CONSTANTS" data cases +$PUNCH +BLANK card ending "SEMLYEN SETUP" data cases +BLANK { Note this extra blank will terminate execution, to avoid 3rd subcase +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BEGIN NEW DATA CASE +C 4th of 4 subcases, not normally executed, is Rule Book example of XXII-D. +C This was 3rd of 3 until 11 December 2000 when preceding subcase was added +SEMLYEN SETUP +$ERASE +BRANCH SORCA LINEA SORCB LINEB SORCC LINEC + 60 80 2 1 7 7777 1637 +LINE CONSTANTS + 1.3159 .192 4 .858 -10.67 31.5 31.5 + 2.3159 .192 4 .858 0.00 31.5 31.5 + 3.3159 .192 4 .858 10.67 31.5 31.5 + 0.5 9.48 4 0.313 -5.33 40.5 40.5 + 0.5 9.48 4 0.313 5.33 40.5 40.5 +BLANK card ending conductor cards within "LINE CONSTANTS" data + 1000. 5000. 18.65 { Transient frequency + 1000. 60.00 18.65 { Phasor solution frequency + 1000. 60.00 18.65 4 21 { log looping +BLANK card ending frequency cards of "LINE CONSTANTS" data +BLANK card ending "LINE CONSTANTS" data cases +$PUNCH +BLANK card ending "SEMLYEN SETUP" data cases +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc3.dat b/benchmarks/dc3.dat new file mode 100644 index 0000000..e815f0b --- /dev/null +++ b/benchmarks/dc3.dat @@ -0,0 +1,633 @@ +BEGIN NEW DATA CASE +$BEGIN PL4 COMMENTS +C BENCHMARK DC-3 +C Energization of 180-mile 3-phase line represented by 18 identical +C Pi-sections. Transposed at 60 and 120 miles, note. XOPT = 3000. +c Note nice DELTAT. For exact "M39." agreement, use 0.4630E-4 +c It is test case DC-54 that uses the plot file for "REPLOT" usage. +c Note this and preceding 2 comment cards illustrate lower-case "$$ +C c" (the third letter of the alphabet). End comment text. +$END PL4 COMMENTS +CHANGE PLOT FREQUENCY +C Beginning 21 March 2010, the ten integers that define either plotting or +C printing frequency may be keyed as a mixture of I8 and E8.0 FORMAT. There +C exist several special cases, however, for large values. Interpretation will +C continue to use 6I6 integers if all can be encoded this way. Examples follow: + 5 5 10 1 { The original alternative has all integers +C Interpretation of this: Plot out : 5 5 10 1 0 0 | ... +C 5 5.E0 10 1 1.E4 9.E5 { Near the limit of interpret +C Interpretation of this: Plot out : 5 5 10 1 10000900000 | ... +C 5 5.E0 10 1 1.E4 1.E9 { Too big a value for interpret +C Interpretation of this: 5 pairs. But a value is too big for I6 display. | ... +C 5 5.E0 10 1 1.E4 2.E9 { Verify largest 32-bit integer +C Interpretation of this: 5 pairs. But a value is too big for I6 display. | ... +C 5 5.E0 10 1 1.E4 2.1E9 { Too big a value for 32 bits +C rejection of this: === Error defining one or more integers of printing or +C plotting frequency. Too big for 32-bit integer storage. Halt in SUBR1. +CUSTOM PLOT FILE { Request for REAL*8 .PL4 file (see July, 1995, newsletter) +$MONITOR { Request time (no other special effect, since not LUNIT6 to disk) +C DISK PLOT DATA { Toggle the Apollo default of LUNIT4 = -4 to +4 (use disk) +C $CLOSE, UNIT=4 STATUS=DELETE { Destroy empty date/time plot file of "SYSDEP" +C $OPEN, UNIT=4 FILE=dc3to54.pl4 FORM=UNFORMATTED STATUS=UNKNOWN RECL=8000 ! +C$ text Beginning 31 August 1994, "C$" in columns 1-2 is taken to be a comment +PRINTED NUMBER WIDTH, 13, 2, + .000050 .010 3000. { XOPT = 3 KHz means reactance in ohms at this freq. +C 1 1 1 1 1 -1 0 2 + 1.E0 1.E0 1 1 1 -1 0 2 +C The preceding integer misc. data card illustrates that either the number +C of steps for printing (cols. 1-8) or the number of steps for plotting +C (cols. 9-16) may be E-field. This is to accomodate values > 1.E8. +C See previous explanation of CHANGE PLOT FREQUENCY. The same procedure is +C applicable to the following card, which modifies printout frequency: +C 5 5 10 10 20 20 { Escalating printout frequency + 5 5.E0 1.E1 10 2.E1 20 { Illustrate some E-field use +$COMMENT { Begin discarding (making invisible) all comment cards +C Ok, immediately we have a comment card, which should not be seen on LUNIT6 + 1GEN-A 1-A 34.372457.68.15781 + 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587 + 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 +C 2nd comment card. This, too, should not be seen on LUNIT6 +$COMMENT { End discarding of comment cards. Once again such cards are visible +C Is this comment card visible? It should be seen on LUNIT6 + 11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first + 21-B 2-B { which has just been inputted. + 31-C 2-C + 12-A 3-A GEN-A 1-A + 22-B 3-B + 32-C 3-C + 13-A 4-A GEN-A 1-A + 23-B 4-B + 33-C 4-C + 14-A 5-A GEN-A 1-A + 24-B 5-B + 34-C 5-C + 15-A 6-A GEN-A 1-A + 25-B 6-B + 35-C 6-C + 16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C + 26-A 7-A + 36-B 7-B + 17-C 8-C GEN-A 1-A + 27-A 8-A + 37-B 8-B + 18-C 9-C GEN-A 1-A + 28-A 9-A + 38-B 9-B + 19-C 10-C GEN-A 1-A + 29-A 10-A + 39-B 10-B + 110-C 11-C GEN-A 1-A + 210-A 11-A + 310-B 11-B + 111-C 12-C GEN-A 1-A + 211-A 12-A + 311-B 12-B + 112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B + 212-C 13-C + 312-A 13-A + 113-B 14-B GEN-A 1-A + 213-C 14-C + 313-A 14-A + 114-B 15-B GEN-A 1-A + 214-C 15-C + 314-A 15-A + 115-B 16-B GEN-A 1-A + 215-C 16-C + 315-A 16-A + 116-B 17-B GEN-A 1-A + 216-C 17-C + 316-A 17-A + 117-B 18-B GEN-A 1-A + 217-C 18-C + 317-A 18-A + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +$MONITOR { Request time (no other special effect, since not LUNIT6 to disk) +C Step Time E-B 18-C 18-B 18-A E-A +C POLE-B POLE-A +C *** Switch "E-A " to "POLE-A" closed after 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 .8771390038 .735053E-17 .754138E-17 -.12623E-16 -.277151E-4 +C 2 .1E-3 .8898949351 .408898E-15 .419476E-15 -.70276E-15 -.42636E-4 +C 3 .15E-3 .9023577997 .111958E-13 .114844E-13 -.19259E-13 -.657706E-4 +C 4 .2E-3 .9141912694 .201088E-12 .206252E-12 -.34623E-12 -.902274E-4 +C 5 .25E-3 .9254563554 .266406E-11 .273221E-11 -.45918E-11 -.11094E-3 +C 10 .5E-3 .9821092355 .5616974E-7 .5757735E-7 -.975638E-7 -.211746E-3 +C 20 .001 1.079796132 .0030080496 .0030756136 -.005532677 -.393566E-3 +BLANK card ending output variables requests (node voltages, here) +$MONITOR { Request time (no other special effect, since not LUNIT6 to disk) +C Final step: 200 .01 0.0 .7226176276 -.887792385 .0782571591 +C Final step continued: .0011948668 -.449544E-3 -.687051E-3 -.687051E-3 +C Variable max : 1.188718074 .8796065581 .1512528782 .0782571591 .0012022221 +C Times of max : .002 .0085 .00525 .01 .00995 +C Variable min : 0.0 -.133205909 -.887792385 -1.27643205 -.79278E-3 +C Times of min : 0.0 .0048 .01 .00525 .0041 + PRINTER PLOT + 144 1. 0.0 10. 18-A 18-B 18-C { Axis limits: (-1.276, 0.880) + 194 1. 0.0 10. GEN-C M-C E-A POLE-A { Axis limits: (-1.105, 1.202) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 6 subcases illustrates $PI which becomes available 14 July 2001. +C This is for scaling Pi-circuit data -- in effect, varying the length of +C the Pi-circuits. Originator of the idea was Dr. Sven Demmig of Bewag +C (power utility of city of Berlin, Germany) as explained in the October, +C 2001 newsletter. Although a cascade connection of sections is typical, +C in fact there is no mandatory association of $PI and cascading. In this +C illustration, consider 4 different and disconnected cascade connections +C of 2 Pi-circuits. The first is unscaled whereas the following 3 involve +C different combinations of scaling. All 4 disconnected subnetworks give +C exactly the same answer because data is either normal or multiplied by +C 2; and if the later, it subsequently is scaled by 1/2, thereby restoring +C the original values. +POWER FREQUENCY 3000. { Avoid warning about unusual XOPT +PRINTED NUMBER WIDTH, 11, 2, + .000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 1 1 1 -1 + 5 5 10 10 20 20 { Escalating printout frequency +C Begin cascading of 3-phase Pi-circuits from DC-3. To establish the right +C answer, we define data params using the 1st section, and then use reference +C branch for the second. So, a total of 6 cells are occupied in List 3: + 1GENA MIDA 34.372457.68.15781 + 2GENB MIDB 35.735164.43-.031538.002451.79.16587 + 3GENC MIDC 35.735164.43-.031537.455151.72-.021938.002451.79.16587 + 1MIDA ENDA GENA MIDA + 2MIDB ENDB + 3MIDC ENDC +C Preceding establishes right answer without scaling. Next, scale. There are +C 3 illustrations. Each is a disconnected circuit that should give the same +C answer as the first. Each of the copies uses scaling in a different way. +C Begin with Pi-circuit data that is double what it should be, so will require +C a scaling factor of a half. Like preceding, this occupies 6 cells of List 3: +$PI, 0.5, { Multiply R, L, and C values of Pi-circuits by this factor + 1GENA MIDD 68.744915.36.31562 + 2GENB MIDE 71.470328.86-.063076.004903.58.33174 + 3GENC MIDF 71.470328.86-.063074.910303.44-.043876.004903.58.33174 +$PI, 1.0, { Cancel preceding scaling; return to normal, unscaled use + 1MIDD ENDD GENA MIDD + 2MIDE ENDE + 3MIDF ENDF +C 2nd of 3 alternatives to the original circuit will define but not use the +C doubled data. Nothing else will be connected to far end (MIDG, H, I). +C Instead, the alternative will consist of 2 scaled copies of this data. +C That makes a total of 3 copies of data, so 18 cells of List 3 are occupied: + 1GENA MIDG 68.744915.36.31562 + 2GENB MIDH 71.470328.86-.063076.004903.58.33174 + 3GENC MIDI 71.470328.86-.063074.910303.44-.043876.004903.58.33174 +$PI, 0.5, { Multiply R, L, and C values of Pi-circuits by this factor + 1GENA MIDJ GENA MIDG + 2GENB MIDK + 3GENC MIDL + 1MIDJ ENDJ GENA MIDG + 2MIDK ENDK + 3MIDL ENDL +C 3rd of 3 alternatives begins (1st half) the same as the preceding second, +C but it ends with the 2nd section a copy of this 1st section. This adds 6 +C more cells for List 3 (for the 1st section only). So, the total burden on +C List 3 is the sum of the 4 parts: 6 + 6 + 18 + 6 = 36 cells. + 1GENA MIDM GENA MIDG + 2GENB MIDN + 3GENC MIDO +$PI, 1.0, { Cancel preceding scaling; return to normal, unscaled use + 1MIDM ENDM GENA MIDM + 2MIDN ENDN + 3MIDO ENDO +BLANK card ending branch cards +BLANK card ending switches +C 14GENA -1.0 60.0 -90.0 +C Note we omit phase "a" (preceding source) to produce great imbalance. Also, +C we will add a steady-state solution, for more generality. As a result, the +C simulation should be pursely sinusoidal. If PRINTER PLOT below is changed +C to CALCOMP PLOT & HPI = 1. msec/inch is changed to .5 (columns 6-7), +C this will be obvious visually. +14GENB -1.0 60.0 -210.0 -1. +14GENC -1.0 60.0 30.0 -1. +$WIDTH, 79, { Request narrow, 80-column LUNIT6 output to minimize phasor print +BLANK card ending sources +C Total network loss P-loss by summing injections = 5.813026183430E-07 +C GENB 1.0 .6605121612E-3 -.4572787068E-4 .3302560806E-3 +C -30.0000000 67.9588504 -.3270749771E-3 -0.1384619 +$WIDTH, 132, { Done with 80 columns, so return to wide, 132-column LUNIT6 output + ENDA ENDD ENDJ ENDM ENDB ENDE ENDK ENDN ENDC +C Step Time ENDA ENDD ENDJ ENDM ENDB ENDE ENDK ENDN ENDC +C 0 0.0 -.0023158 -.0023158 -.0023158 -.0023158 .86301625 .86301625 .86301625 .86301625 -.8705073 +C 1 .5E-4 .00145168 .00145168 .00145168 .00145168 .87229895 .87229895 .87229895 .87229895 -.8609192 +C 2 .1E-3 .00521861 .00521861 .00521861 .00521861 .88127179 .88127179 .88127179 .88127179 -.8510252 +C 3 .15E-3 .00898371 .00898371 .00898371 .00898371 .88993164 .88993164 .88993164 .88993164 -.8408287 +BLANK card ending output variables requests (node voltages, here) +C 100 .005 .19079849 .19079849 .19079849 .19079849 .20945009 .20945009 .20945009 .20945009 .74501057 +C Variable maxima: .19987826 .19987826 .19987826 .19987826 .99771368 .99771368 .99771368 .99771368 .74501057 +C Times of maxima: .0042 .0042 .0042 .0042 .0014 .0014 .0014 .0014 .005 +C Variable minima: -.0023158 -.0023158 -.0023158 -.0023158 .20945009 .20945009 .20945009 .20945009 -.8705073 +C Times of minima: 0.0 0.0 0.0 0.0 .005 .005 .005 .005 0.0 + PRINTER PLOT { Conversion to CALCOMP PLOT would show that curves are smooth + 144 1. 0.0 5.0 -1. 1.0 ENDA ENDB ENDC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 6 subcases illustrates HIGH ORDER PI CIRCUIT as first mentioned +C in the April, 1998, newsletter. Prior to addition on 22 November 2001, +C this data was stored at home as f:\data\highpi.dat Data of this +C subcase is identical to the first; the solution should be identical. +C But instead of data for the 1st Pi-circuit being read from in-line card +C images, it is to be read from a separate disk file. Of course, for 3 +C phases, this is artificially complicated. But for really high order +C (e.g., 400), there should be a big saving when the C-like alternative is +C used. But here, initially, we just illustrate the universal, FORMATTED +C alternative, which stores Pi-circuit data in separate DC3HIGH.DAT The +C use is artificial. Practical use almost always will be C-like. +PRINTED NUMBER WIDTH, 13, 2, + .000050 .010 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 0 0 0 -1 + 5 5 10 10 20 20 { Escalating printout frequency +C 1GEN-A 1-A 34.372457.68.15781 +C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587 +C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 +C The following is FORMATTED. For the C-like alternative, see the 4th subcase. +C HIGH ORDER PI CIRCUIT 3 File=[]dc3high.dat FORM=FORMATTED C-LIKE OUTPUT +C Preceding single card is replaced by following 2-card alternative on +C 9 September 2003. Not only was C-LIKE OUTPUT being chopped on the +C right, there was no space for additional attributes such as REAL*4 +C for single-precision data and $UNITS to apply XOPT and COPT. So now +C 2 or more cards are allowed. Only the last is to carry the file name +C after the File= tag. Tags on the optional preface card are free- +C format but they must be to the right of column 32 (for # of phases): + HIGH ORDER PI CIRCUIT FORM=FORMATTED C-LIKE OUTPUT { Optional card + HIGH ORDER PI CIRCUIT 3 File=[]dc3high.dat +C Note that preceding creates REAL*8 output file dc3high.clk by default. +C The alternative single-precision file dc3high.444 which will be used in +C the following subcase # 5 was created by adding REAL*4 anywhere to the +C right of the input data file name (separate by 1 or more blanks). The +C resulting file then will be 108 bytes in size rather than 180. The +C difference is 3 arrays * 6 elements/array * 4 bytes/element = 72 bytes. +C But 5th subcase also used $UNITS and this requires a change in the code +C see comments near the bottom of SUBR3.SPL + 11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first + 21-B 2-B { which has just been inputted. + 31-C 2-C + 12-A 3-A GEN-A 1-A + 22-B 3-B + 32-C 3-C + 13-A 4-A GEN-A 1-A + 23-B 4-B + 33-C 4-C + 14-A 5-A GEN-A 1-A + 24-B 5-B + 34-C 5-C + 15-A 6-A GEN-A 1-A + 25-B 6-B + 35-C 6-C + 16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C + 26-A 7-A + 36-B 7-B + 17-C 8-C GEN-A 1-A + 27-A 8-A + 37-B 8-B + 18-C 9-C GEN-A 1-A + 28-A 9-A + 38-B 9-B + 19-C 10-C GEN-A 1-A + 29-A 10-A + 39-B 10-B + 110-C 11-C GEN-A 1-A + 210-A 11-A + 310-B 11-B + 111-C 12-C GEN-A 1-A + 211-A 12-A + 311-B 12-B + 112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B + 212-C 13-C + 312-A 13-A + 113-B 14-B GEN-A 1-A + 213-C 14-C + 313-A 14-A + 114-B 15-B GEN-A 1-A + 214-C 15-C + 314-A 15-A + 115-B 16-B GEN-A 1-A + 215-C 16-C + 315-A 16-A + 116-B 17-B GEN-A 1-A + 216-C 17-C + 316-A 17-A + 117-B 18-B GEN-A 1-A + 217-C 18-C + 317-A 18-A + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) +C 100 .005 0.0 -.084110964 -.076310793 -.92825821 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3 +C 120 .006 0.0 .4539217657 .0096691741 -1.01404035 -.10259E-3 -.52007E-3 .0010499755 .0010499755 +C 140 .007 0.0 .6915082663 -.20985407 -.843083014 .6173076E-3 -.951807E-3 .5938305E-3 .5938305E-3 +C 160 .008 0.0 .8512280695 -.465621295 -.605281204 .9350157E-3 -.96575E-3 .1846072E-3 .1846072E-3 +C 180 .009 0.0 .8583902573 -.70840222 -.288190483 .0011711805 -.794874E-3 -.285103E-3 -.285103E-3 +C *** Close switch "M-A " to "GEN-A " after 1.00000000E-02 sec. +C 200 .01 0.0 .7226176276 -.887792385 .0782571591 .0011948668 -.449544E-3 -.687051E-3 -.687051E-3 + PRINTER PLOT +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 6 subcases is the same as the preceding 3rd subcase except for +C two changes. First and most importantly, the C-like alternative is used +C for the data rather than the FORMATTED alternative. Second, the ending +C time T-max has been halved. Solution through T = T-max is identical. +PRINTED NUMBER WIDTH, 13, 2, + .000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 0 0 0 -1 + 5 5 10 10 20 20 { Escalating printout frequency +C 1GEN-A 1-A 34.372457.68.15781 +C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587 +C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 + HIGH ORDER PI CIRCUIT 3 File=[]dc3high.clk { Use default type: C-like + 11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first + 21-B 2-B { which has just been inputted. + 31-C 2-C + 12-A 3-A GEN-A 1-A + 22-B 3-B + 32-C 3-C + 13-A 4-A GEN-A 1-A + 23-B 4-B + 33-C 4-C + 14-A 5-A GEN-A 1-A + 24-B 5-B + 34-C 5-C + 15-A 6-A GEN-A 1-A + 25-B 6-B + 35-C 6-C + 16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C + 26-A 7-A + 36-B 7-B + 17-C 8-C GEN-A 1-A + 27-A 8-A + 37-B 8-B + 18-C 9-C GEN-A 1-A + 28-A 9-A + 38-B 9-B + 19-C 10-C GEN-A 1-A + 29-A 10-A + 39-B 10-B + 110-C 11-C GEN-A 1-A + 210-A 11-A + 310-B 11-B + 111-C 12-C GEN-A 1-A + 211-A 12-A + 311-B 12-B + 112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B + 212-C 13-C + 312-A 13-A + 113-B 14-B GEN-A 1-A + 213-C 14-C + 313-A 14-A + 114-B 15-B GEN-A 1-A + 214-C 15-C + 314-A 15-A + 115-B 16-B GEN-A 1-A + 215-C 16-C + 315-A 16-A + 116-B 17-B GEN-A 1-A + 216-C 17-C + 316-A 17-A + 117-B 18-B GEN-A 1-A + 217-C 18-C + 317-A 18-A + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) +C 80 .004 .8173610312 -.086429015 -.083753604 -.67093214 -.487946E-3 0.0 0.0 .555112E-18 +C 100 .005 0.0 -.084110964 -.076310793 -.92825821 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 6 subcases is the same as the preceding 4th subcase except for +C two changes. First, single precision is used for the C-like Pi-circuit +C data rather than the default REAL*8 alternative. Second, XOPT and COPT +C are to be applied to control units just as for any other branch. Answers +C are very close (REAL*4 input data change 7th or 8 digit of some numbers). +PRINTED NUMBER WIDTH, 13, 2, + .000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 0 0 0 -1 + 5 5 10 10 20 20 { Escalating printout frequency +C 1GEN-A 1-A 34.372457.68.15781 +C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587 +C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 + HIGH ORDER PI CIRCUIT REAL*4 $UNITS { Optional card of attributes +C HIGH ORDER PI CIRCUIT REAL*4 { Optional card of attributes +C HIGH ORDER PI CIRCUIT 3 File=[]dc3high.444 + HIGH ORDER PI CIRCUIT 3 File=[]dc3high.opt + 11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first + 21-B 2-B { which has just been inputted. + 31-C 2-C + 12-A 3-A GEN-A 1-A + 22-B 3-B + 32-C 3-C + 13-A 4-A GEN-A 1-A + 23-B 4-B + 33-C 4-C + 14-A 5-A GEN-A 1-A + 24-B 5-B + 34-C 5-C + 15-A 6-A GEN-A 1-A + 25-B 6-B + 35-C 6-C + 16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C + 26-A 7-A + 36-B 7-B + 17-C 8-C GEN-A 1-A + 27-A 8-A + 37-B 8-B + 18-C 9-C GEN-A 1-A + 28-A 9-A + 38-B 9-B + 19-C 10-C GEN-A 1-A + 29-A 10-A + 39-B 10-B + 110-C 11-C GEN-A 1-A + 210-A 11-A + 310-B 11-B + 111-C 12-C GEN-A 1-A + 211-A 12-A + 311-B 12-B + 112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B + 212-C 13-C + 312-A 13-A + 113-B 14-B GEN-A 1-A + 213-C 14-C + 313-A 14-A + 114-B 15-B GEN-A 1-A + 214-C 15-C + 314-A 15-A + 115-B 16-B GEN-A 1-A + 215-C 16-C + 315-A 16-A + 116-B 17-B GEN-A 1-A + 216-C 17-C + 316-A 17-A + 117-B 18-B GEN-A 1-A + 217-C 18-C + 317-A 18-A + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) +C 80 .004 .8173610397 -.08642902 -.083753607 -.670932147 -.487946E-3 0.0 0.0 .555112E-18 +C 100 .005 0.0 -.084110972 -.076310803 -.928258207 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 6 subcases is the same as the preceding except that the master +C Pi-circuit is defined in user-supplied SUBROUTINE HOPCOD rather than +C in the HOPC disk file. The file name must be "File=HOPCOD." where the +C following file type (001) thus far is being ignored. Later, if 2 or more +C different definitions might be provided in SUBROUTINE HOPCOD, the file +C type will allow selection among 999 of them. Since 5th subcase uses +C REAL*4 data whereas here we use REAL*8 data, expect about 7 digits of +C agreement in the answers. +PRINTED NUMBER WIDTH, 13, 2, + .000050 .005 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 0 0 0 -1 + 5 5 10 10 20 20 { Escalating printout frequency +C 1GEN-A 1-A 34.372457.68.15781 +C 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587 +C 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 + HIGH ORDER PI CIRCUIT 3 File=CODE.001 { Define data in code (not disk) + 11-A 2-A GEN-A 1-A { Sections 2 through 18 are copies of the first + 21-B 2-B { which has just been inputted. + 31-C 2-C + 12-A 3-A GEN-A 1-A + 22-B 3-B + 32-C 3-C + 13-A 4-A GEN-A 1-A + 23-B 4-B + 33-C 4-C + 14-A 5-A GEN-A 1-A + 24-B 5-B + 34-C 5-C + 15-A 6-A GEN-A 1-A + 25-B 6-B + 35-C 6-C + 16-C 7-C GEN-A 1-A { Note transposition: /C/A/B/ rather than /A/B/C + 26-A 7-A + 36-B 7-B + 17-C 8-C GEN-A 1-A + 27-A 8-A + 37-B 8-B + 18-C 9-C GEN-A 1-A + 28-A 9-A + 38-B 9-B + 19-C 10-C GEN-A 1-A + 29-A 10-A + 39-B 10-B + 110-C 11-C GEN-A 1-A + 210-A 11-A + 310-B 11-B + 111-C 12-C GEN-A 1-A + 211-A 12-A + 311-B 12-B + 112-B 13-B GEN-A 1-A { Note 2nd transposition: /B/C/A/ rather than /C/A/B + 212-C 13-C + 312-A 13-A + 113-B 14-B GEN-A 1-A + 213-C 14-C + 313-A 14-A + 114-B 15-B GEN-A 1-A + 214-C 15-C + 314-A 15-A + 115-B 16-B GEN-A 1-A + 215-C 16-C + 315-A 16-A + 116-B 17-B GEN-A 1-A + 216-C 17-C + 316-A 17-A + 117-B 18-B GEN-A 1-A + 217-C 18-C + 317-A 18-A + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) +C 80 .004 .8173610312 -.086429015 -.083753604 -.67093214 -.487946E-3 0.0 0.0 .555112E-18 +C 100 .005 0.0 -.084110964 -.076310793 -.92825821 -.621001E-3 .1845237E-3 .9370288E-3 .9370288E-3 + PRINTER PLOT +BLANK --- extraneous; added here to prove that one or 2 extras are tolerated +BLANK --- extraneous; added here to prove that one or 2 extras are tolerated +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc30.dat b/benchmarks/dc30.dat new file mode 100644 index 0000000..45737b3 --- /dev/null +++ b/benchmarks/dc30.dat @@ -0,0 +1,753 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-30 +C Modeling of circuit-breaker restrike using a valve that is under TACS +C control. The basic electric network model apparently comes from one Carl +C Solver of CIGRE WG 13.02, as pointed out by John D. Sakellariou of the +C Public Power Corporation in Athens, Greece. I (W. Scott Meyer) inserted +C valve and TACS modeling during September of 1977. The user should extend +C TMAX to 1.5 milliseconds in order to see more (including a 3rd restrike). +C This 1st of 8 subcases uses TACS. See the 3rd of 8 for the use of MODELS. +C The 7th of 8 produces the same answer faster using secret relay modeling. + 1.0E-6 3.0E-3 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +TACS HYBRID + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW = BUS2 - BUS3 +99DRIVE = ABS(VSW) +99BREAK = 1.5E+8 * TIMEX + 1.0E+5 +C 99DRIVE = ABS(VSW) + 0.0 +C 98DRIVE = 0.4 * ( ABS(VSW) + 1.E-6 ) ** 3.0 * 2.0 +C 99BREAK = 150000000.0 * TIMEX + 100000.0 +98GRID 51+UNITY BREAK DRIVE +33DUMMY TIMEX UNITY BUS2 BUS3 VSW DRIVE BREAK GRID +BLANK card ends all TACS data + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card terminates electric network branches + BUS2 BUS3 -1. 1.E9 2 +C The following card serves to name the switch following it. To see the +C results of this activity, interactively execute the "SWITCH" command of +C SPY, sending "EXTRA" for the alternative table. Another point: note +C the exclamation point, which is needed to hold lower case within A6 name +C (assuming KINSEN = 1 within STARTUP). + NAME: Valve ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11BUS2R BUS3R 20. GRID 13 +BLANK card ends all switches +14GEN 66500. 50. -2.0508 -1. +BLANK card terminates electric network sources +C Total network loss P-loss by summing injections = -1.885346136987E-07 +C Note: preceding loss figure is meaningless since phasor network is +C lossless. This is floating zero compared with MVA = 1.2E8. +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C BUS2 BUS3 -1.50498397E+01 -4.20286729E+02 4.20556099E+02 +C BUS2R BUS3R Open Open Open +C +C GEN 66457.406175675 66500. -12.86413577453 359.47829718693 +C -2379.740406308 -2.0508000 -359.248048233 -92.0508000 +C +C Step Time BUS2 BUS2R BUS3R BUS2R BUS3 BUS2 +C BUS3 BUS3R BUS3R DUMMY +C +C TACS TACS TACS TACS TACS TACS +C TIMEX UNITY BUS2 BUS3 VSW DRIVE +C *** Phasor I(0) = -1.5049840E+01 Switch "BUS2 " to "BUS3 " closed +C 0 0.0 0.0 0.0 64751.3498 64751.3498 64751.3498 64751.3498 +C 0.0 1.0 0.0 0.0 0.0 0.0 +C *** Open switch "BUS2 " to "BUS3 " after 1.00000000E-06 sec. +C 1 .1E-5 0.0 0.0 64752.0751 64752.0751 64752.0751 64752.0751 +C .1E-5 1.0 64752.0751 64752.0751 0.0 0.0 + 1 { Request for all node voltage outputs +C Valve "BUS2R " to "BUS3R " closing after 3.09000000E-04 sec. +C Valve "BUS2R " to "BUS3R " opening after 3.22000000E-04 sec. +C Valve "BUS2R " to "BUS3R " closing after 4.97000000E-04 sec. +C Valve "BUS2R " to "BUS3R " opening after 5.09000000E-04 sec. +C Last step: 3000 .003 122346.542 122346.542 -88693.149 33653.3927 -88693.149 +C Last step: .003 1.0 33653.3927 -88693.149 122346.542 122346.542 550000. 0.0 +C Variable max:177392.698 177392.698 102764.956 84422.9848 102764.956 84422.9848 +C .003 1.0 84422.9848 102764.956 177392.698 177392.698 +C Times of max: .497E-3 .497E-3 .83E-4 .478E-3 .83E-4 .478E-3 +C .003 0.0 .478E-3 .83E-4 .497E-3 .497E-3 +C Variable min:-54570.793 -54570.793 -93851.678 13809.9875 -93851.678 33212.9087 +C 0.0 1.0 0.0 -93851.678 -54570.793 0.0 +C Times of min: .002745 .002745 .497E-3 .31E-3 .497E-3 .002982 +C 0.0 0.0 0.0 .497E-3 .002745 0.0 + PRINTER PLOT + 184 .1 0.0 1.0 BUS2 BUS3 { Axis limits: (-0.386, 1.774) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 8 subcases illustrates the modeling of a transistor using TACS. +C This is as described by its inventor, Naoto Nagaoka, in his paper entitled +C "Large-signal transistor modeling using the ATP version of EMTP," which +C appeared in the September, 1988, issue of EMTP News. See Sect. IV example + .000010 .003 { Note larger time step (10 times that of paper's graphs) + 1 1 1 1 1 -1 + 5 5 20 20 50 50 +TACS HYBRID +91BASEX { Transistor base current is passed from electric network to TACS +90COLL { Transistor collector voltage is passed from electric network to TACS +90EMIT { Transistor emitter voltage is passed from electric network to TACS +88VCE = COLL - EMIT +88NZERO = 1.E-12 +88BASEC263 NZERO BASEX 1.0 +88COLLCU = BASEC2 * 200. -0.25E-3 + VCE * ( BASEC2**0.947 ) / 1.352 +88EQUIV1 = VCE / COLLCU +88TEMPR = 100. +98EQUIVR63 TEMPR EQUIV1 1.0 +33EQUIVR +77EQUIVR 2775. { Initial condition matches R during phasor solution +BLANK card ending all TACS data cards +91COLL EMIT TACS EQUIVR 3 + NONLIN NAME:Type92 ! { Even tho name could go on next card, use this instead +92BASE EMIT 4444. + -1.0E-3 -10.E3 + 0.0 0.0 + 0.1E-6 0.584 + 1.0E-6 0.613 + 3.0E-6 0.647 + 5.0E-6 0.664 + 10.0E-6 0.682 + 20.0E-6 0.706 + 30.0E-6 0.711 + 9999 + VCC COLL 3900. 1 + COLL OUT 3.0000 + OUT 2200. + EMIT 820.00 + EMIT 10.000 + VCC BASEX 55000. + BASEX 12000. + SINE BASEX 3.0 + SINE 2000. + COLL EMIT NAME PHASOR 2780. { R(0) = 2780 ohms is present for t < 0 only +BLANK card terminates all branch cards + BASEX BASE MEASURING 1 +BLANK card terminates all switch cards +14VCC 12.0 .01 { dc power supply (collector) } -1. +14SINE 40.E-3 1000. -90. { Amplifier input is 1 KHz sine wave +BLANK card terminates source cards of electric network +C Total network loss P-loss by summing injections = 1.067463086805E-02 +C Node-K Node-M I-real I-imag I-magn +C BASEX BASE 0.00000000E+00 1.05879118E-22 1.05879118E-22 +C Gen: VCC 12. 12. .00177910514467 .0017791052761 .01067463086805 +C Gen: 0.0 0.0 .68384076675E-6 0.0220230 -.4103044601E-5 + OUT COLL EMIT BASEX SINE +C Step Time COLL OUT COLL EMIT BASEX SINE +C EMIT +C *** Phasor I(0) = 0.0000000E+00 Switch "BASEX " to "BASE " closed +C 0 0.0 4.4479989 .197916E-5 5.75999803 1.31199913 2.14924482 .180994E-5 +C 1 .1E-4 4.44521153 -.00263941 5.75735464 1.31214311 2.15127714 .002511621 +C 2 .2E-4 .444370671 -3.9987412 1.75822147 1.3138508 2.15282414 .005013329 +C 3 .3E-4 .443906636 -3.9900316 1.76087902 1.31697238 2.15435666 .007495253 +BLANK ending output specification cards +C 300 .003 2.38611281 -1.6984961 3.8051742 1.41906139 2.11753544 .16073E-14 +C maxima : 5.90958724 1.87782143 7.34957934 1.47345869 2.17056873 .04 +C Times max : .00168 .00266 .00167 .00135 .2E-3 .25E-3 +C minima : .426098973 -3.9987412 1.75822147 1.31199913 2.07778426 -.04 +C Times min : .44E-3 .2E-4 .2E-4 0.0 .00275 .75E-3 + PRINTER PLOT + 194 .3 0.0 3.0 TACS EQUIVR { Axis limits: (0.000, 1.731) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 8 subcases is the same as the first except that it uses newer and +C slower MODELS rather than older and faster TACS. + 1.0E-6 3.0E-3 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +MODELS +INPUT bus2 {v(BUS2)}, bus3 {v(BUS3)} +OUTPUT grid +MODEL dc30 + INPUT v2, v3 + VAR grid + OUTPUT grid + EXEC + IF abs(v2-v3)>=1.5e8*t +1e5 THEN grid:=1 ELSE grid:=0 ENDIF + ENDEXEC +ENDMODEL +USE dc30 AS dc30 + INPUT v2:=bus2, v3:=bus3 + OUTPUT grid:=grid +ENDUSE +RECORD + dc30.v2 AS bus2 + dc30.v3 AS bus3 + dc30.grid AS grid +ENDMODELS + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card terminates electric network branches + BUS2 BUS3 -1. 1.E9 2 +11BUS2R BUS3R 20. GRID 13 +BLANK card ends all switches +14GEN 66500. 50. -2.0508 -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses +C --------------+------------------------------ +C GEN |BUS1 * +C BUS1 |TERRA *GEN *BUS2 * +C BUS2 |TERRA *BUS1 *BUS3 *BUS2R * +C BUS3 |TERRA *TERRA *BUS2 *BUS3R * +C BUS2R |BUS2 *BUS3R * +C BUS3R |BUS3 *BUS2R * +C TERRA |BUS1 *BUS2 *BUS3 *BUS3 * +C --------------+------------------------------ +BLANK card terminates electric network sources +C Total network loss P-loss by summing injections = 9.738141670823E-08 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C BUS2 BUS3 -1.50498397E+01 -4.20286729E+02 4.20556099E+02 +C BUS2R BUS3R Open Open Open +C Gen ends: -12.86413577452 359.47829718648 -.3492459655E-9 .119526533815E8 +C Gen ends: -359.2480482325 -92.0508000 .119526533815E8 0.0000000 +C +C Step Time BUS2 BUS2R BUS3R BUS2R BUS3 BUS2 +C BUS3 BUS3R +C +C TACS TACS +C BUS3 GRID +C *** Phasor I(0) = -1.5049840E+01 Switch "BUS2 " to "BUS3 " closed +C 0 0.0 0.0 0.0 64751.3498 64751.3498 64751.3498 64751.3498 +C 64751.3498 0.0 +C *** Open switch "BUS2 " to "BUS3 " after 1.00000000E-06 sec. +C 1 .1E-5 0.0 0.0 64752.0751 64752.0751 64752.0751 64752.0751 +C 64752.0751 0.0 + 1 +C 3000 .003 122346.542 122346.542 -88693.149 33653.3927 -88693.149 33653.3927 +C -88693.149 0.0 +C Variabl max: 177392.698 177392.698 102764.956 84422.9848 102764.956 84422.9848 +C 102764.956 1.0 +C Times of max: .497E-3 .497E-3 .83E-4 .478E-3 .83E-4 .478E-3 +C .83E-4 .309E-3 +C Variabl min: -54570.793 -54570.793 -93851.678 13809.9875 -93851.678 33212.9087 +C -93851.678 0.0 +C Times of min: .002745 .002745 .497E-3 .31E-3 .497E-3 .002982 +C .497E-3 0.0 + PRINTER PLOT + 184 .1 0.0 1.0 BUS2 BUS3 { Axis limits: (-0.386, 1.774) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 8 subcases is the same as the first and the third, except that +C it uses both TACS and MODELS. The voltages BUS2 and BUS3 are input to TACS. +C VSW is output from TACS and input to MODELS. GRID is output from MODELS. +C Compare values at t=0 with 3rd subcase. Ending time TMAX should be +C extended to 3 msec if all 3000 steps are desired. Here, to save time +C (because MODELS simulates very slowly), only 600 steps will be simulated. +C 18 January 2003, add both the new Type-27 TACS source and the following +C optional request for timing. Note that the 6th subcase has the source, +C but not the declaration. As a result, dT-size differences will exist +C for the signals that are passed between TACS and MODELS. +MODELS BEFORE TACS { Reverse the default order of computation at each time step + 1.0E-6 0.6E-3 + 1 1 0 0 1 -1 + 5 5 20 20 100 100 +TACS HYBRID + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW = BUS2 - BUS3 +27DV { MODELS variable DV will define Type-27 TACS source of the same name +33BUS2 BUS3 VSW DV +BLANK card ends all TACS data +MODELS +INPUT deltav {TACS(vsw)} +OUTPUT grid +MODEL dc30 + INPUT dv + VAR grid + OUTPUT grid + EXEC + IF abs(dv)>=1.5e8*t +1e5 THEN grid:=1 ELSE grid:=0 ENDIF + ENDEXEC +ENDMODEL +USE dc30 AS dc30 + INPUT dv:=deltav + OUTPUT grid:=grid +ENDUSE +RECORD + dc30.dv AS dv +ENDMODELS + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card terminates electric network branches + BUS2 BUS3 -1. 1.E9 +C The following card serves to name the switch following it. To see the +C results of this activity, interactively execute the "SWITCH" command of +C SPY, sending "EXTRA" for the alternative table. Another point: note +C the exclamation point, which is needed to hold lower case within A6 name +C (assuming KINSEN = 1 within STARTUP). + NAME: Valve ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11BUS2R BUS3R 20. GRID 12 +BLANK card ends all switches +14GEN 66500. 50. -2.0508 -1. +BLANK card terminates electric network sources +C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Next 1 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time BUS2R TACS TACS TACS TACS MODELS +C BUS3R BUS2 BUS3 VSW DV DV +C *** Phasor I(0) = -1.5049840E+01 Switch "BUS2 " to "BUS3 " closed in the steady-state. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C *** Open switch "BUS2 " to "BUS3 " after 1.00000000E-06 sec. +C 1 .1E-5 0.0 64752.0751 64752.0751 0.0 0.0 0.0 +C 2 .2E-5 -506.98951 64680.6667 65187.6562 -506.98951 0.0 0.0 +C 3 .3E-5 -1509.364 64544.7937 66054.1577 -1509.364 -506.98951 -506.98951 +C 4 .4E-5 -2482.2238 64430.506 66912.7297 -2482.2238 -1509.364 -1509.364 +BLANK card ending node voltage request +C 300 .3E-3 139427.112 64952.7749 -74474.337 139427.112 138735.778 138735.778 +C Valve "BUS2R " to "BUS3R " closing after 3.10000000E-04 sec. +C Valve "BUS2R " to "BUS3R " opening after 3.23000000E-04 sec. +C 400 .4E-3 80675.1617 83379.4041 2704.24245 80675.1617 77287.9568 77287.9568 +C Valve "BUS2R " to "BUS3R " closing after 4.99000000E-04 sec. +C 500 .5E-3 0.0 73856.3228 -30892.73 104749.053 178498.741 178498.741 +C Valve "BUS2R " to "BUS3R " opening after 5.03000000E-04 sec. +C 600 .6E-3 77132.9224 58368.5333 -18764.389 77132.9224 77569.8407 77569.8407 +C Variable maxima : 178498.741 84889.8318 102764.956 178498.741 178498.741 178498.741 +C Times of maxima : .499E-3 .499E-3 .83E-4 .499E-3 .5E-3 .5E-3 +C Variable minima : -38620.899 0.0 -93608.909 -38620.899 -38620.899 -38620.899 +C Times of minima : .85E-4 0.0 .499E-3 .85E-4 .86E-4 .86E-4 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 8 subcases is the same as the 1st (using TACS only) except that +C it uses the pocket calculator in place of Dube's logic for supplemental +C variables. Answers should be identical except for roundoff error. Since +C the same as 1st subcase, connectivity and phasor outputs will be omitted +C as well as plotting. +C TACS ASSEMBLY LANGUAGE { Temporary request for use of pocket calculator +TACS POCKET CALCULATOR { 12 January 2001, this new line replaces preceding + 1.0E-6 .000600 + 1 1 0 0 0 -1 + 5 5 20 20 100 100 +TACS HYBRID + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW = BUS2 - BUS3 +99DRIVE = ABS(VSW) +99BREAK = 1.5E+8 * TIMEX + 1.0E+5 +98GRID 51+UNITY BREAK DRIVE +33DUMMY TIMEX UNITY BUS2 BUS3 VSW DRIVE BREAK GRID +BLANK card ends all TACS data + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card terminates electric network branches + BUS2 BUS3 -1. 1.E9 2 + NAME: Valve ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11BUS2R BUS3R 20. GRID 13 +BLANK card ends all switches +14GEN 66500. 50. -2.0508 -1. +BLANK card terminates electric network sources + 1 { Request for all node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 8 subcases is the same as the 4th, except that it demonstrates +C the sorting of TACS and MODELS data using /TACS and /MODELS requests. +C Created 3 July 1998, this should be mentioned in the July newsletter +C (see "Furnas" or "DC-30"). +C 18 January 2003, add both the new Type-27 TACS source. Note that the +C 4th subcase is modified similarly. In addition, MODELS BEFORE TACS was +C added to the 4th subcase, but not here. As a result, dT-size differences +C will exist for the signals that are passed between TACS and MODELS. + 1.E-6 5.E-6 { Only take 5 steps; these are plenty for illustration + 1 -1 +TACS HYBRID { Request to begin TACS data appears just once +/MODELS +MODELS { Request to begin MODELS data appears just once +C End of fixed data. Begin variable /-cards, which can appear in any +C order. To illustrate that TACS data really will be sorted to precede +C MODELS data, note that /TACS follows /MODELS in the following. +C I.e., we rely on /-card sorting to correct this. TACS data is +C separate and distinct from MODELS data just as branch data is +C separate and distinct from switch or source data. +/MODELS +INPUT deltav {TACS(vsw)} +OUTPUT grid +MODEL dc30 + INPUT dv + VAR grid + OUTPUT grid + EXEC + IF abs(dv)>=1.5e8*t +1e5 THEN grid:=1 ELSE grid:=0 ENDIF + ENDEXEC +ENDMODEL +USE dc30 AS dc30 + INPUT dv:=deltav + OUTPUT grid:=grid +ENDUSE +RECORD + dc30.dv AS dv +/TACS + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW = BUS2 - BUS3 +27DV { MODELS variable DV will define Type-27 TACS source of the same name +33BUS2 BUS3 VSW DV +/BRANCH + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +/SWITCH + BUS2 BUS3 -1. 1.E9 + NAME: Valve ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11BUS2R BUS3R 20. GRID 12 +/SOURCE +14GEN 66500. 50. -2.0508 -1. +/OUTPUT +C Step Time BUS2R TACS TACS TACS TACS MODELS +C BUS3R BUS2 BUS3 VSW DV DV +C *** Phasor I(0) = -1.5049840E+01 Switch "BUS2 " to "BUS3 " closed in the steady-state. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C *** Open switch "BUS2 " to "BUS3 " after 1.00000000E-06 sec. +C 1 .1E-5 0.0 64752.0751 64752.0751 0.0 0.0 0.0 +C 2 .2E-5 -506.98951 64680.6667 65187.6562 -506.98951 0.0 -506.98951 +C 3 .3E-5 -1509.364 64544.7937 66054.1577 -1509.364 -506.98951 -1509.364 +C 4 .4E-5 -2482.2238 64430.506 66912.7297 -2482.2238 -1509.364 -2482.2238 +C 5 .5E-5 -3414.3602 64348.9091 67763.2693 -3414.3602 -2482.2238 -3414.3602 +C End of /-card data. The only thing that remains are the various blank +C cards that terminate the various data classes. Note the one for MODELS +C (optional for MODELS, but necessary for sorting): +BLANK card terminates all TACS data +BLANK card ends all MODELS data +ENDMODELS +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +C Comment about 6 lines above. Note ENDMODELS has like the initiation +C word MODELS: there is only one of them, and has nothing to do with +C the actual modeling. It is part of the structure in which actual data +C is carried. Normally, ENDMODELS would precede the blank card ending +C MODELS, but with sorting that is not possible. /-card sorting will +C put the actual data there. If we raise ENDMODELS line by one row, +C it would precede all real MODELS data, and that would be completely +C wrong. So, we put it after the blank. Recall MODELS ignores blank +C lines, so the blank card ending MODELS is ignored. It is essential +C to the sorting, but then is ignored by MODELS itself. Since it was +C optional, anyway, this works well. +BEGIN NEW DATA CASE +C 7th of 8 subcases is the same as the 1st (using TACS only) except that +C it uses secret relay modeling in place of Dube's logic for supplemental +C variables. Answers should be identical except for possible roundoff error +C and the more serious logic difference between a valve and a switch. Every +C time step between 320 and 520 is printed to show time steps 322 and 509 +C at which the output current differs. The 1st of these enters minima, to +C make one line different. These are merely isolated output differences +C between an ATP switch and an ATP valve; in fact, internal solution signals +C are identical. Except for the lines mentioned, dT-loop output is identical. +C Let's document the first difference. Relay modeling produces this: +C *** Open switch "BUS2R " to "BUS3R " after 3.22000000E-04 sec. +C 322 .322E-3 -12.461019 ... 66357.9825 0.0 +C whereas the original TACS modeling produces the following output: +C Valve "BUS2R " to "BUS3R " opening after 3.22000000E-04 sec. +C 322 .322E-3 -12.461019 ... 66357.9825 -.25597819 +C The relay modeling, using a switch, shows output that has been forced to +C zero whereas the valve modeling shows the illegal reverse current (less +C than the 20-amp I-epsilon threshold) that prompted the opening. This value +C -.25597819 is the only way that extrema differ (relay modeling has zero). +C About simulation speed, this relay modeling should be the fastest by far. +C Use of MODELS is shockingly slow, TACS is what it is, and the new relay +C modeling should be faster than compiled TACS, so perhaps 10 times faster +C than conventional (not compiled) TACS. Begin with the CSRM request. This +C precedes the list of relay connections. IRELAY is to be a positive integer +C if not blank or zero. This is the sampling multiple (here, unity): +C 345678901234567890123456789012<-IRELAY { Ruler for sampling multiple in 33-40. +CONNECT SECRET RELAY MODELS 1 { This is optional (a blank or 0 ==> 1) +C The A10 relay name "DC-30H " in the middle of 3 data lines below serves +C only to select logic for the 8th subcase rather than the 7th. This is not +C at all realistic. For real use, the name typically would select different +C relay logic from a catalog of available relay types offered by some vendor. +C Input 2A6 names Name of 2A6 names of +C class of variable relay ATP switch +C A15 >< A6 >< A6 > < A10 >< A6 >< A6 > { Ruler for data. A15, 2A6, A10, ... +Branch voltage BUS2 BUS3 DC-30g BUS2R BUS3R { Use relay named DC-30g, 1 input V, ... +END RELAY CONNECTIONS { End indeterminate list of connections to secret relays + 1.0E-6 3.0E-3 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 320 1 520 20 + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card terminates electric network branches + BUS2 BUS3 -1. 1.E9 2 +C Preceding 1st of 2 switches is unchanged. The 2nd is modified as follows: +C 11BUS2R BUS3R 20. { Valve of DC-30 } GRID 13 +C Switch data: T-close T-open I-epsiln --- ruler for a Type-0 switch + BUS2R BUS3R 999. 0.0 20. 3 +C The type code has changed from 11 to 0. The same 20 amps of current margin +C is used, although columns differ (valve vs. time-controlled switch). Note +C T-close = 999. in columns 15-24 simply is a large time that never will be +C reached. Were it not for the relay logic, this switch would remain open +C for the entire simulation. T-open is not used (will be set internally), +C so can be left blank or zero. The current margin does make a difference; +C if erased or set to zero, opening would be delayed by several time steps. +BLANK card ends all switches +14GEN 66500. 50. -2.0508 -1. +BLANK card terminates electric network sources + 1 { Request for all node voltage outputs + PRINTER PLOT + 184 .1 0.0 1.0 BUS2 BUS3 { Axis limits: (-0.386, 1.774) +BLANK card ending plot cards +$DISABLE +BEGIN NEW DATA CASE +C BENCHMARK DC-30, chopped. TACS outputs (the "33" card) have been +C eliminated for easy comparison using Mike Albert's freeware FC. It +C is informative to compare output of this with output of 7th subcase. + 1.0E-6 3.0E-3 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 320 1 520 20 +TACS HYBRID + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW = BUS2 - BUS3 +99DRIVE = ABS(VSW) +99BREAK = 1.5E+8 * TIMEX + 1.0E+5 +98GRID 51+UNITY BREAK DRIVE +C 33DUMMY TIMEX UNITY BUS2 BUS3 VSW DRIVE BREAK GRID +BLANK card ends all TACS data + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card terminates electric network branches + BUS2 BUS3 -1. 1.E9 2 + NAME: Valve ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11BUS2R BUS3R 20. GRID 13 +BLANK card ends all switches +14GEN 66500. 50. -2.0508 -1. +BLANK card terminates electric network sources + 1 { Request for all node voltage outputs + PRINTER PLOT + 184 .1 0.0 1.0 BUS2 BUS3 { Axis limits: (-0.386, 1.774) +BLANK card ending plot cards +$ENABLE +BEGIN NEW DATA CASE +C 8th of 8 subcases continues with external relay modeling. Unlike the +C preceding subcase, this has multiple relays with multiple inputs and +C multiple outputs (i.e., a relay controls more than 1 circuit breaker). +C 20 steps of 1 msec are taken to traverse one 50-Hz cycle. +PRINTED NUMBER WIDTH, 9, 2, { Request maximum precision (for 12 output columns) +CONNECT SECRET RELAY MODELS { Request that precedes list of relay connections +C The A10 relay name "DC-30H " in the middle of 3 data lines below serves +C only to select logic for the 8th subcase rather than the 7th. This is not +C at all realistic. For real use, the name typically would select different +C relay logic from a catalog of available relay types offered by some vendor. +C Input 2A6 names Name of 2A6 names of +C class of variable relay ATP switch +C A15 >< A6 >< A6 > < A10 >< A6 >< A6 > { Ruler for data. A15, 2A6, A10, ... +DIAGNOSTIC 9 { Debug print just for relays is located as if overlay 1 +Branch voltage REC DC-30H SEND REC { Relay 1, input is node voltage REC + GEN EXTRA { 2nd output for preceding relay # 1 +Switch current GEN SWIT DC-30H NAME: BREAK2 { Relay 2, input current GEN to SWIT +C Preceding "NAME: BREAK2" could just as well be replaced by "SWIT SEND " +Branch voltage GEN SEND { 2nd input for preceding relay is voltage +Branch voltage REC DC-30H EXTRA PLUS { Relay 3, input is node voltage REC +Switch status SEND SWIT { 2nd input for preceding is switch status +Output signal SEND REC { 3rd input for preceding is output vector +R-L-C current PLUS { 4th input ... is current of series R-L-C +Switch power GEN SWIT DC-30H GEN SWIT { Relay 4, input is power GEN to SWIT +R-L-C power PLUS { 2nd input for preceding is R-L-C power +C 3456789012345678901234567890123456789012345678901 +C TACS signal --- 1st of 2 relay input request words that is not illustrated +C MODELS signal --- 2nd of 2 relay input request words that is not illustrated +END RELAY CONNECTIONS { End indeterminate list of connections to secret relays +C The preceding addresses relay connections that are under user control. In +C addition, there might be hidden connections that are built into a relay. +C This is illustrated for Relay 3, which has two such special outputs. 1st, +C in the .LIS file, there will be seen two lines that confirm any change +C of switch status of that 2nd input to Relay 3. Look for 2 such messages: +C After step 5: Notice from model of relay 3: switch has just opened. +C After step 19: Notice from model of relay 3: switch has just closed. +C Also seen in the .LIS file, and also present in any .PL4 file of plot +C points, will be one appended signal. In the dT-loop heading, this is +C identified by the pair of names RELAY3 and SIGNAL. The 1st of these +C names is built by ATP, and indicates an appended signal from relay # 3. +C The 2nd name comes from the code for relay # 3. It is built in code. +C In this case, relay input number 5 simply is passed back as the relay +C signal. About interpretation of CSRM data, the 10-character relay name +C normally will be confirmed within quotation marks. That is if there is +C no appended signal. A relay that has an appended signal will have the +C A10 relay name replaced by (A6) followed by the 6-character variable +C name. For this data, look for "(A6)SIGNAL" where SIGNAL is the +C second of the two names that identify the appended output variable. +C Relay # 4 is particularly degenerate in that it has no associated relay +C logic! Yes, it has an output (a switch), but code will never send a +C signal to that switch. Those 2 inputs (numbers 7 and 8) were defined +C by relay 4, but in fact they are not used by any relay code. Values +C are selectively documented, one time step for each: +C Relay 4 documents relay input # 7 = switch power = 0.26967E+01 +C Relay 4 documents relay input # 8 = series R-L-C power = 0.24811E+02 + .001 .020 { Take 20 1-msec steps through the 20 msec of a 50-Hz cycle + 1 1 1 0 1 + GEN SWIT 6.0 + SWIT SEND 1.0 + SEND REC 2.0 1 + REC 1.0 + EXTRA PLUS 1.0 { Extra resistance will be shorted at 12 msec + PLUS 1.0 5.0 { Mostly-inductive branch delays zero} 1 +BLANK card terminates electric network branches +C Switch data: T-close T-open I-epsiln --- ruler for a Type-0 switch + GEN SWIT -1. 999. 0.0 3 +C A6 name BREAK2 applies to the following switch. It is used by relay input: + NAME: BREAK2 { Request "NAME: " of cols. 3-8 precedes A6 switch name in 9-14 + SWIT SEND -1. 999. .001 3 + SEND REC 999. 0.0 0.0 2 + GEN EXTRA 999. 0.0 0.0 3 + EXTRA PLUS -1. 999. 0.0 3 +C Note about preceding switch (SEND, REC) which has the exceptional output +C request "2" in col. 80, so just switch voltage. Originally, this was a +C "3" for both voltage and current, and the series R-L-C branch having the +C same names (so in parallel) had no output request. I.e., originally it was +C a branch and not a switch current that was displayed. But this was not as +C interesting when passed back from the relay as an appended output. As a +C switch current, it agreed with the original. But as a branch current, one +C will note a one time-step delay. In general, an OUTPUT request might be +C stale by one dT (it depends on the variable). This illustrates the problem. +C This illustrates that for a series R-L-C branch, one time step is lost as +C the output is passed to the relay & back again. Not so for switch current. +C The 2 right-most cols. of dT-loop output make the delay immediately obvious. +C An implied detail of a relay OUTPUT request is this: it is output vector +C current, not voltage, that will be fed to relays. In terms of batch- +C mode plotting, this is Type 9 not 8 (branch voltage) or 4 (node voltage). +C There is no loss of generality since only current is of interest. Voltage +C is available via a VOLTAGE request, so one never would need to go to the +C output vector to find it. +BLANK card ends all switches +14GEN 10.0 50. 0.0 -1. +BLANK card terminates electric network sources +C <<<< Next, show delayed input that is associated with preceding CONNECT SECRET RELAY MODELS declaration. +C Debug printout control as if overlay 1 (col. 22) |DIAGNOSTIC 9 { Debug print just for relays is located as if overlay 1 +C Relay 1. "DC-30H " Input # 1 Switch # 3 |Branch voltage REC DC-30H SEND REC { Relay 1, input is node volt +C Continuation. Switch # 4 | GEN EXTRA { 2nd output for preceding re +C Relay 2. "DC-30H " Input # 2 Switch # 2 |Switch current GEN SWIT DC-30H NAME: BREAK2 { Relay 2, input current GEN +C Continuation. Input # 3 |Branch voltage GEN SEND { 2nd input for preceding relay is +C Relay 3. "(A6)SIGNAL" Input # 1 Switch # 5 |Branch voltage REC DC-30H EXTRA PLUS { Relay 3, input is node volt +C Continuation. Input # 4 |Switch status SEND SWIT { 2nd input for preceding is switch +C Continuation. Input # 5 |Output signal SEND REC { 3rd input for preceding is output +C Continuation. Input # 6 |R-L-C current PLUS { 4th input ... is current of serie +C Relay 4. "DC-30H " Input # 7 Switch # 1 |Switch power GEN SWIT DC-30H GEN SWIT { Relay 4, input power GEN to +C Continuation. Input # 8 |R-L-C power PLUS { 2nd input for preceding is R-L-C +C Terminator of external relay connection data. |END RELAY CONNECTIONS { End indeterminate list of connections to secret relays +C <<<< End of insertion that is associated with delayed input of external relay connections. All relay names were recognized. +C Column headings for the 12 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 5 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 6 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time GEN SWIT SEND GEN EXTRA GEN SWIT GEN EXTRA SEND PLUS RELAY3 +C SWIT SEND REC EXTRA PLUS SWIT SEND EXTRA PLUS REC TERRA SIGNAL +C *** Phasor I(0) = 3.3333333E+00 Switch "GEN " to "SWIT " closed in the steady-state. +C *** Phasor I(0) = 3.3333333E+00 Switch "SWIT " to "SEND " closed in the steady-state. +C *** Phasor I(0) = 0.0000000E+00 Switch "EXTRA " to "PLUS " closed in the steady-state. +C 0 0.0 0.0 0.0 6.66667 10. 0.0 3.33333 3.33333 0.0 0.0 3.33333 0.0 0.0 +C *** External relay number 2 permits circuit breaker from "SWIT " to "SEND " to open after time T = 1.00000000E-03 sec. +C 1 .1E-2 0.0 0.0 6.34038 9.51057 0.0 3.17019 3.17019 0.0 0.0 3.17019 0.0 3.33333 +C Relay 4 documents relay input # 7 = switch power = 0.26967E+01 +C 2 .002 0.0 0.0 5.39345 8.09017 0.0 2.69672 2.69672 0.0 0.0 2.69672 0.0 3.17019 +C 3 .003 0.0 0.0 3.91857 5.87785 0.0 1.95928 1.95928 0.0 0.0 1.95928 0.0 2.69672 +BLANK card ending node voltage outputs +C 4 .004 0.0 0.0 2.06011 3.09017 0.0 1.03006 1.03006 0.0 0.0 1.03006 0.0 1.95928 +C *** Open switch "SWIT " to "SEND " after 5.00000000E-03 sec. +C Notice from model of relay 3: switch has just opened. +C 5 .005 0.0 0.0 -.3E-15 -.4E-15 0.0 -.1E-15 0.0 0.0 0.0 -.1E-15 0.0 1.03006 +C 6 .006 0.0 -.77254 -1.5451 -3.0902 0.0 -.77254 0.0 0.0 0.0 -.77254 0.0 -.1E-15 +C 7 .007 0.0 -1.4695 -2.9389 -5.8779 0.0 -1.4695 0.0 0.0 0.0 -1.4695 0.0 -.77254 +C *** External relay number 1 forces circuit breaker from "SEND " to "REC " to close after time T = 8.00000000E-03 sec. +C The same relay forces circuit breaker from "GEN " to "EXTRA " to close at this same time. +C 8 .008 0.0 -2.0225 -4.0451 -8.0902 0.0 -2.0225 0.0 0.0 0.0 -2.0225 0.0 -1.4695 +C 9 .009 0.0 -4.7553 0.0 0.0 0.0 -4.7553 0.0 -.8646 -.8646 0.0 -.8646 -2.0225 +C Relay 4 documents relay input # 8 = series R-L-C power = 0.24811E+02 +C 10 .01 0.0 -5. 0.0 0.0 0.0 -5. 0.0 -2.4811 -2.4811 0.0 -2.4811 0.0 +C Notice from model of relay 3 : series R-L-C branch current first exceeds 3 amperes at time 11.0 milliseconds. +C 11 .011 0.0 -4.7553 0.0 0.0 0.0 -4.7553 0.0 -3.8037 -3.8037 0.0 -3.8037 0.0 +C 12 .012 0.0 -4.0451 0.0 0.0 0.0 -4.0451 0.0 -4.7122 -4.7122 0.0 -4.7122 0.0 +C *** External relay number 3 forces circuit breaker from "EXTRA " to "PLUS " to open after time T = 1.30000000E-02 sec. +C 13 .013 0.0 -2.9389 0.0 0.0 0.0 -2.9389 0.0 -5.1252 -5.1252 0.0 -5.1252 0.0 +C 14 .014 0.0 -1.5451 0.0 0.0 -4.5913 -1.5451 0.0 -4.5913 0.0 0.0 -4.5913 0.0 +C *** Open switch "SEND " to "REC " after 1.50000000E-02 sec. +C 15 .015 0.0 .1E-13 0.0 0.0 -3.3183 .1E-13 0.0 -3.3183 0.0 0.0 -3.3183 0.0 +C 16 .016 0.0 .772542 1.54508 0.0 -1.9547 .772542 0.0 -1.9547 0.0 .772542 -1.9547 0.0 +C 17 .017 0.0 1.46946 2.93893 0.0 -.55581 1.46946 0.0 -.55581 0.0 1.46946 -.55581 .772542 +C *** Open switch "GEN " to "EXTRA " after 1.80000000E-02 sec. +C 18 .018 0.0 2.02254 4.04508 0.0 .793462 2.02254 0.0 0.0 0.0 2.02254 .793462 1.46946 +C *** External relay number 2 forces circuit breaker from "SWIT " to "SEND " to close after time T = 1.90000000E-02 sec. +C 19 .019 0.0 2.37764 4.75528 23.9484 0.0 2.37764 0.0 0.0 0.0 2.37764 -.1E-14 2.02254 +C Notice from model of relay 3: switch has just closed. +C 20 .02 0.0 0.0 6.66667 -4.4379 0.0 3.33333 3.33333 0.0 0.0 3.33333 .14E-14 2.37764 +C Variable maxima : 0.0 2.37764 6.66667 23.9484 .793462 3.33333 3.33333 0.0 0.0 3.33333 .793462 3.33333 +C Times of maxima : 0.0 .019 0.0 .019 .018 .02 0.0 0.0 0.0 0.0 .018 .1E-2 +C Variable minima : 0.0 -5. -4.0451 -8.0902 -4.5913 -5. 0.0 -5.1252 -5.1252 -2.0225 -5.1252 -2.0225 +C Times of minima : 0.0 .01 .008 .008 .014 .01 .005 .013 .013 .008 .013 .009 + PRINTER PLOT +C So, what relay logic produced the preceding? Very simple and artificial. +C Logic will be summarized here in words, for completeness: +C Relay 1. It uses 1st of 8 relay inputs, which is a branch voltage. If +C the relay already has closed, input is ignored. If not, a +C voltage less than or equal to -2.0 will close the relay. +C Relay 2. It uses 2nd of 8 relay inputs, which is a switch current. If +C the initially-closed relay waits to open, and if current is +C greater than or equal to 2.1, the relay opens. If relay is +C open, wait until time reaches or exceeds 19 msec to reclose. +C Once reclosed, it stays closed. +C Relay 3. It uses 4th of 8 relay inputs, which is a switch status, +C to issue those messages about opening or closing (2 messages). +C It uses 5th of 8 relay inputs, which is current of the output +C vector, as a variable that ATP will append to its output vector. +C It uses 6th of 8 relay inputs, which is current of series R-L-C, +C to produce output when it first exceeds 3 amperes. About opening, +C (relay 3 begins closed), this is allowed beginning at 12 msec. +C Relay 4. No logic. It switches nothing. It just documents inputs 7 & 8. +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc31.dat b/benchmarks/dc31.dat new file mode 100644 index 0000000..4b6aa3d --- /dev/null +++ b/benchmarks/dc31.dat @@ -0,0 +1,486 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-31 +C Simulation of single-line-to-ground-fault on the open receiving end of the +C single-circuit, 138-mile, 500-kV overhead line that connects "John Day" +C with "lower monumental" (BPA substations). Semlyen representation from +C DC-29 is used for the line. See DCNEW-4 for the corresponding Marti +C simulation. See Rule Book Ref. 3 for further description. Yet observe +C that source angles and the instant of fault initiation do not correspond. +C There are a total of 3 subcases, with two following unrelated to this +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .050 60. 60. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 + JDGA JDA 14. 1 + JDGB JDB 14. + JDGC JDC 14. +C L= 138.0MILES, RHO= 27.0, SS FREQ= 60.00, NSS=0, KFIT= 0, KPS=2, KYC=10 +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C +C 27. 5000. 1 138. +C 27. 60.00 1 138. +C 27. 6.00 1 138. 6 20 +C +-1JDA LMA 0.55456E-02 0.77998E-03 1 1 2 2 3 + 0.14938602E+02 0.90516313E+02-0.16261865E-03 0.14500324E-02 0.60000000E+02 + 0.00000E+00 0.15161E+05 0.75119E+00 0.00000E+00 0.17105E+04 0.24881E+00 + 0.00000E+00 0.59584E+03-0.11954E-02 0.00000E+00 0.39933E+05-0.74162E-03 +-1JDB LMB 0.74392E-02 0.74149E-03 2 2 2 2 3 + 0.83801231E+00 0.38634735E+02-0.44536501E-04 0.20637999E-02 0.60000000E+02 + 0.00000E+00 0.26608E+06 0.83767E+00 0.00000E+00 0.35627E+05 0.16233E+00 + 0.00000E+00 0.13630E+03-0.49171E-03 0.00000E+00 0.32940E+05-0.75349E-04 +-1JDC LMC 0.42823E-02 0.74017E-03 3 3 2 2 3 + 0.26535168E+01 0.67894100E+02-0.45225808E-04 0.11682248E-02 0.60000000E+02 + 0.00000E+00 0.61698E+06 0.90903E+00 0.00000E+00 0.15239E+05 0.90969E-01 + 0.00000E+00 0.25667E+03-0.34465E-03 0.00000E+00 0.11831E+05-0.28233E-04 + 0.10000E+01 0.00000E+00 0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00 + 0.71114E+00 0.00000E+00-0.41983E-15 0.00000E+00 0.10000E+01 0.00000E+00 + 0.10000E+01 0.00000E+00-0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00 + 0.42027E+00 0.00000E+00 0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00 + 0.22471E+00 0.00000E+00-0.27373E-15 0.00000E+00 0.84054E+00 0.00000E+00 + 0.42027E+00 0.00000E+00-0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00 +C Note: the preceding branch cards are old. If produced by SEMLYEN SETUP +C on or after 27 November 2000, the low precision [Tv] and [Ti] would +C be replaced by high precision for the real parts only. This can be +C seen from current output of DC-29. 6E12.5 ---> 3E26.18 We retain +C the old branch cards in this subcase to demonstrate that such old data +C continues to remain compatible. See NO IMAGINARY PART as is being +C written about for the April, 2001, newsletter. To see use of the new +C wide format for [Tv] and [Ti], see DC-62. + TOWER 2.0 +BLANK card ending branch cards + LMA TOWER .00433 1.0 1 +BLANK card terminating all switch cards +14JDGA 303000. 60. -90. -1. +14JDGB 303000. 60. -210. -1. +14JDGC 303000. 60. 30. -1. +BLANK card ending all source cards +C Total network loss P-loss by summing injections = -4.779046825640E+06 +C Last inject: JDGC 262405.69734669 303000. -173.5167762169 331.67972792735 +C Last inject: 151500. 30.0000 282.67184205232 121.5434868 + LMA LMB LMC JDA JDC +C Step Time LMA LMB LMC JDA JDC +C +C 0 0.0 1571.475581 -276456.932 278765.7622 153.7361338 266363.1031 +C 1 .5E-4 7630.423588 -279401.215 275709.5695 5941.026761 263392.9685 +C 2 .1E-3 13684.53899 -282253.973 272563.1515 11741.29345 260360.8975 +C 3 .15E-3 19733.66162 -285005.65 269320.0035 17534.50579 257232.6923 +BLANK card ending output variable requests +C Last step begins: 1000 .05 -4383.86263 -267262.886 294635.7149 +C Last step continue ..... : -3765.02773 266358.2578 -2191.93132 -2002.40336 +C Variable max : 321290.8039 382325.3516 420199.3815 307502.4578 313056.9229 +C Times of max : .00415 .0271 .015 .00415 .01555 +C Variable min : -4633.97345 -375865.379 -529913.225 -303202.542 -357915.083 +C Times of min : .01665 .01825 .0061 .01245 .00685 + PRINTER PLOT { Axis limits: (-5.299, 4.202) + 2Simulation of fault at Lower Monumental end of 138-mile line to John Day. + 1 SMOOTH + PRINT HEAD OFF + Voltage at Lower Monumental, where "a"-phase is faulted at 4.33 msec. + 144 2. 0.0 20. LMA LMB LMC Lower Mon. Fault voltage in volt +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 2nd of 3 data subcases is unrelated to the 1st. 3rd will be compared with it +C 1973 GPU Stolle Road to Homer City line energization without surge arresters +C These extra two cases are added to document Prof. Xusheng Chen's transformer +C as described in January, 1993, newsletter. + .000050 .050 60. 60. { Increase deltat from 25 microsecs of '70s + 100 1 0 0 1 + SORA GARA 3.06 + SORB GARB 3.06 + SORC GARC 3.06 +-1GARA ST1A .6109 2.3280 3.02 12.44 +-2GARB ST1B .1278 .79260 5.36 12.44 +-3GARC ST1C + 1GARA ERIA 6.2245 + 2GARB ERIB 2.4289 6.2245 + 3GARC ERIC 2.4289 2.4289 6.2245 + 1GARA DAVA 21.905 + 2GARB DAVB 10.465 21.905 + 3GARC DAVC 10.465 10.465 21.905 +-1ERIA ST1A .6701 2.3608 3.02 10.70 +-2ERIB ST1B .1000 .71960 5.36 10.70 +-3ERIC ST1C +-1ROLA ST1A .6342 2.3507 3.02 20.27 +-2ROLB ST1B .1005 .72150 5.36 20.27 +-3ROLC ST1C +-1DAVA ST1A .6641 2.3641 3.02 14.53 +-2DAVB ST1B .0998 .71990 5.36 14.53 +-3DAVC ST1C + TRANSFORMER 21.3 249.1TRANA 1 + 21.3 249.1 + 99.8 274.0 + 236.9 288.9 + 1602. 326.3 + 9999. + 1SWPA 0.0 -1.11 115. + 2ST3A 0.0 39.4 345. + 3T-A T-B 0.0 1.24 59.75 + TRANSFORMER TRANA TRANB 1 + 1SWPB + 2ST3B + 3T-B + TRANSFORMER TRANA TRANC 1 + 1SWPC + 2ST3C + 3 T-A +-1ST3A HOMA .6129 1.9245 4.50 214.0 +-2ST3B HOMB .0502 .59410 7.05 214.0 +-3ST3C HOMC + ST3A 96514. 1930. + ST3B 96514. 1930. + ST3C 96514. 1930. + ST3A 12.82 + ST3B 12.82 + ST3C 12.82 + SWPA 37.70 + SWPB 37.70 + SWPC 37.70 +C 24 July 2008, add a disconnected Type-51, 52 branch that has very low +C impedance. The [R] and [L] matrices are perfectly invertible; in fact, for +C simplicity, we make them diagonal. Prior to improvement of REDUCT, the +C ATP response was to halt execution. The small numbers made ATP think that +C the matrix was singular. A 40-year-old weakness was just noticed (amazing): +C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ ... +C KILL code number Overlay number Nearby statement number +C 86 13 4233 +C KILL = 86. Singularity has been detected within SUBROUTINE REDUCT ... +51SORA 1.E-19 1.E-19 { R(1,1) = L(1,1) = 1.E-19 +52EXTRA 0.0 0.01.E-19 1.E-19 { R(2,1) = L(2,1) = 0 + EXTRA 1.0 { Let the secondary drive a 1-ohm resistor +BLANK card ending all branch cards + ST1A SWPA .007940 1.0 + ST1B SWPB .007940 1.0 + ST1C SWPC .007940 1.0 +BLANK card ending all switch cards +14SORA 93800. 60. 185. -1.0 +14SORB 93800. 60. 65. -1.0 +14SORC 93800. 60. -55. -1.0 +C Total network loss P-loss by summing injections = 2.199610000000E+28 +C This extraordinary phasor loss is due to that extra Type-51, 52 branch, +C which is nearly a short circuit. Without it, loss is 4.805637702155E+02 +BLANK card ending all source cards + SWPA SWPB SWPC ST3A ST3B ST3C HOMA HOMB HOMC SWPA SWPB SWPC +C Step Time SWPA SWPB SWPC ST3A ST3B +C +C HOMC SWPA SWPB SWPC TRANA +C TERRA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 +C 100 .005 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 +C *** Close switch "ST1A " to "SWPA " after 7.95000000E-03 sec. +C *** Close switch "ST1B " to "SWPB " after 7.95000000E-03 sec. +C *** Close switch "ST1C " to "SWPC " after 7.95000000E-03 sec. +C 200 .01 74055.64255 1496.684511 -75552.3271 217501.3182 -11199.8796 +C -202295.843 74055.64255 1496.684511 -75552.3271 11.60842824 +BLANK card ending selective node voltage output requests +C 1000 .05 -41438.1417 14616.52552 4941.023887 -74849.3547 24242.7193 +C -300362.665 -41438.1417 14616.52552 4941.023887 -.003640141 +C Variable max : 169590.981 140542.9342 130439.2455 610291.9724 509791.1645 +C 761896.4358 169590.981 140542.9342 130439.2455 1615.403803 +C Times of max : .04255 .02965 .03775 .0425 .02945 +C .03865 .04255 .02965 .03775 .02875 +C Variable min : -156192.014 -132716.009 -161788.345 -534753.351 -467406.362 +C -777439.086 -156192.014 -132716.009 -161788.345 -43.1002572 +C Times of min : .016 .04015 .04285 .0161 .04065 +C .0427 .016 .04015 .04285 .03875 + PRINTER PLOT + 144 5. 0.0 50. HOMA { Axis limits: (-7.642, 8.522) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 3 data subcases is the same as the 2nd except for 3-phase transformer +C 1973 GPU Stolle Road to Homer City line energization without surge arresters +C These extra two cases are added to document Prof. Xusheng Chen's transformer +C as described in the January and April, 1993, issues of the newsletter. The +C case came from Prof. Chen as disk file MDD6A.DAT on a floppy dated May 20, +C 1993 (this replaces the original 3rd subcase that was created 31 Mar 1993) +C July, 1995, Prof. Chen replaces his XFCHEN, and answers change. The +C old data case will be copied below as comments of this one are updated. +PRINTED NUMBER WIDTH, 11, 1, { Request default precision (cancel [13,2] of 1st) +C 4 May 2007, add following $PREFIX to allow remote execution. +C Without this, the following DC31CHEN.DAT would not be found. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +USE SEATTLE XFORMER, dc31chen.dat ! { (hold lower case) +C 1973 GPU Stolle Road to Homer City line energization with surge arresters + .000050 .050 60. 60. { Decrease Tmax from .200 to .050 for speed + 100 1 1 1 1 +$VINTAGE, 1 + 1SWPA 5171.1723633 + 2SWPB -1.2218941 + 5171.4155273 + 3SWPC -0.0011917 + -1.2218941 + 5171.1723633 + 4ST3A 15511.6093750 + -3.6675410 + -0.0035769 + 46558.4257813 + 5ST3B -3.6675410 + 15512.3398438 + -3.6675410 + -11.0082035 + 46560.6210938 + 6ST3C -0.0035769 + -3.6675410 + 15511.6093750 + -0.0107361 + -11.0082035 + 46558.4296875 +$VINTAGE, 0 + SORA GARA 3.06 + SORB GARB 3.06 + SORC GARC 3.06 +-1GARA ST1A .6109 2.3280 3.02 12.44 +-2GARB ST1B .1278 .79260 5.36 12.44 +-3GARC ST1C + 1GARA ERIA 6.2245 + 2GARB ERIB 2.4289 6.2245 + 3GARC ERIC 2.4289 2.4289 6.2245 + 1GARA DAVA 21.905 + 2GARB DAVB 10.465 21.905 + 3GARC DAVC 10.465 10.465 21.905 +-1ERIA ST1A .6701 2.3608 3.02 10.70 +-2ERIB ST1B .1000 .71960 5.36 10.70 +-3ERIC ST1C +-1ROLA ST1A .6342 2.3507 3.02 20.27 +-2ROLB ST1B .1005 .72150 5.36 20.27 +-3ROLC ST1C +-1DAVA ST1A .6641 2.3641 3.02 14.53 +-2DAVB ST1B .0998 .71990 5.36 14.53 +-3DAVC ST1C +-1STTA HOMA .6129 1.9245 4.50 214.0 +-2STTB HOMB .0502 .59410 7.05 214.0 +-3STTC HOMC + ST3A STTA .3737 + ST3B STTB .3737 + ST3C STTC .3737 + ST1A SWIA .0415 + ST1B SWIB .0415 + ST1C SWIC .0415 + ST3A 96514. 1930. + ST3B 96514. 1930. + ST3C 96514. 1930. +C ST3A 12.82 +C ST3B 12.82 +C ST3C 12.82 +C SWPA 37.70 +C SWPB 37.70 +C SWPC 37.70 +BLANK card ending all branch cards + SWIA SWPA .007940 1.0 1 + SWIB SWPB .007940 1.0 1 + SWIC SWPC .007940 1.0 1 +BLANK card ending all switch cards +14SORA 93800. 60. 185. -1.0 +14SORB 93800. 60. 65. -1.0 +14SORC 93800. 60. -55. -1.0 +C SWPA |TERRA *SWIA * +C SWPB |TERRA *SWIB * +C SWPC |TERRA *SWIC * +C ST3A |TERRA *TERRA *STTA * +C ST3B |TERRA *TERRA *STTB * +C ST3C |TERRA *TERRA *STTC * +C < < Etc. (many more rows) > > +BLANK card ending all source cards + ST3A ST3B ST3C HOMA HOMB HOMC SWPA SWPB SWPC +C Total network loss P-loss by summing injections = 4.805638098099E+02 +C +C Last gen: SORC 53801.469729728 93800. 23.911871905618 29.188614218823 +C -76836.46175431 -55.0000000 16.739103380547 34.9932955 +C +C Step Time ST3A ST3B ST3C HOMA HOMB HOMC +C SWPA +C SWIB SWIC CHEN CHEN CHEN CHEN +C SWPB SWPC CURR1 FLUX1 CURR2 FLUX2 +C +C CHEN CHEN CHEN CHEN +C CURR5 FLUX5 CURR6 FLUX6 +C +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 +C 100 .005 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 +C *** Close switch "SWIA " to "SWPA " after 7.95000000E-03 sec. +C *** Close switch "SWIB " to "SWPB " after 7.95000000E-03 sec. +C *** Close switch "SWIC " to "SWPC " after 7.95000000E-03 sec. +C 200 .01 217332.128 -10970.216 -206361.84 310904.168 -111381.16 -199522.71 +C -104.3596 -2103.8643 2208.14107 .734567091 -104.35883 -.18046553 +C 34.0316806 -.17536706 699.245277 -.45094228 +BLANK card ending selective node voltage output requests +C 1000 .05 -211428.33 122613.646 43085.5698 51552.1935 258779.757 51350.5473 +C 2076.8918 -1044.8039 -3514.8485 .441798215 2076.84637 2.27394289 +C 137.474393 2.17231652 -246.32711 -2.0030124 +C maxima : 791162.883 546834.494 590200.117 .1071971E7 702018.441 729565.112 +C 3811.90247 3682.98877 5102.5908 1.80215502 3811.88565 2.50132928 +C 1378.6839 2.50169355 1701.78362 1.00436763 +C Times of max : .04105 .02885 .0376 .0411 .0302 .0383 +C .0269 .03635 .0392 .01325 .0269 .0168 +C .01645 .01675 .02525 .03995 +C minima : -551969.66 -479168.62 -639520.52 -763493.9 -536730.14 -925214.16 +C -2538.3534 -5096.1259 -5475.4983 -1.8608421 -2538.2686 -.6020437 +C -1273.8113 -.78766225 -1930.5746 -2.5080431 +C Times of min : .01535 .03985 .0277 .0372 .01835 .0277 +C .02305 .02525 .0428 .03765 .02305 .0267 +C .0269 .02675 .0291 .01415 + PRINTER PLOT +C For a CALCOMP (vector) plot like Fig. MVI-1 on page 20 of the Ammendment to +C the final report (Ammendment dated 23 May 1993), use this plot card: +C 144 5. 0.0 50. ST3A ST3B ST3C High voltages Voltages, V + 144 2. 0.0 20. ST3A { Axis limits: (-5.520, 3.941) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF + + + +C 3rd of 3 data subcases is the same as the 2nd except for 3-phase transformer +C 1973 GPU Stolle Road to Homer City line energization without surge arresters +C These extra two cases are added to document Prof. Xusheng Chen's transformer +C as described in the January and April, 1993, issues of the newsletter. The +C case came from Prof. Chen as disk file MDD6A.DAT on a floppy dated May 20, +C 1993 (this replaces the original 3rd subcase that was created 31 Mar 1993) +PRINTED NUMBER WIDTH, 11, 1, { Request default precision (cancel [13,2] of 1st) +USE SEATTLE XFORMER, DC31CHEN.DAT +C 1973 GPU Stolle Road to Homer City line energization with surge arresters + .000050 .050 60. 60. { Decrease Tmax from .200 to .050 for speed + 100 1 1 1 1 +$VINTAGE, 1 + 1SWPA 5171.1723633 + 2SWPB -1.2218941 + 5171.4155273 + 3SWPC -0.0011917 + -1.2218941 + 5171.1723633 + 4ST3A 15511.6093750 + -3.6675410 + -0.0035769 + 46558.4257813 + 5ST3B -3.6675410 + 15512.3398438 + -3.6675410 + -11.0082035 + 46560.6210938 + 6ST3C -0.0035769 + -3.6675410 + 15511.6093750 + -0.0107361 + -11.0082035 + 46558.4296875 +$VINTAGE, 0 + SORA GARA 3.06 + SORB GARB 3.06 + SORC GARC 3.06 +-1GARA ST1A .6109 2.3280 3.02 12.44 +-2GARB ST1B .1278 .79260 5.36 12.44 +-3GARC ST1C + 1GARA ERIA 6.2245 + 2GARB ERIB 2.4289 6.2245 + 3GARC ERIC 2.4289 2.4289 6.2245 + 1GARA DAVA 21.905 + 2GARB DAVB 10.465 21.905 + 3GARC DAVC 10.465 10.465 21.905 +-1ERIA ST1A .6701 2.3608 3.02 10.70 +-2ERIB ST1B .1000 .71960 5.36 10.70 +-3ERIC ST1C +-1ROLA ST1A .6342 2.3507 3.02 20.27 +-2ROLB ST1B .1005 .72150 5.36 20.27 +-3ROLC ST1C +-1DAVA ST1A .6641 2.3641 3.02 14.53 +-2DAVB ST1B .0998 .71990 5.36 14.53 +-3DAVC ST1C +-1STTA HOMA .6129 1.9245 4.50 214.0 +-2STTB HOMB .0502 .59410 7.05 214.0 +-3STTC HOMC + ST3A STTA .3737 + ST3B STTB .3737 + ST3C STTC .3737 + ST1A SWIA .0415 + ST1B SWIB .0415 + ST1C SWIC .0415 + ST3A 96514. 1930. + ST3B 96514. 1930. + ST3C 96514. 1930. +C ST3A 12.82 +C ST3B 12.82 +C ST3C 12.82 +C SWPA 37.70 +C SWPB 37.70 +C SWPC 37.70 +BLANK card ending all branch cards + SWIA SWPA .007940 1.0 1 + SWIB SWPB .007940 1.0 1 + SWIC SWPC .007940 1.0 1 +BLANK card ending all switch cards +14SORA 93800. 60. 185. -1.0 +14SORB 93800. 60. 65. -1.0 +14SORC 93800. 60. -55. -1.0 +C SWPA |TERRA *SWIA * +C SWPB |TERRA *SWIB * +C SWPC |TERRA *SWIC * +C ST3A |TERRA *TERRA *STTA * +C ST3B |TERRA *TERRA *STTB * +C ST3C |TERRA *TERRA *STTC * +C < < Etc. (many more rows) > > +BLANK card ending all source cards + ST3A ST3B ST3C HOMA HOMB HOMC SWPA SWPB SWPC +C Total network loss P-loss by summing injections = 4.805638098099E+02 +C +C Last gen: SORC 53801.469729728 93800. 23.911871905618 29.188614218823 +C -76836.46175431 -55.0000000 16.739103380547 34.9932955 +C +C Step Time ST3A ST3B ST3C HOMA HOMB HOMC +C SWPA +C SWIB SWIC CHEN CHEN CHEN CHEN +C SWPB SWPC CURR1 FLUX1 CURR2 FLUX2 +C +C CHEN CHEN CHEN CHEN +C CURR5 FLUX5 CURR6 FLUX6 +C +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 +C 100 .005 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 +C *** Close switch "SWIA " to "SWPA " after 7.95000000E-03 sec. +C *** Close switch "SWIB " to "SWPB " after 7.95000000E-03 sec. +C *** Close switch "SWIC " to "SWPC " after 7.95000000E-03 sec. +C 200 .01 217387.84 -10992.36 -206395.4 310888.096 -111376.98 -199510.83 +C -104.63191 -2105.0079 2209.64051 .734405004 -104.63005 -.18043359 +C 34.108862 -.17539116 699.385843 -.45096469 +BLANK card ending selective node voltage output requests +C 1000 .05 -155842.05 47154.6268 -24422.789 258598.902 172156.84 -81252.716 +C 2571.94767 -2427.6366 -1947.2216 .242401327 2597.62728 2.19565639 +C 1.17575901 2.19555992 325.890333 -1.8799098 +C maxima : 669374.836 515148.465 484746.844 .1044677E7 660808.946 731972.517 +C 3607.09709 3846.82291 5375.85965 1.84806576 3607.09698 2.51948617 +C 1360.93644 2.71806614 1676.35273 1.0164742 +C Times of max : .0413 .01425 .03845 .04145 .03025 .0386 +C .0428 .0369 .03965 .0133 .0428 .01685 +C .0165 .01685 .0408 .04075 +C minima : -571739.71 -410695.52 -617164.56 -648371.12 -532251.9 -900333.66 +C -1991.6408 -5018.5588 -5328.1211 -1.7469988 -1991.6406 -.60320685 +C -1205.0922 -.78031949 -1766.5889 -2.6833277 +C Times of min : .01605 .04025 .02785 .0454 .0185 .02775 +C .0232 .0408 .0433 .03805 .0232 .04275 +C .0428 .04275 .02955 .03 + PRINTER PLOT +C For a CALCOMP (vector) plot like Fig. MVI-1 on page 20 of the Ammendment to +C the final report (Ammendment dated 23 May 1993), use this plot card: +C 144 5. 0.0 50. ST3A ST3B ST3C High voltages Voltages, V + 144 2. 0.0 20. ST3A { Axis limits: (-5.717, 3.942) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc31chen.dat b/benchmarks/dc31chen.dat new file mode 100644 index 0000000..cb0d9f6 --- /dev/null +++ b/benchmarks/dc31chen.dat @@ -0,0 +1,49 @@ +C +C +C MDD6AT.DAT ( TWO-WINDING TRANSFORMER DATA FILE FOR MDD6A.DAT ) +C +C (1) SPOS, VR1, VR2 +C 500. 345.00 115.00 + 500. 115.00 345.00 +C (2) IEXPOS, LEXPOS, XPOS12 + .0060 .0030 .12317 +C (3) FREQ, FREQPU, V1PU + 60.000 1.000 1.000 +C (4) EPSPY, EPSZC, R1, R4 + .000010 .000100 .001290 .001290 +C (5) FIEXP, RFIEXP, R7, CXMER, PAP +C INITIAL VALUES: +C 1000.00 900.00 333.14 .00000 0. +C FIVE-SLOPE REPRESENTATION: + 1457.32 900.00 333.14 .00000 0. +C 1457.32 900.00 333.14 .00000 5. +C SMOOTH-CURVE REPRESENTATION: +C 721.60 900.00 333.14 .00000 0. +C (6) Y0(I), I=1,6 +C -1.41421 .707107 .707107 -1.414214 .707107 .707107 + 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 +C 1.13137 -.565690 -.565690 1.13137 -.565690 -.565690 +C (7) S1, S4, S6, S7 +C 1.000 .850 .500 .500 + 1.000 5. 4. 4. +C (8) LEN1, LEN4, LEN6, LEN7 +C 1.000 1.000 2.000 2.000 + 1.000 1000. 1000. 1000. +C (9) P8, P9, P10, DT +C 1.8622 1.8622 1.8622 .0100 + 1000. 1000. 1000. .0100 +C (10) KT, KP, KW + 2000 10 1 +C (11) BB0, BB1, BB2, BB3, BB4 +C FIVE-SLOPE REPRESENTATION: + 1.4142 1.5558 1.6404 1.8527 2.2000 +C SMOOTH-CURVE REPRESENTATION: +C -1.4142 .14934105 .02826188 16.387657 1.7508 +C 1.4142 1.6404 1.8527 9999. +C (12) HH0, HH1, HH2, HH3, HH4 + 8.4853 39.7575 94.3742 638.19 1530.00 +C 8.4853 94.3742 638.19 +C (13) Binary flags to request flux outputs: + 1 1 1 1 1 1 +C (14) Binary flags to request coil current outputs: + 1 1 1 1 1 1 diff --git a/benchmarks/dc32.dat b/benchmarks/dc32.dat new file mode 100644 index 0000000..ec1c0da --- /dev/null +++ b/benchmarks/dc32.dat @@ -0,0 +1,96 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-32 +C Artificial 6-pulse dc power supply that illustrates the simulation of +C diodes. It was concocted in July of 1977 to instruct Hughes Aircraft in +C Fullerton, California (Emory Johnson, Gene Perusse, and assoc.). Use of +C MEMSAV = 1 dumps tables for later restarting and modification (see DC-49). +C It is assumed that STARTUP has KTRPL4 < 0 and L4BYTE = 1 so that a +C C-like ".PL4" file having name DC32.PL4 will be created (used by DC-49). +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) + .000020 .010 + 1 1 1 1 1 -1 1 2 + 5 5 10 10 50 50 +C Three 2-winding saturable transformers having unity turns ratios are +C delta-connected on the source side, and grounded-Y on the rectifier +C side. The magnetizing branch is both nonlinear and lossy: + TRANSFORMER .01 .05TRANA 1.E5 1 + .01 .05 + .02 .06 + .05 .07 + .15 .08 + 9999 + 1GENA GENB .06 .01 115. + 2SECA .06 .01 115. + TRANSFORMER TRANA TRANB 1 + 1GENB GENC + 2SECB + TRANSFORMER TRANA TRANC 1 + 1GENC GENA + 2SECC +C Small impedance branches are used (prior to "M34." generalized switch +C logic) to isolate switches from each other at "POLEA". R = 5 ohms. +C Although in theory such isolation is no longer required, do not try +C to remove these 9 resistors, since they provide necessary damping. +C Note that these resistors are not of negligible value: + CATH1 POLEA 5.0 + CATH2 POLEA CATH1 POLEA + CATH3 POLEA CATH1 POLEA +C More small impedances used for switch isolation at node "POLEB", and +C also at the transformer secondary. Half the value of "POLEA" is used, +C for balance: + CATH4 SECC 2.5 + CATH5 SECA CATH4 SECC + CATH6 SECB CATH4 SECC + AN4 POLEB CATH4 SECC + AN5 POLEB CATH4 SECC + AN6 POLEB CATH4 SECC +C 2-conductor distributed line connects "POLE" with "LOAD". Inductance +C parameters are 5.8 and 1.6 millihenries for the ground and sky modes, +C respectively. Length is five miles. Values are typical for 500 kV line: +-1POLEA LOADA 0.3 5.8 .012 5.0 +-2POLEB LOADB .03 1.6 .019 5.0 +C Large stray capacitance ties the dc side to ground: + POLEA 100. + POLEB POLEA +C Load on dc side is parallel 200 ohm R and 100 microfarad capacitance: + LOADA LOADB 200. + LOADA LOADB 100. +C One-ohm grounding resistance, for later fault (see DC-49 continuation). + LOADA FAULT 1.0 +C 20 August 1998, discovery that Pi-circuits are mishandled leads to addition +C of the following radial branch off the generator (does not change answers): + 1GENA 1-A 34.372457.68.15781 + 2GENB 1-B 35.735164.43-.031538.002451.79.16587 + 3GENC 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 +BLANK card ending all branch cards +C First switch is to be the fault switch (open here, and closed in DC-49): + FAULT 1.0 2.0 +C Bridge circuit consisting of 6 uncontrolled valves (i.e., diodes). Those +C numbered 1, 2, and 3 feed "POLEA", making it positive with respect to +C ground. Diodes 4, 5, and 6 feed "POLEB", making it negative. +11SECB CATH1 13 +11SECA CATH2 CLOSED 13 +C The following card serves to name the switch following it. To see the +C results of this activity, interactively execute the "SWITCH" command of +C SPY, sending "EXTRA" for the alternative table. Another point: note +C the exclamation point, which is needed to hold lower case within A6 name +C (assuming KINSEN = 1 within STARTUP). No such control for valve six. + NAME: Valve3 ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11SECC CATH3 13 +11AN4 CATH4 CLOSED 13 +11AN5 CATH5 13 + NAME: Valve6 { Request "NAME: " of columns 3-8 precedes A6 valve name in 9-14 +11AN6 CATH6 CLOSED 13 +BLANK card terminating the last switch card +C Balanced 3-phase source of 400 Hz is connected to transformer delta side: +14GENA 93.897 400. -30. -1. +14GENB 93.897 400. -150. -1. +14GENC 93.897 400. 90. -1. +BLANK card ending all source cards + 1 { Request for all node voltage outputs + PRINTER PLOT + 144 1. 0.0 10. LOADA LOADB { Axis limits: (-1.637, 1.618) +$WIDTH, 79, { Narrow output width will save paper from here on (summary stats) +BLANK card ending the last plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc32a.dat b/benchmarks/dc32a.dat new file mode 100644 index 0000000..c5f2da6 --- /dev/null +++ b/benchmarks/dc32a.dat @@ -0,0 +1,87 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-32 --- modified +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) + .000020 .01006 + 1 1 1 1 0 -1 + 5 5 10 10 50 50 500 1 +C Three 2-winding saturable transformers having unity turns ratios are +C delta-connected on the source side, and grounded-Y on the rectifier +C side. The magnetizing branch is both nonlinear and lossy: + TRANSFORMER .01 .05TRANA 1.E5 1 + .01 .05 + .02 .06 + .05 .07 + .15 .08 + 9999 + 1GENA GENB .06 .01 115. + 2SECA .06 .01 115. + TRANSFORMER TRANA TRANB 1 + 1GENB GENC + 2SECB + TRANSFORMER TRANA TRANC 1 + 1GENC GENA + 2SECC +C Small impedance branches are used (prior to "M34." generalized switch +C logic) to isolate switches from each other at "POLEA". R = 5 ohms. +C Although in theory such isolation is no longer required, do not try +C to remove these 9 resistors, since they provide necessary damping. +C Note that these resistors are not of negligible value: + CATH1 POLEA 5.0 + CATH2 POLEA CATH1 POLEA + CATH3 POLEA CATH1 POLEA +C More small impedances used for switch isolation at node "POLEB", and +C also at the transformer secondary. Half the value of "POLEA" is used, +C for balance: + CATH4 SECC 2.5 + CATH5 SECA CATH4 SECC + CATH6 SECB CATH4 SECC + AN4 POLEB CATH4 SECC + AN5 POLEB CATH4 SECC + AN6 POLEB CATH4 SECC +C 2-conductor distributed line connects "POLE" with "LOAD". Inductance +C parameters are 5.8 and 1.6 millihenries for the ground and sky modes, +C respectively. Length is five miles. Values are typical for 500 kV line: +-1POLEA LOADA 0.3 5.8 .012 5.0 +-2POLEB LOADB .03 1.6 .019 5.0 +C Large stray capacitance ties the dc side to ground: + POLEA 100. + POLEB POLEA +C Load on dc side is parallel 200 ohm R and 100 microfarad capacitance: + LOADA LOADB 200. + LOADA LOADB 100. +C One-ohm grounding resistance, for later fault (see DC-49 continuation). + LOADA FAULT 1.0 +C 20 August 1998, discovery that Pi-circuits are mishandled leads to addition +C of the following radial branch off the generator (does not change answers): + 1GENA 1-A 34.372457.68.15781 + 2GENB 1-B 35.735164.43-.031538.002451.79.16587 + 3GENC 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 +BLANK card ending all branch cards +C First switch is to be the fault switch (open here, and closed in DC-49): + FAULT 1.0 2.0 +C Bridge circuit consisting of 6 uncontrolled valves (i.e., diodes). Those +C numbered 1, 2, and 3 feed "POLEA", making it positive with respect to +C ground. Diodes 4, 5, and 6 feed "POLEB", making it negative. +11SECB CATH1 13 +11SECA CATH2 CLOSED 13 +C The following card serves to name the switch following it. To see the +C results of this activity, interactively execute the "SWITCH" command of +C SPY, sending "EXTRA" for the alternative table. Another point: note +C the exclamation point, which is needed to hold lower case within A6 name +C (assuming KINSEN = 1 within STARTUP). No such control for valve six. + NAME: Valve3 ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11SECC CATH3 13 +11AN4 CATH4 CLOSED 13 +11AN5 CATH5 13 + NAME: Valve6 { Request "NAME: " of columns 3-8 precedes A6 valve name in 9-14 +11AN6 CATH6 CLOSED 13 +BLANK card terminating the last switch card +C Balanced 3-phase source of 400 Hz is connected to transformer delta side: +14GENA 93.897 400. -30. -1. +14GENB 93.897 400. -150. -1. +14GENC 93.897 400. 90. -1. +BLANK card ending all source cards + 1 { Request for all node voltage outputs +BLANK card ending the last plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc32b.dat b/benchmarks/dc32b.dat new file mode 100644 index 0000000..75de67d --- /dev/null +++ b/benchmarks/dc32b.dat @@ -0,0 +1,83 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-32 --- modify +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) + .000020 .01006 + 1 1 1 1 1 -1 + 5 5 10 10 50 50 500 1 +C Three 2-winding saturable transformers having unity turns ratios are +C delta-connected on the source side, and grounded-Y on the rectifier +C side. The magnetizing branch is both nonlinear and lossy: + TRANSFORMER .01 .05TRANA 1.E5 1 + .01 .05 + .02 .06 + .05 .07 + .15 .08 + 9999 + 1GENA GENB .06 .01 115. + 2SECA .06 .01 115. + TRANSFORMER TRANA TRANB 1 + 1GENB GENC + 2SECB + TRANSFORMER TRANA TRANC 1 + 1GENC GENA + 2SECC +C Small impedance branches are used (prior to "M34." generalized switch +C logic) to isolate switches from each other at "POLEA". R = 5 ohms. +C Although in theory such isolation is no longer required, do not try +C to remove these 9 resistors, since they provide necessary damping. +C Note that these resistors are not of negligible value: + CATH1 POLEA 5.0 + CATH2 POLEA CATH1 POLEA + CATH3 POLEA CATH1 POLEA +C More small impedances used for switch isolation at node "POLEB", and +C also at the transformer secondary. Half the value of "POLEA" is used, +C for balance: + CATH4 SECC 2.5 + CATH5 SECA CATH4 SECC + CATH6 SECB CATH4 SECC + AN4 POLEB CATH4 SECC + AN5 POLEB CATH4 SECC + AN6 POLEB CATH4 SECC +C 2-conductor distributed line connects "POLE" with "LOAD". Inductance +C parameters are 5.8 and 1.6 millihenries for the ground and sky modes, +C respectively. Length is five miles. Values are typical for 500 kV line: +-1POLEA LOADA 0.3 5.8 .012 5.0 +-2POLEB LOADB .03 1.6 .019 5.0 +C Large stray capacitance ties the dc side to ground: + POLEA 100. + POLEB POLEA +C Load on dc side is parallel 200 ohm R and 100 microfarad capacitance: + LOADA LOADB 200. + LOADA LOADB 100. +C One-ohm grounding resistance, for later fault (see DC-49 continuation). + LOADA FAULT 1.0 +BLANK card ending all branch cards +C First switch is to be the fault switch (open here, and closed in DC-49): + FAULT 1.0 2.0 +C Bridge circuit consisting of 6 uncontrolled valves (i.e., diodes). Those +C numbered 1, 2, and 3 feed "POLEA", making it positive with respect to +C ground. Diodes 4, 5, and 6 feed "POLEB", making it negative. +11SECB CATH1 13 +11SECA CATH2 CLOSED 13 +C The following card serves to name the switch following it. To see the +C results of this activity, interactively execute the "SWITCH" command of +C SPY, sending "EXTRA" for the alternative table. Another point: note +C the exclamation point, which is needed to hold lower case within A6 name +C (assuming KINSEN = 1 within STARTUP). No such control for valve six. + NAME: Valve3 ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11SECC CATH3 13 +11AN4 CATH4 CLOSED 13 +11AN5 CATH5 13 + NAME: Valve6 { Request "NAME: " of columns 3-8 precedes A6 valve name in 9-14 +11AN6 CATH6 CLOSED 13 +BLANK card terminating the last switch card +C Balanced 3-phase source of 400 Hz is connected to transformer delta side: +14GENA 93.897 400. -30. -1. +14GENB 93.897 400. -150. -1. +14GENC 93.897 400. 90. -1. +BLANK card ending all source cards + 1 { Request for all node voltage outputs +BLANK card ending the last plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc32old.dat b/benchmarks/dc32old.dat new file mode 100644 index 0000000..2276f48 --- /dev/null +++ b/benchmarks/dc32old.dat @@ -0,0 +1,165 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-32 +C Artificial 6-pulse dc power supply that illustrates the simulation of +C diodes. It was concocted in July of 1977 to instruct Hughes Aircraft in +C Fullerton, California (Emory Johnson, Gene Perusse, and assoc.). Use of +C MEMSAV = 1 dumps tables for later restarting and modification (see DC-49). +C It is assumed that STARTUP has KTRPL4 < 0 and L4BYTE = 1 so that a +C C-like ".PL4" file having name DC32.PL4 will be created (used by DC-49). +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) + .000020 .010 + 1 1 1 1 1 -1 1 2 + 5 5 10 10 50 50 +C Three 2-winding saturable transformers having unity turns ratios are +C delta-connected on the source side, and grounded-Y on the rectifier +C side. The magnetizing branch is both nonlinear and lossy: + TRANSFORMER .01 .05TRANA 1.E5 1 + .01 .05 + .02 .06 + .05 .07 + .15 .08 + 9999 + 1GENA GENB .06 .01 115. + 2SECA .06 .01 115. + TRANSFORMER TRANA TRANB 1 + 1GENB GENC + 2SECB + TRANSFORMER TRANA TRANC 1 + 1GENC GENA + 2SECC +C Small impedance branches are used (prior to "M34." generalized switch +C logic) to isolate switches from each other at "POLEA". R = 5 ohms. +C Although in theory such isolation is no longer required, do not try +C to remove these 9 resistors, since they provide necessary damping. +C Note that these resistors are not of negligible value: + CATH1 POLEA 5.0 + CATH2 POLEA CATH1 POLEA + CATH3 POLEA CATH1 POLEA +C More small impedances used for switch isolation at node "POLEB", and +C also at the transformer secondary. Half the value of "POLEA" is used, +C for balance: + CATH4 SECC 2.5 + CATH5 SECA CATH4 SECC + CATH6 SECB CATH4 SECC + AN4 POLEB CATH4 SECC + AN5 POLEB CATH4 SECC + AN6 POLEB CATH4 SECC +C 2-conductor distributed line connects "POLE" with "LOAD". Inductance +C parameters are 5.8 and 1.6 millihenries for the ground and sky modes, +C respectively. Length is five miles. Values are typical for 500 kV line: +-1POLEA LOADA 0.3 5.8 .012 5.0 +-2POLEB LOADB .03 1.6 .019 5.0 +C Large stray capacitance ties the dc side to ground: + POLEA 100. + POLEB POLEA +C Load on dc side is parallel 200 ohm R and 100 microfarad capacitance: + LOADA LOADB 200. + LOADA LOADB 100. +C One-ohm grounding resistance, for later fault (see DC-49 continuation). + LOADA FAULT 1.0 +BLANK card ending all branch cards +C First switch is to be the fault switch (open here, and closed in DC-49): + FAULT 1.0 2.0 +C Bridge circuit consisting of 6 uncontrolled valves (i.e., diodes). Those +C numbered 1, 2, and 3 feed "POLEA", making it positive with respect to +C ground. Diodes 4, 5, and 6 feed "POLEB", making it negative. +11SECB CATH1 13 +11SECA CATH2 CLOSED 13 +C The following card serves to name the switch following it. To see the +C results of this activity, interactively execute the "SWITCH" command of +C SPY, sending "EXTRA" for the alternative table. Another point: note +C the exclamation point, which is needed to hold lower case within A6 name +C (assuming KINSEN = 1 within STARTUP). No such control for valve six. + NAME: Valve3 ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11SECC CATH3 13 +11AN4 CATH4 CLOSED 13 +11AN5 CATH5 13 + NAME: Valve6 { Request "NAME: " of columns 3-8 precedes A6 valve name in 9-14 +11AN6 CATH6 CLOSED 13 +BLANK card terminating the last switch card +C Balanced 3-phase source of 400 Hz is connected to transformer delta side: +14GENA 93.897 400. -30. -1. +14GENB 93.897 400. -150. -1. +14GENC 93.897 400. 90. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C TRANA |GENA *GENB *GENB *GENB * +C GENA |TRANA *TRANC *TRANC *TRANC * +C GENB |TRANA *TRANA *TRANA *TRANB * +C SECA |TERRA *CATH2 *CATH5 * +C TRANB |GENB *GENC *GENC *GENC * +C GENC |TRANB *TRANB *TRANB *TRANC * +C SECB |TERRA *CATH1 *CATH6 * +C TRANC |GENA *GENA *GENA *GENC * +C SECC |TERRA *CATH3 *CATH4 * +C CATH1 |SECB *POLEA * +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 5.464331532263E+03 +C Last inject: GENC .5749502208E-14 93.897 .56200164704342 55.017880322583 +C Last inject: 93.897 90.00000 55.015009854937 89.4147197 +C ---- Initial flux in coil "TRANA " to "GENB " = -5.34394317E-04 +C ---- Initial flux of coil "TRANB " to "GENC " = -5.51987844E-02 +C ---- Initial flux of coil "TRANC " to "GENA " = 5.55634966E-02 +C Step Time SECB SECA SECC AN4 AN5 +C CATH1 CATH2 CATH3 CATH4 CATH5 +C +C AN6 AN5 AN4 CATH6 CATH5 +C +C TRANC TRANB TRANA POLEB POLEA +C +C GENB GENC SECB SECA SECC +C CATH1 CATH2 CATH3 +C TRANB TRANC +C GENC GENA +C *** Phasor I(0) = 1.6873295E+01 Switch "SECA " to "CATH2 " closed +C *** Phasor I(0) = 2.4078446E+00 Switch "AN4 " to "CATH4 " closed +C *** Phasor I(0) = 2.9476803E+00 Switch "AN6 " to "CATH6 " closed +C 0 0.0 -159.68633 0.0 -156.98715 0.0 -229.3144 +C -75.303917 -67.934716 -73.954328 -75.303917 161.379687 +C .671413046 -81.994732 80.6896357 -67.934716 77.0132094 +C -81.317187 .57495E-14 0.0 16.8732954 0.0 +C -.01344725 .013015515 +C 1 .2E-4 -156.60201 0.0 -167.73205 0.0 -230.84408 +C -72.617115 -69.533258 -78.182135 -72.617115 161.310826 +C -3.989552 -79.633884 83.0140826 -69.533258 80.9010357 +C -78.855585 -4.7177907 0.0 16.0819581 0.0 +C -.01676789 .01388141 +C Diode "AN6 " to "CATH6 " opening after 4.00000000E-05 sec. +C Note: LUNIT2 = 22 and lower-case ".bin" (maintained by exclamation point) +C are critical details of the following connection of file for tables: +C $OPEN, UNIT=22 FILE=dc32to49.bin ! { All we need for C-like usage by Salford +$OPEN, UNIT=22 FILE=dc32to49.bin STATUS=NEW FORM=UNFORMATTED ! + 1 { Request for all node voltage outputs +C Last step: 501 .01002 -214.9097 0.0 -230.24759 -54.516468 -303.96907 +C Last step: -141.81435 -141.81435 -141.81435 -71.959981 162.154725 -87.297878 +C Last step: -4.2249272 -77.760947 83.4315479 -141.81435 142.949714 -87.297878 +C Last step: -78.855585 -4.7177907 0.0 3.84100209 0.0 0.0 +C Last step: -.01674763 .013984083 +C Variable maxima : 6.75796709 10.2225472 7.99663598 5.4523958 4.41773517 +C -55.736451 -57.621411 -60.99918 162.583272 162.349471 +C 94.2715412 94.2204174 94.5734275 -57.621411 157.838356 +C 93.8961762 93.8895863 15.8739724 19.1582929 16.8070015 +C .036546956 .033001353 +C Times of maxima : .0081 .00206 .00894 .00526 .00334 +C .00258 .00262 .00186 .00584 .005 +C .00938 .00854 .00522 .00262 .006 +C .00354 .00938 .00326 .00244 .00166 +C .00646 .0098 +C Variable minima : -307.90065 -319.51502 -314.74562 -314.64493 -305.0677 +C -157.13852 -159.69143 -157.2627 -154.31324 -159.94136 +C -94.501887 -94.313812 -94.506969 -157.13852 55.660011 +C -93.876407 -93.889586 -.89624956 -.45248549 -.74181951 +C -.03163582 -.03508457 +C Times of minima : .00706 .00624 .00544 .00666 .00502 +C .006 .00624 .00546 .0071 .00616 +C .00564 .0048 .00646 .006 .00224 +C .0098 .00312 .00372 .34E-3 .00216 +C .2E-3 .00604 + PRINTER PLOT + 144 1. 0.0 10. LOADA LOADB { Axis limits: (-1.637, 1.618) +$WIDTH, 79, { Narrow output width will save paper from here on (summary stats) +BLANK card ending the last plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc33.dat b/benchmarks/dc33.dat new file mode 100644 index 0000000..4a2cb80 --- /dev/null +++ b/benchmarks/dc33.dat @@ -0,0 +1,711 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-33 +C Type-96 hysteretic inductor with TACS logic to give flux by integrating v +C Batch-mode EMTP CalComp plotting, including "X-Y PLOT", is illustrated. +C For split version with TACS postponed until postprocessing, see DC-45 and +C DC-46. As for data ordering, this is intentionally shuffled from what +C would be natural in order to illustrate the use of "/" cards for sorting. +C Initial condition & load flow classes were added during November of 1991 +C after Prof. Juan Martinez complained from Barcelona, Spain, that such +C features were not working. He was right. One year later, he complained +C again (it still did not work right. Somehow, work was lost; DC-33 had +C not been changed; the optimistic report of the January, 1992, newsletter +C was incorrect). So, sorting by class was repaired again on 28 Novemb 92. +C 1st of 9 stacked subcases total. + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +TACS HYBRID +/SOURCE +14GEN 377. 60. -1. +/TACS + 1FLUX +GEN + 1.0 + 0.0 1.0 +90GEN +91GROUND +99CURR -1.0* GROUND +33FLUX GEN GROUNDCURR +/OUTPUT + GEN +/PLOT +C Last step: 400 .02 116.4994069 2.765761424 -2.76576141 .9416257618 +C Last step continued .....: 116.4994069 2.765761424 -2.76576142 +C Final 5 max. : 3.499909256 .9905492104 376.9925583 3.499613141 3.499909256 +C Associated times : .0125 .00415 .01665 .00415 .0125 + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + 194 2. 0.0 20. TACS CURR ABCDEFGHIJKLMNOP1234567890123456 + X-Y PLOT Horizontal Axis label123 + 10. -1.1 1.1 + 8. -4.0 4.0 + 194 4. 0.0 20. TACS FLUX TACS CURR Graph heading---Vertical axis la + X-Y PLOT Horizontal Axis label123 + 9999. -1.1 1.1 "9999." returns to conventional (vs. time) plotting + 8. -4.0 4.0 + PRINTER PLOT + 194 4. 0.0 20. TACS CURR { Axis limits: (-3.500, 3.500) +C Now that all plotting is done with, let's illustrate the three declarations +C that will choose the destination of any subsequent "CALCOMP PLOT" use: + SCREEN PLOT { If a vector plot were to follow, it would go only to the screen + PEN PLOT { If a vector plot were to follow, ... go only to CalComp plotter + SCREEN PEN { If a vector plot were to follow, .. go to both screen & plotter +C The preceding 3 declarations really could only be tested by a user who +C had both a vector-graphic screen and a CalComp plotter. Hence no use. +/LOAD FLOW +C Comment of /LOAD FLOW. Since DC-33 does not really involve the load flow, +C Comment of /LOAD FLOW. we can not use real load flow data cards. In their +C Comment of /LOAD FLOW. place, we use these three comment cards. End test +/BRANCH +96GROUNDGEN 8888. 1.E-9 1 + 1.0 -0.7 + 2.0 0.9 + 3.5 1.0 + 9999. +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/INITIAL + 2GROUND 0. { Node voltage initial condition in fact changes nothing +C Initial conditions really are not a part of this problem, although we do want +C to illustrate that they, too, can be sorted, and inserted after /LOADFLOW +C The preceding redefinition of node voltage at GROUND changes zero to zero. +/SWITCH + GROUND MEASURING 1 +BLANK card terminates all TACS data +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +C Total network loss P-loss by summing injections = 7.106450000000E-06 +C Inject: GEN 377. 377. .377E-7 2.6786345332877 +C Inject: 0.0 0.0 -2.678634533288 -89.9999992 +C ---- Initial flux of coil "GROUND" to "GEN " = 1.00000000E-09 +C +C Step Time GEN GROUND GROUND TACS TACS +C TERRA GEN FLUX GEN +C *** Phasor I(0) = 0.3770000E-07 Switch "GROUND" to " " closed +C 0 0.0 377. .377E-7 0.0 0.0 0.0 +C 1 .5E-4 376.9330268 .5235646391 -.523564601 .0094233257 376.9330268 +C 2 .1E-3 376.7321312 1.04694322 -1.04694318 .0282649546 376.7321312 +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C BENCHMARK DC-33 +C 2nd of 9 subcases is the same as the first except that control system +C modeling is to be done using MODELS rather than the older TACS. Jerry +C Almos of BPA converted the data on 18 Nov 1991 after WSM changed the code +C to allow such sorting using the same /TACS declaration. + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +MODELS { Note the change; the 1st subcase had "TACS HYBRID" here +/SOURCE +14GEN 377. 60. -1. +/MODELS { 9 July 1995, the former /TACS was changed to this new class +INPUT GEN {V(GEN)}, GROUND {I(GROUND)} +MODEL DC33 +INPUT gen, ground +VAR flux, curr +HISTORY gen {DFLT: 0}, flux {DFLT: 0}, ground {DFLT: 0} +INIT + curr:=0 +ENDINIT +EXEC + COMBINE AS INTEGRATOR + LAPLACE(flux/gen):=(1.0|S0)/(1.0|S1) + ENDCOMBINE + curr:=-ground +ENDEXEC +ENDMODEL +USE DC33 AS DC33 + INPUT GEN:=GEN, GROUND:=GROUND +ENDUSE +RECORD + DC33.FLUX AS FLUX + DC33.GEN AS GEN + DC33.GROUND AS GROUND + DC33.CURR AS CURR +ENDRECORD +ENDMODELS +/OUTPUT + GEN +/PLOT +C Last step: 400 .02 116.4994069 2.765761424 -2.76576141 .9604757618 +C Variable maxima : 377. 3.499613141 3.499909256 1.00939921 +C Times of maxima : 0.0 .00415 .0125 .00415 +C Variable minima : -376.992558 -3.49990926 -3.49961314 -.990568949 +C Times of minima : .00835 .0125 .00415 .0125 + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + CALCOMP PLOT + SCREEN PLOT + 194 2. 0.0 20. MODELSCURR ABCDEFGHIJKLMNOP1234567890123456 + X-Y PLOT Horizontal Axis label123 + 10. -1.1 1.1 + 8. -4.0 4.0 + 194 4. 0.0 20. MODELSFLUX MODELSCURR Graph heading---Vertical axis la + X-Y PLOT Horizontal Axis label123 + 9999. -1.1 1.1 "9999." returns to conventional (vs. time) plotting + 8. -4.0 4.0 +/BRANCH +96GROUNDGEN 8888. 1.E-9 1 + 1.0 -0.7 + 2.0 0.9 + 3.5 1.0 + 9999. +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/SWITCH + GROUND MEASURING 1 +BLANK card terminates all MODELS data { 9 July 1995, MODELS replaces old +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +C Total network loss P-loss by summing injections = 7.106450000000E-06 +C Inject: GEN 377. 377. .377E-7 2.6786345332877 +C Inject: 0.0 0.0 -2.678634533288 -89.9999992 +C ---- Initial flux of coil "GROUND" to "GEN " = 1.00000000E-09 +C +C Step Time GEN GROUND GROUND TACS TACS +C TERRA GEN FLUX GEN +C *** Phasor I(0) = 0.3770000E-07 Switch "GROUND" to " " closed +C 0 0.0 377. .377E-7 -.25696E-16 .009425 377. .377E-7 -.377E-7 +C 1 .5E-4 376.9330268 -1.42571976 1.425719797 .0282733257 376.9330268 -1.42571976 1.425719759 +C 2 .1E-3 376.7321312 -1.41394374 1.413943779 .0471149546 376.7321312 -1.41394374 1.413943741 +C 3 .15E-3 376.3973844 -1.40217609 1.40217613 .0659431925 376.3973844 -1.40217609 1.402176093 +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 3rd of 9 subcases ends the original series. 4-9 added 5 March 2007 +C Illustration of user-supplied residual flux of Type-96 hysteretic +C inductor was supplied by Prof. Mustafa Kizilcay of FH Osnabrueck in +C Germany (see E-mail dated 23 March 2001). This data is added to show +C that non-zero (but very small) flux of the phasor solution now is +C tolerated. Prior to the change several days ago, it was not. Prior +C to the change, residual flux needed to be exactly zero for the user- +C supplied flux to be used. No longer. Phasor flux < EPSILN is all that +C now is required. +POWER FREQUENCY 50. +PRINTED NUMBER WIDTH, 13, 2, { dT loop columns have width 13 including 2 blanks +ZERO FLUX TOLERANCE 1.E-8 { Columns 33-40 carry Type-96 tolerance +C Note about preceding declaration, which was added 29 March 2001. After +C reading later discussion about trouble with the IDEAL TRANSFORMER data, +C Prof. Kizilcay agreed that definition of the flux tolerance independent of +C EPSILN would be a good idea. The user can define whatever value he wants +C although here nothing will change (1.E-8 = value of EPSILN in STARTUP). + .000200 .200 50. + 40 1 1 1 1 +C Following TACS data is not required. It is used only to integrate the +C inductor voltage, thereby indicating the change in inductor flux --- +C change with respect to the user-supplied initial value of 0.2 volt-sec. +TACS HYBRID + 1FLUSSA +MA 1. + 1. { Numerator is : 1 + 1. { Denominator is : 0 + 1 * s +90MA { Type-96 voltage of electric network defines this TACS source 1. +33FLUSSA { Output of integrator, the change of flux, is only TACS output +BLANK card ending TACS data + QA P1A .0172 .1722 0 + P3A .0172 .1722 0 + MA 1.8 0 +96MA 8888 0.20 1 + -0.1199 -0.3754 { Preceding 0.2 is residual flux in [volt-sec] + -0.06264 -0.3643 { 2nd of many current-flux pairs + -0.0353 -0.3536 { 3rd of many. These define hysteresis loop. + -0.02025 -0.3428 + -0.00732 -0.3214 + -0.002869 -0.3 + -0.000538 -0.2786 + 0.01345 0.0 + 0.02744 0.2786 + 0.02977 0.3 + 0.03422 0.3214 + 0.04715 0.3428 + 0.0622 0.3536 + 0.08954 0.3643 + 0.1468 0.3754 + 0.2254 0.3826 + 0.5494 0.3968 + 9999 { Terminate last point of Type-96 hysteresis element + P2A 1.E10 +BLANK card ending all branch cards + P2A P3A .020 1.0 { Switch closes at 20 msec } 1 +BLANK card ending switches +14QA 8165. 50. -90. -1. +11P1A 1E-10 { 1st half of ungrounded voltage source and ideal Xformer +18P2A .0025MA { 2nd half of ungrounded voltage source and ideal Xformer +C Note about preceding two source cards, which represent an ideal transformer. +C Yes, there is the ungrounded voltage source, but for engineering purposes, +C this has value zero (the 1.E-10 in columns 11-20 of the 1st source card). +C The second source card, a Type-18 source, defines turns ratio and 4 names. +C In theory, these two source cards could be replaced by the following three +C branch cards, which are more readable: +C IDEAL TRANSFORMER +C 1P1A P2A 400.0 { Rated voltage of high side +C 2MA 1.0 { Rated voltage of low side +C The resulting phasor solution would be nearly the same, too. Nearly, +C but not quite. Prof. Kizilcay's Type-11 source value is small, note +C --- small enough to make the phasor flux at time zero < EPSILN. If +C instead the IDEAL TRANSFORMER is used, it would appear that the EPSILN +C threshold is exceeded. In place of the user-desired residual flux of 0.2 +C volt-seconds, the .LIS file will show the noise from the phasor solution: +C ---- Initial flux of coil "MA " to " " = -1.87122597E-06 +C This then is carried into the dT loop. Without meaningful residual flux, +C there is no significant in-rush current. Instead of Prof. Kizilcay's +C 30 amps, the PRINTER PLOT shows only about 1.243E-2 amps. For engineering +C purposes, the simulation will be completely different (and wrong). +BLANK card ending sources +C MA .1797146122E-11 .36742498645E-8 -.998414547E-12 .9984146668E-12 .8600609455E-40 .8600609455E-40 +C -.3674249425E-8 -89.9719755 -.488343774E-15 -179.9719755 .1834212477E-20 0.0000000 +C Total network loss P-loss by summing injections = 3.333364056743E-03 +C ---- Initial flux of coil "MA " to " " = 2.00000000E-01 +C The preceding result of phasor solution confirms correct operation. The +C voltage across the Type-96 branch is not zero, but it is small enough +C compared with floating-point miscellaneous data parameter EPSILN so no +C special precautions must be taken. Understand what is happening. The +C initial flux is equal to the imaginary part of the phasor voltage divided +C by the frequency, and this is small: .367E-8 / OMEGA < EPSILN + QA MA { Names of nodes for node-voltage output +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 2 output variables are branch currents (flowing from the upper node to the lower node); +C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time QA MA P2A MA TACS +C P3A TERRA FLUSSA +C 0 0.0 .499946E-12 .179715E-11 0.0 -.99841E-12 0.0 +C 40 .008 4799.266585 .2154661E-8 0.0 .278303E-11 .211415E-10 +C 80 .016 -7765.37646 -.349521E-8 0.0 .438944E-12 .803576E-11 +C *** Close switch "P2A " to "P3A " after 2.02000000E-02 sec. +C 120 .024 7765.376456 70.13133651 15591.82659 .0177128714 .0990291974 +C 160 .032 -4799.26658 110.5331176 33643.29393 22.70094726 1.167639417 +BLANK card ending node voltage outputs +C 1000 0.2 .9430083E-8 -105.223163 -23383.3158 -.97653E-3 .0484350031 +C Variable maxima : 8165. 159.787186 40889.62376 30.82522183 1.523703303 +C Times of maxima : .005 .0288 .0294 .054 .054 +C Variable minima : -8165. -118.702745 -23490.9996 -.16538292 -.198576963 +C Times of minima : .015 .0792 .1996 .1794 .1846 + CALCOMP PLOT + 193.02 0.0 0.2 -10. 30.MA { Plot Type-96 current over entire time span + PRINTER PLOT + 194 4. 20. 60. MA { Axis limits: (0.000 3.083) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 9 subcases begins a series using /UM on DC-35 U.M. data +C 1st of 6 subcases that have same solution but slightly different data. +C Begin with /SOURCE (not /UM for U.M.) and full Class-1 U.M. data. +C Output has been reduced from 2 lines per dT to one which consists of +C just the U.M. variables. For the 10 dT that are taken, signals agree +C exactly with DC37.LIS and are documented on comment cards of /OUTPUT + .000400 .004 { Take only 10 time steps -- enough to begin motor rotation + 5 -1 { No plotting (which has nothing special to do with /UM use) +/OUTPUT +C The following shows dT-loop output for each of the subcases of the /UM set: +C Step Time UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN OMEGM THETAM IPA IPB IPC IE1 IE2 IE3 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 5 .002 -.6898285 0.0 0.0 -150.98163 16.0278591 134.953771 15.5970274 131.9385 -147.53553 +C 10 .004 -11.779008 -.21882419 -.42361E-3 -203.70113 -91.734138 295.43527 -90.126277 287.718333 -197.59206 +/SOURCE +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +/BRANCH + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 + 0BUS-A1BUS-A0 0.005 1.0 + 0BUS-B1BUS-B0BUS-A1BUS-A0 + 0BUS-C1BUS-C0BUS-A1BUS-A0 + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 + 0BUS-OM 6.00E4 + 0 BUS-OM 33.333 +/REQUEST +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) +/SOURCE +19 { Data for U.M. begins with source type 19 keyed in columns 1-2 + 0 { The zero does nothing. In fact, a blank card would suffice for DC-35 +BLANK card ending U.M. header (3rd of 3 non-comment cards of Class-1 U.M. data) + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 { 6th and final winding card +/PLOT + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 5th of 9 subcases continues series using /UM on DC-35 U.M. data +C 2nd of 6 examples that have the same solution but slightly different data +C Replace /SOURCE by /UM and omit all 3 non-comment header cards. But +C then U.M. HEADER CARD (UMHC) must be added to define Class-1 data. + .000400 .004 { Take only 10 time steps -- enough to begin motor rotation + 5 -1 { No plotting (which has nothing special to do with /UM use) +/OUTPUT +C BUS-A1BUS-B1BUS-C1BUS-A0BUS-OM { Shorten output by eliminating node voltages +/SOURCE +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +/BRANCH + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 + 0BUS-A1BUS-A0 0.005 1.0 + 0BUS-B1BUS-B0BUS-A1BUS-A0 + 0BUS-C1BUS-C0BUS-A1BUS-A0 + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 + 0BUS-OM 6.00E4 + 0 BUS-OM 33.333 +/REQUEST +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) +/UM +C Note that there is no Class-1 U.M. data; ATP will supply the Type-19 card. + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 { 6th and final winding card +C 14BUSRA1 180.0 60.0 0.0 +/PLOT + PRINTER PLOT { Batch-mode plotting is for the line printer not vector-graphic +/REQUEST +U.M. HEADER CARD { To be followed by significant middle card of U.M. Class 1 + 0 { In fact, a blank card would suffice for DC-35 +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE --- NEWSORT --- +C 6th of 9 subcases continues series using /UM on DC-35 U.M. data +C 3rd of 6 examples that have the same solution but slightly different data +C Return to use of /SOURCE and full Class-1 U.M. data as in 1st example. +C But add U.M. HEADER CARD (UMHC) which overrides the normal Class-1 data. +C See explanation of the preceding NEWSORT within DCNEW-25. There +C is old (normal) data sorting logic and there is new data sorting +C logic as summarized in the January, 1999, Can/Am newsletter. Putting +C NEWSORT on the case-separator card as shown has the effect of placing +C a minus sign on SZBED of STARTUP, and this selects the newer sorting +C alternative. Either should handle /UM sorting. The NEWSORT could +C be added to each subcase without significant change to the .LIS file. +C Text of BLANK cards will vary a little, but that should be all. + .000400 .004 { Take only 10 time steps -- enough to begin motor rotation + 5 -1 { No plotting (which has nothing special to do with /UM use) +/OUTPUT +C BUS-A1BUS-B1BUS-C1BUS-A0BUS-OM { Shorten output by eliminating node voltages +/SOURCE +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +/BRANCH + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 + 0BUS-A1BUS-A0 0.005 1.0 + 0BUS-B1BUS-B0BUS-A1BUS-A0 + 0BUS-C1BUS-C0BUS-A1BUS-A0 + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 + 0BUS-OM 6.00E4 + 0 BUS-OM 33.333 +/REQUEST +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) +U.M. HEADER CARD { To be followed by significant middle card of U.M. Class 1 + 0 { In fact, a blank card would suffice for DC-35 +/SOURCE +C Any number of comments should be legal anywhere within Class-1 U.M. data +C as now begins. Because of UMHC (U.M. HEADER CARD) use, only the first of +C the 3 non-comment lines of Class-1 U.M. data ever will be seen. The crucial +C 2nd will be replaced by the card following the UMHC declaration, and the +C blank 3rd card is read and discarded, so will not been seen in the .LIS +C file. Yet, it is required. Even though not-used, the 3rd is checked +C for being blank, and execution will be halted if it is not so. Add "XXX" +C at the start of the 2nd to emphasize that content is arbitrary: +19 { Data for U.M. begins with source type 19 keyed in columns 1-2 +XXX 0 { 2nd of 3 non-comment header lines for U.M. will be replaced by UMHC crd +BLANK card ending U.M. header (3rd of 3 never will been seen in .LIS file) + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 { 6th and final winding card +/PLOT + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 7th of 9 subcases continues series using /UM on DC-35 U.M. data +C 4th of 6 examples that have the same solution but slightly different data +C Data of the preceding 3rd example has been massaged. First, "/" cards +C for sorting have been removed to demonstrate that UMHC use does not +C require sorting. The full 3-card Class-1 U.M. data has been replaced +C by the special Type-19 summary line which will refer to UMHC for the +C missing 2nd nonblank card of Class-1 data. Finally, since no sorting +C to insert the blank card ending U.M. data, this must be added manually. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) +U.M. HEADER CARD { To be followed by significant middle card of U.M. Class 1 + 0 { In fact, a blank card would suffice for DC-35 + .000400 .004 { Take only 10 time steps -- enough to begin motor rotation + 5 -1 { No plotting (which has nothing special to do with /UM use) + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 + 0BUS-A1BUS-A0 0.005 1.0 + 0BUS-B1BUS-B0BUS-A1BUS-A0 + 0BUS-C1BUS-C0BUS-A1BUS-A0 + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 + 0BUS-OM 6.00E4 + 0 BUS-OM 33.333 +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +19 { Class-1 U.M. data has been omitted WSM + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 { 6th and final winding card +BLANK card ends U.M. data +BLANK terminates the last SOURCE card +C BUS-A1BUS-B1BUS-C1BUS-A0BUS-OM { Shorten output by eliminating node voltages +BLANK card ends OUTPUT variable requests + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 8th of 9 subcases continues series using /UM on DC-35 U.M. data +C 5th of 6 subcases that have the same solution but slightly different data +C Data is like the 2nd example except that a second and third disconnected +C machine has been added to illustrate multi-machine use for 3 machines. + .000400 .004 { Take only 10 time steps -- enough to begin motor rotation + 5 -1 { No plotting (which has nothing special to do with /UM use) +/OUTPUT +C BUS-A1BUS-B1BUS-C1BUS-A0BUS-OM { Shorten output by eliminating node voltages +/SOURCE +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +/BRANCH + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 + 0BUS-A1BUS-A0 0.005 1.0 + 0BUS-B1BUS-B0BUS-A1BUS-A0 + 0BUS-C1BUS-C0BUS-A1BUS-A0 + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 + 0BUS-OM 6.00E4 + 0 BUS-OM 33.333 +/REQUEST +U.M. HEADER CARD { To be followed by significant middle card of U.M. Class 1 + 0 { In fact, a blank card would suffice for DC-35 +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) +/SOURCE +19 { Class-1 U.M. data has been omitted (this card is needed because of /SOURCE) + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 { 6th and final winding card +C 14BUSRA1 180.0 60.0 0.0 +/PLOT + PRINTER PLOT { Batch-mode plotting is for the line printer not vector-graphic +C ---------------- Done with data of 1st (real) U.M. Begin data of 2nd: +C 2nd, unused U.M. has the same data as the 1st, but it is disconnected, +C so should not affect the solution. Outputs have been suppressed. For +C variety, this U.M. still uses /UM whereas the first has been converted +C to /SOURCE followed by the special Type-19 header card. Note that the +C Type-19 card is mandatory because any source might follow /SOURCE whereas +C only U.M. data can follow /UM (i.e., the "19" is needed for recognition +C as U.M. data). For the 2nd, disconnected machine, note that the original +C A3 text BUS has become GUS everywhere. To restore the 9 outputs of +C the 2nd machine, add "111" to cols. 7-9 of the card immediately following +C the /UM declaaration, and change "0" to "1" in column 47 of each of +C the 6 winding cards that end machine data. If this is done, output consists +C of 2 lines each time step, and the two will be identical. +/UM + 4 1 1 GUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 GUS-A1 0 0.0 { 1st winding card +0.063 0.0003925 GUS-B1 0 0.0 +0.063 0.0003925 GUS-C1 0 0.0 +0.083 0.0003925 GUSRB1 0 0.0 +0.083 0.0003925 GUSRC1 0 0.0 +0.083 0.0003925 GUSRA1 0 0.0 { 6th and final winding card +/BRANCH + 0 GUS-A0 1.0 + 0 GUS-B0 1.0 + 0 GUS-C0 1.0 + 0GUS-A1GUS-A0 0.005 1.0 + 0GUS-B1GUS-B0GUS-A1GUS-A0 + 0GUS-C1GUS-C0GUS-A1GUS-A0 + 0GUSRA1 1.E-5 + 0GUSRB1 1.E-5 + 0GUSRC1 1.E-5 + 0GUS-OM 6.00E4 + 0 GUS-OM 33.333 +/SOURCE +14GUS-A0 180.0 60.0 0.0 +14GUS-B0 180.0 60.0 -120.0 +14GUS-C0 180.0 60.0 +120.0 +11GUS-OM-1 -6.00 +C ---------------- Done with data of 2nd U.M. Begin data of 3rd: +C 3rd, unused U.M. has the same data as the 1st, but it is disconnected, +C so should not affect the solution. Outputs have been suppressed. Etc. +C (like the 2nd except that the original BUS ---> MUS here). +/UM + 4 1 1 MUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 MUS-A1 0 0.0 { 1st winding card +0.063 0.0003925 MUS-B1 0 0.0 +0.063 0.0003925 MUS-C1 0 0.0 +0.083 0.0003925 MUSRB1 0 0.0 +0.083 0.0003925 MUSRC1 0 0.0 +0.083 0.0003925 MUSRA1 0 0.0 { 6th and final winding card +/BRANCH + 0 MUS-A0 1.0 + 0 MUS-B0 1.0 + 0 MUS-C0 1.0 + 0MUS-A1MUS-A0 0.005 1.0 + 0MUS-B1MUS-B0MUS-A1MUS-A0 + 0MUS-C1MUS-C0MUS-A1MUS-A0 + 0MUSRA1 1.E-5 + 0MUSRB1 1.E-5 + 0MUSRC1 1.E-5 + 0MUS-OM 6.00E4 + 0 MUS-OM 33.333 +/SOURCE +14MUS-A0 180.0 60.0 0.0 +14MUS-B0 180.0 60.0 -120.0 +14MUS-C0 180.0 60.0 +120.0 +11MUS-OM-1 -6.00 +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 9th of 9 subcases ends the series using /UM on DC-35 U.M. data +C 6th of 6 examples that have the same solution but slightly different data +C Data is the same as the 2nd example except that /UM data has been moved +C to a $INCLUDE file. Use or non-use of $INCLUDE should have no effect, +C and this demonstrates none for this simplest, first level of $INCLUDE. +C Enhancement by Gabor Furst. WSM's single $INCLUDE was replaced by +C two for more generality. A second induction motor was added to show +C that this is possible. Mr. Furst observed the following on 9 April +C 2007: "I thought we could have this sub case with two rather than +C one $INCLUDE file. I attach my version of this, which demonstrates +C how adding another machine is simply adding another $INCLUDE file." +C Mr. Furst simulated to Tmax = 1.044 seconds but program developers +C truncate this drastically (to 10 steps) to speed execution. This is +C just enough to start the rotors and show approximate balance. To see +C the entire settling into the steady state, restore the longer T-max, +C remove the minus sign from IPLOT immediately below T-max, and +C activate the batch-mode plot card (now omitted by $DISABLE). Finally, +C control printout (every 5th step for IOUT is a lot, for realistic use). +$PREFIX, [] { $INCLUDE files are located in same place as this main data file + .000400 .004 { Take only 10 time steps -- enough to begin motor rotation + 5 -1 { No plotting (which has nothing special to do with /UM use) +/OUTPUT +C BUS-A1BUS-B1BUS-C1BUS-A0BUS-OM { Shorten output by eliminating node voltages +/SOURCE +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +14BUS-A3 180.0 60.0 0.0 +14BUS-B3 180.0 60.0 -120.0 +14BUS-C3 180.0 60.0 +120.0 +11BUS-3M-1 -6.00 +/BRANCH +C the following branch records are transferred to $INCLUDE dc33inc1.dat +C 0 BUS-A0 1.0 +C 0 BUS-B0 1.0 +C 0 BUS-C0 1.0 +C 0BUS-A1BUS-A0 0.005 1.0C +C 0BUS-B1BUS-B0BUS-A1BUS-A0 +C 0BUS-C1BUS-C0BUS-A1BUS-A0 +C 0BUSRA1 1.E-5 +C 0BUSRB1 1.E-5 +C 0BUSRC1 1.E-5 +C 0BUS-OM 6.00E4 +C 0 BUS-OM 33.33 +C + 0 BUS-A3 1.0 + 0 BUS-B3 1.0 + 0 BUS-C3 1.0 + 0BUS-A4BUS-A3 0.005 1.0 + 0BUS-B4BUS-B3BUS-A4BUS-A3 + 0BUS-C4BUS-C0BUS-A4BUS-A3 + 0BUSRA4 1.E-5 + 0BUSRB4 1.E-5 + 0BUSRC4 1.E-5 + 0BUS-3M 6.00E4 + 0 BUS-3M 33.333 +$INCLUDE, dc33inc1.dat, { Separate file for /UM followed by all data for U.M. 1 +$INCLUDE, dc33inc2.dat, { Separate file for /UM followed by all data for U.M. 2 +C About the preceding data modularization, there is lack of balance. This +C is intentional. Whereas DC33INC1 has /BRANCH data, DC33INC2 has none. +C Each also involves /REQUEST which precedes a UMHC request. Since only +C one has meaning, expect rejection accompanied by a warning message for the +C 2nd of the two. +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests + CALCOMP PLOT +$DISABLE { The following plot card assumes use of Gabor Furst's longer T-max + 193 .1 0.0 1.0 UM-1 OMEGM UM-2 OMEGM Induction motor w in [rad/sec] +$ENABLE +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc33inc1.dat b/benchmarks/dc33inc1.dat new file mode 100644 index 0000000..00ad2eb --- /dev/null +++ b/benchmarks/dc33inc1.dat @@ -0,0 +1,27 @@ +/BRANCH + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 + 0BUS-A1BUS-A0 0.005 1.0 + 0BUS-B1BUS-B0BUS-A1BUS-A0 + 0BUS-C1BUS-C0BUS-A1BUS-A0 + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 + 0BUS-OM 6.00E4 + 0 BUS-OM 33.33 +/REQUEST +U.M. HEADER CARD { To be followed by significant middle card of U.M. Class 1 + 0 { In fact, a blank card would suffice for DC-35 +/UM +C Note that there is no Class-1 U.M. data; ATP will supply the Type-19 card. + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 { 6th and final winding card +C 14BUSRA1 180.0 60.0 0.0 diff --git a/benchmarks/dc33inc2.dat b/benchmarks/dc33inc2.dat new file mode 100644 index 0000000..56933d9 --- /dev/null +++ b/benchmarks/dc33inc2.dat @@ -0,0 +1,15 @@ +/REQUEST +U.M. HEADER CARD { To be followed by significant middle card of U.M. Class 1 + 0 { In fact, a blank card would suf +/UM +C Note that there is no Class-1 U.M. data; ATP will supply the Type-19 card. + 4 1 1111BUS-3M 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A4 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B4 1 0.0 +0.063 0.0003925 BUS-C4 1 0.0 +0.083 0.0003925 BUSRB4 1 0.0 +0.083 0.0003925 BUSRC4 1 0.0 +0.083 0.0003925 BUSRA4 1 0.0 { 6th and final winding card +C 14BUSRA1 180.0 60.0 0.0 diff --git a/benchmarks/dc33incf.dat b/benchmarks/dc33incf.dat new file mode 100644 index 0000000..59736a1 --- /dev/null +++ b/benchmarks/dc33incf.dat @@ -0,0 +1,12 @@ +/UM +C Note that there is no Class-1 U.M. data; ATP will supply the Type-19 card. + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 { 6th and final winding card +C 14BUSRA1 180.0 60.0 0.0 diff --git a/benchmarks/dc34.dat b/benchmarks/dc34.dat new file mode 100644 index 0000000..c2b6504 --- /dev/null +++ b/benchmarks/dc34.dat @@ -0,0 +1,194 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-34 +C Test of U.M. operating as a 3-phase synchronous machine. Data is in +C per unit. Although there is a phasor solution, manual initial conditions +C in fact define all state variables, so the answers would be identical if +C the negative (-1.0) starting times of the sources (T-start of cols. 61-70) +C were erased (made blank --- or zero). For automatic initialization of +C the same problem, see the second subcase (not normally executed). For a +C case of automatic initialization using data in physical units, see DCNEW-2 +POWER FREQUENCY, 60.0, { Europeans need this (LEC letter dated 6 Jan 89, page 2) + .001 .500 + 1 1 0 00 1 -1 + 5 5 20 20 100 100 + 0 BUS-F0 1.0 + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 + 0BUS-A1BUS-A0 0.02 1.0610 1 + 0BUS-B1BUS-B0BUS-A1BUS-A0 1 + 0BUS-C1BUS-C0BUS-A1BUS-A0 1 + 0BUS-M1 2.00E6 1 + 0BUS-M0 2.00E6 1 + 0BUS-M0BUS-M1 1. 1 +BLANK card ends the last branch card +BLANK card ends (in this case nonexistent) switch cards +11BUS-F0 0.002091 { 18 Oct 90, remove ineffective T-start = -1.0 from card +11BUS-M0-1 1.02 +11BUS-M0-1 -.4 .019500 +14BUS-A0 1.41421356 60.0 0.0 -1.0 +14BUS-B0 1.41421356 60.0 -120.0 -1.0 +14BUS-C0 1.41421356 60.0 120.0 -1.0 +C Note, the 3 following alternatives to the 3 preceding source cards would be +C used if the user wanted to omit the unnecessary phasor solution: +C 14BUS-A0 1.41421356 60.0 0.0 +C 14BUS-B0 1.41421356 60.0 -120.0 +C 14BUS-C0 1.41421356 60.0 120.0 +19 UM { Beginning of U.M. data (Type-19 source) +1 +BLANK card ending class-1 U.M. data + 1 2 1111BUS-M1 1 1786.98 { 1st card of U.M. machine table +1.0 1.550 0 0.3 1.5 1.0 +0.93787 1.490 0 +0.0 0.0 BUS-A1 1 1.3860 { 1st card of coil table +0.001096 0.150 BUS-B1 1 -0.95877 +0.001096 0.150 BUS-C1 1 -0.42721 +0.00074 0.101 BUS-F0 1 -2.826 +0.0131 0.055 1 +0.0540 0.036 1 +BLANK card ending all U.M. data +BLANK card ending EMTP source cards +C Total network loss P-loss by summing injections = 2.999999989932E+00 + 2BUS-A1 1.56413 { First of many initial condition cards for the + 2BUS-B1 -0.30745 { electric network. Since the U.M. is not a + 2BUS-C1 -1.25677 { part of the phasor solution (see DCNEW-1 for + 2BUS-A0 1.41421356 { such a more modern problem), synchronous + 2BUS-B0 -0.70710678 { operation can begin smoothly only if the + 2BUS-C0 -0.70710678 { initially conditions are manually applied. + 2BUS-F0 0.002091 + 2BUS-M0 1.0 + 2BUS-M1 1.0 { Final card of node voltage initial conditions + 3BUS-A1BUS-A0 1.38494 { 1st card of branch current initial conditions + 3BUS-B1BUS-B0 -0.95793 + 3BUS-C1BUS-C0 -0.42701 + 3 BUS-A0 -1.41421356 + 3 BUS-B0 +0.70710678 + 3 BUS-C0 +0.70710678 + 3 BUS-F0 -0.002091 + 3BUS-M0BUS-M1 +1.01 + 3BUS-M0 +1.0 + 3BUS-M1 +1.0 { Last card of branch current init. condit. + BUS-A1BUS-B1BUS-C1BUS-M1BUS-M0 { Request for selective node voltage output +C Step Time BUS-A1 BUS-B1 BUS-C1 BUS-M1 BUS-M0 BUS-A1 +C BUS-A0 +C +C BUS-M0 UM-1 UM-1 UM-1 UM-1 UM-1 +C BUS-M1 TQGEN OMEGM THETAM IPA IPB +C 0 0.0 1.56413 -.30745 -1.25677 1.0 1.0 1.38494 +C 1.01 1.00124132 1.0 .93787 1.386 -.95877 +C 1 .001 1.25370608 .317284401 -1.5709433 1.00000302 1.0000025 1.40049668 +C 1.00999974 .997905631 1.0 .93787 1.40049668 -.50888659 +BLANK card ending the specification of output variables +C Last step: 500 0.5 1.62762984 -.45832224 -1.1269996 1.00472639 1.00854631 +C Last step: .570740608 .701421892 1.00469204 .660491474 .974954484 -.86183035 +C maxima : 1.65791637 1.66126439 1.66752483 1.00779145 1.00854631 1.41537866 +C maxima : 1.01 1.0019948 1.00877611 .93787 1.41537866 1.40559809 +C Times of max : .466 .038 .494 .442 0.5 .034 +C Times of max : 0.0 .015 .439 .063 .034 .056 +C minima : -1.6665177 -1.6618744 -1.662372 .989230544 .990404468 -1.4043962 +C .322011281 .29918812 .988252614 .361026487 -1.4043962 -1.4122326 +C Times of min : .491 .063 .469 .158 .217 .059 +C .296 .346 .159 .358 .059 .031 + PRINTER PLOT + 193 .1 0.0 1.0 BUS-M1BUS-M0 { Plot limits: (-1.010, 0.000) + 193 .1 0.0 1.0 UM-1 THETAM { Plot limits: (0.000, 9.379) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +BLANK { Note this extra blank will terminate execution, to avoid 2nd subcase +C 2nd of 2 data subcases is a modification of the first that illustrates +C correction of a U.M. bug by Yin Yuexin as explained in his September, +C 1990, article in EMTP News. Automatic initialization of this data case +C gave the wrong answers (although it did run) prior to correction of the +C UTPF around 23 October 1990. Now, answers are close (most variables +C differ by about 1% on the final time step). Printout of the final phasor +C solution has deliberately been omitted, so those wanting to verify this +C computation can observe only the total network loss (see comments below). +POWER FREQUENCY, 60. + 0.0010 0.500 + 1 1 1 0 1 -1 + 5 5 20 20 100 100 +C --------- EMTP CONNECTIVITY + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 +C --------- TRANSMISSION LINES + 0BUS-A1BUS-A0 0.02 1.0610 1 + 0BUS-B1BUS-B0BUS-A1BUS-A0 1 + 0BUS-C1BUS-C0BUS-A1BUS-A0 1 +C --------- EMTP CONNECTIVITY REQUIREMENT + 0 BUS-F0 1.0 + 0BUS-F0BUS-FS 1.0E-5 +C --------- MECH NETWORK + 0BUS-M1 2.00E6 1 + 0BUS-M0 2.00E6 1 + 0BUS-M0BUS-M1 1. 1 +BLANK card ends the last branch card +BLANK card ends (in this case nonexistent) switch cards +14BUS-A0 1.41421356 60 0.0 -1.0 +14BUS-B0 1.41421356 60 -120.0 -1.0 +14BUS-C0 1.41421356 60 120.0 -1.0 +14BUS-M0-1 1.020.00001 -1.0 +11BUS-M0-1 -.4 .019500 +14BUS-FS 0.002091 0.00001 -1.0 +19 UM { Beginning of U.M. data (Type-19 source) +11 +BLANK card ending class-1 U.M. data + 1 2 1111BUS-M1 1 1786.98 { 1st card of U.M. machine table +C 1 2 1111BUS-M1 1 1786.98 0.0 1.E-2 +C Note about preceding card: The one on comments, with speed tolerance EPSOM = +C 1.E-2 really is preferable. However, it results +C in a significantly different (20-30% ?) transient +C than the 1st subcase. To ease the comparison, +C we repeat the sloppy solution using default EPSOM. + 1.550 0 0.3 1.5 1.0 + 1.490 0 +1.657962127 19.31 BUS-FSBUS-M0 +0.0 0.0 BUS-A1 1 { 1st card of coil table +0.001096 0.150 BUS-B1 1 +0.001096 0.150 BUS-C1 1 +0.00074 0.101 BUS-F0 1 +0.0131 0.055 1 +0.0540 0.036 1 +BLANK card ending all U.M. data +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C BUS-A0 |TERRA *BUS-A1* +C BUS-B0 |TERRA *BUS-B1* +C BUS-C0 |TERRA *BUS-C1* +C BUS-A1 |BUS-A0*UM1TLA* +BLANK card ending EMTP source cards +C Total network loss P-loss by summing injections = 3.060462493760E+00 +C Total network loss P-loss by summing injections = 4.749309543189E+08 +C Total network loss P-loss by summing injections = 4.749309483781E+08 +C Total network loss P-loss by summing injections = 4.749309483781E+08 +C Step Time BUS-A1 BUS-B1 BUS-C1 BUS-M1 BUS-M0 BUS-A1 +C BUS-A0 +C +C BUS-M0 UM-1 UM-1 UM-1 UM-1 UM-1 +C BUS-M1 TQGEN OMEGM THETAM IPA IPB +C 0 0.0 1.56469025 -.30754481 -1.2571454 1.0 1.0 1.38601852 +C 1.00131382 1.0013138 1.0 .937861106 1.3860101 -.95878667 +C 1 .001 1.25258147 .317818099 -1.5703996 1.00000077 1.0 1.40129158 +C 1.00131344 .998244785 1.0 .937861106 1.40129158 -.50952832 +C 2 .002 .764711905 .89137497 -1.6560869 1.00000314 1.0 1.22174997 +C 1.00131148 .994893975 1.0 .937861106 1.22174997 .010186855 + BUS-A1BUS-B1BUS-C1BUS-M1BUS-M0 { Request for selective node voltage output +BLANK card ending the specification of output variables +C 500 0.5 1.6149836 -.48296496 -1.1320186 1.00511758 1.00883159 .944795926 +C .552751698 .679538565 1.0051174 .638940337 .944795926 -.85191135 +C Maxima : 1.65785372 1.66075108 1.65580126 1.00797985 1.00883159 1.4158664 +C 1.00131382 1.00252272 1.00882158 .937861106 1.4158664 1.40560972 +C Times of max : .049 .038 .077 .444 0.5 .034 +C 0.0 .015 .433 .06 .034 .056 +C Minima : -1.6581898 -1.6603141 -1.6560869 .98886644 .990030962 -1.4042214 +C .29939589 .270787035 .987919779 .329902805 -1.4042214 -1.4126707 +C Times of min : .024 .013 .002 .158 .215 .059 +C .296 .344 .159 .356 .059 .031 + PRINTER PLOT + 193 .1 0.0 1.0 BUS-M1BUS-M0 { Plot limits: (-1.001, 0.000) + 193 .1 0.0 1.0 UM-1 THETAM { Plot limits: (0.000, 9.379) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc35.dat b/benchmarks/dc35.dat new file mode 100644 index 0000000..37c3fe0 --- /dev/null +++ b/benchmarks/dc35.dat @@ -0,0 +1,159 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-35 +C U.M. test consisting of 3-phase induction motor startup. See Vol. X EMTP +C Memoranda, 15 April 1980, page TPIM-6 onward. TMAX has been decreased, +C DELTAT has been increased, and resistors shorting the rotor have been +C increased (to help lower-precision computers). Also appears in Rule Book. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) + .000400 .400 + 1 1 0 00 1 -1 0 + 5 5 20 20 100 100 +C The following 3 branches provide connectivity to ground: + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 +C Next comes the source impedance, as uncoupled series R-L branches: + 0BUS-A1BUS-A0 0.005 1.0 2 + 0BUS-B1BUS-B0BUS-A1BUS-A0 2 + 0BUS-C1BUS-C0BUS-A1BUS-A0 2 +C Next there is a near short of the rotor windings (squirrel cage case): + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 +C Final branches are for rotor mass (capacitance) and damping (resistance): + 0BUS-OM 6.00E4 + 0 BUS-OM 33.333 1 +BLANK card terminating branch cards +BLANK card ends non-existent switch cards +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +19 UM { 1st of U.M. data cards to represent 3-phase induction motor +0 +BLANK card ending Class-1 U.M. data + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 +BLANK card ending all U.M. data +BLANK card ending electric network source cards + BUS-A1BUS-B1BUS-C1BUS-A0BUS-OM +C Step Time BUS-A1 BUS-B1 BUS-C1 BUS-A1 BUS-B1 +C BUS-A0 BUS-B0 BUS-C0 +C +C UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN OMEGM THETAM IPA IPB +C 0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 +C 1 .4E-3 -98.574299 36.3155088 62.2587899 79.3830153 -29.245296 +C -.1388E-16 0.0 0.0 -19.695165 7.25584591 +C 2 .8E-3 -92.178447 20.8386935 71.3397538 79.6971707 -18.794915 +C -.00570624 0.0 0.0 -57.76825 18.6607698 +BLANK card ends requests for program output +C Last step begins: 1000 0.4 -8.3684481 1.39626098 6.97218715 171.631552 +C Last step begins: -12.310167 187.573334 46.3605875 -8.8049393 23.504665 +C Maxima begin: 99.6139318 106.19115 100.446912 171.631552 171.624746 +C Maxima begin: 144.878041 197.090289 46.3605875 302.2867 263.869636 +C Associated times : .0912 .0132 .0356 0.4 .3556 +C Associated times : .0388 .2492 0.4 .1284 .1508 +C Minima begin: -103.15511 -99.851577 -103.80211 -171.82882 -171.84501 +C Minima begin: -186.32292 -.41620944 -.58668E-3 -299.62596 -384.19564 +C Associated times : .016 .0716 .0104 .3584 .364 +C Associated times : .0116 .0028 .0052 .0368 .0088 +C 78901234567890123456789012345678901234567890123456789012345678901234567890 + 193.04 0.0 .40 UM-1 OMEGM Induction motor w in [rad/sec] + PRINTER PLOT { Now switch to the line printer (exactly the same plot card) + 193.04 0.0 .40 UM-1 OMEGM { Axis limits: (-0.004, 1.971) + 2Single-line, 78-character case title text ! + First of 2 lines of multi-line, 78-byte, subheading text. ! + Second and final line of multi-line labeling text. ! + CALCOMP PLOT + 193.04 0.0 .40 UM-1 IPA + PEN PLOT { Divert vector graphics from screen to disk for printer + QUARTER PLOT { Blank col 32 means all 4 quarters of quarter plotting is used + 2Single-line case-title text for 1st of 4 quarters! + 193.04 0.0 .40 UM-1 OMEGM 1st of 4 quarterw in [rad/sec] ! + 2Single-line case-title text for 2nd of 4 quarters! + 193.04 0.0 .40 UM-1 THETAM 2nd of 4 quarterAngle in radian! + 2Single-line case-title text for 3rd of 4 quarters! + 193.04 0.0 .40 UM-1 TQGEN 3rd of 4 quarterTorque in n-m ! + 2Single-line case-title text for 4th of 4 quarters! + 193.04 0.0 .40 UM-1 IPA 4th of 4 quarterCurrent in amp ! + SCREEN PLOT + 2Done with QUARTER PLOT; back to full size! + 193.04 0.0 .40 UM-1 IPB +BLANK card ends the last plot card +BEGIN NEW DATA CASE +BLANK + + + +BEGIN NEW DATA CASE +C 2nd of 2 subcases has the same data as the 1st, but is used to illustrate +C CALCOMP PLOT usage only. Both SCREEN PLOT and PEN PLOT usage of the +C Salford DOS extender motivated the addition of this data in Sept, 1990. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) + .000400 .040 { Note the reduction from 1000 to 100 time steps for speed + 1 1 0 00 0 -1 0 + 5 5 20 20 +C The following 3 branches provide connectivity to ground: + 0 BUS-A0 1.0 + 0 BUS-B0 1.0 + 0 BUS-C0 1.0 +C Next comes the source impedance, as uncoupled series R-L branches: + 0BUS-A1BUS-A0 0.005 1.0 2 + 0BUS-B1BUS-B0BUS-A1BUS-A0 2 + 0BUS-C1BUS-C0BUS-A1BUS-A0 2 +C Next there is a near short of the rotor windings (squirrel cage case): + 0BUSRA1 1.E-5 + 0BUSRB1 1.E-5 + 0BUSRC1 1.E-5 +C Final branches are for rotor mass (capacitance) and damping (resistance): + 0BUS-OM 6.00E4 + 0 BUS-OM 33.333 1 +BLANK card terminating branch cards +BLANK card ends non-existent switch cards +14BUS-A0 180.0 60.0 0.0 +14BUS-B0 180.0 60.0 -120.0 +14BUS-C0 180.0 60.0 +120.0 +11BUS-OM-1 -6.00 +19 UM { 1st of U.M. data cards to represent 3-phase induction motor +0 +BLANK card ending Class-1 U.M. data + 4 1 1111BUS-OM 2 0.06 0.18850 { 1st machine table +0.0 0.020291 0 +0.0 0.020291 0 +0.063 0.0001911 BUS-A1 1 0.0 { 1st winding card +0.063 0.0003925 BUS-B1 1 0.0 +0.063 0.0003925 BUS-C1 1 0.0 +0.083 0.0003925 BUSRB1 1 0.0 +0.083 0.0003925 BUSRC1 1 0.0 +0.083 0.0003925 BUSRA1 1 0.0 +BLANK card ending all U.M. data +BLANK card ending electric network source cards + BUS-A1BUS-B1BUS-C1BUS-A0BUS-OM +BLANK card ends requests for program output + 2Single-line, 78-character case title text ! + First of 2 lines of multi-line, 78-byte, subheading text. ! + Second and final line of multi-line labeling text. ! + 194 4. 0.0 40. UM-1 OMEGM Induction motor w in [rad/sec] ! + PEN PLOT { Now switch to the Epson printer (exactly the same plot card) + 2Single-line, 78-character case title text ! + First of 2 lines of multi-line, 78-byte, subheading text. ! + Second and final line of multi-line labeling text. ! + 194 4. 0.0 40. UM-1 OMEGM Induction motor w in [rad/sec] ! + SCREEN PLOT + First of 2 lines --- text is altered, though. ! + Second 2 lines --- text is altered. ! + 194 4. 0.0 40. UM-1 OMEGM Induction motor w in [rad/sec] ! +BLANK card ends the last plot card +BEGIN NEW DATA CASE +BLANK + + diff --git a/benchmarks/dc36.dat b/benchmarks/dc36.dat new file mode 100644 index 0000000..ff85f42 --- /dev/null +++ b/benchmarks/dc36.dat @@ -0,0 +1,295 @@ +BEGIN NEW DATA CASE -- NOSORT --- +C BENCHMARK DC-36 (DC-74 of "M39." vintage) +C Example drawn from the dynamite EMTP Newsletter article by W. Scott Meyer, +C "EMTP Data Modularization and Sorting ...," Volume 4, No. 2, Sec. V, +C November, 1983. This case produces branch cards for companion problem +C DC-8, which illustrates $INCLUDE usage with arguments. Since that +C NEWSLETTER use, the feature has been changed to conventional batch-mode. +C Note required addition of "NOSORT" somewhere on the very 1st input card. +C This is checked in "OVER1" at the beginning of execution, so that data +C card sorting by class ("/" cards) is bypassed, as required for use here. +C The punched card output (produced by the $PUNCH request) should agree +C with Figure 2, except for the addition of $EOF and ARG cards at the +C end, and the fact that question marks (?????) have not replaced the real +C character strings that have meaning to the user. The file DC8INCL1.DAT +C for use by DC-8 should agree exactly with Fig. 2 (except for the switch +C to lower case lettering for comment cards), and it was derived by editing +C the punch file. 6 subcases exist, with the 2nd the same as the first +C except that it is more general because it uses a "DUM" declaration. The +C 4th applies to an entire data case rather than just a $INCLUDE file. +C The 3rd and the 5th illustrate math within a $INCLUDE file --- dependent +C variables that involve new DEP, declaration. The 6th subcase shows that +C $INCLUDE can be used within DBM along with "/" cards and NOSORT. +DATA BASE MODULE +C $ERASE +C $DEBUG, 9, +ARG, _NODE, _MINUS, __PLUS, { Before 1994, this 1st ARG card had all 5 arguments +ARG, _FIRE, __MID { This 2nd ARG card illustrates procedure for continuation +/BRANCH +C3 Begin with anode reactors and parallel resistors (6 pairs): + _NODEA__MID1 3000. + _NODEA__MID1 1.0 + _NODEB__MID3 3000. + _NODEB__MID3 1.0 + _NODEC__MID5 3000. + _NODEC__MID5 1.0 + __PLUS__MID4 3000. + __PLUS__MID4 1.0 + __PLUS__MID6 3000. + __PLUS__MID6 1.0 + __PLUS__MID2 3000. + __PLUS__MID2 1.0 +C3 Next come the snubber circuits, across valves and anode reactors: + _NODEA_MINUS 1200. 0.1 + _NODEB_MINUS 1200. 0.1 + _NODEC_MINUS 1200. 0.1 + _NODEA__PLUS 1200. 0.1 + _NODEB__PLUS 1200. 0.1 + _NODEC__PLUS 1200. 0.1 +C3 Next come the valves: +/SWITCH +11__MID1_MINUS _FIRE2 +11__MID3_MINUS _FIRE4 +11__MID5_MINUS _FIRE6 +11__MID4_NODEA _FIRE5 +11__MID6_NODEB _FIRE1 +11__MID2_NODEC _FIRE3 +BEGIN NEW DATA CASE ---- NOSORT ---- +C Note: Preceding case marker is required where it now is positioned, so +C that data card input for the modularization be terminated here ( +C since this is what is checked for). If the following $PUNCH +C were to precede BNDC, it would be read before any card images +C would have been created, & the result would be an empty listing. +C The same goes for the following comment cards that document the +C answer: if these cards preceded BNDC, they would not be read +C by "CIMAGE" as intended (the data base logic reads directly +C from the input card buffer of LUNIT10). So, do not tamper with +C the present positioning that documents the results of the first +C subcase at the beginning of the second (where we now are). +C KARD 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 +C 14 15 15 16 16 17 17 18 18 19 19 21 21 21 22 22 22 23 23 23 24 24 24 25 25 +C 25 26 26 26 +C KARG 1 5 1 5 1 5 1 5 1 5 1 5 3 5 3 5 3 5 3 5 3 5 3 5 1 +C 2 1 2 1 2 1 3 1 3 1 3 2 4 5 2 4 5 2 4 5 1 4 5 1 4 +C 5 1 4 5 +C KBEG 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 +C 9 3 9 3 9 3 9 3 9 3 9 9 65 3 9 65 3 9 65 3 9 65 3 9 65 +C 3 9 65 3 +C KEND 7 13 7 13 7 13 7 13 7 13 7 13 8 13 8 13 8 13 8 13 8 13 8 13 7 +C 14 7 14 7 14 7 14 7 14 7 14 14 69 7 14 69 7 14 69 7 13 69 7 13 69 +C 7 13 69 7 +C KTEX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +C 1 1 1 1 +$PUNCH { Flush critical portion of answers from preceding first subcase +C 2nd of 6 subcases will illustrate the use of the "DUM" declaration for +C internal nodes about which the names might not matter. To illustate it, +C remove "MID?" from the "ARG" declaration, and list in all of their +C variations (there are six) in a "DUM" declaration. Remember that the +C "DUM" declarations must come last (a restriction on present logic). +DATA BASE MODULE +ARG, _NODE, _MINUS, __PLUS, _FIRE { Must precede any "DUM" card +DUM, __MID1, __MID2, __MID3, __MID4, __MID5, __MID6 { Must follow last "ARG" +/BRANCH +C3 Begin with anode reactors and parallel resistors (6 pairs): + _NODEA__MID1 3000. + _NODEA__MID1 1.0 + _NODEB__MID3 3000. + _NODEB__MID3 1.0 + _NODEC__MID5 3000. + _NODEC__MID5 1.0 + __PLUS__MID4 3000. + __PLUS__MID4 1.0 + __PLUS__MID6 3000. + __PLUS__MID6 1.0 + __PLUS__MID2 3000. + __PLUS__MID2 1.0 +C3 Next come the snubber circuits, across valves and anode reactors: + _NODEA_MINUS 1200. 0.1 + _NODEB_MINUS 1200. 0.1 + _NODEC_MINUS 1200. 0.1 + _NODEA__PLUS 1200. 0.1 + _NODEB__PLUS 1200. 0.1 + _NODEC__PLUS 1200. 0.1 +C3 Next come the valves: +/SWITCH +11__MID1_MINUS _FIRE2 +11__MID3_MINUS _FIRE4 +11__MID5_MINUS _FIRE6 +11__MID4_NODEA _FIRE5 +11__MID6_NODEB _FIRE1 +11__MID2_NODEC _FIRE3 +BEGIN NEW DATA CASE -- NOSORT --- +C Note: Preceding case marker is required where it now is positioned, so +C that data card input for the modularization be terminated here ( +C since this is what is checked for). If the following $PUNCH +C were to precede BNDC, it would be read before any card images +C would have been created, & the result would be an empty listing. +C The same goes for the following comment cards that document the +C answer: if these cards preceded BNDC, they would not be read +C by "CIMAGE" as intended (the data base logic reads directly +C from the input card buffer of LUNIT10). So, do not tamper with +C the present positioning that documents the results of the first +C subcase at the beginning of the second (where we now are). +C KARD 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 +C 14 15 15 16 16 17 17 18 18 19 19 21 21 21 22 22 22 23 23 23 24 24 24 25 25 +C 25 26 26 26 +C KARG 1 -1 1 -1 1 -3 1 -3 1 -5 1 -5 3 -4 3 -4 3 -6 3 -6 3 -2 3 -2 1 +C 2 1 2 1 2 1 3 1 3 1 3 2 4 -1 2 4 -3 2 4 -5 1 4 -4 1 4 +C -6 1 4 -2 +C KBEG 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 +C 9 3 9 3 9 3 9 3 9 3 9 9 65 3 9 65 3 9 65 3 9 65 3 9 65 +C 3 9 65 3 +C KEND 7 14 7 14 7 14 7 14 7 14 7 14 8 14 8 14 8 14 8 14 8 14 8 14 7 +C 14 7 14 7 14 7 14 7 14 7 14 14 69 8 14 69 8 14 69 8 13 69 8 13 69 +C 8 13 69 8 +C KTEX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +C 1 1 1 1 +$PUNCH { Flush critical portion of answers from preceding data case +C 3rd of 6 subcases will illustrate the use of the "DEP" declaration for +C dependent variables of $INCLUDE usage as provided for Jeff Peggs of +C Virginia Power in Richmond. For details, see stories in the April +C and July, 1997, newsletters. Whereas the 2nd subcase had constant +C capacitance C = 0.1 in columns 39-44, here a dependent variable CAP_44 +C is used. For simplicity, trivial math (1000 * 1.E-4) is used in order +C that the answer remain unchanged. More generally, one or more variable +C would be involved in the right hand side of the CAP_44 definition below. +C Here, there is a single dependent variable, but in general there can be +C any number. For each, the name must be declared first on a DEP line, +C where the first DEP follows the last of all other (ARG, NUM, or TEX) +C declarations. The associated dependence is to follow as a line of low- +C level FORTRAN, which must be compatible with the pocket calculator code +C of Walter Powell. Before any real lines of data for $INCLUDE use should +C come all such DEP lines, followed by all FORTRAN lines associated with +C these new variables. In this illustration, there is just one (CAP_44). +DATA BASE MODULE +ARG, _NODE, _MINUS, __PLUS, { Before 1994, this 1st ARG card had all 5 arguments +ARG, _FIRE, __MID { This 2nd ARG card illustrates procedure for continuation +DEP, CAP_44 { This "DEP" declaration is new. Each dependent variable needs 1 + CAP_44 = 1000. * 1.E-4 { Associated formula for evaluation during $INCLUDE +/BRANCH +C3 Begin with anode reactors and parallel resistors (6 pairs): + _NODEA__MID1 3000. + _NODEA__MID1 1.0 + _NODEB__MID3 3000. + _NODEB__MID3 1.0 + _NODEC__MID5 3000. + _NODEC__MID5 1.0 + __PLUS__MID4 3000. + __PLUS__MID4 1.0 + __PLUS__MID6 3000. + __PLUS__MID6 1.0 + __PLUS__MID2 3000. + __PLUS__MID2 1.0 +C3 Next come the snubber circuits, across valves and anode reactors: + _NODEA_MINUS 1200. CAP_44 { 1st of 6 replaces 0.1 in 39-44 + _NODEB_MINUS 1200. CAP_44 { 2nd of 6 .... + _NODEC_MINUS 1200. CAP_44 + _NODEA__PLUS 1200. CAP_44 + _NODEB__PLUS 1200. CAP_44 + _NODEC__PLUS 1200. CAP_44 +C3 Next come the valves: +/SWITCH +11__MID1_MINUS _FIRE2 +11__MID3_MINUS _FIRE4 +11__MID5_MINUS _FIRE6 +11__MID4_NODEA _FIRE5 +11__MID6_NODEB _FIRE1 +11__MID2_NODEC _FIRE3 +BEGIN NEW DATA CASE +$PUNCH { Flush cards of $INCLUDE created by 1st subcase. Rename DCN22INC.DAT +C 4th of 6 subcases will illustrate the use of data modularization for a +C complete data case (not a $INCLUDE file). The output becomes DC-65 +C after the addition of a few cards at the top and the bottom. A single +C argument, for the end-time TMAX of the study, is desired. +DATA BASE MODULE +ARG, TMAX { The end time of the study, misc. data parameter T-max, is argument +NUM, TMAX { The end time of the study, misc. data parameter T-max, is numerical +C The following data is from DC-4, with the only changes being less output. +C Suppress the connectivity display and the phasor solution. End time=TMAX. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .010 TMAX + 1 1 0 0 1 -1 + 5 5 20 20 + BRANCH NAME:First { Even though name could go on next card, use this instead + GEN TRAN 5.0 5.E4 3 + TRAN NAME R-mag 1.E4 +93TRAN NAME Magnet .005 30. 3 + 0.0 0.0 { 1st point being origin is request to reflect + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 + TRAN LOADG 255. 5.E4 3 +C Note: original fixed-format card (next comment) converted to free-format: +C LOADG 1.E-6 +0,LOADG, , , , 1.E-6, 0.0, 0.0, , , , , , +BLANK card ending program branch cards. +BLANK card terminating program switch cards (none, for this case) +14GEN 70. .1591549 -1. +BLANK card terminating program source cards. +C Total network loss P-loss by summing injections = 8.286714400785E+00 +C Inject: GEN 70. 70. .23676326859385 .25769284993889 8.2867144007848 +C Inject: 0.0 0.0 -.1017288531066 -23.2514964 3.5605098587304 +C ---- Initial flux of coil "TRAN " to " " = -1.13295190E+01 +C Step Time GEN TRAN TRAN GEN TRAN +C TRAN TERRA LOADG +C 0 0.0 6.270257621 63.72974238 63.72974215 70. 63.72974238 +C 1 .01 6.156651781 63.83984825 63.83984802 69.99650003 63.83984825 + GEN TRAN +BLANK card ending program output-variable requests. + PRINTER PLOT +BLANK card ending all plot cards +BEGIN NEW DATA CASE +$PUNCH { Flush cards of $INCLUDE created by 1st subcase. Rename DCN22INC.DAT +C 5th of 6 subcases will illustrate dependent variables as explained to +C others in the January, 1997, newsletter (see mention of Jeff Peggs of +C Virginia Power in Richmond). The 3rd subcase provided an illustration, +C but was artificial in that only constants (no variables) were involved. +C Here, a balanced 3-phase sinusoidal source is modularized, with the +C angles of phases "b" and "c" dependent on the user-specified angle of +C phase "a". Also, the user specifies line-to-line RMS voltage, which +C is converted to peak phase-to-ground voltage as required by ATP. +DATA BASE MODULE +ARG, NAME, _RATEDRMSV, _____HERTZ, ____ANGLEA, ____TSTART +NUM, _RATEDRMSV, _____HERTZ, ____ANGLEA, ____TSTART +DEP, _PEAKVALUE, ____ANGLEB, ____ANGLEC + _PEAKVALUE = _RATEDRMSV * SQRT ( 2.0 / 3.0 ) { Convert L-L RMS to peak L-N + ____ANGLEB = ____ANGLEA - 120. { Angle of phase "b" lags "a" by 120 degrees + ____ANGLEC = ____ANGLEA - 240. { Angle of phase "b" lags "a" by 240 degrees +C3 Type-14 source cards follow: +14NAMEA _PEAKVALUE_____HERTZ____ANGLEA ____TSTART +14NAMEB _PEAKVALUE_____HERTZ____ANGLEB ____TSTART +14NAMEC _PEAKVALUE_____HERTZ____ANGLEC ____TSTART +BEGIN NEW DATA CASE -- NOSORT -- +$PUNCH, dc36e.pch ! { Disk file name assumed by ?? +C 6th of 6 subcases will illustrate use of both $INCLUDE and /-cards +C within DATA BASE MODULE. Prior to correction on 16 July 2001, this +C was not possible as first complained about by Prof. Mustafa Kizilcay. +C The following is his illustrative data. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +DATA BASE MODULE +ARG, BEG1__, END1__, LENGTH______ +NUM, LENGTH______ +/BRANCH +$INCLUDE, dc36incl.dat ! { 1-phase, constant-parameter distributed line +C The 3 important non-comment cards of the preceding $INCLUDE file are: +C $VINTAGE, 1 +C -1BEG1__END1__ 1.63917E-01 5.77155E+02 2.49305E+05LENGTH______ 1 +C $VINTAGE, 0 +BEGIN NEW DATA CASE +$PUNCH +C Comment cards in this location serve another purpose, too. +C Without them, STARTUP variable KASEND = 5 (as commonly +C used for workstations) means that fewer than the minimum +C cards would remain, so the $PUNCH would be skipped, and +C output would not be produced. +BLANK { 15 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 15 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 15 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 15 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 15 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK diff --git a/benchmarks/dc36incl.dat b/benchmarks/dc36incl.dat new file mode 100644 index 0000000..c46fdde --- /dev/null +++ b/benchmarks/dc36incl.dat @@ -0,0 +1,12 @@ +C constant-param. distributed line model: +C single-phase 110-kV overhead line, l=50 km. +C <++++++> Cards punched by support routine on 26-Oct-97 23.05.12 <++++++> +C **** TRANSPOSED Line calculated at 5.000E+01 HZ. **** +C LINE CONSTANTS +C METRIC +C 10.311 0.116 4 2.19 4.9 16.4 16.4 +C BLANK CARDS ENDING CONDUCTOR CARDS WITHIN "LINE CONSTANTS" DATA +C 100. 50.00 1 1 1 0 50. 0 +$VINTAGE, 1 +-1BEG1__END1__ 1.63917E-01 5.77155E+02 2.49305E+05LENGTH______ 1 +$VINTAGE, 0 diff --git a/benchmarks/dc37.dat b/benchmarks/dc37.dat new file mode 100644 index 0000000..ef07b2a --- /dev/null +++ b/benchmarks/dc37.dat @@ -0,0 +1,677 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-37 +C Trivial test of ZnO modeling. Single phase, single exponential, no gap. +C For documentation, see the EMTP Newsletter, Vol. 1, No. 2, pages 6-9. +C i = 2500 * ( v / V-ref ) ** 26 where 2500 = COEF and 26 = EXPON. +C The lack of a gap follows from V-flash being an arbitary negative value. +C Note 2-column arrester (COL=2.0), and twice COEF = 1250 is 2500 total. +C The idea of using COL came from Dan Durbak of PTI (Schenectady, New +C York) at the end of an unrelated telephone call to BPA on July 3, 1986. +C Finally, a 2nd ZnO arrester is applied right across the voltage source. +C Of a total of 12 subcases, several illustrate power and energy output. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +C MAXZNO EPSZNO EPWARN EPSTOP ZNOLIM1 ZNOLIM2 +ZINC OXIDE 20 1.D-8 1.D-3 0.1 0.6 1.5 default values +C ZO, , , , .9, , { To improve ZnO convergence, restrict the Newton ZnO correction + .000050 .020 + 1 1 1 0 1 -1 0 + 2 10 33 1 40 10 100 50 +-1SEND REC .306 5.82 .012 200. +92REC { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +C The following arrester is applied right across the voltage source, so it is +C disconnected, and requires no iteration. Newton iteration is 1-dimensional +C (the matrix is 1 x 1 only). The second arrester involves "table lookup." +C Note that V-ref is equal to the peak source voltage, so the peak current +C is equal to the coefficient: COL * COEF = 2500 amps. The plot agrees. +92SEND { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 408000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SEND 408000. 60. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C SEND |TERRA *REC * +C REC |TERRA *SEND * +C TERRA |SEND *REC * +C --------------+------------------------------ +BLANK card ending source data +C Step Time REC SEND REC SEND +C TERRA TERRA +C 0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 0.0 407927.5198 0.0 2488.47851 +C 2 .1E-3 0.0 407710.1048 0.0 2454.223589 +C 12 .6E-3 0.0 397606.9641 0.0 1278.142608 +C 22 .0011 0.0 373418.3984 0.0 249.9564103 +C 32 .0016 0.0 336001.2998 0.0 16.05612212 +C 33 .00165 0.0 331579.2191 0.0 11.37746957 +C 34 .0017 446716.5798 327039.3298 .0013592657 7.950150616 + 1 { Request for all node voltage outputs +C Final step : 400 .02 53295.59263 126078.9337 .5103896E-5 .2302356E-4 +C Variable maxima : 693010.7427 407991.9464 123.5121341 2498.717272 +C Times of maxima : .00175 .01665 .00175 .01665 +C Variable minima : -711052.757 -407991.946 -240.945005 -2498.71727 +C Times of minima : .00765 .00835 .00765 .00835 + PRINTER PLOT + 144 3. 0.0 20. REC { Axis limits: (-7.111, 6.930) + 194 2. 0.0 20. SEND { Axis limits: (-2.499, 2.499) + CALCOMP PLOT +C The following plot card illustrates automatic plotting from zero through +C the end time TMAX of the study. Columns 5-7 give the t-axis length in +C inches, and columns 12-15 being negative is the flag to plot all time. +C With a 10-inch axis and a time span of 20 msec, the result is 2 msec/in. +C For such all-time character plotting in units of [seconds], see DC-6. +C 78901234567890123456789012345678901234567890123456789012345678901234567890 + 19410. -1. REC 16-Char. HeadingVertical axis Y: +$STARTUP, dc37star.dat ! { Use disk file for re-initialization immediately +C This will halve the number of pixels/inch (PIXPUN) for an Apollo screen +C plot. Also, it will set the smoothing tolerance squared, TOLRCE, to +C 1/10. The result will be a half-size and very bumpy screen plot: + 194 1. 0.0 10. REC 16-byte Heading Y-axis labeling. +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 12 subcases. Same basic network as just solved, only with modified +C ZnO characteristic as derived by DC-39. One exponential with flashover. +C The first (pre-flash) characteristic has near-infinite resistance, with +C exponent equal to unity. Leakage current (about 1.E-20 amps) will occur +C prior to flashover at v = VREF = 778 kV. The operational characteristic +C is i = 29479.54 * ( v / V-ref ) ** 26.53, which is very close to the +C original characteristic of 1st subcase. Change on 23 Jul 1984 ("M39.+"). +C Enhancement beginning 30 July 1986. Series voltage sources for all +C nonlinear elements are allowed, so let's take the simplest possible +C case of a 10-KVolt battery (variable "BATTER" defined within TACS). +C Before the pulse arrives, this only draws leakage current from the +C linear representation of the surge arrester (R-leakage). But when +C the 10 kV are added to the surge, the answer changes significantly. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .020 + 1 1 1 0 1 -1 0 + 2 10 33 1 40 10 100 50 +TACS HYBRID { We use TACS only to produce series voltage "BATTER" of ZnO +99BATTER = 10000. { Small battery (dc source) is inserted in series with ZnO +33BATTER { Output the only this one TACS variable that controls ZnO source +77BATTER 10000. { Initial condition required for smooth electrical step 1 +BLANK card ending all TACS data +-1SEND REC .306 5.82 .012 200. 1 +92REC 5555. 1 +C ============================================================================= +C 92REC TYP11 5555. 1 +C The preceding comment card is just for verification of solution. See the +C explanation on comment cards below the blank card ending switch cards. +C ============================================================================= +C VREF VFLASH VZERO COL + 0.778000000000000E+06 1.0 +C COEF EXPON VMIN + 0.294795442961157E-20 1.0 .900000E+01 + 9999 { Bound on exponentials of 1st, pre-flash v-i curve + 0.294795442961157E+05 0.265302624185338E+02 0.545050636122854E+00 + 9999 { Bound on exponentials of 2nd, post-flash v-i curve + TACS CONTROLBATTER { Only 1st of three A6 names, for series voltage, is used +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +C ============================================================================= +C The easiest way to verify correct operation of the series voltage BATTER +C of the Type-92 element is to cancel it out using an electrical network +C battery. The following Type-11 source will do the job. But then the +C nonlinear element must have the second name changed to "TYP11", note. +C 11TYP11 -10000. { This battery cancels series voltage of ZnO "BATTER" +C ============================================================================= +14SEND 408000. 60. +BLANK card ending source data +C The following beginning shows leakage current between steps 1 and 33 when +C only the TACS voltage "BATTER" is exciting the arrester. Since the line +C impedance (Z-thev) is so much smaller than the ZnO, the receiving voltage +C REC is very, very small. But it is nonzero, note --- and correctly so: +C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables are branch currents (flowing from the upper node to the lower node); +C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). Updated 2 Nov 00 +C Step Time SEND REC SEND REC TACS +C REC TERRA BATTER +C 0 0.0 0.0 0.0 0.0 0.0 10000. +C 1 .5E-4 407927.5198 .269681E-19 407927.5198 -.37891E-22 10000. +C 2 .1E-3 407710.1048 .269681E-19 407710.1048 -.37891E-22 10000. +C 12 .6E-3 397606.9641 .269681E-19 397606.9641 -.37891E-22 10000. +C 22 .0011 373418.3984 .269681E-19 373418.3984 -.37891E-22 10000. +C 32 .0016 336001.2998 .269681E-19 336001.2998 -.37891E-22 10000. +C 33 .00165 331579.2191 .269681E-19 331579.2191 -.37891E-22 10000. +C 34 .0017 -119678.217 446717.5472 327039.3298 .165479E-20 10000. + 1 { Request for all node voltage outputs +C 400 .02 8093.382341 117985.5514 126078.9337 .7639597E-3 10000. +C Variable maxima : 474201.1091 793085.1587 407991.9464 225.9075813 10000. +C Times of maxima : .0063 .0159 .01665 .0162 0.0 +C Variable minima : -511598.378 -768087.191 -407991.946 -333.924608 10000. +C Times of minima : .00295 .0063 .00835 .00765 0.0 + PRINTER PLOT + 194 3. 0.0 20. REC { Axis limits: (-3.339, 2.259) + CALCOMP PLOT + 194 2. 0.0 20. REC 16-Char HeadingVertical axis Y. +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 12 subcases. Same basic network as just solved, only with modified +C ZnO characteristic as derived by DC-39. There is a 2-exponential curve, +C the pre-flashover curve of 2nd subcase. V-flash < 0 means no gap here. +$STARTUP, (ATPDIR)startup ! { Re-initialize with original disk file of 1st subcase +C This will restore the default parameters, after illustrating (see the +C 2nd subcase) what happens in the absence of such restoration for later +C stacked subcases. The second subcase continued with the mini CalComp +C plots that began at the end of the 1st subcase with dc37star.dat. +C Note about "(ATPDIR)" as used on preceding $STARTUP. This is +C optional. If it appears, ATP will replace these 8 bytes by the +C content of symbol ATPDIR (as used at BPA, "C:\ATP"). +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +ZINC OXIDE 20 + .000050 .02000 + 1 1 1 0 1 -1 0 + 2 10 33 1 40 10 100 50 +-1SEND REC .306 5.82 .012 200. +92REC 5555. 1 +C VREF VFLASH VZERO COL + 0.778000000000000E+06 -1.0 1.0 +C COEF EXPON VMIN + 0.505584788677197E+07 0.464199973324622E+02 0.632754084797274E+00 + 0.122767153039007E+05 0.166775903445228E+02 0.816748018907843E+00 + 9999 { Bound on two exponentials of single v-i curve +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SEND 408000. 60. +BLANK card ending source data +C Step Time REC SEND REC +C TERRA +C 0 0.0 0.0 0.0 0.0 +C 1 .5E-4 0.0 407927.5198 0.0 +C 2 .1E-3 0.0 407710.1048 0.0 +C 12 .6E-3 0.0 397606.9641 0.0 +C 22 .0011 0.0 373418.3984 0.0 +C 32 .0016 0.0 336001.2998 0.0 +C 33 .00165 0.0 331579.2191 0.0 +C 34 .0017 446715.6097 327039.3298 .0027223116 + 1 { Request for all node voltage outputs +C Final step printout: 400 .02 104698.8727 126078.9337 .6380412E-3 +C Variable maxima : 626465.3591 407991.9464 217.0115979 +C Times of maxima : .00175 .01665 .00175 + PRINTER PLOT + 144 3. 0.0 20. REC { Axis limits: (-6.329, 6.265) + CALCOMP PLOT + 194 2. 0.0 20. REC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 12 subcases +C Modify 1st subcase of DC-37 to illustrate scaling of voltage and current +C by 1000 for ZnO surge arrester. +C 1 October 2000, add illustrations of 3-digit exponents: numbers +C larger than 1.E+100 and smaller than 1.E-100. It was necessary +C to find a subcase without plotting, since otherwise the limit of +C FLTINF (set in STARTUP to 1.E19) would be imposed. To avoid this +C limit, we set IPLOT = -1 below (columns 9-16). Node OVER is to +C demonstrate near overflow of the Intel limit of around 1.E+308, and +C node UNDER is to demonstrate near underflow of the limit 1.E-308 +C Each involves series R-L with R = 12.7 and L = .45 mH (or the +C negative of this for overflow), which implies a time constant of +C Tau = L / R = .45E-3 / 12.7 = 3.54E-5 sec. The simulation lasts for +C 20 msec, so EXP ( T-max / Tau ) = EXP ( .020 / 3.54E-5 ) = +C EXP ( 564.44 ) = 1.365E+245. This 245 is close to the 303 observed +C (close enough for engineers to understand the physics involved). +C A final detail concerns the .DBG file. For Salford EMTP, this +C is a separate file as long as output is buffered (typically LU6VRT +C has value 32768 for an output buffer of size 32 Kbytes). As a +C separate file, the user might never look to see the message that +C is produced for each optimal encoding that requires a 3-digit +C exponent. For example, the first two occur to produce the output +C of step 150. The associated diagnostic becomes highly visible if +C output is not buffered (if LU6VRT = 0). Then, from DC37.LIS : +C 100 .005 .316184E-12 0.0 0.0 .577391E-22 -.887674E75 .267212E-74 +C FLTOPT. Wierd number D9 = 1.234180423134E+0113 SPYCD2(1:35) = 0.1234180423133828610000+114 +C FLTOPT. Wierd number D9 = 1.921900653658E-0113 SPYCD2(1:35) = 0.1921900653658086780000-112 +C 150 .0075 -288.499567 0.0 0.0 -.305176E-3 -.12342E114 .19219E-112 +C There is nothing wrong. The number is wierd only in the sense +C that Salford omitted the "E" during encoding, so ATP logic was +C forced to restore the "E" manually. +C 14 January 2011, add illustration of the new protection against +C overflow of node voltage. DC-61 illustrated use of the new optional +C second parameter LOGB10 on the PEAK VOLTAGE MONITOR declaration. +C But the protection there was invisible since there never was any need +C for it. Here, there is need. With a node voltage limit of 1.E+304, +C execution will be terminated with the KILL = 264 error message: +C KILL = 264. ATP halts execution because some node voltage has +C exceeded the bound of 1.00000000+304 as defined by the optional +C second parameter of the user`s NODE VOLTAGE MONITOR request. This +C is at node "MIDO " on step number 399. WSM. +C Ruler for next card: MAXVLT HALTNV { Format is: ( 32X, I8, E8.0 ) +PEAK VOLTAGE MONITOR 1 1.E304 { Peak node voltage = 1.E+304 +VOLTAGE SOURCES IN KV +PRINTED NUMBER WIDTH, 10, 2, { Request minimum precision, since explosive + .000050 .020 + 1 -1 1 0 1 -1 0 + 5 10 33 1 40 10 100 50 395 1 +92VOLT 5555. 1 +C VREF VFLASH VZERO COL + 408000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) + VOLT 1.E8 { Avoid warning to weak connection to ground +C Network modification. We must split the unstable series R-L into two +C separate, series branches. This is to add a node at which the voltage +C will increase without bound (exponential growth). The old data escaped our +C new protection because terminal node voltages were identically zero (it was +C only the branch current that grew uncontrolled): +C OVER 12.7 -.45 { Series R-L with negative L } 1 + OVER MIDO 12.7 { Series R with positive R } + MIDO -.45 { Series L with negative L } 1 + UNDER 12.7 .45 { Series R-L with positive L } 1 +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14VOLT 408. 50. +14OVER 1.0 50. { Voltage source is shorted at .2 ms } 2.E-4 +14UNDER 1.0 50. { Voltage source is shorted at .2 ms } 2.E-4 +BLANK card ending source data +C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time MIDO VOLT OVER UNDER VOLT MIDO UNDER +C TERRA TERRA TERRA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 3.395807 407.9497 .9998766 .9998766 2.491993 -.188656 .0325693 +C 2 .1E-3 19.6688 407.7987 .9995066 .9995066 2.468123 -1.47002 .0707492 +C 3 .15E-3 113.9285 407.5471 .9988899 .9988899 2.428834 -8.89209 .0773084 +C 4 .2E-3 656.5329 407.1949 0.0 0.0 2.374852 -51.6955 .0458835 +C 5 .25E-3 3802.936 406.7423 0.0 0.0 2.307161 -299.444 .0079213 + 1 { Request for output of all node voltages +C 395 .01975 .125E302 406.7423 0.0 0.0 2.307161 -.98E300 .24E-299 +C 396 .0198 .723E302 407.1949 0.0 0.0 2.374852 -.57E301 .42E-300 +C 397 .01985 .419E303 407.5471 0.0 0.0 2.428834 -.33E302 .72E-301 +C 398 .0199 .243E304 407.7987 0.0 0.0 2.468123 -.19E303 .12E-301 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 12 subcases +C Modify 2nd subcase of DC-37 to illustrate scaling of voltage and current +C by 1000 for ZnO surge arrester. Note that VOLTAGE SOURCES IN KV is +C not needed because the declaration of the preceding subcase remains in +C effect for this one. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .020 + 1 1 1 0 1 -1 0 + 2 10 33 1 40 10 100 50 +-1GEN VOLT .306 5.82 .012 200. +92VOLT 5555. 1 +C VREF VFLASH VZERO COL + 0.778000000000000E+06 1.0 +C COEF EXPON VMIN + 0.294795442961157E-20 1.0 .900000E+01 + 9999 { Bound on exponentials of 1st, pre-flash v-i curve + 0.294795442961157E+05 0.265302624185338E+02 0.545050636122854E+00 + 9999 { Bound on exponentials of 2nd, post-flash v-i curve +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14GEN 408. 50. +BLANK card ending source data + 1 { Request for all node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 12 subcases +C Modify 4th subcase of DC-37 to illustrate scaling of voltage and current +C by 1000. Note data (specifically, source voltage) is unscaled. Instead +C of VOLTAGE SOURCES IN KV, we here use output scaling of BVIV and +C BCIA (following two declarations). Output of the time-step loop is +C identical to that of 4th subcase. See October, 1997, newsletter. +C 28 December 1998, add first column-80 punch in excess of 4. A story +C in the April, 1999, newsletter should introduce use of 0 plus the 16 +C choices that are summarized immediately before the blank card that +C ends branch cards. Details of this mapping remain an ATP secret. +C 34567890123456789012345678901234567890 V-base is read from cols. 33-40: +BASE VOLTAGE IN VOLTS 1000. +BASE CURRENT IN AMPERES 1000. { I-base is read from cols. 33-40 +VOLTAGE SOURCES IN KV -1.0 { Cancel usage of preceding subcases +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .020 + 1 1 1 0 1 -1 0 + 2 10 33 1 40 10 100 50 +C 28 Dec 98, original col-80 punch of 1 is changed to B to add power output: +92VOLT 5555. B +C VREF VFLASH VZERO COL + 408000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +C Documentation of new column-80 choices that begin 28 December 1998: +C 5 ==> Append power & energy while leaving voltage & current +C 6 ==> Append power & energy while omitting current (but not the voltage) +C 7 ==> Append power & energy while omitting voltage (but not the current) +C 8 ==> Append power & energy while omitting both voltage and current +C 9 ==> Append power while leaving voltage & current +C A ==> Append power while omitting current (but not the voltage) +C B ==> Append power while omitting voltage (but not the current) +C C ==> Append power while omitting both voltage and current +C D ==> Append energy while leaving voltage & current +C E ==> Append energy while omitting current (but not the voltage) +C F ==> Append energy while omitting voltage (but not the current) +C G ==> Append energy while omitting both voltage and current +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14VOLT 408000. 50. +BLANK card ending source data +C Column headings for the 3 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables are branch currents (flowing from the upper node to the lower node); +C Next 1 output variables are either power or energy or both as a pair (column 80 punches > 4). +C Step Time VOLT VOLT VOLT +C TERRA TERRA +C 0 0.0 0.0 0.0 0.0 +C 1 .5E-4 407.9496661 2.491993465 1016.607902 +C 2 .1E-3 407.7986766 2.468123475 1006.497487 + 1 { Request for all node voltage outputs +C 200 .01 -408. -2.5 1020. +C 250 .0125 -288.499567 -.305176E-3 .0880430807 +C 300 .015 -.80639E-11 -.14726E-20 .118745E-31 +C 350 .0175 288.4995667 .3051758E-3 .0880430807 +C 400 .02 408. 2.5 1020. +C Variable maxima : 408. 2.5 1020. +C Times of maxima : .02 .02 .01 +C Variable minima : -408. -2.5 0.0 +C Times of minima : .01 .01 0.0 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 7th of 12 subcases illustrates power & energy output of nonlinear element. +C Apparently this was never documented as Orlando Hevia found it to be in +C error during late May of 1998, following overhaul of branch data input. +C KISS: 2 volts across R = 2 gives 1 amp. Then, nonlinear has 1 ohm and +C one volt, so power is 1 on 1st step. Trapezoidal rule then gives the +C energy as dT ( E(0) + E(1) ) / 2 = .001 * 1 / 2 = .0005 (about). +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .001 .001 + 1 1 1 0 0 0 0 0 + SEND REC 1.0 { Half of 2 ohms total is this linear branch +92REC 4444. { ZnO is piecewise-linear } 4 +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 1.0 { First point of i-v curve. + 10. 10. + 9999. { Terminator for piecewise-linear characteristic +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SEND 2.0 1.0 { 1 Hz is close enough to dc for this test +BLANK card ending source data +C Step Time REC REC SEND REC +C TERRA TERRA +C 0 0.0 0.0 0.0 0.0 0.0 +C 1 .1E-2 .9999605221 .9999802609 1.999960522 .4999803E-3 + 1 { Request for all node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 8th of 12 subcases is added 13 October 2006 to demonstrate operation of +C extended power and energy output (punches 5-16) for switches. Of course +C the same meanings apply to switches as to branches -- with the exception +C that power & energy are flow _through_ a switch rather than consumption +C within a branch. Data for this illustration of extended switch outputs +C is copied from the 6th subcase. One switch is added in series with the +C N.L. element. This is (GEN, VOLT). The current, power and energy flow +C through it obviously should be identical to those of the branch. Since +C the branch has "B" in column 80, only current and power will be shown. +C The switch has "7" to add energy to these two. Since the 2 columns of +C current are side by side, and the 2 columns of power are side by side, +C it is possible to see by casual inspection that they agree. As for the +C energy, it seems believable; printed values are monotone increasing. +C 34567890123456789012345678901234567890 V-base is read from cols. 33-40: +BASE VOLTAGE IN VOLTS 1000. +BASE CURRENT IN AMPERES 1000. { I-base is read from cols. 33-40 +VOLTAGE SOURCES IN KV -1.0 { Cancel usage of preceding subcases +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .020 + 1 1 1 0 1 -1 0 + 2 10 33 1 40 10 100 50 +92VOLT 5555. B +C VREF VFLASH VZERO COL + 408000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data + GEN VOLT MEASURING 7 +BLANK card terminating all switches +14GEN 408000. 50. +BLANK card ending source data + GEN { List of bus names for node voltage output +C Column headings for the 6 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 2 output variables are branch currents (flowing from the upper node to the lower node); +C Next 3 output variables are either power or energy or both as a pair (column 80 punches > 4). +C Step Time GEN GEN VOLT VOLT GEN GEN +C VOLT TERRA TERRA VOLT VOLT +C *** Switch "GEN " to "VOLT " closed before 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 407.9496661 2.491993465 2.491993465 1016.607902 1016.607902 .0254151975 +C 2 .1E-3 407.7986766 2.468123475 2.468123475 1006.497487 1006.497487 .0759928323 +BLANK card ending node voltage outputs +C 400 .02 408. 2.5 2.5 1020. 1020. 3.078116283 +C Variable maxima : 408. 2.5 2.5 1020. 1020. 3.078116283 +C Times of maxima : .02 .02 .02 .01 .01 .02 +C Variable minima : -408. -2.5 -2.5 0.0 0.0 0.0 +C Times of minima : .01 .01 .01 0.0 0.0 0.0 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 9th of 12 subcases will illustrate power and energy output along with a +C phasor solution. Since previous subcases all involved one nonlinear +C element, make this linear and easy to verify by hand. Add a switch as +C was done for the preceding subcase. Illustrate 3 column-80 punches > 4. +C Note that the 8-punch results in the same outputs that a 4-punch would, +C but they are located differently : power and energy are appended rather +C than overlay the corresponding voltage and current outputs. As for the +C switch, it is permanently closed in spite of T-open = 19 msec < T-max. +C Finally, turn off V and I scaling. Date of addition: 13 October 2006 +BASE VOLTAGE IN VOLTS 1.0 { Cancel usage of preceding subcase +BASE CURRENT IN AMPERES 1.0 { Cancel usage of preceding subcase + .000500 .020 + 1 1 1 2 1 -1 + 5 5 + GEN MID 0.5 { power and energy output } 8 + LOAD 0.5 { power, energy, and voltage output } 6 +BLANK card terminating branch data + MID LOAD -1. .019 { current and energy output } F +BLANK card terminating all switches +14GEN 1.0 50. -1. +BLANK card ending source data +C Total network loss P-loss by summing injections = 5.000000000000E-01 +C Solution at nodes with known voltage. ... +C Node Source node voltage Injected source current Injected source power +C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. +C GEN 1.0 1.0 1.0 1.0 0.5 0.5 +C 0.0 0.0 0.0 0.0 0.0 1.0000000 +C Column headings for the 7 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables are branch currents (flowing from the upper node to the lower node); +C Next 5 output variables are either power or energy or both as a pair (column 80 punches > 4). +C Step Time LOAD MID GEN GEN LOAD LOAD MID +C TERRA LOAD MID MID TERRA TERRA LOAD +C *** Phasor I(0) = 1.0000000E+00 Switch "MID " to "LOAD " closed in the steady-state. +C 0 0.0 0.5 1.0 0.5 0.0 0.5 0.0 0.0 +C 1 .5E-3 .4938441703 .9876883406 .4877641291 .246941E-3 .4877641291 .246941E-3 .246941E-3 +C 2 .1E-2 .4755282581 .9510565163 .4522542486 .4819456E-3 .4522542486 .4819456E-3 .4819456E-3 +BLANK card ending node voltage outputs (none for this subcase) +C 40 .02 0.5 1.0 0.5 .005 0.5 .005 .005 +C Variable maxima : 0.5 1.0 0.5 .005 0.5 .005 .005 +C Times of maxima : 0.0 0.0 0.0 .02 0.0 .02 .02 +C Variable minima : -.5 -1. .496087E-31 0.0 .496087E-31 0.0 0.0 +C Times of minima : .01 .01 .005 0.0 .005 0.0 0.0 + PRINTER PLOT + 184 2. 0.0 10. GEN MID { Axis limits on branch power: (0.000, 5.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 10th of 12 subcases will illustrate passing of switch power and energy +C to TACS. New (as of 31 October 2006) TACS sources are Type-94 for power +C and Type-95 for energy. Otherwise, they are like Type-91 for current. +C There are no dynamics, so dT is immaterial except that we want smooth +C curves, so take 100 steps over one cycle. Pass one sinusoidal ampere +C through a 1-ohm resistor. Note the column-80 punch "8" on the switch +C to append both switch power flow and energy flow. Of course, the TACS +C sources should be identical. Output shows this. Numbers are simple +C enough to be verified with a pocket calculator. WSM, 3 November 2006 +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + .000200 .020 + 1 1 1 1 1 -1 + 5 5 +TACS HYBRID +94GEN { Power flow through the switch having A6 terminal node "GEN " +95SWIT { Energy flow through the switch having A6 terminal node "SWIT " +77GEN 1.0 { Initial condition on the Type-94 power source avoids zero +33GEN SWIT { Output the values (power and energy) of these two new sources +BLANK card terminates all TACS data + SWIT 1.0 { 1-ohm resistor connects the switch to ground +BLANK card ending all BRANCH cards + GEN SWIT MEASURING 8 +BLANK card ending all SWITCH cards +14GEN 1.0 50. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C SWIT |TERRA *GEN * +C GEN |SWIT * +C TERRA |SWIT * +C --------------+------------------------------ +BLANK terminates the last SOURCE card +C Total network loss P-loss by summing injections = 5.000000000000E-01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C GEN SWIT 1.00000000E+00 0.00000000E+00 1.00000000E+00 0.0000 5.00000000E-01 0.00000000E+00 + GEN { Just one node voltage output +C Column headings for the 5 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 2 output variables are either power or energy or both as a pair (column 80 punches > 4). +C Next 2 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time GEN GEN GEN TACS TACS +C SWIT SWIT GEN SWIT +C *** Phasor I(0) = 1.0000000E+00 Switch "GEN " to "SWIT " closed in the steady-state. +C 0 0.0 1.0 1.0 0.0 1.0 0.0 +C 1 .2E-3 .998026728 .996057351 .199606E-3 .996057351 .199606E-3 +C 2 .4E-3 .992114701 .984291581 .397641E-3 .984291581 .397641E-3 +C 3 .6E-3 .982287251 .964888243 .592559E-3 .964888243 .592559E-3 +C Column headings for the 5 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +BLANK card ends OUTPUT variable requests +C 100 .02 1.0 1.0 .01 1.0 .01 +C Variable maxima : 1.0 1.0 .01 1.0 .01 +C Times of maxima : 0.0 0.0 .02 0.0 .02 +C Variable minima : -1. .80245E-31 0.0 .80245E-31 0.0 +C Times of minima : .01 .005 0.0 .005 0.0 + PRINTER PLOT + 194 4. 0.0 20. TACS GEN Axis limits: (0.000, 1.000) + 194 4. 0.0 20. TACS SWIT Axis limits: (0.000, 10.000) +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 11th of 12 subcases will illustrate alternative [Z]-based iteration +C that first is being made available to others in January of 2007. Data +C is identical to the 1st subcase, and so is the solution, in spite of +C the large number of output digits (typically 10). The Newton iteration +C is that accurate (this proves it for 1 arrester with 1 exponential). +C Note the new declaration immediately after the opening Type-92 branch +C card. This is new. Column position and case of the request words are +C critical, so to avoid mistakes, paste this to other data of interest. +C The declaration is required only for the 1st NL element of a subnetwork +C that is to be solved with impedance rather than admittance formulation. +C Beware of reference branch use, however, as the flag goes with data. +C I.e., a different subnetwork that requests a copy of this element for +C its first will automatically be solved using [Z] rather than [Y] whether +C or not this is the user's desire. The choice of solution method follows +C the original data. Finally, only use [Z] with Type-92 exponentials as +C service begins 8 January 2007. WSM. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +NO Y-BASED NEWTON { Every subnetwork is to be solved using [Z] rather than [Y] + .000050 .020 + 1 1 1 0 1 -1 0 + 2 10 33 1 40 10 100 50 +-1SEND REC .306 5.82 .012 200. +92REC { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 + [Z]-based Newton iteration { Column and case matter. Declare not use of [Y] +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SEND 408000. 60. +BLANK card ending source data +C Step Time REC SEND REC SEND +C TERRA TERRA +C 33 .00165 0.0 331579.2191 0.0 11.37746957 +C 34 .0017 446716.5798 327039.3298 .0013592657 7.950150616 + 1 { Request for all node voltage outputs + PRINTER PLOT + 144 3. 0.0 20. REC { Axis limits: (-7.111, 6.930) + 194 2. 0.0 20. REC { Axis limits: (-2.499, 2.499) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 12th of 12 subcases is appended 5 February 2009 to illustrate two new +C request words that prevent reverse current flow. Until now, the third +C quadrant (having negative voltage and current) is assumed to be a copy +C of the 1st quadrant (having positive voltage and current) except for the +C reversal of signs. But Prof. Hans Kr. Hoidalen in Trondheim, Norway, had +C a desire to prevent reverse current flow. He wanted to model a physical +C diode as an ideal diode in series with an exponential characteristic to +C account for the forward drop. All of this is contained within the Type- +C 92 exponential ZnO element provided one of two new special request words +C is used. Either 1) Diode model allows reverse leakage or +C 2) Diode prohibits reverse current +C To illustrate, copy that single exponential of the 1st subcase. First, +C in its original form, 2nd with a leaky diode, and 3rd with an ideal +C diode. These are nodes 1) ZNO, 2) LEAKY, & 3) IDEAL, respectively. +C The leakage branch is a linear resistor that draws the same current as +C the exponential at voltage V-min = 0.5 per unit = 778 kV / 2 = 389 kV. +C Drive all 3 alternatives from the same sinusoidal voltage source and +C compare the resulting currents. For positive voltage, all 3 currents +C will agree. But for negative voltage, all 3 never will agree. For +C negative voltage, IDEAL will carry no current, of course. The other +C two will carry current, and for voltage less than 389 kV the currents +C will agree. This is for ZNO and LEAKY. But for negative voltages +C higher than 389 kV, the current of ZNO will be larger. The source +C amplitude of 400 kV is purposely reduced to make both the linear and +C the exponential portions easily visible on a resulting plot. WSM. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 8 output columns) +C MAXZNO EPSZNO EPWARN EPSTOP ZNOLIM1 ZNOLIM2 +ZINC OXIDE 20 1.D-8 1.D-3 0.1 0.6 1.5 default values + .0002 .010 { Half a 50-Hz cycle will vary voltage from max + to max - + 1 1 +C Let's connect resistors of 10K ohms in series with the 3 arrestors: + SEND ZNO 10000. + SEND LEAKY 10000. + SEND IDEAL 10000. +92ZNO { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +92LEAKY { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 + Diode model allows reverse leakage { 3rd quadrant consists of leakage-R only +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 +C This V-min = 0.5 was per unit voltage for end of linear segment. Reduce it: +C 1250. 26. 0.1 + 9999. { Bound on exponential segments (only one precedes) +92IDEAL { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 + Diode prohibits reverse current +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SEND 400000. 50. +BLANK card ending source data + SEND IDEAL ZNO LEAKY { Output source voltage followed by 3 arrester volt +BLANK card ends node names for selective voltage output + PRINTER PLOT + 194 1. 0.0 10. BRANCH Compare leakage Arrester current + ZNO LEAKY IDEAL +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc37star.dat b/benchmarks/dc37star.dat new file mode 100644 index 0000000..2388cf0 --- /dev/null +++ b/benchmarks/dc37star.dat @@ -0,0 +1,46 @@ +1 RHIGH EPSZNO EPWARN EPSTOP EPSUBA EPDGEL EPOMEG SZPLT SZBED TENFLZ + 1.D+10 1.D-8 1.D-3 0.1 100. 1.D-16 1.D-15 10.0 72.0 10. +2 SIGMAX TENERG DEGMIN DEGMAX ZNOLIM(1), (2) STATFR ZNVREF XMAXMX AINCR + 4.0 1.D+20 0.0 360. 1.0 1.5 60.0 1.D-6 2.0 .05 +3 FREQFR HLETT1 Unused VHS VS VH TAXISL VAXISL FILL1 FILL2 + 0.25 8.0 1.0 10. 10.0 8.0 6. 7.0 +4 TOLRCE FHTAX FXSUP FYSUP FXTIT FYTIT VPLOTS VPLOTL FACTVI FTCARR + 8.E-5 0.5 .25 .03 0.10 0.1 1.0 5.0 0.0 1.5 +5 FXNUMV FXNUMH FVAXTT FXVERT UNIXON TIMTAC OVRLAP FLZERO EPSILN FLTINF + 1.5 5.0 -2.5 0.0 0.0 0.0 0.5 1.D-12 1.D-8 1.D+19 +6 XHEADM YHEADM HGTHDM XCASTI YCASTI HGTCST XLEGND YLEGND HGTLGN TSTALL + 2.5 7.95 .55 0.5 7.3 .35 0.5 1.30 .25 -0.0 +7 XALPHA YALPHA HGTALF D4FACT PEKEXP EPSLRT EPSPIV PLMARK FACOSC + 1.5 6.5 .25 2.0 43. 1.E-12 1.E-16 1.0 0.3 +8 NMAUTO INTINF KOL132 MUNIT5 MAXZNO IPRSPY IPRSUP LNPIN MINHAR MAXHAR + 1 9999999 132 1 50 0 0 6 0 20 +9 NFORS2 NIOMAX MRGN LINLIM MPAGE MODE28 KPGRID KPEN(1) KPEN(2) KPEN(3) + 30 10 2 100 0 1 3 12 10 11 +10 ..(4) KOMLEV NSMTH MODSCR KOLALP MAXFLG LIMCRD NOBLAN MOUSET NOTPPL + 14 -1 50 2 5 1 90000 0 0 1 +1 NOCOMM NOHELP NEWPL4 JDELAY NOTMAX NSMPLT KOLWID KOLSEP JCOLU1 KSLOWR + 1 1 0 0 0 50 11 1 0 5 +2 KSYMBL NOBACK KOLEXM LTEK NCUT1 NCUT2 INCHPX INCHPY NODPCX LCHLIM + 200 1 60 1 13 11 2 2 0 0 +13 NORUN JTURBO MAXSYM IHS LIMCOL KLEVL KEXTR NOHPGL NOPOST NOSM59 + 0 1 3 3 79 0 0 0 0 0 +4 LEFTA6 LENREC LU6VRT LRLIM KASEND LUNDAT KTRPL4 JORIEN LIMPNL LUNTEX + 0 0 32768 75 5 3 -6666 0 200 -11 +5 KINSEN LISTON LIMTAC NOCALC MFLUSH L4BYTE KOMPAR LIST01 NOGNU KROSEC + 1 0 25 0 1000 1 4 0 0 0 +6 LUNIT1 LUNIT2 LUNIT3 LUNIT4 LUNIT5 LUNIT6 LUNIT7 LUNIT8 LUNIT9 LUNT10 + 21 22 3 -4 1 6 7 8 9 10 +17 KS(1) KS(2) KS(3) KS(4) KP(1) KP(2) KP(3) KP(4) KOLROV NUMHLD + 0 0 12 10 7 14 0 0 18 +18 Name of language font file ] Window] Root name for SPY @K usage ] +blockd51.bin junk inclspy .dat +9 SSONLY CHEFLD TEXNAM CHVBAR BRANCH TXCOPY USERID -TRASH -TERRA CHRCOM + PHASOR E DUM | NAME COPY Hannov ...... TERRA C {}$, +0 DATTYP LISTYP PCHTYP PL4TYP EFIELD FMTPL4 PSCTYP DBGTYP BINTYP EXTTYP + .dat .lis .pch .pl4 .ps .dbg .bin .ext +C After regular STARTUP comes optional VMS-like symbol definitions that are +C used for input data file name in response to the opening prompt. +scott:==c:\atp\ { 1st of 2 remote directories +tsu:==c:\tsu-huei\ { 2nd of 2 +$EOF { Software end-of-file terminates last of 20 or fewer VMS-like symbols + diff --git a/benchmarks/dc38.dat b/benchmarks/dc38.dat new file mode 100644 index 0000000..7bed8fb --- /dev/null +++ b/benchmarks/dc38.dat @@ -0,0 +1,885 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-38 +C ZnO simulation similar to DC-37, only here a 3-phase network is used. +C The same arrester having characteristic i = 2500 * ( v / V-ref ) ** 26 +C is used, only here the coefficient has been cut in four (to COEF =625) +C so that the column multiplier COL = 4.0 can be used: 4 * 625 = 2500. +C Also, the usual, recommended (and more accurate) exponential modeling +C (Type-92 nonlinear R(i) requested by "5555.") is only used for two of +C the three phases. In order to illustrate the piecewise-linear alter- +C native (requested by "4444."), such less-accurate modeling (for the +C highly-nonlinear ZnO, anyway) has been placed in the 3rd phase ("c"). +C There are a total of 11 subcases. +ZO, 20, , , , 0.9, ,{ To improve ZnO convergence,control Newton ZnO iteration + .000050 .020000 + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 +-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. +92RECA 5555. { 1st card of 1st of 3 ZnO arresters +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC 4444. { Phase "c" ZnO is piecewise-linear +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C SENDA |RECA * +C RECA |TERRA *SENDA * +C SENDB |RECB * +C RECB |TERRA *SENDB * +C SENDC |RECC * +C RECC |TERRA *SENDC * +C TERRA |RECA *RECB *RECC * +C --------------+------------------------------ +BLANK card follows the last source card +C Step Time RECC RECB RECA SENDA SENDB SENDC +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 .47358E-13 .15692E-13 .15692E-13 407927.52 -197303.88 -210623.64 +C 2 .1E-3 -.4736E-13 -.1569E-13 -.1569E-13 407710.105 -190537.66 -217172.44 +C 3 .15E-3 .47358E-13 .15692E-13 .15692E-13 407347.832 -183703.75 -223644.08 + 1 +C Last step: 400 .02 -601371.07 152342.824 295692.924 126078.934 273005.287 +C Variable maxima : 651691.033 676288.521 709562.656 407991.946 407999.105 +C Times of maxima : .00985 .00455 .00115 .01665 .00555 +C Variable minima : -669507.52 -663771. -717417.08 -407991.95 -407996.42 +C Times of minima : .00325 .01435 .0085 .00835 .0139 +C To appreciate the distortion that is involved in the use of piecewise-linear +C representation for phase "c", I also show the result for exponential "c". +C The following are derived from a simulation where RECC is a copy of RECA: +C Last step: 400 .02 -600972.73 179505.6 299541.296 126078.934 273005.287 +C Variable maxima : 680201.783 671644.425 709538.839 407991.946 407999.105 +C Times of maxima : .0098 .00455 .00115 .01665 .00555 +C Variable minima : -704350.77 -664092.88 -718634.71 -407991.95 -407996.42 +C Times of minima : .00325 .01435 .00855 .00835 .0139 + PRINTER PLOT + 144 3. 0.0 20. RECA { Axis limits: (-7.174, 7.096) + CALCOMP PLOT + 144 2. 0.0 20. RECB +BLANK termination to plot cards +BEGIN NEW DATA CASE +C 2nd of 11 subcases. This one uses the same ZnO arrester as the second +C of DC-37, only here the gap has been omitted by V-flash < 0. The line +C is the same as the 1st subcase, too, although here we illustrate the +C specialized request for modal output. The first six branches are very +C large resistors that have been added to reserve outputs for this usage. +STEP ZERO COUPLE { No reason for this, other than illustration of the feature +MODE VOLTAGE OUTPUT +ZO { Needed to restore default values that were upset by first subcase? + .000050 .020000 + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 + SENDA 1.E18 { 1st of 6 high-R branches that serve } 1 + SENDB 1.E18 { only to reserve output variables in } 1 + SENDC 1.E18 { the output vector for modal voltages } 1 + RECA 1.E18 1 + RECB 1.E18 1 + RECC 1.E18 { 6th of 6 high-R branches } 1 +92RECA 5555. 1 +C VREF VFLASH VZERO COL + 0.778000000000000E+06 -0.100000000000000E+03 +C COEF EXPON VMIN + 0.294795442961157E+05 0.265302624185338E+02 0.545050636122854E+00 + 9999 +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC RECA 5555. { Phase "c" ZnO is copy of "a" +-1SENDA RECA .305515.8187.01210 200. 0 +-2SENDB RECB .031991.5559.01937 200. 0 +-3SENDC RECC +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 +14SENDB 408000. 60. -120. +14SENDC 408000. 60. 120. +BLANK card follows the last source card +C Step Time RECC RECB RECA SENDA SENDB SENDC +C +C RECA RECB RECC +C TERRA TERRA TERRA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 +C 1 .5E-4 0.0 0.0 0.0 407927.52 -197303.88 -210623.64 +C 0.0 0.0 0.0 + 1 +C Last step: 400 .02 -592984.99 209476.019 234551.89 126078.934 273005.287 +C Last step: -86000.409 17731.3181 665443.85 +C Maxima: 639771.795 647447.415 658163.048 407991.946 407999.105 407996.421 +C Maxima: 181518.845 784118.005 883946.319 +C Associated times: .00985 .00455 .00115 .01665 .00555 .0111 +C Associated times: .00995 .01435 .00325 + PRINTER PLOT + 194 1. 0.0 10. RECA { Axis limits: (-3.030, 3.485) +BLANK termination to plot cards +BEGIN NEW DATA CASE +C 3rd of 11 subcases. This one uses the same ZnO arrester as subcase three +C of DC-37 -- a single characteristic (no gap, since V-flash < 0) that +C consists of two exponentials. 3-phase line, sources remain unchanged. +C An important addition is a 4th nonlinear element, a TACS-controlled R(t) +C that is practically disconnected from the 3 ZnO surge arresters and the +C line that they terminate. But to test the logic, we couple the TACS- +C controlled R(t) with the ZnO by means of the high resistance R = 1.E8. +C The TACS control and electrical use is copied from the second subcase of +C DC-22. Note the small EPSILN to ensure all 4 NL elements are coupled. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + .000050 .020000 1.E-10 { Small EPSILN to couple 2 subnetworks + 1 1 1 0 1 -1 + 5 5 21 -1 30 -5 50 50 +TACS HYBRID { In a real case, arcs are on electric side, and equations in TACS +99RESIS = 1.0 + SIN ( 300 * TIMEX ) { 1st R(t) signal -- constant + sine wave +33RESIS { Output the only TACS variable: the resistance function R(t) +77RESIS 1.0 { Initial condition on 1st R(t) insures smooth start +BLANK card ending all TACS data + BUS1 BUS2 1.0 { Master copy of two 1-ohm resistors } 1 + BUS2 BUS1 BUS2 { 2nd of 2 linear branches in second subnetwork +91BUS2 TACS RESIS { R(t) controlled by TACS variable "RESIS" } 1 + RECA BUS1 1.E+8 { Near-infinite R couples ZnO and TACS R(t) +-1SENDA RECA .305515.8187.01210 200. 0 +-2SENDB RECB .031991.5559.01937 200. 0 +-3SENDC RECC +92RECA 5555. 1 +C VREF VFLASH VZERO COL + 0.778000000000000E+06 -1.0 +C COEF EXPON VMIN + 0.505584788677197E+07 0.464199973324622E+02 0.632754084797274E+00 + 0.122767153039007E+05 0.166775903445228E+02 0.816748018907843E+00 + 9999 +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC RECA 5555. { Phase "c" ZnO is copy of "a" +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources for transmission +14SENDB 408000. 60. -120. { line that is terminated by the ZnO +14SENDC 408000. 60. 120. +11BUS1 1.0 { 1-volt battery excites ladder network of TACS R(t) +BLANK card follows the last source card + RECC RECB RECA SENDA BUS2 +C Note immediate voltage at RECC, RECB, RECA, due to near-infinite R coupling: +C Step Time RECC RECB RECA SENDA BUS2 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 .141238E-5 .141238E-5 .426252E-5 407927.52 .333333333 +C 2 .1E-3 .141238E-5 .141238E-5 .426252E-5 407710.105 .334983437 +BLANK card terminating selective output variables +C Last step: 400 .02 -600366.6 218884.325 220028.774 126078.934 .292739915 +C Variable maxima : 625666.843 631501.662 634878.442 407991.946 .399999647 +C Times of maxima : .00985 .00455 .00115 .01665 .0053 +C Variable minima : -633451.49 -613164.81 -630265.01 -407991.95 0.0 +C Times of minima : .0032 .01435 .0088 .00835 0.0 + PRINTER PLOT + 144 3. 0.0 20. RECA { Axis limits: (-6.303, 6.349) + 194 3. 0.0 20. BUS2 TACS RESIS { Axis limits: (0.000, 2.000) +BLANK termination to plot cards +BEGIN NEW DATA CASE +C 4th of 11 subcases is unrelated to the preceding, although it does use +C a Type-91 TACS-defined R(t) as the preceding subcase does. But the +C subject is quite different as should be explained in the April, 2003, +C newsletter: corona modeling by TACS control of series R-L-C branches. +C 27 December 2002, combine 3 separate, disconnected demonstrations of +C TACS CONTROL of series R-L-C branches. The 3 disconnected subnetworks are: +C 1) Series R-L with L fixed; R is ramped to a limiting value; +C 2) Series R-L with R fixed; L is ramped to a limiting value; +C 3) Series R-C with R fixed; C is is stepped (cut in half); +C In each case, unit current at radian frequency 1.0 will be forced through +C the branch, and voltage will be measured. There are 3 disconnected +C networks, and there will be 3 screen plots to demonstrate reasonableness +C of the answers. +PRINTED NUMBER WIDTH, 10, 2, { Limited precision (not needed) & good separation +TACS POCKET CALCULATOR { Required for use of IF-THEN-ELSE-ENDIF below + .10 20.0 { 200 steps over 3 cycles at radian frequency equal to unity + 1 1 1 1 1 -1 + 5 5 +TACS HYBRID { TACS is required to define R of the series R-L branch +C The first 2 of 3 problems each can use a discontinuity at T = 15 seconds: +IF( TIMEX .LE. 15.0 ) THEN { If simulation time T does not exceed 15 sec: +88OHMS = 0.5 + TIMEX / 2.5 { R is ramped linearly from 0.5 to 6.5 at end +88HENRY = 0.5 + TIMEX / 10.0 { L increases linearly from 0.5 through 2.0 +ELSE { Alternatively (if simulation time T does exceed 15 sec): +88OHMS = 6.5 { Limiting R in ohms for 15 or more seconds. +88HENRY = 2.0 { Limiting L in Henries for 15 or more seconds. +ENDIF { Terminate 5-line block that chooses among 2 formula for inductance HENRY +C The 3rd of 3 problems requires discontinuity at T = 11 seconds: +IF( TIMEX .LE. 11.05 ) THEN { If simulation time T is 11 sec or less: +88FARAD = 2.0 { C is fixed for first 11 of 20 seconds of simulation +ELSE { Alternatively (if simulation time T is 11 or more): +88FARAD = 1.0 { Half the capacitance corresponds to switch being open +ENDIF { Terminate 5-line block that chooses among 2 formulas for supplemental X1 +33HENRY { Bring out just 1 of 3 TACS signals to show it is not necessary +77HENRY 0.5 { Initial condition on L(t) avoids jump from 0 on step 1 +77OHMS 0.5 { Initial condition on R(t) avoids jump from 0 on step 1 +77FARAD 2.0 { Initial condition on C(t) avoids jump from 0 on step 1 +BLANK card ending all TACS data +C First comes the R-L test where R is varied and L is held fixed. We have +C 3 signals of interest: a) old Type-91 model; b) new TACS CONTROL; +C and c) limiting value (for large times, this agrees with a and b): + TYP91 COMP 1000. { Inductance of 1 Henry is fixed half +91COMP TACS OHMS { TACS-defined R(t) is the variable half + COMP 1.E+7 { Leakage path avoids floating subnetwork + RAMPR 0.5 1000. { New modeling begins with R-L branch + TACS CONTROL OHMS { TACS signal "OHMS" will define R of series R-L +C A TOLERANCE= tag could be added to any TACS CONTROL card such as +C the preceding if the tolerance EPSRLC for the application of parameter +C changes should be different from EPSILN of the miscellaneous data card. +C Location is arbitrary, so typically will be to the right of column 44 +C (end of the 3rd of 3 TACS names). For example, TOLERANCE=1.E-5 will +C serve to define EPSRLC = 1.E-5 In that case, any relative parameter +C change in excess of this value will order re-triangularization whereas +C any smaller change will not. For this data, there would be no change, +C however, since all changes are large. dT is artificially large. +C The phasor solution of the Type-91 branch is wrong because Type-91 content +C is ignored prior the the dT loop. Using SSONLY of STARTUP, we can add +C a branch that will correct this problem. The following branch will be +C present only during the phasor solution; it will draw the current that +C really should be going through the Type-91 branch. This will avoid a very +C high voltage spike (e.g., 1.E7) at time zero. It also demonstrates that +C use of SSONLY is compatible with TACS CONTROL of a series R-L-C: + COMP NAME PHASOR 0.5 { Branch that will be erased as dT loop begins + LIMIT 6.5 1000. +C Next comes R-L test where L is varied and R is held fixed. We have 2 +C signals of interest: a) assumptote (for large T): b) new TACS CONTROL: + ASSYM 0.5 2000. { Assymptote (where variation will end) + RAMPL 0.5 500. { Branch to be varied begins at 1/2 Henry + TACS CONTROL HENRY { TACS signal will define L of series R-L +C Finally (3rd of 3), we have an R-C test where R fixed and C is is stepped +C to correspond exactly to electric network switching (breaker opening). The +C answer seems believable; it agrees by eyeball with switching. + GEN CAP 1.0 { Inductance of 1 Henry is fixed half + CAP 1.0E6 { This capacitance always is used + CAP2 1.0E6 { This capacitance is switched + NEWRC 1.0 2.0E6 { For comparison, begin with R-C 1 + TACS CONTROL FARAD { TACS defines C of series R-C +BLANK card ending electric network branches + CAP CAP2 -1. 8.0 { Switch will open on current 0 at T = 11.0 +BLANK card ending switches +C Each of the branches is to be driven by the same current source having +C radian frequency equal to unity. I.e., 1 / frequency = 2 * Pi. Excite +C the three networks in order: +C 1) Series R-L with L fixed; R is ramped to a limiting value; +14TYP91 -1 1.0 .1591549 -1. +14RAMPR -1 1.0 .1591549 -1. +14LIMIT -1 1.0 .1591549 -1. +C 2) Series R-L with R fixed; L is ramped to a limiting value; +14ASSYM -1 1.0 .1591549 -1. +14RAMPL -1 1.0 .1591549 -1. +C 3) Series R-C with R fixed; C is is stepped (cut in half); +14GEN -1 1.0 .1591549 -1. +14NEWRC -1 1.0 .1591549 -1. +BLANK card ending electric network source cards. +C Total network loss P-loss by summing injections = 5.249999987500E+00 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C CAP CAP2 5.00000000E-01 0.00000000E+00 5.00000000E-01 0.0000 0.00000000E+00 -1.25000034E-01 +C Node voltage outputs will be grouped by network for easy visual comparison: +C <---- Test a ---->< Test b ><---- Test c ----> + TYP91 RAMPR LIMIT COMP RAMPL ASSYM GEN NEWRC CAP CAP2 +C First 10 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time TYP91 RAMPR LIMIT COMP RAMPL ASSYM GEN NEWRC CAP CAP2 TACS +C HENRY +C *** Phasor I(0) = 5.0000000E-01 Switch "CAP " to "CAP2 " closed in the steady-state. +C 0 0.0 0.5 0.5 6.5 0.5 0.5 0.5 1.0 1.0 0.0 0.0 0.5 +C 1 0.1 .3975854 .3975854 6.36761 .4975021 .4475438 .2976688 1.044879 1.044879 .0498751 .0498751 .51 +C 2 0.2 .330401 .3709362 6.171598 .5292359 .3953563 .0923634 1.079318 1.079318 .0992519 .0992519 .52 +C 3 0.3 .2583286 .2576778 5.913921 .5540951 .3218644 -.113865 1.102973 1.102973 .147637 .147637 .53 +C *** Open switch "CAP " to "CAP2 " after 1.10000000E+01 sec. +BLANK card ending names of nodes for node voltage output +C 200 20. 1.738859 1.773888 1.738861 2.652564 -1.6153 -1.62337 1.819737 1.833053 1.41165 -.499468 2.0 +C Variable maxima: 6.576562 6.580848 6.576566 6.492014 2.065211 2.062599 1.912249 1.925565 1.497945 .4993704 2.0 +C Times of maxima: 18.7 18.6 18.7 18.8 17.6 17.5 19.6 19.6 14.1 1.6 15.1 +C Variable minima: -6.57 -6.60161 -6.57619 -6.49979 -2.00396 -2.06317 -1.11783 -1.11783 -.499579 -.499579 0.5 +C Times of minima: 15.6 15.5 3.0 15.7 14.4 8.1 3.6 3.6 11. 11. 0.0 + CALCOMP PLOT { Switch to screen plot from printer plot of preceding subcase +C 1) Series R-L with L fixed; R is ramped to a limiting value; +C Plot the 3 branch voltages that result from 1 amp of current being driven +C through each branch. Note TYP91 should lie on top of with RAMPR, and +C this common signal should be close to the limiting value LIMIT for times +C in excess of 12 seconds : + 143 2. 0.0 20. TYP91 RAMPR LIMIT Ramp R of R-L +C 2) Series R-L with R fixed; L is ramped to a limiting value; +C Plot the 2 branch voltages that result from 1 amp of current being driven +C through each branch. Note RAMPL should be close to the limiting value +C ASSYM for times in excess of 12 seconds : + 143 2. 0.0 20. RAMPL ASSYM Ramp L of R-L +C 3) Series R-C with R fixed; C is is stepped (cut in half); +C Plot the 2 branch voltages that result from 1 amp of current being driven +C through each branch. Note NEWRC should agree with GEN for all time. +C Following removal of capacitance, the curves are offset significantly: + 143 2. 0.0 20. NEWRC GEN Step C of R-C +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 11 subcases illustrates a practical (although oversimplied) +C application of the preceding. Data comes from Orlando Hevia of UTN +C in Santa Fe, Argentina, as originally named TACSCAPA.DAT Data is +C being added to this test case on 30 December 2002. Whereas the first +C such example from Mr. Hevia involved 200 cascaded line sections, this +C more manageable illustration involves just 2. TACS is used to vary the +C shunt capacitance of the line as an approximation to corona. Note that +C comment cards below are machine-produced (Mr. Hevia seems to have a +C separate program to create such cascaded data automatically). Numerical +C burden of the simulation has been reduced by a factor of 20 without much +C loss to the plot or extrema. A factor of 2 was gained by shortening +C the simulation from 20 to 10 usec, and a factor of 10 was gained by +C increasing the time step from the original 5 nanoseconds (5.E-9 sec). +C The surge (lightning) is fast, so very high frequencies are involved. +C Note Mr. Hevia's use of JMARTI frequency-dependent line modeling. +C Warning. 7 September 2003, the answer changes substantially following +C the correction of an error in OVER12 (introduce new variable N7). +PRINTED NUMBER WIDTH, 10, 2, { Limited precision (not needed) & good separation +TACS POCKET CALCULATOR OFF { End use of pocket calculator (preceding subcase) +C The preceding probably is necessary because of complex definition of VAR002 + 5.0E-08 20.E-06 { Hevia's dT increased by a factor of 10; cut Tmax in half + 1 1 1 0 1 -1 + 5 5 10 10 134 1 170 10 +C $INCLUDE, CORONA1.PCH +C FIRST STEP CAPACITY 3.000000E-06 uF/KM +C SLOPE 3.000000E-12 uF/KVKM +C CORONA INCEPTION VOLTAGE 3.600000E+05 V +C LENGTH OF LINE SEGMENT 1.000000E+00 KM +C NUMBER OF SEGMENTS 2.000000E+00 +TACS HYBRID +90BUS002 +88DER00259+BUS002 +C DV/DT MUST BE POSITIVE, BUT THIS TEST PRODUCES +C OSCILLATIONS ON CAPACITANCE +88VAR002 = BUS002 .GT. 360000.00 { .AND. DER002 .GT. 0.0 +88CAP002 = 1.0E-08+VAR002*((BUS002- 360000.00)*0.3000E-11+0.3000E-05) +33CAP002DER002BUS002VAR002 { Output all TACS signals including control C(t) +BLANK card ending TACS data +-1BUS000BUS001 2. 0.00 -2 1 + 14 3.9461680140762559000E+02 + 7.68954468040036890E+02 1.09493340867763940E+03 2.77331232270879630E+03 + 1.24494695098279860E+04 4.87585677225587210E+04 1.94958822722845510E+05 + 7.82012894548635460E+05 3.09109899381158690E+06 1.48401963798197680E+07 + 3.34339104652340860E+07 1.56456366517231150E+07 4.10038300055303800E+07 + 2.60359793110293930E+07 4.14639643816612140E+07 + 6.61711924983759210E+00 1.43260235003813180E+01 1.39885566693366850E+02 + 6.43953575180861780E+02 2.62156097340268890E+03 1.08866830412747530E+04 + 4.53734562567173710E+04 1.87083684125800150E+05 9.33229189322630060E+05 + 4.32016631012824080E+06 8.22729460640732390E+06 2.11696813048871940E+07 + 1.36911740150641220E+07 2.35107210671712680E+07 + 15 3.3528019962850977000E-06 + 1.48107642189314750E+01 8.18386897856797330E+01 1.07718234528722760E+02 + 1.39846901178167800E+02 1.72162896702735680E+02 2.28340646958654700E+02 + 3.44414362842715720E+02 1.63690212466734790E+04 8.08859081632825200E+03 + 5.81880629665730960E+04 8.57432646874608240E+05 5.25522742751047830E+05 + 3.86658063350409460E+06 -1.10174538112164120E+07 1.31615353212200510E+07 + 7.09885572628100910E+03 3.82889067640842040E+04 5.07666709936286210E+04 + 6.42506894830861860E+04 7.75796172424984980E+04 1.09484865717845850E+05 + 8.28324070221879670E+04 4.32415798449636150E+05 4.46749849274677110E+05 + 8.54778751513758670E+05 3.29015425966867800E+06 4.21774707623910620E+06 + 1.25365993856300990E+07 2.57506236853497770E+07 2.21885826483384670E+07 + 1.00000000 + 0.00000000 +-1BUS001BUS002BUS000BUS001 +C +C THE OLD FILE HAD THE CAPACITANCE IN AN ISOLATED BUS! +C + BUS002CAP002 0.1 { Capacitance is to be made voltage-dependent + TACS CONTROL CAP002 TOLERANCE=1.E-2 +C Note preceding card includes optional definition of the tolerance for use +C of the TACS signal CAP002. Without this declaration, EPSRLC = EPSILN = +C 1.E-8, and this results in 159 triangularizations to [Y] as seen in case- +C summary statistics when KOMPAR = 0 (see STARTUP): +C Size List 5. Storage for [Y] and triangularized [Y]. No. times = 159 ... +C Using 1.E-3, this is reduced slightly to 148. This is the effect of not +C making a change if the change to C is less than 1/10 of 1%. This ignores 11 +C of the 159 changes. Using 1.E-2, the "No. times" drops to 29; and using +C 1/10, it drops to 6. So 1.E-2 is practical. Using 29 steps to approximate +C C(t) should be plenty good (see plot of C). Yet 29 of 159 is only 18%, so +C simulation is a lot faster (82% of triangularization is avoided). + BUSXXXBUS000 0.0001 + BUSXXX 394.61 + BUS002 394.61 +BLANK +C TACS CONTROLLED SWITCH TO CONNECT/DISCONNECT THE SOURCE +13CAP002CP1002 VAR002 +BLANK +C DC SOURCE +11CP1002 360000.0 +15BUSXXX 9.0 USRFUN { Hevia's own user-supplied so +C Recall USRFUN sources are a family of user-supplied sources as first +C described in the October, 2002, newsletter. Alternative sources that might +C interest the reader include the following: +C 15BUSXXX 8.0 usrfun +C 15BUSXXX 1 0.3E-6 7.00E-6 10.01.000E06Heidler in-line 5 +C 15BUSXXX-1 0.3E-6 7.0E-6 30.05.000E03Heidler in-line 5 +C 15BUSXXX 1 1.2E-6 10.0E-6 10.01.000E06TWO EXP in-line +BLANK card ending electric-network source cards + BUSXXXBUS000BUS001BUS002 { List of nodes for node-voltage output +C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time BUSXXX BUS000 BUS001 BUS002 TACS TACS TACS TACS +C CAP002 DER002 BUS002 VAR002 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-7 144899.2 72286.18 0.0 0.0 .1E-7 0.0 0.0 0.0 +C 2 .1E-6 523890.1 334255.7 0.0 0.0 .1E-7 0.0 0.0 0.0 +C 3 .15E-6 922280. 724128.3 0.0 0.0 .1E-7 0.0 0.0 0.0 +C 4 .2E-6 .1199E7 .10635E7 0.0 0.0 .1E-7 0.0 0.0 0.0 +C 5 .25E-6 .13008E7 .1254E7 0.0 0.0 .1E-7 0.0 0.0 0.0 +BLANK card ending output variable requests +C 400 .2E-4 83987.68 85044.93 222821.1 191231.3 .1E-7 -.237E11 191231.3 0.0 +C Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output. +C Variable maxima : .13008E7 .128E7 839549.4 588280.4 .3695E-5 .2214E13 588280.4 1.0 +C Times of maxima : .25E-6 .3E-6 .375E-5 .815E-5 .815E-5 .7E-5 .815E-5 .705E-5 +C Variable minima : 0.0 0.0 0.0 0.0 0.0 -.567E11 0.0 0.0 +C Times of minima : 0.0 0.0 0.0 0.0 0.0 .149E-4 0.0 0.0 +C 145 2. 0.0 20. BUS000BUS001BUS002 { Not enough space for Y-max +C Replace the preceding normal plot card by following alternative wide format: + 145 BUS000BUS001BUS002 Voltage on line Volts +C Zero units/inch in columns 5-7 means that another card carries the info: +C Units/inch Minimum time Maximum time Bottom Y-axis Top of Y-axis + 2.0 0.0 20.0 0.0 1.4E6 + 195 2. 0.0 20. TACS CAP002 Capacitance C(t)Farads +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 11 subcases illustrates a practical (although oversimplied) +C application of the preceding. Data comes from Orlando Hevia of UTN +C in Santa Fe, Argentina, as originally named TIDDHHC.DAT Data is +C being added to this test case on 10 September 2003. +C A SAMPLE OF CORONA WITH TACS CONTROLLED CAPACITORS +C THE OUTPUT LOOKS BELIEVABLE +C AN AVERAGE CAPACITANCE IS CALCULATED BETWEEN TIME STEPS +PRINTED NUMBER WIDTH, 11, 1, { Restore default settings as if no declaration + 2.0E-08 40.E-06 { Orlando used dT = 1.E-8 for more realistic looking plots + 1 1 0 0 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +90BUS001 +90BUS002 +88DER00159+BUS001 +88DER00259+BUS002 +88VOLTA1 = BUS001.GT.270000.0 +88VOLTA2 = BUS002.GT.270000.0 +88DELTA1 = (BUS001-270000.0)*1.0E-5 +88DELTA2 = (BUS002-270000.0)*1.0E-5 +88CAP011 = 1.0E-08+(DER001.GT.0.0)*1.0E-8*VOLTA1*DELTA1 +88CAP02153+CAP011 1.0E-8 +88CAP001 =(CAP021+CAP011)/2.0 +88CAP012 = 1.0E-08+(DER002.GT.0.0)*1.0E-8*VOLTA2*DELTA2 +88CAP02253+CAP012 1.0E-8 +88CAP002 =(CAP022+CAP012)/2.0 +33CAP001CAP002 +BLANK +$VINTAGE, 1 +-1BUS000BUS001 7.88076E+01 4.80104E+02 2.93720E+05 1.00000E+00 1 +$VINTAGE, -1, +-1BUS001BUS002BUS000BUS001 +-1BUS002BUS003BUS000BUS001 +C TACS CONTROLLED CAPACITANCES + BUS001 10.0 1 + TACS CONTROL CAP001 + BUS002 10.0 1 + TACS CONTROL CAP002 + BUSXXXBUS000 1.0 1 + BUS003 468.82 +C +C CONSTANT CAPACITANCES +C +-1VUS000VUS001BUS000BUS001 +-1VUS001VUS002BUS000BUS001 +-1VUS002VUS003BUS000BUS001 + VUS003 468.82 +C + BUSXXXVUS000 1.0 1 +C CONSTANT CAPACITANCES + VUS001 10.0 1.0E-2 1 + VUS002 10.0 1.0E-2 1 +C +C NO CAPACITANCES +C +C CONSTANT CAPACITANCES +C +-1XUS000XUS001BUS000BUS001 +-1XUS001XUS002BUS000BUS001 +-1XUS002XUS003BUS000BUS001 + XUS003 468.82 +C + BUSXXXXUS000 1.0 1 +C +BLANK +BLANK +C ------==--------========--------======== +15BUSXXX 1 1.0E-6 7.0E-6 0.01.770E06TWO EXP in-line +C ------==----------==========---------- +BLANK + BUS000 + BUS001 + BUS002 + BUS003 + VUS000 + VUS001 + VUS002 + VUS003 + XUS000 + XUS001 + XUS002 + XUS003 +C Step Time BUS000 BUS001 BUS002 BUS003 VUS000 VUS001 VUS002 VUS003 XUS000 XUS001 +C +C +C XUS002 XUS003 BUS001 BUS002 BUSXXX BUSXXX VUS001 VUS002 BUSXXX TACS +C TERRA TERRA BUS000 VUS000 TERRA TERRA XUS000 CAP001 +C +C TACS +C CAP002 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 +C 1 .2E-7 133766.113 0.0 0.0 0.0 133766.113 0.0 0.0 0.0 133766.113 0.0 +C 0.0 0.0 0.0 0.0 267.636123 267.636123 0.0 0.0 267.636123 .75E-8 +C .75E-8 +C 2 .4E-7 258225.657 0.0 0.0 0.0 258225.657 0.0 0.0 0.0 258225.657 0.0 +C 0.0 0.0 0.0 0.0 516.651878 516.651878 0.0 0.0 516.651878 .1E-7 +C .1E-7 +BLANK card ending nodes for node-voltage outputs +C 2000 .4E-4 17081.5133 -23694.238 -37514.031 75051.7774 16473.2675 -93546.663 -101202.23 51712.6484 16072.4173 18461.1635 +C 21456.0213 25168.3439 -430.45364 -154.33355 -1000.651 -392.40513 507.97555 -115.34624 8.44498556 .1E-7 +C .1E-7 +C Variable maxima : .1766463E7 814156.947 655233.802 577911.165 .1766463E7 .1131763E7 .1118349E7 967992.864 .1766463E7 .1629911E7 +C .15039E7 .1343678E7 6074.55465 4854.86191 5930.26754 5930.26754 5072.07156 1967.01281 3534.29804 .640067E-7 +C .479668E-7 +C Times of maxima : .1E-5 .1322E-4 .2316E-4 .2692E-4 .1E-5 .1142E-4 .1676E-4 .2012E-4 .1E-5 .44E-5 +C .78E-5 .1118E-4 .132E-4 .1668E-4 .742E-5 .742E-5 .404E-5 .908E-5 .1E-5 .1322E-4 +C .2304E-4 +C Variable minima : 0.0 -23694.238 -38329.779 0.0 0.0 -166322.75 -101202.23 0.0 0.0 0.0 +C 0.0 0.0 -3733.6936 -2735.0324 -1337.4272 -1647.1189 -2170.2496 -1613.5916 -331.24485 0.0 +C 0.0 +C Times of minima : 0.0 .4E-4 .3998E-4 0.0 0.0 .3744E-4 .4E-4 0.0 0.0 0.0 +C 0.0 0.0 .14E-4 .2642E-4 .3788E-4 .3112E-4 .1392E-4 .2462E-4 .205E-4 0.0 +C 0.0 + 145 2. 0.0 40. 0.02.E6VUS000VUS001VUS002VUS003 Constant C + 145 2. 0.0 40. 0.02.E6BUS000BUS001BUS002BUS003 TACS CONTROL + 145 2. 0.0 40. 0.02.E6BUS001BUS002VUS001VUS002 Both + 145 2. 0.0 40. 0.02.E6XUS000XUS001XUS002XUS003 No capacitors + 195 2. 0.0 40.-2.E36.E3BUSXXXBUS000BUSXXXVUS000 Currents +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 7th of 11 subcases illustrates a true delta connection of nonlinear +C elements that use compensation. Prior to November of 2006, ATP would +C have halted with a complaint that the Thevenin impedance matrix [Z-thev] +C was singular as follows: +C KILL code number Overlay number Nearby statement number +C 209 18 3471 +C KILL = 209. ZnO solution by Newton`s method of 3 coupled ... +C Order is critical. For the delta to be recognized, the 3 N.L. elements +C must be contiguous and must have triplets of (BUS1, BUS2) names ordered +C as NAMEA to NAMEB first, then NAMEB to NAMEC 2nd, and finally +C NAMEC to NAMEA. Data appended 15 December 2006. WSM. +PRINTED NUMBER WIDTH, 11, 2, { Deliberately reduce 9 output columns by 1 digit +ZO, 20, , , , 0.9, ,{ To improve ZnO convergence,control Newton ZnO iteration + .000050 .020000 + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 +-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. +92RECA RECB 5555. { 1st card of 1st of 3 ZnO arrest} 3 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECC RECA RECB 5555. { Phase "bc" ZnO is copy of "ab" } 3 +92RECC RECA RECA RECB 5555. { Phase "ca" ZnO is copy of "ab" } 3 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 236000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 236000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 236000. 60. 120. { with no phasor solution. +BLANK card follows the last source card +BLANK card ending node voltage outputs + PRINTER PLOT + 194 2. 0.0 20. BRANCH { Axis limits (-1.829, 0.525) + RECA RECB RECB RECC RECC RECA +BLANK termination to plot cards +BEGIN NEW DATA CASE +C 8th of 11 subcases unites the 1st with the 7th. Both the Y & the delta +C connections are present with the Y of the 1st subcase having node names +C as follows: SEND ---> LINE REC ---> END The two subnetworks +C are physically disconnected but mathematically coupled by one very high +C resistance branch (see comment cards) that makes the difference between +C two 3x3 matrices [Z-thev] and one 6x6 matrix. See (RECA, ENDA). Data +C is added 15 December 2006. WSM. +PRINTED NUMBER WIDTH, 11, 2, { Deliberately reduce 9 output columns by 1 digit +ZO, 20, , , , 0.9, ,{ To improve ZnO convergence,control Newton ZnO iteration + .000050 .020000 + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 +C Begin with branches of the 1st subcase: +-1LINEA ENDA .305515.8187.01210 200. 0 { 200-mile, constant- +-2LINEB ENDB .031991.5559.01937 200. 0 { parameter, 3-phase +-3LINEC ENDC { transmission line. +92ENDA 5555. { 1st card of 1st of 3 ZnO arresters +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92ENDB ENDA 5555. { Phase "b" ZnO is copy of "a" +92ENDC 4444. { Phase "c" ZnO is piecewise-linear +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +C Done with branches of the 1st subcase; follow by branches of 7th subcase: +-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. +92RECA RECB 5555. { 1st card of 1st of 3 ZnO arrest} 3 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECC RECA RECB 5555. { Phase "bc" ZnO is copy of "ab" } 3 +92RECC RECA RECA RECB 5555. { Phase "ca" ZnO is copy of "ab" } 3 +C Remove the following large resistance to solve each 3-phase bank of surge +C arresters separately. With this branch present, the 6 N.L. elements all +C are in the same subnetwork, so 6 N.L. equations in 6 unknowns are solved +C by Newton's method at each time step. Without the branch, there will be +C two sequential solutions of 3 N.L. equations each. The difference can be +C seen in Lists 24 and 26 of the case-summary statistics: +C With R : Size 21-30: 9 0 13 6 -9999 36 -9999 ... +C Without: Size 21-30: 9 0 12 3 -9999 9 -9999 ... +C Of course, the latter should simulate faster than the former. Resistance +C is high enough so the solution changes little. For example, the two +C printer plots are identical. + RECA ENDA 1.E+8 { Leakage resistanc ties 2 subnetworks together +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +C Begin with sources of the 1st subcase: +14LINEA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14LINEB 408000. 60. -120. { three-phase, sinusoidal excitation +14LINEC 408000. 60. 120. { with no phasor solution. +C Done with sources of the 1st subcase; follow by sources of 7 subcase: +14SENDA 236000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 236000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 236000. 60. 120. { with no phasor solution. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C LINEA |ENDA * +C ENDA |TERRA *LINEA *RECA * +C LINEB |ENDB * +C ENDB |TERRA *LINEB * +C LINEC |ENDC * +C ENDC |TERRA *LINEC * +C SENDA |RECA * +C RECA |ENDA *SENDA *RECB *RECC * +C SENDB |RECB * +C RECB |RECA *SENDB *RECC * +C SENDC |RECC * +C RECC |RECA *RECB *SENDC * +C TERRA |ENDA *ENDB *ENDC * +C --------------+------------------------------ +BLANK card terminates the last source card + ENDA ENDB ENDC { Arrester voltages of Y-connected 1st subcase +C Column headings for the 9 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 6 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time RECA RECB RECC ENDA ENDB ENDC RECA RECB RECC +C RECB RECC RECA RECB RECC RECA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 .3494E-21 -.47E-37 -.349E-21 .1226E-15 .1226E-15 .37E-15 -.334E-31 .9006E-47 .3341E-31 +C 2 .1E-3 -.349E-21 .4702E-37 .3494E-21 -.123E-15 -.123E-15 -.37E-15 .3341E-31 -.135E-46 -.334E-31 +C 22 .0011 28277.756 622.32762 -28900.08 32953.961 -15932.9 -17000.47 .2708E-5 .59598E-7 -.2768E-5 +C 23 .00115 658750.92 10864.876 -669615.8 709562.41 -421760.1 -448957.3 33.053897 .10405E-5 -50.5753 +C 400 .02 94123.287 379306.97 -473430.3 295693.53 152343.78 -601370.3 .90138E-5 .36325E-4 -.0061536 +C Variable maxima : 667041.09 609376.16 670599.37 709562.41 676288.65 651690.5 45.754917 4.3600592 52.54267 +C Times of maxima : .0152 .0036 .00985 .00115 .00455 .00985 .0152 .0036 .00985 +C Variable minima : -694529.7 -467073.7 -703549.2 -717416.9 -663770.9 -669507.6 -130.7469 -.00433 -182.8636 +C Times of minima : .00775 .0143 .0025 .0085 .01435 .00325 .00775 .0143 .0025 +BLANK card ending node voltage outputs + PRINTER PLOT + 144 2. 0.0 20. ENDA { Axis limits: (-7.174, 7.096) + 194 2. 0.0 20. BRANCH { Axis limits: (-1.829, 0.525) + RECA RECB RECB RECC RECC RECA +BLANK termination to plot cards +BEGIN NEW DATA CASE +C 9th of 11 subcases is like the 1st except that exponential ZnO modeling +C is used for all 3 surge arresters. The piecewise-linear 3rd arrester of +C the 1st subcase has been replaced by a copy of the 1st arrester. Also, +C the alternative [Z]-based Newton iteration replaces the default choice +C of [Y]-based iteration. The request for [Z] is made by the line that +C immediately follows the first line of the first arrester. Unlike the +C 11th subcase of DC-37, here the request for [Z] is active. Because +C of a lack of NO Y-BASED NEWTON declaration, that request that has +C been added to the first arrester is active and necessary (to obtain Z). +PRINTED NUMBER WIDTH, 11, 2, { Deliberately reduce 9 output columns by 1 digit + .000050 .020000 + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 +-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. +92RECA 5555. { 1st card of 1st of 3 ZnO arrest} 3 + [Z]-based Newton iteration { Column and case matter. Declare not use of [Y] +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" } 3 +92RECC RECA 5555. { Phase "c" ZnO is copy of "a" } 3 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +C SENDA 208000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card follows the last source card + SENDA SENDB SENDC +BLANK card ending node voltage outputs + PRINTER PLOT + 194 2. 0.0 20. BRANCH + RECA RECB RECC + CALCOMP PLOT + 184 2. 0.0 20. BRANCH + RECA RECB RECC + 194 2. 0.0 20. BRANCH + RECA RECB RECC +BLANK termination to plot cards +BEGIN NEW DATA CASE +C 10th of 11 subcases is like the 1st except that exponential ZnO modeling +C is replaced by piecewise-linear modeling for all 3 surge arresters. Such +C modeling became available 2 February 2007 for [Z]-based Newton iteration +C which continues to be used in place of the default [Y]-based iteration. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +C Demonstrate that the following request for [Z]-based Newton iteration is a +C binary toggle. Note that 3 uses has the same effect as a single use: +NO Y-BASED NEWTON { Every subnetwork is to be solved using [Z] rather than [Y] +NO Y-BASED NEWTON { 2nd use cancels the 1st. At this point, use [Y] not [Z] +NO Y-BASED NEWTON { Every subnetwork is to be solved using [Z] rather than [Y] +C ZINC OXIDE STARTUP 20 1.D-8 1.D-3 0.1 1.0 1.5 + .000050 .020 + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 +-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. +92RECA 4444. { 1st card of 1st of 3 ZnO arres } 1 +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 0.0 0.0 { Origin. 3rd quadrant copy + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +92RECB RECA 4444. { Phase "b" ZnO is copy of "a" } 1 +92RECC RECA 4444. { Phase "c" ZnO is copy of "a" } 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card follows the last source card + RECA RECB RECC { Names of nodes for voltage output +C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time RECA RECB RECC RECA RECB RECC +C TERRA TERRA TERRA +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 .615267E-15 .615327E-15 .615387E-15 -.868E-18 -.86821E-18 -.86842E-18 +C 2 .1E-3 -.61527E-15 -.61533E-15 -.61539E-15 .867995E-18 .868206E-18 .868416E-18 +C 21 .00105 .615267E-15 .615327E-15 .615387E-15 -.868E-18 -.86821E-18 -.86842E-18 +C 22 .0011 32933.78136 -15929.2096 -17004.5718 .0565483883 -.027350978 -.02919741 +C 23 .00115 674022.6244 -433252.07 -460655.512 311.7853238 -.743908087 -.790960701 +BLANK card ending requests for node voltage output +C 400 .02 248862.4504 197049.3444 -599097.73 .4273050316 .3383402205 -4.96347489 +C Variable maxima : 674022.6244 656282.6288 651788.8183 311.7853238 168.5414551 143.4643879 +C Times of maxima : .00115 .00455 .0098 .00115 .00455 .0098 +C Variable minima : -675779.414 -635023.773 -669662.422 -328.011827 -67.9420472 -271.51252 +C Times of minima : .00865 .01435 .00325 .00865 .01435 .00325 + PRINTER PLOT + 194 3. 0.0 20. BRANCH { Axis limits: ( -3.280, 3.118 ) + RECA RECB RECC +BLANK termination to plot cards +BEGIN NEW DATA CASE +C 11th of 11 subcases is like the 1st. But the 1st was solved by [Y]-based +C Newton iteration. Here, use [Z]-based iteration. Answer is the same. +C Note that there is no NO Y-BASED NEWTON request because the one used +C by the preceding subcase remains in effect. The choice was set to [Z]. +C NO Y-BASED NEWTON { If data is removed as separate subcase, activate this card + .000050 .020000 + 1 1 1 0 1 -1 + 5 5 20 1 30 5 50 50 +-1SENDA RECA .305515.8187.01210 200. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 200. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. +92RECA 5555. { 1st card of 1st of 3 ZnO arresters +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC 4444. { Phase "c" ZnO is piecewise-linear +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card follows the last source card + 1 + PRINTER PLOT + 144 3. 0.0 20. RECA { Axis limits: (-7.174, 7.096) +BLANK termination to plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc39.dat b/benchmarks/dc39.dat new file mode 100644 index 0000000..66f2d33 --- /dev/null +++ b/benchmarks/dc39.dat @@ -0,0 +1,197 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-39 +C Test of supporting routine "ARRDAT" which reads ZnO data, and punches the +C associated Type-92 EMTP branch cards. See Rule Book, end of Sect. XIX-I. +C 1st of 3 subcases has manual selection of a single exponential: NEXP = 1. +C As for the (i, v) data points, these come from the evaluation of the ZnO +C function i = 2500 * ( v / 778000 ) ** 26 as used by 1st case of DC-37 +C Note that paralleling (D4 = number of columns) is used, although the more +C modern and flexible approach would be to delay this until usage (variable +C COL of columns 76-80 of the first Type-92 ZnO miscellaneous data card). +C Sept, 1997, double the size by adding a second subcase that processes +C the same 3 data subsets only using kilo scaling (KV and KA input data) +ZNO FITTER { Special-request to transfer to SUBROUTINE ARRDAT of overlay 40 +$ERASE +BRANCH RECA RECB RECC { Name the 3 terminal pairs for punching +C NEXP IPHASE ERRLIM IPRZNO VREF VFLASH + 1 3 2 0 412500. 380000. +C A1 A2 A3 A4 A5 AMIN + 707.107 192000. .962 3.0 .892857 .001 + 1.0 1164.8 { First point of (I,V) characteristic for ZnO + 2.0 1181.6 { Except for rounding, these define a nice, + 5.0 1198.4 { smooth, exponential function with exponent + 10. 1209.6 { equal to 26. Scaling is set to draw 2500 + 20. 1232.0 { amperes at 778 kV. How? Consult Vladimir's + 50. 1260.0 { explanation, Rule Book p. 103k, Section 3.0 + 100. 1288.0 + 200. 1323.84 + 500. 1388.8 + 1000. 1442.56 + 2000. 1512.0 + 3000. 1556.8 { last point of (I,V) characteristic for ZnO +BLANK card bounds points of the ZnO characteristic +$PUNCH +C C Rating = 192000.0 V-mult = 9.62000E-01 I-mult = 3.00000E+00 Gapless +C 92RECA 5555. +C C V-reference V-flashover +C 4.1250000000000000E+05 9.2121212121212130E-01 +C C Multiplier Exponent V-min +C 2.9479544296115170E+04 2.6530262418533470E+01 5.4505063612285050E-01 +C 9999 +C 5.9605957177725360E+05 2.6530262418533470E+01 4.8665227581674000E-01 +C 9999 +C 92RECB RECA 5555. +C 92RECC RECA 5555. +C 2nd of 3 subsets has manual selection of the 2 exponentials (NEXP = 2). +C Otherwise, the configuration of interest is the same as for 1st subset. +C Specifically, the i-v characteristic is the same (segmented i-v of 1st). +BRANCH RECA RECB RECC { 2nd subcase of 3 begins with names +C NEXP IPHASE ERRLIM IPRZNO VREF VFLASH + 2 3 1 412500. 380000. +C A1 A2 A3 A4 A5 AMIN + 707.107 192000. .962 3.0 .892857 .001 + 1.0 1164.8 + 2.0 1181.6 + 5.0 1198.4 + 10. 1209.6 + 20. 1232.0 + 50. 1260.0 + 100. 1288.0 +BLANK card bounds points of the ZnO characteristic - end of 1st segment, begin 2 + 200. 1323.84 + 500. 1388.8 + 1000. 1442.56 + 2000. 1512.0 + 3000. 1556.8 +BLANK card bounds points of the ZnO characteristic --- end 2nd and final segment +$PUNCH +C C Rating = 192000.0 V-mult = 9.62000E-01 I-mult = 3.00000E+00 Gapless +C 92RECA 5555. +C C V-reference V-flashover +C 4.1250000000000000E+05 9.2121212121212130E-01 +C C Multiplier Exponent V-min +C 5.0558478867726780E+06 4.6419997332462390E+01 6.3275408479727320E-01 +C 1.2276715303900460E+04 1.6677590344522540E+01 8.1674801890784120E-01 +C 9999 +C 9.7386264053136350E+08 4.6419997332462390E+01 5.6495891388983900E-01 +C 8.1268335203236510E+04 1.6677590344522540E+01 7.2923918591799820E-01 +C 9999 +C 92RECB RECA 5555. +C 92RECC RECA 5555. +C 3rd of 3 subsets illustrate automatic ZnO segment selection. +C For the tolerance chosen (ERRLIM=.05), 5 exponentials result. +BRANCH RECA RECB RECC { 3rd subcase of 3 beings with names +C NEXP IPHASE ERRLIM IPRZNO VREF VFLASH + -1 3 .05 1 412500. 380000. +C A1 A2 A3 A4 A5 AMIN + 707.107 192000. .962 3.0 .892857 .001 + 1.0 1164.8 + 2.0 1181.6 + 5.0 1198.4 + 10. 1209.6 + 20. 1232.0 + 50. 1260.0 + 100. 1288.0 + 200. 1323.84 + 500. 1388.8 + 1000. 1442.56 + 2000. 1512.0 + 3000. 1556.8 +BLANK card bounds points of the ZnO characteristic +$PUNCH +C C Rating = 192000.0 V-mult = 9.62000E-01 I-mult = 3.00000E+00 Gapless +C 92RECA 5555. +C C V-reference V-flashover +C 4.1250000000000000E+05 9.2121212121212130E-01 +C C Multiplier Exponent V-min +C 7.5028204133564620E+06 4.8403950953194400E+01 6.3949942977557550E-01 +C 2.4489276643997050E+09 6.8408843374214610E+01 7.4876091788815410E-01 +C 1.1046477599319610E+06 3.9475540404878120E+01 7.6623729035951440E-01 +C 8.4663437752101640E+04 2.7934580347853540E+01 8.0046407236184350E-01 +C 1.6489996944083740E+04 1.8756547209277270E+01 8.3673818423150000E-01 +C 1.1130526844643490E+04 1.4446009330513530E+01 9.1284753595740940E-01 +C 9999 +C 1.8095670102550080E+09 4.8403950953194400E+01 5.7098154237113100E-01 +C 5.7007069310942390E+12 6.8408843374214610E+01 6.6853642686286360E-01 +C 9.6857800318865540E+07 3.9475540404878120E+01 6.8414032835852490E-01 +C 2.0071630292080190E+06 2.7934580347853540E+01 7.1469995025677850E-01 +C 1.3815991082985590E+05 1.8756547209277270E+01 7.4708754495838430E-01 +C 5.7216427799055640E+04 1.4446009330513530E+01 8.1504231241232490E-01 +C 9999 +C 92RECB RECA 5555. +C 92RECC RECA 5555. +BLANK card ends data subcases within "ARRDAT" +BEGIN NEW DATA CASE +C The preceding subase of this disk file involved 3 data sets using units +C of volts and amps. Now we repeat these three, only using kilovolts and +C kiloamps. Output (including punched cards) is changed only by roundoff. +ZNO FITTER { Special-request to transfer to SUBROUTINE ARRDAT of overlay 40 +$ERASE +INPUT KV AND KA { Input is to be in kilovolts and kiloamps (not volts and amps) +BRANCH RECA RECB RECC { Name the 3 terminal pairs for punching +C NEXP IPHASE ERRLIM IPRZNO VREF VFLASH + 1 3 2 0 412.5 380. +C A1 A2 A3 A4 A5 AMIN + 707.107 192. .962 3.0 .892857 .001 + .001 1.1648 + .002 1.1816 + .005 1.1984 + .01 1.2096 + .02 1.2320 + .05 1.2600 + .10 1.2880 + .20 1.32384 + .50 1.3888 + 1.00 1.44256 + 2.00 1.5120 + 3.00 1.5568 +BLANK card bounds points of the ZnO characteristic +$PUNCH +C 2nd of 3 data subsets. We do not need another INPUT KV AND KA declaration +C as long as control remains within ZNO FITTER. +BRANCH RECA RECB RECC { 2nd subcase of 3 begins with names +C NEXP IPHASE ERRLIM IPRZNO VREF VFLASH + 2 3 1 412.5 380. +C A1 A2 A3 A4 A5 AMIN + 707.107 192. .962 3.0 .892857 .001 + .001 1.1648 + .002 1.1816 + .005 1.1984 + .01 1.2096 + .02 1.2320 + .05 1.2600 + .10 1.2880 +BLANK card bounds points of the ZnO characteristic - end of 1st segment, begin 2 + .20 1.32384 + .50 1.3888 + 1.00 1.44256 + 2.00 1.5120 + 3.00 1.5568 +BLANK card bounds points of the ZnO characteristic --- end 2nd and final segment +$PUNCH +C 3rd of 3 data subsets of 2nd subcase. The INPUT KV AND KA of the +C first of the 3 data subsets remains in effect. Answers should be +C identical to the corresponding ones of the preceding subcase (which +C involves no such kilo scaling). +BRANCH RECA RECB RECC { 3rd subcase of 3 beings with names +C NEXP IPHASE ERRLIM IPRZNO VREF VFLASH + -1 3 .05 1 412.5 380. +C A1 A2 A3 A4 A5 AMIN + 707.107 192. .962 3.0 .892857 .001 + .001 1.1648 + .002 1.1816 + .005 1.1984 + .01 1.2096 + .02 1.2320 + .05 1.2600 + .10 1.2880 + .20 1.32384 + .50 1.3888 + 1.00 1.44256 + 2.00 1.5120 + 3.00 1.5568 +BLANK card bounds points of the ZnO characteristic +$PUNCH +BLANK card ends data subcases within "ARRDAT" +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc3high.dat b/benchmarks/dc3high.dat new file mode 100644 index 0000000..0d663b9 --- /dev/null +++ b/benchmarks/dc3high.dat @@ -0,0 +1,21 @@ +GEN-A 1-A GEN-B 1-B GEN-C 1-C + 34.372 35.735 38.002 35.735 + 37.455 38.002 + .02428067811809955 .008723282430866784 .02396820391316247 .008723282430866784 + .008048995988634121 .02396820391316247 + .15781E-6 -.0315E-6 .16587E-6 -.0315E-6 + -.0219E-6 .16587E-6 +C This card, and the following branch cards from DC3.DAT, will not be +C read. They are shown here just to document the source of preceding data. +C The first line is the 3 pairs of names, in order. Next comes [R], then [L] +C and finally [C]. + 1GEN-A 1-A 34.372457.68.15781 + 2GEN-B 1-B 35.735164.43-.031538.002451.79.16587 + 3GEN-C 1-C 35.735164.43-.031537.455151.72-.021938.002451.79.16587 + ROW TR TX C + 1 0.3437200000000000E+02 0.2428067811809955E-01 0.1578100000000000E-06 + 2 0.3573500000000000E+02 0.8723282430866784E-02 -0.3150000000000000E-07 + 3 0.3800200000000000E+02 0.2396820391316247E-01 0.1658700000000000E-06 + 4 0.3573500000000000E+02 0.8723282430866784E-02 -0.3150000000000000E-07 + 5 0.3745500000000000E+02 0.8048995988634121E-02 -0.2190000000000000E-07 + 6 0.3800200000000000E+02 0.2396820391316247E-01 0.1658700000000000E-06 diff --git a/benchmarks/dc3pl4op.dat b/benchmarks/dc3pl4op.dat new file mode 100644 index 0000000..db7bcdd --- /dev/null +++ b/benchmarks/dc3pl4op.dat @@ -0,0 +1,10 @@ +$CLOSE, UNIT=4 STATUS=DELETE { Disconnect now-empty file connected by SYSDEP +$OPEN, UNIT=4 FILE=dc3.pl4 STATUS=OLD ! Connect C-like plot file from DC-3 + + + + + + + + diff --git a/benchmarks/dc4.dat b/benchmarks/dc4.dat new file mode 100644 index 0000000..ccead6d --- /dev/null +++ b/benchmarks/dc4.dat @@ -0,0 +1,245 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-4 +C Solution agrees (key variables, anyway) with DC-5 saturable TRANSFORMER +C Here, there is no transformer, since the secondary impedance has been +C reflected to the primary. Also, the pseudo-nonlinear reactance of the +C saturable TRANSFORMER is here represented by a "true" nonlinearity. +C 2nd subcase will illustrate residual flux for Type-93 nonlinear induct. +C Etc. 5 more subcases were added 21 March 2006 bringing total to 7. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .010 6.0 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 + BRANCH NAME:First { Even though name could go on next card, use this instead + GEN TRAN 5.0 5.E4 3 + TRAN NAME R-mag 1.E4 +93TRAN NAME Magnet .005 30. 3 +C -5.0 -100. { No longer needed 3-rd quadrant point +C -.1 -50. { No longer needed 3-rd quadrant point +C -.02 -45. { No longer needed 3-rd quadrant point +C -.01 -40. { No longer needed 3-rd quadrant point +C -.005 -30. { No longer needed 3-rd quadrant point + 0.0 0.0 { 1st point being origin is request to reflect + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 + TRAN LOADG 255. 5.E4 3 +C Note: original fixed-format card (next comment) converted to free-format: +C LOADG 1.E-6 +0,LOADG, , , , 1.E-6, 0.0, 0.0, , , , , , +BLANK card ending program branch cards. +BLANK card terminating program switch cards (none, for this case) +14GEN 70. .1591549 -1. +BLANK card terminating program source cards. +C Total network loss P-loss by summing injections = 8.286714400785E+00 +C Inject: GEN 70. 70. .23676326859385 .25769284993889 8.2867144007848 +C Inject: 0.0 0.0 -.1017288531066 -23.2514964 3.5605098587304 +C ---- Initial flux of coil "TRAN " to " " = -1.13295190E+01 +C Step Time GEN TRAN TRAN GEN TRAN +C TRAN TERRA LOADG +C 0 0.0 6.270257621 63.72974238 63.72974215 70. 63.72974238 +C 1 .01 6.156651781 63.83984825 63.83984802 69.99650003 63.83984825 + GEN TRAN +BLANK card ending program output-variable requests. +C Last step begins: 600 6.0 12.26276725 54.94912105 54.94912087 67.21188829 +C Last step continued .... : 54.94912105 -.004557817 .1742561973 .1733191018 +C Variable max : 35.83743967 64.72841365 64.7284134 70. 64.72841365 +C Times of max : 5.37 .18 .18 0.0 .18 +C Variable min : -34.5302967 -63.9279756 -63.9279753 -69.9999111 -63.9279756 +C Times of min : 2.2 3.35 3.35 3.14 3.35 + PRINTER PLOT + 193 .5 0.0 6.0 TRAN LOADG GEN TRAN { Axis limits: (-3.494, 3.289) + 193 1. 0.0 6.0 TRAN { Axis limits: (-3.253, 3.031) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 2nd of 8 subcases illustrates residual flux for the Type-93 nonlinear +C inductor. The solution is a little different because the segment that +C passes through the origin has been modified to draw no current (this +C is the poor man's approximation to hysteresis). Usage of a residual +C flux that is a little different than the phasor solution also alters +C the solution somewhat. Appearance of the output column of inductor +C current is altered since whenever operation is on the first segment, +C the current now is identically zero. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +C 4 May 2007, add following $PREFIX after modification of OVER1 and +C CIMAGE that moves CHAR*80 PREFIX into BLKCOM for use by $INSERT. +C This allows remote execution, from \UNFORM, without data modification. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file + .010 6.0 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 + GEN TRAN 5.0 5.E4 3 + TRAN NAME R-mag 1.E4 +C Next, move entire nonlinear element into file to demonstrate new feature: +$INSERT, dc4bincl.dat { Like $INCLUDE only dynamic (no burden on LIMCRD) + TRAN LOADG 255. 5.E4 3 +C Note: original fixed-format card (next comment) converted to free-format: +C LOADG 1.E-6 +0,LOADG, , , , 1.E-6, 0.0, 0.0, , , , , , +BLANK card ending program branch cards. +BLANK card terminating program switch cards (none, for this case) +14GEN 70. .1591549 -1. +BLANK card terminating program source cards. +C 20 July 2009, convert the following N.L. element I.C. card from the original +C use of terminal node names (TRAN, TERRA) to the use of branch name Magnet. +C Yes, within $INSERT file dc4bincl.dat this NL elem. branch name is declared. +C Just today, such alternative use of N.L. names is being added to ATP. WSM +C The following is an initial-condition card for the Type-93 nonlinear inductor +C 4TRAN 0.0 -11.5508593 { --- Used to reaffirm phasor flux +C 4TRAN 0.0 -13.0 { Residual flux differs somewhat + 4Name: Magnet 0.0 -13.0 { Residual flux differs somewhat + GEN TRAN { Request for 2 node voltage outputs +C Step Time GEN TRAN TRAN GEN TRAN +C TRAN TERRA LOADG +C 0 0.0 5.816303518 64.18369648 64.18369625 70. 64.18369648 +C 1 .01 5.700507029 64.295993 64.29599277 69.99650003 64.295993 +C 2 .02 5.58414044 64.40186003 64.4018598 69.98600047 64.40186003 +BLANK card ending program output-variable requests. +C 600 6.0 12.62786557 54.58402272 54.58402255 67.21188829 54.58402272 +C Variable max : 37.1903484 65.21465971 65.21465947 70. 65.21465971 +C Times of max : 5.4 .18 .18 0.0 .18 +C Variable min : -32.6413814 -64.4282966 -64.4282964 -69.9999111 -64.4282966 +C Times of min : 2.16 3.35 3.35 3.14 3.35 + PRINTER PLOT + 193 .5 0.0 6.0 TRAN LOADG GEN TRAN { Axis limits: (-3.701, 3.055) + 193 1. 0.0 6.0 TRAN { Axis limits: (-3.474, 2.777) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 3rd of 8 subcases begins illustration of enhanced $INSERT which +C is added to the UTPF on 21 March 2006. Arguments and "/"-card +C sorting and nesting (2 or more levels) all are allowed. The data +C now being added was named DC17NEW.DAT during early testing because +C initial testing involved the configuration of DC-17. WSM. +$INSERT, dc4ins.dat, 9, .005, TRAN##, + .005 4.0 + 1 1 1 1 1 -1 + 5 5 20 20 + TRAN LOADG 255. 5.E4 3 + LOADG 1.E-6 +BLANK card ending BRANCH cards +BLANK card ending SWITCH cards (none exists, for this case) +BLANK card ending SOURCE cards + GEN TRAN +BLANK card ending OUTPUT variable requests + 193 1. 0.0 7.0 GEN TRAN { Axis limits: (-2.544, 3.289) +BLANK card ending PLOT cards +BEGIN NEW DATA CASE +C 4th of 8 subcases continues illustration of enhanced $INSERT. This +C illustrates /LOAD FLOW within $INSERT using data from the 5th +C of 5 data subcases of DC-26. This is the former DC17A.DAT +$INSERT, DC4AINS.DAT, { Move all data except misc. data into this file + .000200 .000 60. { T-max = 0 means that no transient solution follows + 1 1 1 0 1 +BLANK card ending branch cards. +BLANK card ending switch cards. +BLANK card terminating EMTP source cards. +BLANK card ending requests for output variables +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 8 subcases continues illustration of enhanced $INSERT. This +C illustrates /TACS but no /MODELS. The configuration is taken +C from the 1st subcase of DC-33. This is former DC17B.DAT +$INSERT, DC4BINS.DAT, { All data except misc. data has been moved to here + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +BLANK card terminates all TACS data +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +C Total network loss P-loss by summing injections = 7.106450000000E-06 +C Inject: GEN 377. 377. .377E-7 2.6786345332877 +C Inject: 0.0 0.0 -2.678634533288 -89.9999992 +C ---- Initial flux of coil "GROUND" to "GEN " = 1.00000000E-09 +C +C Step Time GEN GROUND GROUND TACS TACS +C TERRA GEN FLUX GEN +C *** Phasor I(0) = 0.3770000E-07 Switch "GROUND" to " " closed +C 0 0.0 377. .377E-7 0.0 0.0 0.0 +C 1 .5E-4 376.9330268 .5235646391 -.523564601 .0094233257 376.9330268 +C 2 .1E-3 376.7321312 1.04694322 -1.04694318 .0282649546 376.7321312 +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 6th of 8 subcases continues illustration of enhanced $INSERT. This +C illustrates /MODELS but no /TACS. The configuration is taken +C from the 2nd of 3 subcases of DC-33. This is former DC17C.DAT +$INSERT, DC4CINS.DAT, { All data except misc. data has been moved to here + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +BLANK card terminates all MODELS data { 9 July 1995, MODELS replaces old +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +C Total network loss P-loss by summing injections = 7.106450000000E-06 +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +BEGIN NEW DATA CASE +C 7th of 8 subcases continues illustration of enhanced $INSERT. This +C illustrates both /MODELS and /TACS. The configuration is taken +C from the 6th of 6 subcases of DC-30. This is former DC17D.DAT +$INSERT, DC4DINS.DAT, + 1.E-6 5.E-6 { Only take 5 steps; these are plenty for illustration + 1 -1 +BLANK card terminates all TACS data +BLANK card ends all MODELS data +ENDMODELS +BLANK card ending all BRANCH cards +BLANK card ending all SWITCH cards +BLANK terminates the last SOURCE card +BLANK card ends OUTPUT variable requests +BLANK card ending all batch-mode PLOT cards +C Comment about 6 lines above. Note ENDMODELS has like the initiation +C word MODELS: there is only one of them, and has nothing to do with +C the actual modeling. It is part of the structure in which actual data +C is carried. Normally, ENDMODELS would precede the blank card ending +C MODELS, but with sorting that is not possible. /-card sorting will +C put the actual data there. If we raise ENDMODELS line by one row, +C it would precede all real MODELS data, and that would be completely +C wrong. So, we put it after the blank. Recall MODELS ignores blank +C lines, so the blank card ending MODELS is ignored. It is essential +C to the sorting, but then is ignored by MODELS itself. Since it was +C optional, anyway, this works well. +BEGIN NEW DATA CASE +C 8th of 8 subcases continues illustration of enhanced $INSERT. This +C illustrates nesting: a $INSERT line within a $INSERT file. The +C use is quite artificial. WSM simply took a single-level example +C from Orlando Hevia and modified it to illustrate the 2nd level. +C Use is realistic in that $INSERT is required. $INCLUDE can +C not be used in its place because a PCVP loop defines one of the +C arguments. In fact, this was the data that inspired WSM to add +C the service of arguments to $INSERT capability during January, 2006. +C Arguments came first. "/"-card sorting by class came later. +C Misc. data parameter ICAT = 1 will create one .PL4 file for each +C pass of the loop. But because this is not the first subcase within +C the disk file, they will not be named DC4.xxx as might be hoped. +C Instead, they will be renamed using the date and time. Remember +C that KOMPAR = 4 in startup results in the WW I Armistice name of +C 8B111100. So, there will be a .001 file for the first pass, a +C .002 file for the second, etc. through MAXKNT passes. +C Controls of following request card: MAXKNT IOPCVP NOSTAT { Loop 3 times with +POCKET CALCULATOR VARIES PARAMETERS 3 0 1 { full printout +$PARAMETER +RHORHO = 10.000*KNT +BLANK card ends parameter block. +$DUMMY, XYZ000 + 1.E-6 .001 + 1 1 1 1 1 -1 0 1 + 5 5 20 20 100 100 + XX0001XX0003 1.E3 0 + XX0001 RHORHO +$INSERT, dc4drtt.dat, XX0003, 10.0, RHORHO +BLANK card ending BRANCH cards +BLANK card ending SWITCH cards +15XX0001 0 1.E4 1.2E-6 5.E-5 2. 1. +BLANK card ending SOURCE cards + XX0003 +BLANK card ending node voltage OUTPUTs +BLANK card ending PLOT cards +BLANK card to be read and ignored by MNTINC. This avoids 2-line EOF warning. +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc40.dat b/benchmarks/dc40.dat new file mode 100644 index 0000000..dea4726 --- /dev/null +++ b/benchmarks/dc40.dat @@ -0,0 +1,417 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-40 +C This present data case restarts the "STATISTICS" (Monte Carlo) simulation +C of DC-24, which ran only 3 energizations. When this 2nd half finishes, +C 6 will have been completed, to be compared with "M39." answers of DC-24. +C Yet answers differ due to different random number generator and use of the +C seed (now, initialization only occurs once). As for the disk file that is +C connected to UNIT=2 immediately below, note that it is disconnected 3 +C lines later, and DUM.BIN is reconnected. This is to protect DC24.BIN +C from a stray write. But beware! The replacement file DUM.BIN must be a +C perfect copy of the original DC24TO40.BIN to ensure correct answers, since +C it is DUM.BIN from which restoration will actually occur for the second +C and later simulations of this restarted case. Finally, be careful of OPMC +C Beware of PARALLEL.LIS entry for same USERID that might modify NENERG! +$OPEN, UNIT=LUNIT2 FILE=dc24.bin STATUS=OLD FORM=UNFORMATTED ! { Hold case +START AGAIN { Request for awakening of hibernating solution + 9999 { Terminate modifications (none, here) to switching times +C Cancel special output for MS Excel of DC-24 tables. Addition on 21 July 2007: +C Type --- Ruler for file type of Excel output file: +EXTREMA OUTPUT FOR EXCEL .off { Columns 29-32 carry optional file type +$OPEN, UNIT=LUNIT2 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +LOAD MORE SHOTS { Load the separate extrema produced by 3 shots made in DC-24 +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 0 6 +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C +C GENB ENDA +C B1 A10 +C The following is DIAGNOSTIC from "RANDNZ" usage of overlay 12. Not a +C normal case output, this is useful in case switching times are incorrect: +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.446592684878350000E+14 +C 0.198544027000000000E+09 0.046227133600041 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.137132374008640000E+14 +C 0.370179203200000000E+10 0.861890621483326 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.255679073858209000E+15 +C 0.396569462500000000E+10 0.923335232073441 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.273906562054126000E+15 +C 0.361268631800000000E+10 0.841144080739468 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.249524631297943000E+15 +C 0.421126952700000000E+10 0.980512594571337 +C Random switching times for energization number 4 : +C 1 2.1466476E-03 2 4.4995694E-03 3 8.0648931E-03 +C 0.0 125.9695623 -58.920794 52.58141134 370.8688937 -424.516718 +C 1.249136867 -1.87200012 +C Times of maxima : .0023 .0114 .0094 .0049 .0078 +C .0049 .0171 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.290868174960364000E+15 +C 0.104773356000000000E+09 0.024394447915256 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.723659092556500000E+13 +C 0.386599910100000000E+10 0.900123059051111 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.267020691906970000E+15 +C 0.257511465000000000E+10 0.599565601442009 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.177860593760851000E+15 +C 0.170306619500000000E+10 0.396525998366997 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.117629079022456000E+15 +C 0.280968690400000000E+10 0.654181210324168 +C Random switching times for energization number 5 : +C 1 2.0344905E-03 2 3.8690347E-03 3 6.3961916E-03 +C 0.0 131.4745297 -76.1213478 -90.4743742 472.0143285 -556.117151 +C 1.594127662 -1.83850686 +C Times of maxima : .0022 .0127 .0083 .0139 .0074 +C .0044 .0172 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.194062264772377000E+15 +C 0.275743720900000000E+10 0.642015880206600 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.190453430588422000E+15 +C 0.169578189400000000E+10 0.394829989876598 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.117125959636687000E+15 +C 0.220147476700000000E+10 0.512570786988363 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.152053660681924000E+15 +C 0.322846893200000000E+10 0.751686499454081 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.222987120664309000E+15 +C 0.100859058100000000E+10 0.234830794157460 +C Random switching times for energization number 6 : +C 1 2.0043546E-03 2 4.3397550E-03 3 5.2772330E-03 +C 0.0 131.4745297 -102.270651 45.1085527 370.2365789 -461.601966 +C 1.25947653 -1.88310377 +C Times of maxima : .0022 .0054 .0094 .0052 .0076 +C .02 .017 +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 25 1.2500000 0.12500000E+03 0 0 +C 26 1.3000000 0.13000000E+03 1 1 +C 27 1.3500000 0.13500000E+03 2 3 +C 28 1.4000000 0.14000000E+03 1 4 +C 29 1.4500000 0.14500000E+03 2 6 +C Summary for following request: Mean = 1.35833333E+00 1.34924018E+00 +C Variance = 3.66666667E-03 4.10518277E-03 +C Standard deviation = 6.05530071E-02 6.40717002E-02 +-1 100. GENA A1 +-1 GENC C1 ENDA A10 { =2.53418455E-1, Variance = 3.02359400E-3 + ASW10 BSW10 CSW10 { Mean=1.49453887E+0, Variance = 6.41172862E-2 +C MODTAB AINCR XMAXMX +STATISTICS DATA 1 -10. 0.0 ---- Fixed number of 10 boxes +-3 B1 BSW1 { Ungroup: Mean=1.07790313E+0, Variance = 1.44614228E-2 +STATISTICS DATA 1 .05 0.0 --- Return to p.u. box of 1/20 +-2 0. GENB B1 ENDA A10 { =1.11785582E+0, Variance = 1.92038029E-2 +STATISTICS DATA 1 -5.0 0.0 ---- Fixed number of 5 boxes +-4 0. B1 BSW1 { Ungroup: Mean=1.27016791E+0, Variance = 8.50686724E-2 +C 12 ) ------------------------------------------------------------------------- +C Statistical distribution of peak energy for branch "B1 " to "BSW1 ". +C Interval energy energy in Frequency Cumulative +C number in per unit physical units (density) frequency +C 5 0.9692791 0.66169358E+00 0 0 +C 6 1.1631349 0.79403229E+00 2 2 +C 7 1.3569907 0.92637101E+00 2 4 +C 8 1.5508465 0.10587097E+01 1 5 +C 9 1.7447023 0.11910484E+01 0 5 +C 10 1.9385582 0.13233872E+01 1 6 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.32468140E+00 1.27016791E+00 +C Variance = 8.51815081E-02 8.50686724E-02 +C Standard deviation = 2.91858713E-01 2.91665343E-01 +C Switch "A1 " to "ASW1 " +C 8.33333377E-03 switch closings per column +C Columns +C 5 10 15 20 25 30 +C +----+----+----+----+----+----+ (Note: all "A" below did line +C A * up before left shift, +C A * in about column 127). +C A * +C A * +C | * Pull in to col 80 ----> A +C | * Pull in to col 80 ----> A +C A * +C | * Pull in to col 80 ----> A +C A * +C A * +C A * +C A * +C | 2.0000E-03 * Pull in to col 80 ----> A +C A * +C | * Pull in to col 80 ----> A +C A * +C A * +C A * +C A * +C A * +C A * +C A * +C | * Pull in to col 80 ----> A +C A * +C A * +C Time (scale = 1.44337567E-05 Sec/line) +BLANK card ending statistical output variable requests +BEGIN NEW DATA CASE +C ====================================================================== +C 2nd of 4 subcases will follow an explanation of how to produce vector +C plots of statistical distributions in Apollo window using input of the +C preceding solution. See "STATPLOT" as described in Section I-F-1-g +C of the rule book. Execute the following in a 2/3-height window with +C font F7x13.B and nearly full width: +C $ STATPLOT.EXE +C Y 5 .9 1.9 +C HELP +C GO +C <<< Pasted data beginning with 1st row of the +C <<< statistical tabulation of peak energy for +C <<< branch "B1 " to "BSW1 ". This begins +C <<< in row 10 and extends through row 20, followed +C <<< 4 lines of summary statistics. See Rule Book. +C LINE 1.4 0.1 +C LINE 1.8 0.1 +C LINE 1.0 1.0 +C ====================================================================== +C On to the 2nd subcase, which will illustrate statistical tabulation +C of previously-generated energizations without the addition of any new +C solutions. It also illustrates the combination of 2 sets of extrema, +C with the 1st coming from the 1st subcase of DC-24 (just as with the +C preceding data subcase) and the 2nd coming from the 3rd subcase of +C DC-24. This illustrates the use of "LOAD NEXT PART" that announces +C or requests concatenation of the 2nd set of extrema. Finally, there +C is illustration of the erasure of energizations from each set. Since +C both sets of data are really identical, killing one extrema in 1 file +C and the remaining 2 in the other, in any combination, will result in +C 3 remaining extrema that should tabulate identically to the 3 of DC-24 +$OPEN, UNIT=LUNIT2 FILE=dc24.bin STATUS=OLD FORM=UNFORMATTED ! { Hold case +START AGAIN { Load hibernating solution (except for separate extrema) + 9999 { Terminate modifications (none, here) to switching times +C Cancel special output for MS Excel of DC-24 tables. Addition on 21 July 2007: +C Type --- Ruler for file type of Excel output file: +EXTREMA OUTPUT FOR EXCEL .off { Columns 29-32 carry optional file type +$OPEN, UNIT=LUNIT2 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +C 345678901234567890 KIL KIL KIL KIL --- Ruler for (20X, 15I4) of next card: +LOAD MORE SHOTS 2 { Load extrema of DC-24 minus shot number 2 +TOGGLE EXTREMA MODE { Change from default UNFORMATTED mode to card images +$OPEN, UNIT=LUNIT2 FILE=dc24ct40.lis STATUS=OLD FORM=FORMATTED ! +LOAD MORE SHOTS 1 3 { Load additional history, minus shots 1 & 3 +C Following card means next case will have L2FORM = 0 within "REQUES" +C whether code is overlaid or not. Otherwise, virtual computers would +C have kept L2FORM = 1 whereas overlaid would have reset L2FORM = 0. +TOGGLE EXTREMA MODE { Restore the default UNFORMATTED mode of "LOAD MORE SHOTS" +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 +C &&&&&&&&&&&&& End request and documentation. Begin 3 coupled cards ...... +C 2 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +-1 GENA A1 CONT. +C 3 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENC " to "C1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 4 0.2000000 0.60600000E+02 0 0 +C 5 0.2500000 0.75750000E+02 2 2 +C 6 0.3000000 0.90900000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.45766731E-01 +C Variance = 8.33333333E-04 2.19347831E-03 +C Standard deviation = 2.88675135E-02 4.68345845E-02 +-1 GENC C1 CONT. +C 4 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "ENDA " to "A10 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 2 0.1000000 0.30300000E+02 0 0 +C 3 0.1500000 0.45450000E+02 2 2 +C 4 0.2000000 0.60600000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.41666667E-01 1.43690600E-01 +C Variance = 8.33333333E-04 9.61072666E-04 +C Standard deviation = 2.88675135E-02 3.10011720E-02 +-1 ENDA A10 +C 5 ) -------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 5 ) -------------------------------------------------------------------------- +C A distribution of peak values among all output branches of the last data card +C statistical distribution is for the maximum of the peaks at all of these outpu +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +C 3456789012345678901234567890123456789012345678 +C MODTAB AINCR XMAXMX +STATISTICS DATA 1 0.0 0.0 ---- Only individual +-1 GENC C1 { =.245766731, Variance=2.19347831E-3} +C ----------- Following is 2nd mini-switch plot, which is the 1st Gaussian : +C Switch "B1 " to "BSW1 " +C 1.32420007E-02 switch closings per column +C Columns +C 5 10 15 20 25 30 +C +----+----+----+----+----+----+ +C X +C X +C X +C X +C A* +C A * +C A * +C A * +C A * +C A * +C A * +C A * +C | 4.0000E-03 * Pulled 3 columns left ---> A +C | * Pulled 3 columns left ---> A +C A * +C A * +C A * +C | * Pulled 3 columns left ---> A +C A * +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 3rd of 4 total subcases, which will illustrate statistical tabulation +C of previously-generated energizations without the addition of any new +C solutions. It is like 2nd, only with a different erasure of 3 shots. +C Tabulations are the same. Finally, it illustrates the omission of the +C miniature character plots of switch closing times via NO SWITCH PLOTS. +$OPEN, UNIT=LUNIT2 FILE=dc24.bin STATUS=OLD FORM=UNFORMATTED ! { Hold case +START AGAIN { Load hibernating solution (except for separate extrema) + 9999 { Terminate modifications (none, here) to switching times +C Cancel special output for MS Excel of DC-24 tables. Addition on 21 July 2007: +C Type --- Ruler for file type of Excel output file: +EXTREMA OUTPUT FOR EXCEL .off { Columns 29-32 carry optional file type +$OPEN, UNIT=LUNIT2 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +C 345678901234567890 KIL KIL KIL KIL --- Ruler for (20X, 15I4) of next card: +LOAD MORE SHOTS 3 { Load extrema of DC-24 minus shot number 3 +TOGGLE EXTREMA MODE { Change from default UNFORMATTED mode to card images +$OPEN, UNIT=LUNIT2 FILE=dc24ct40.lis STATUS=OLD FORM=FORMATTED ! +LOAD MORE SHOTS 1 2 { Load additional history, minus shots 1 & 2 +C Following card means next case will have L2FORM = 0 within "REQUES" +C whether code is overlaid or not. Otherwise, virtual computers would +C have kept L2FORM = 1 whereas overlaid would have reset L2FORM = 0. +TOGGLE EXTREMA MODE { Restore the default UNFORMATTED mode of "LOAD MORE SHOTS" +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 +C Column positioning of "NO SWITCH PLOTS" on blank terminator is arbitrary: +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE +C 4th of 4 total subcases will illustrate the repeated simulation of the +C already-solved 2nd energization. By definition, only a single shot +C will occur, and by means of KSTOUT = 0 we can look at time-step loop +C output just as though there were no "STATISTICS". Such output now +C can be followed by plotting (activated on 30 March 1989). Note that +C the plot file header was created by the 2nd subcase of DC-24. It is +C necessary to connect this since only time-step-loop output is produced +C by "START AGAIN" usage such as here. Miscellaneous data parameter +C ICAT = 2 will save the ".PL4" plot file, so subsequent, independent +C plotting is possible (and is illustrated by the 2nd plot of the first +C subcase of DC-54). There is no statistical tabulation for the present +C subcase, of course. Variable KNTRPT = 2 repeats the 2nd shot of the +C previously-solved 1st subcase of DC-24. The zero (not blank!) KSTOUT +C provides desired time-step loop output. +$OPEN, UNIT=LUNIT2 FILE=dc24.bin STATUS=OLD FORM=UNFORMATTED ! { Hold case +START AGAIN { Request for awakening of hibernating solution + 9999 { Terminate modifications (none, here) to switching times +C Cancel special output for MS Excel of DC-24 tables. Addition on 21 July 2007: +C Type --- Ruler for file type of Excel output file: +EXTREMA OUTPUT FOR EXCEL .off { Columns 29-32 carry optional file type +$OPEN, UNIT=LUNIT2 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +C 345678901234567890 KIL KIL KIL KIL --- Ruler for (20X, 15I4) of next card: +LOAD MORE SHOTS { Load extrema produced by 1st subcase of DC-24 +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 2 3 +C Preceding KNTRPT = 3 was changed from former 6 on 23 Sept 1998. +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 0 2 1 +CHANGE PRINTOUT FREQUENCY + 1 1 20 10 +$CLOSE, UNIT=LUNIT4 STATUS=DELETE { Destroy empty date/time plot file of "SYSDEP" +$OPEN, UNIT=LUNIT4 FILE=dc24b40d.pl4 STATUS=OVERLAY ! { C-like uses only header +C READ PL4 HEADER { Messes up C-like usage of PL4 +C Transfer control to the time-step loop. |TIME STEP LOOP { Transfer +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C +C GENB ENDA +C B1 A10 +C Random switching times for energization number 2 : +C 1 1.8999095E-03 2 4.7979502E-03 3 7.5258324E-03 +C 18 .0018 .284217E-13 -.26148E-11 .284217E-12 0.0 0.0 +C .192639E-17 .966554E-16 +C *** Close switch "A1 " to "ASW1 " after 1.90000000E-03 sec. +C 19 .0019 -.28422E-13 .26148E-11 -.28422E-12 0.0 0.0 +C .210598E-16 .966554E-16 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C 200 .02 18.40117142 -5.2655535 13.97952075 79.19748583 128.2703628 +C .4457755752 -1.28521406 +C Variable max : 141.9164096 61.55446116 25.22399908 371.6253603 334.5616569 +C 1.207725131 .5125980517 +C Times of max : .002 .0154 .0132 .0059 .0028 +C .0058 .0105 +C Variable min : -103.914014 -46.8051457 -41.9189588 -288.448852 -318.274018 +C -1.09393135 -1.83695142 +C Times of min : .0032 .0144 .0139 .0071 .0088 +C .0071 .017 + PRINTER PLOT + 144 1. 0.0 10. ASW10 { Plot limits: (-3.183, 3.346) +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc40clik.dat b/benchmarks/dc40clik.dat new file mode 100644 index 0000000..dbc590c --- /dev/null +++ b/benchmarks/dc40clik.dat @@ -0,0 +1,421 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-40 +C This present data case restarts the "STATISTICS" (Monte Carlo) simulation +C of DC-24, which ran only 3 energizations. When this 2nd half finishes, +C 6 will have been completed, to be compared with "M39." answers of DC-24. +C Yet answers differ due to different random number generator and use of the +C seed (now, initialization only occurs once). As for the disk file that is +C connected to UNIT=2 immediately below, note that it is disconnected 3 +C lines later, and dumxx.BIN is reconnected. This is to protect DC24clik.BIN +C from a stray write. .... Finally, be careful of OPMC +C Beware of PARALLEL.LIS entry for same USERID that might modify NENERG! +$OPEN, UNIT=22 FILE=dc24clik.bin STATUS=OLD FORM=C-like ! { Hold case +START AGAIN { Request for awakening of hibernating solution + 9999 { Terminate modifications (none, here) to switching times +diagnostic 9 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24clik.bin on 22 to prevent damage +$OPEN, UNIT=22 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +LOAD MORE SHOTS { Load the separate extrema produced by 3 shots made in DC-24 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24at40.ext on 22 to prevent damage +$OPEN, UNIT=22 STATUS=SCRATCH FILE=dumxx.bin ! { Reconnect dummy .BIN on LUNIT2 +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 0 6 +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C +C GENB ENDA +C B1 A10 +C The following is DIAGNOSTIC from "RANDNZ" usage of overlay 12. Not a +C normal case output, this is useful in case switching times are incorrect: +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.446592684878350000E+14 +C 0.198544027000000000E+09 0.046227133600041 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.137132374008640000E+14 +C 0.370179203200000000E+10 0.861890621483326 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.255679073858209000E+15 +C 0.396569462500000000E+10 0.923335232073441 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.273906562054126000E+15 +C 0.361268631800000000E+10 0.841144080739468 +C "RFUNL1/RANDNZ". KNT = 4. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.249524631297943000E+15 +C 0.421126952700000000E+10 0.980512594571337 +C Random switching times for energization number 4 : +C 1 2.1466476E-03 2 4.4995694E-03 3 8.0648931E-03 +C 0.0 125.9695623 -58.920794 52.58141134 370.8688937 -424.516718 +C 1.249136867 -1.87200012 +C Times of maxima : .0023 .0114 .0094 .0049 .0078 +C .0049 .0171 +C diagnostic 9 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.290868174960364000E+15 +C 0.104773356000000000E+09 0.024394447915256 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.723659092556500000E+13 +C 0.386599910100000000E+10 0.900123059051111 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.267020691906970000E+15 +C 0.257511465000000000E+10 0.599565601442009 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.177860593760851000E+15 +C 0.170306619500000000E+10 0.396525998366997 +C "RFUNL1/RANDNZ". KNT = 5. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.117629079022456000E+15 +C 0.280968690400000000E+10 0.654181210324168 +C Random switching times for energization number 5 : +C 1 2.0344905E-03 2 3.8690347E-03 3 6.3961916E-03 +C 0.0 131.4745297 -76.1213478 -90.4743742 472.0143285 -556.117151 +C 1.594127662 -1.83850686 +C Times of maxima : .0022 .0127 .0083 .0139 .0074 +C .0044 .0172 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.439822971502571000E+02 0.194062264772377000E+15 +C 0.275743720900000000E+10 0.642015880206600 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.190453430588422000E+15 +C 0.169578189400000000E+10 0.394829989876598 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.117125959636687000E+15 +C 0.220147476700000000E+10 0.512570786988363 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.152053660681924000E+15 +C 0.322846893200000000E+10 0.751686499454081 +C "RFUNL1/RANDNZ". KNT = 6. SY, D6, SEEDRN, D18 (result) follow .... +C 0.000000000000000000E+00 0.222987120664309000E+15 +C 0.100859058100000000E+10 0.234830794157460 +C Random switching times for energization number 6 : +C 1 2.0043546E-03 2 4.3397550E-03 3 5.2772330E-03 +C 0.0 131.4745297 -102.270651 45.1085527 370.2365789 -461.601966 +C 1.25947653 -1.88310377 +C Times of maxima : .0022 .0054 .0094 .0052 .0076 +C .02 .017 +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 25 1.2500000 0.12500000E+03 0 0 +C 26 1.3000000 0.13000000E+03 1 1 +C 27 1.3500000 0.13500000E+03 2 3 +C 28 1.4000000 0.14000000E+03 1 4 +C 29 1.4500000 0.14500000E+03 2 6 +C Summary for following request: Mean = 1.35833333E+00 1.34924018E+00 +C Variance = 3.66666667E-03 4.10518277E-03 +C Standard deviation = 6.05530071E-02 6.40717002E-02 +-1 100. GENA A1 +-1 GENC C1 ENDA A10 { =2.53418455E-1, Variance = 3.02359400E-3 + ASW10 BSW10 CSW10 { Mean=1.49453887E+0, Variance = 6.41172862E-2 +C MODTAB AINCR XMAXMX +STATISTICS DATA 1 -10. 0.0 ---- Fixed number of 10 boxes +-3 B1 BSW1 { Ungroup: Mean=1.07790313E+0, Variance = 1.44614228E-2 +STATISTICS DATA 1 .05 0.0 --- Return to p.u. box of 1/20 +-2 0. GENB B1 ENDA A10 { =1.11785582E+0, Variance = 1.92038029E-2 +STATISTICS DATA 1 -5.0 0.0 ---- Fixed number of 5 boxes +-4 0. B1 BSW1 { Ungroup: Mean=1.27016791E+0, Variance = 8.50686724E-2 +C 12 ) ------------------------------------------------------------------------- +C Statistical distribution of peak energy for branch "B1 " to "BSW1 ". +C Interval energy energy in Frequency Cumulative +C number in per unit physical units (density) frequency +C 5 0.9692791 0.66169358E+00 0 0 +C 6 1.1631349 0.79403229E+00 2 2 +C 7 1.3569907 0.92637101E+00 2 4 +C 8 1.5508465 0.10587097E+01 1 5 +C 9 1.7447023 0.11910484E+01 0 5 +C 10 1.9385582 0.13233872E+01 1 6 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.32468140E+00 1.27016791E+00 +C Variance = 8.51815081E-02 8.50686724E-02 +C Standard deviation = 2.91858713E-01 2.91665343E-01 +C Switch "A1 " to "ASW1 " +C 8.33333377E-03 switch closings per column +C Columns +C 5 10 15 20 25 30 +C +----+----+----+----+----+----+ (Note: all "A" below did line +C A * up before left shift, +C A * in about column 127). +C A * +C A * +C | * Pull in to col 80 ----> A +C | * Pull in to col 80 ----> A +C A * +C | * Pull in to col 80 ----> A +C A * +C A * +C A * +C A * +C | 2.0000E-03 * Pull in to col 80 ----> A +C A * +C | * Pull in to col 80 ----> A +C A * +C A * +C A * +C A * +C A * +C A * +C A * +C | * Pull in to col 80 ----> A +C A * +C A * +C Time (scale = 1.44337567E-05 Sec/line) +BLANK card ending statistical output variable requests +BEGIN NEW DATA CASE +C ====================================================================== +C 2nd of 4 subcases will follow an explanation of how to produce vector +C plots of statistical distributions in Apollo window using input of the +C preceding solution. See "STATPLOT" as described in Section I-F-1-g +C of the rule book. Execute the following in a 2/3-height window with +C font F7x13.B and nearly full width: +C $ STATPLOT.EXE +C Y 5 .9 1.9 +C HELP +C GO +C <<< Pasted data beginning with 1st row of the +C <<< statistical tabulation of peak energy for +C <<< branch "B1 " to "BSW1 ". This begins +C <<< in row 10 and extends through row 20, followed +C <<< 4 lines of summary statistics. See Rule Book. +C LINE 1.4 0.1 +C LINE 1.8 0.1 +C LINE 1.0 1.0 +C ====================================================================== +C On to the 2nd subcase, which will illustrate statistical tabulation +C of previously-generated energizations without the addition of any new +C solutions. It also illustrates the combination of 2 sets of extrema, +C with the 1st coming from the 1st subcase of DC-24 (just as with the +C preceding data subcase) and the 2nd coming from the 3rd subcase of +C DC-24. This illustrates the use of "LOAD NEXT PART" that announces +C or requests concatenation of the 2nd set of extrema. Finally, there +C is illustration of the erasure of energizations from each set. Since +C both sets of data are really identical, killing one extrema in 1 file +C and the remaining 2 in the other, in any combination, will result in +C 3 remaining extrema that should tabulate identically to the 3 of DC-24 +$OPEN, UNIT=22 FILE=dc24clik.bin STATUS=OLD FORM=C-like ! { Hold case +START AGAIN { Request for awakening of hibernating solution + 9999 { Terminate modifications (none, here) to switching times +diagnostic 9 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24clik.bin on 22 to prevent damage +$OPEN, UNIT=22 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +C 345678901234567890 KIL KIL KIL KIL --- Ruler for (20X, 15I4) of next card: +LOAD MORE SHOTS 2 { Load extrema of DC-24 minus shot number 2 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24at40.ext on 22 to prevent damage +TOGGLE EXTREMA MODE { Change from default UNFORMATTED mode to card images +$OPEN, UNIT=22 FILE=dc24ct40.lis STATUS=OLD FORM=FORMATTED ! +LOAD MORE SHOTS 1 3 { Load additional history, minus shots 1 & 3 +C Following card means next case will have L2FORM = 0 within "REQUES" +C whether code is overlaid or not. Otherwise, virtual computers would +C have kept L2FORM = 1 whereas overlaid would have reset L2FORM = 0. +TOGGLE EXTREMA MODE { Restore the default UNFORMATTED mode of "LOAD MORE SHOTS" +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24ct40.lis on 22 to prevent damage +$OPEN, UNIT=22 STATUS=SCRATCH FILE=dumxx.bin ! { Reconnect dummy .BIN on LUNIT2 +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 +C &&&&&&&&&&&&& End request and documentation. Begin 3 coupled cards ...... +C 2 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +-1 GENA A1 CONT. +C 3 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENC " to "C1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 4 0.2000000 0.60600000E+02 0 0 +C 5 0.2500000 0.75750000E+02 2 2 +C 6 0.3000000 0.90900000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.45766731E-01 +C Variance = 8.33333333E-04 2.19347831E-03 +C Standard deviation = 2.88675135E-02 4.68345845E-02 +-1 GENC C1 CONT. +C 4 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "ENDA " to "A10 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 2 0.1000000 0.30300000E+02 0 0 +C 3 0.1500000 0.45450000E+02 2 2 +C 4 0.2000000 0.60600000E+02 1 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.41666667E-01 1.43690600E-01 +C Variance = 8.33333333E-04 9.61072666E-04 +C Standard deviation = 2.88675135E-02 3.10011720E-02 +-1 ENDA A10 +C 5 ) -------------------------------------------------------------------------- +C SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMARY SUMMAR +C 5 ) -------------------------------------------------------------------------- +C A distribution of peak values among all output branches of the last data card +C statistical distribution is for the maximum of the peaks at all of these outpu +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 9 0.4500000 0.13635000E+03 0 0 +C 10 0.5000000 0.15150000E+03 3 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 4.75000000E-01 4.62734306E-01 +C Variance = 0.00000000E+00 9.53165933E-05 +C Standard deviation = 0.00000000E+00 9.76302173E-03 +C 3456789012345678901234567890123456789012345678 +C MODTAB AINCR XMAXMX +STATISTICS DATA 1 0.0 0.0 ---- Only individual +-1 GENC C1 { =.245766731, Variance=2.19347831E-3} +C ----------- Following is 2nd mini-switch plot, which is the 1st Gaussian : +C Switch "B1 " to "BSW1 " +C 1.32420007E-02 switch closings per column +C Columns +C 5 10 15 20 25 30 +C +----+----+----+----+----+----+ +C X +C X +C X +C X +C A* +C A * +C A * +C A * +C A * +C A * +C A * +C A * +C | 4.0000E-03 * Pulled 3 columns left ---> A +C | * Pulled 3 columns left ---> A +C A * +C A * +C A * +C | * Pulled 3 columns left ---> A +C A * +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 3rd of 4 total subcases, which will illustrate statistical tabulation +C of previously-generated energizations without the addition of any new +C solutions. It is like 2nd, only with a different erasure of 3 shots. +C Tabulations are the same. Finally, it illustrates the omission of the +C miniature character plots of switch closing times via NO SWITCH PLOTS. +$OPEN, UNIT=22 FILE=dc24clik.bin STATUS=OLD FORM=C-like ! { Hold case +START AGAIN { Request for awakening of hibernating solution + 9999 { Terminate modifications (none, here) to switching times +diagnostic 9 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24clik.bin on 22 to prevent damage +$OPEN, UNIT=22 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +C 345678901234567890 KIL KIL KIL KIL --- Ruler for (20X, 15I4) of next card: +LOAD MORE SHOTS 3 { Load extrema of DC-24 minus shot number 3 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24at40.ext on 22 to prevent damage +TOGGLE EXTREMA MODE { Change from default UNFORMATTED mode to card images +$OPEN, UNIT=22 FILE=dc24ct40.lis STATUS=OLD FORM=FORMATTED ! +LOAD MORE SHOTS 1 2 { Load additional history, minus shots 1 & 2 +C Following card means next case will have L2FORM = 0 within "REQUES" +C whether code is overlaid or not. Otherwise, virtual computers would +C have kept L2FORM = 1 whereas overlaid would have reset L2FORM = 0. +TOGGLE EXTREMA MODE { Restore the default UNFORMATTED mode of "LOAD MORE SHOTS" +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24ct40.lis on 22 to prevent damage +$OPEN, UNIT=22 STATUS=SCRATCH FILE=dumxx.bin ! { Reconnect dummy .BIN on LUNIT2 +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 0 3 +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C 1 ) -------------------------------------------------------------------------- +C Statistical distribution of peak voltage for branch "GENA " to "A1 ". +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 27 1.3500000 0.13500000E+03 0 0 +C 28 1.4000000 0.14000000E+03 1 1 +C 29 1.4500000 0.14500000E+03 2 3 +C Distribution parameters for .. data follow. Grouped data Ungrouped data +C Mean = 1.40833333E+00 1.40208495E+00 +C Variance = 8.33333333E-04 8.75092111E-04 +C Standard deviation = 2.88675135E-02 2.95819558E-02 +-1 100. GENA A1 +C Column positioning of "NO SWITCH PLOTS" on blank terminator is arbitrary: +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE +C 4th of 4 total subcases will illustrate the repeated simulation of the +C already-solved 2nd energization. By definition, only a single shot +C will occur, and by means of KSTOUT = 0 we can look at time-step loop +C output just as though there were no "STATISTICS". Such output now +C can be followed by plotting (activated on 30 March 1989). Note that +C the plot file header was created by the 2nd subcase of DC-24. It is +C necessary to connect this since only time-step-loop output is produced +C by "START AGAIN" usage such as here. Miscellaneous data parameter +C ICAT = 2 will save the ".PL4" plot file, so subsequent, independent +C plotting is possible (and is illustrated by the 2nd plot of the first +C subcase of DC-54). There is no statistical tabulation for the present +C subcase, of course. Variable KNTRPT = 2 repeats the 2nd shot of the +C previously-solved 1st subcase of DC-24. The zero (not blank!) KSTOUT +C provides desired time-step loop output. +$OPEN, UNIT=22 FILE=dc24clik.bin STATUS=OLD FORM=C-like ! { Hold case +START AGAIN { Request for awakening of hibernating solution + 9999 { Terminate modifications (none, here) to switching times +diagnostic 9 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24clik.bin on 22 to prevent damage +$OPEN, UNIT=22 FILE=dc24at40.ext STATUS=OLD FORM=UNFORMATTED RECL=16000 ! +C 345678901234567890 KIL KIL KIL KIL --- Ruler for (20X, 15I4) of next card: +LOAD MORE SHOTS { Load extrema produced by 1st subcase of DC-24 +$CLOSE, UNIT=22 STATUS=UNKNOWN { Disconnect dc24at40.ext on 22 to prevent damage +$OPEN, UNIT=22 STATUS=SCRATCH FILE=dumxx.bin ! { Reconnect dummy .BIN on LUNIT2 +MISCELLANEOUS DATA CARDS + 100.E-6 20.E-3 60. + 1 1 1 1 1 0 2 3 +C Preceding KNTRPT = 3 was changed from former 6 on 23 Sept 1998. +C ISW ITEST IDIST IMAX IDICE KSTOUT KNTRPT NSEED + 1 1 0 0 1 0 2 1 +CHANGE PRINTOUT FREQUENCY + 1 1 20 10 +$CLOSE, UNIT=4 STATUS=DELETE { Destroy empty date/time plot file of "SYSDEP" +$OPEN, UNIT=4 FILE=dc24b40d.pl4 STATUS=OVERLAY ! { C-like uses only header +C READ PL4 HEADER { Messes up C-like usage of PL4 +C Transfer control to the time-step loop. |TIME STEP LOOP { Transfer +C GENA GENC ENDA B1 ASW10 +C Reference angle A1 C1 A10 BSW1 +C +C GENB ENDA +C B1 A10 +C Random switching times for energization number 2 : +C 1 1.8999095E-03 2 4.7979502E-03 3 7.5258324E-03 +C 18 .0018 .284217E-13 -.26148E-11 .284217E-12 0.0 0.0 +C .192639E-17 .966554E-16 +C *** Close switch "A1 " to "ASW1 " after 1.90000000E-03 sec. +C 19 .0019 -.28422E-13 .26148E-11 -.28422E-12 0.0 0.0 +C .210598E-16 .966554E-16 +TIME STEP LOOP { Transfer control to overlay 16 for a resumption of simulation +C 200 .02 18.40117142 -5.2655535 13.97952075 79.19748583 128.2703628 +C .4457755752 -1.28521406 +C Variable max : 141.9164096 61.55446116 25.22399908 371.6253603 334.5616569 +C 1.207725131 .5125980517 +C Times of max : .002 .0154 .0132 .0059 .0028 +C .0058 .0105 +C Variable min : -103.914014 -46.8051457 -41.9189588 -288.448852 -318.274018 +C -1.09393135 -1.83695142 +C Times of min : .0032 .0144 .0139 .0071 .0088 +C .0071 .017 + PRINTER PLOT + 144 1. 0.0 10. ASW10 { Plot limits: (-3.183, 3.346) +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc41.dat b/benchmarks/dc41.dat new file mode 100644 index 0000000..e9775b4 --- /dev/null +++ b/benchmarks/dc41.dat @@ -0,0 +1,519 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-41 +C Test of Semlyen frequency-dependent simulation code using high-order +C data from John Hauer (former "HAUER SETUP"). This is the John Day to +C Lower Monumental fault test, just like DC-31 (2nd order Semlyen) and +C DCNEW-4 (high-order Marti). Here, continuous transposition is assumed +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 20.E-6 20.E-3 60. 60. + 1 8 1 1 -1 + 5 5 20 20 100 100 + 0GENA BEGINA 14. + 0GENB BEGINBGENA BEGINA + 0GENC BEGINCGENA BEGINA +C The following branch cards are from "HAUER SETUP" punch file: +C #DATA FOR LINE SECTION 1: LENGTH = 0.1380000E+03 +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 -0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C +C 27. 60. 1 138. +C 27. 6.0 1 138. 7 20 +C +-1BEGINAENDA 0.22547E-02 0.74884E-03 1 1 14 6 3 + 0.67519497E+02 0.22868008E+03 0.00000000E+00 0.62996694E-03 0.60000000E+02 0 + 0., 0.232728400E+03, 0.505695185E-01, 0., 0.618279420E+03, 0.748306243E-01 + 0., 0.460330237E+04, 0.227732022E+00, 0., 0.873771583E+04,-0.587245219E-01 + 0., 0.900430932E+04, 0.249999225E-01, 0., 0.159407707E+05, 0.975160389E+00 + 0., 0.194752175E+05, 0.117242152E+00, 0., 0.366005345E+05, 0.548528443E+00 + 0., 0.654818466E+05,-0.150033701E+01, 0., 0.212800153E+06, 0.120734101E+02 + 0., 0.271680247E+06,-0.185580738E+05, 0., 0.273142633E+06, 0.342711488E+05 + 0., 0.275102479E+06,-0.160808604E+05, 0., 0.287226841E+06, 0.356251978E+03 + 0., 0.464830983E+03,-0.469956828E-03, 0., 0.243280470E+05, 0.123116414E-03 + 0., 0.135508543E+05,-0.279583141E-03, 0., 0.166820988E+06, 0.206387276E-03 + 0., 0.151012880E+06,-0.350762015E-03, 0., 0.304998812E+07,-0.622090423E-04 +-1BEGINBENDB 0.35258E-02 0.74313E-03 2 2 14 2 3 + 0.40944359E+01 0.80845419E+02 0.00000000E+00 0.10069636E-02 0.60000000E+02 0 + 0., 0.827674470E+03, 0.398806056E-01, 0., 0.130501996E+06, 0.508365787E+00 + 0., 0.252780509E+06,-0.280985689E+00, 0., 0.260749831E+06, 0.360866589E+00 + 0., 0.544371051E+06,-0.152645223E+01, 0., 0.696229069E+06, 0.773993647E+01 + 0., 0.768161125E+06,-0.566855648E+01, 0., 0.415043368E+07,-0.224486177E+00 + 0., 0.860106666E+07,-0.180297330E+02, 0., 0.104572655E+08, 0.286577225E+03 + 0., 0.118008018E+08,-0.243527045E+05, 0., 0.119761142E+08, 0.200319291E+06 + 0., 0.120018677E+08,-0.177347835E+06, 0., 0.125804003E+08, 0.111275201E+04 + 0., 0.000000000E+00, 0.000000000E+00, 0., 0.000000000E+00, 0.000000000E+00 +-1BEGINCENDC 0.35258E-02 0.74313E-03 3 3 14 2 3 + 0.40944359E+01 0.80845419E+02 0.00000000E+00 0.10069636E-02 0.60000000E+02 0 + 0., 0.827674470E+03, 0.398806056E-01, 0., 0.130501996E+06, 0.508365787E+00 + 0., 0.252780509E+06,-0.280985689E+00, 0., 0.260749831E+06, 0.360866589E+00 + 0., 0.544371051E+06,-0.152645223E+01, 0., 0.696229069E+06, 0.773993647E+01 + 0., 0.768161125E+06,-0.566855648E+01, 0., 0.415043368E+07,-0.224486177E+00 + 0., 0.860106666E+07,-0.180297330E+02, 0., 0.104572655E+08, 0.286577225E+03 + 0., 0.118008018E+08,-0.243527045E+05, 0., 0.119761142E+08, 0.200319291E+06 + 0., 0.120018677E+08,-0.177347835E+06, 0., 0.125804003E+08, 0.111275201E+04 + 0., 0.000000000E+00, 0.000000000E+00, 0., 0.000000000E+00, 0.000000000E+00 +C ** TX MATRICES: FTX= 0.00000E+00 + 0.57735026919E+00, 0., 0.70710678119E+00, 0., 0.40824829046E+00, 0. + 0.57735026919E+00, 0.,-0.70710678119E+00, 0., 0.40824829046E+00, 0. + 0.57735026919E+00, 0., 0.00000000000E+00, 0.,-0.81649658093E+00, 0. + 0.57735026919E+00, 0., 0.70710678119E+00, 0., 0.40824829046E+00, 0. + 0.57735026919E+00, 0.,-0.70710678119E+00, 0., 0.40824829046E+00, 0. + 0.57735026919E+00, 0., 0.00000000000E+00, 0.,-0.81649658093E+00, 0. +C End of branch cards from "HAUER SETUP" punch file. +C Modification on 15 February 1999: "1" punch was added to column 80 of the +C 3rd and final phase of preceding Semlyen line. Output is identical. + RRR 10. { Resistor connects ANALYTIC source to ground +BLANK card ending branch cards + ENDA .00413 1.0 +BLANK card ending switch cards (just the fault switch, here) +14GENA 428. 60. -90.0 -1. +14GENB 428. 60. -210.0 -1. +14GENC 428. 60. 30.0 -1. +C 27 October 2003, add the same new user-supplied source as featured in 7th +C subcase of BENCHMARK DC-5. But here there is continuation into dT loop. +C Show that phasor solution is as expected and no special problem results. +C The only peculiarity is the need to key the frequency in columns 21-30. If +C this is not done, the default value of 1 Hz will result. A final change is +C the request for node voltage outputs. This was "1", which if left, would +C add an output column that is identically zero for step 1 onward. This is +C not interesting, so suppress this output by a switch to selective outputs. +C Node V? Request> -Name- +14RRR -1 60. ANALYTIC HYPERB +C Preceding is defined as follows: Real part = 100. * Pi / Omega +C Imaginary part = ( Real part + 1.0 ) / 2 +C So at 60 Hz, phasor = 5/6 + j 11/12 +BLANK card ending source cards +C Total network loss P-loss by summing injections = 4.183407681766E-01 +C Last inject: GENC 370.65887281974 428. -.2242277044615 .44958452206004 +C Last inject: 214. 30.0000000 .38967701886034 119.9169563 +C Step Time ENDC ENDB ENDA BEGINC BEGINB +C +C 0 0.0 392.438957 -391.47028 -.96868127 376.114351 -376.10523 +C 1 .2E-4 393.416785 -390.51658 -2.9002095 373.022592 -371.61198 +C 2 .4E-4 391.718167 -392.23056 .512394524 371.605264 -374.09974 + ENDC ENDB ENDA BEGINCBEGINBBEGINAGENA GENB GENC +BLANK card ending request for node voltage outputs +C Final step begins: 1000 .02 -224.41449 -471.83274 0.0 -91.175647 +C Final step ..... : -323.88611 368.601969 407.052189 -318.06599 -88.986204 +C Variable maxima : 586.693087 525.250186 448.452866 438.684658 447.869952 +C Times of maxima : .01492 .01068 .00414 .0154 .00984 + PRINTER PLOT + 144 2. 0.0 20. ENDB ENDA { Axis limits: (-5.167, 5.239) + 144 1. 0.0 6.0 ENDB ENDA { Axis limits: (-4.555, 4.485) + CALCOMP PLOT + 144 2. 0.0 20. ENDB ENDA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 7 subcases is related to preceeding. The same 138-mile section of +C 500-kV line is involved, but without frequency dependence for simplicity. +C Rather than a fault to ground, the source of phase "a" is ended at 1 msec +C (same effect, only at sending end rather than receiving end). Nice +C transients are documented by a printer plot. This establishes the +C reference for the radical new solution of the following 3rd subcase. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (if 8 output columns) + .000050 .005 60. 60. + 1 1 1 3 1 -1 2 + 5 5 20 20 100 100 + JDGA JDA 15. { 1st of 3 branches in series with one + JDGB JDB 15. { section of K.C. Lee line. This is + JDGC JDC 15. { an approximation to source impedance +C The following 3-phase, constant-parameter branch cards are produced by the +C 2nd subcase of DC-59. For simplicity, the cards are inserted inside this +C data file. Equally well, $INCLUDE or $INSERT on disk file dc59b.pch +C could be used: +$VINTAGE, 1 { Beginning of cards punched by DC-59b +-1JDA LMA 3.01533E-01 6.91823E+02 1.19371E+05 1.38000E+02 1 +-2JDB LMB { See col 80 } 2.80266E-02 2.83599E+02 1.82176E+05 1.38000E+02 1 0 +-3JDC LMC +$VINTAGE, 0 { last of cards punched by DC-59b +C Modification on 15 February 1999: "3" punch was added to column 80 of the +C 2nd phase of preceding distributed line. Output is identical except for +C the interpreted data line itself. Because of the otherwise-unused in-line +C comment, the "3" will be seen (unlike preceding subcase or DCNEW-4). + LMA 1000. { Resistive load at far end of 1st of 6 phases + LMB LMA { 2nd of 6 phases is terminated by the same R + LMC LMA { Etc. for phases 3 through 6. It is balanced +BLANK card ending branch cards +BLANK card ending switch cards +14JDGA 303000. 60. 0. -1. .001 +14JDGB 303000. 60. -120. -1. +14JDGC 303000. 60. 120. -1. +BLANK card ending source cards + JDGA LMA JDGB LMB JDGC LMC +BLANK card ending node names for selective voltage output + PRINTER PLOT + 144 1. 0.0 5.0 LMA LMB LMC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 7 subcases should produce identically the same solution as the +C preceding subcase. Added 29 January 1999, this illustrates the new +C "TO SUPPORTING PROGRAM" to derive line constants of the 138-mile line +C section as were used in the 2nd subcase of DC-59. As should be explained +C in the April, 1999, newsletter, this new in-line execution of supporting +C programs first was envisioned by Prof. Juan A. Martinez Velasco of the +C University of Catalunya in Barcelona, Spain. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (if 8 output columns) + .000050 .005 60. 60. + 1 1 1 3 1 -1 2 + 5 5 20 20 100 100 + JDGA JDA 15. { 1st of 3 branches in series with one + JDGB JDB 15. { section of K.C. Lee line. This is + JDGC JDC 15. { an approximation to source impedance +C Add /OUTPUT anywhere on right of following request to produce output of +C the supporting program. Without this, all output will be suppressed. +< TO SUPPORTING PROGRAM (NEXT) > { Request for a jump to a supporting program +C The following data, through the blank card, is from 2nd subcase of DCNEW-3. +LINE CONSTANTS +BRANCH JDA LMA JDB LMB JDC LMC +C LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE. + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK CARD ENDING CONDUCTOR CARDS OF "LINE CONSTANTS" CASE +100. 60.00 1 11 1 138. 1 +BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +$PUNCH, dc41c.pch ! { Output the just-created branch cards to a disk file +BLANK card ending LINE CONSTANTS data cases { Last of supporting program data +$CLOSE, UNIT=7 STATUS=KEEP { Disconnect file containing KC Lee branch cards +$INSERT, dc41c.pch, { Dynamic connection of disk file created 3 lines above + LMA 1000. { Resistive load at far end of 1st of 3 phases + LMB LMA { 2nd of 3 phases is terminated by the same R + LMC LMA +BLANK card ending branch cards +BLANK card ending switch cards +14JDGA 303000. 60. 0. -1. .001 +14JDGB 303000. 60. -120. -1. +14JDGC 303000. 60. 120. -1. +BLANK card ending source cards + JDGA LMA JDGB LMB JDGC LMC +BLANK card ending node names for selective voltage output + PRINTER PLOT + 144 1. 0.0 5.0 LMA LMB LMC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 7 subcases illustrates selective branch current output for 2-phase +C Semlyen line. This was added 11 December 2000. Branch cards for the +C 2-phase line are as created by the 3rd subcase of DC-29. The network is +C totally artificial since it represents 2 of the 3 phases of a 500-kV line +C The new "Derive [Ti] from [Tv]" request also is illustrated (see the +C April, 2001, newsletter). Only a single time step is taken --- enough +C to verify correct and consistent output. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 20.E-6 20.E-6 60. 60. + 1 8 0 1 0 + 0GENA BEGINA 14. 1 + 0GENB BEGINBGENA BEGINA 1 +C 0GENC BEGINCGENA BEGINA 1 +C <++++++> Cards punched by support routine on 11-Nov-18 11.00.00 <++++++> +C SEMLYEN SETUP +C $ERASE +C BRANCH JDA LMA JDB LMB +C TOLERANCES 10 5000. { Illustration only; value of FMED actually unchang +C 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous da +C LINE CONSTANTS +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C BLANK card ending conductor cards within "LINE CONSTANTS" data +C 27. 5000. 138. { Transient frequen +C 27. 60.00 138. { Phasor solution frequen +C 27. 6.00 138. 6 20 { log loopi +C BLANK card ending frequency cards of "LINE CONSTANTS" data +C BLANK card ending "LINE CONSTANTS" data cases +C L= 138.0 miles, rho= 27.0, ss freq= 60.00, NSS=0, KFIT=10, KPS=2, KYC=30 +-1BEGINAENDA 3.81668E-03 7.63488E-04 1 1 2 2 2 0 + 1.90862630E+01 1.15862674E+02-1.30872176E-04 9.74276128E-04 6.00000000E+01 + 0.00000E+00 2.24216E+04 7.46515E-01 0.00000E+00 2.38744E+03 2.53485E-01 + 0.00000E+00 1.23894E+05-4.11230E-04 0.00000E+00 4.80703E+02-8.78400E-04 +-1BEGINBENDB 4.86411E-03 7.40372E-04 2 2 2 2 2 1 + 1.59520125E+00 6.09143723E+01-2.53812008E-05 1.35128690E-03 6.00000000E+01 + 0.00000E+00 4.07374E+05 9.54406E-01 0.00000E+00 2.40730E+03 4.55945E-02 + 0.00000E+00 2.43743E+03-1.39286E-04 0.00000E+00 8.77099E+01-3.84337E-04 +NO IMAGINARY PART: + 1.0000000000000002E+00 -5.9460940886557245E-01 + 6.9285574025886665E-01 1.0000000000000000E+00 + 7.0805987238797719E-01 -4.9148565643201919E-01 + 4.2216590194629711E-01 7.0805987238797719E-01 +YES, IMAGINARY PART: { Do-nothing request for return to default mode of complex +Derive [Ti] from [Tv] { Do it. I.e., preceding [Ti] is not used. +C Relative order of the preceding two declarations is arbitrary. Either is +C voluntary, and either can come first, immediately after the matrix. +BLANK card ending branch cards + ENDA .00413 1.0 +BLANK card ending switch cards (just the fault switch, here) +14GENA 428. 60. -90.0 -1. +14GENB 428. 60. -210.0 -1. +C 14GENC 428. 60. 30.0 -1. +BLANK card ending source cards + BEGINAENDA +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time BEGINA ENDA GENA GENB BEGINB +C BEGINA BEGINB ENDB +C 0 0.0 1.31770789 -1.9263914 .416683394 -.25532666 -.25532666 +C 1 .2E-4 4.58886445 1.51135697 .415961844 -.2528793 -.2528793 +BLANK card ending node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 7 subcases illustrates selective branch current output for 2-phase +C Semlyen line. This was added 11 December 2000. It is identical to the +C preceding subcase except that "Derive [Ti] from [Tv]" is not being used +C to illustrate how the answer changes. Note inconsistent current at time +C zero but consistent current for step 1. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 20.E-6 20.E-6 60. 60. + 1 8 0 1 0 + 0GENA BEGINA 14. 1 + 0GENB BEGINBGENA BEGINA 1 +C 0GENC BEGINCGENA BEGINA 1 +C <++++++> Cards punched by support routine on 11-Nov-18 11.00.00 <++++++> +C SEMLYEN SETUP +C $ERASE +C BRANCH JDA LMA JDB LMB +C TOLERANCES 10 5000. { Illustration only; value of FMED actually unchang +C 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous da +C LINE CONSTANTS +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C BLANK card ending conductor cards within "LINE CONSTANTS" data +C 27. 5000. 138. { Transient frequen +C 27. 60.00 138. { Phasor solution frequen +C 27. 6.00 138. 6 20 { log loopi +C BLANK card ending frequency cards of "LINE CONSTANTS" data +C BLANK card ending "LINE CONSTANTS" data cases +C L= 138.0 miles, rho= 27.0, ss freq= 60.00, NSS=0, KFIT=10, KPS=2, KYC=30 +-1BEGINAENDA 3.81668E-03 7.63488E-04 1 1 2 2 2 0 + 1.90862630E+01 1.15862674E+02-1.30872176E-04 9.74276128E-04 6.00000000E+01 + 0.00000E+00 2.24216E+04 7.46515E-01 0.00000E+00 2.38744E+03 2.53485E-01 + 0.00000E+00 1.23894E+05-4.11230E-04 0.00000E+00 4.80703E+02-8.78400E-04 +-1BEGINBENDB 4.86411E-03 7.40372E-04 2 2 2 2 2 1 + 1.59520125E+00 6.09143723E+01-2.53812008E-05 1.35128690E-03 6.00000000E+01 + 0.00000E+00 4.07374E+05 9.54406E-01 0.00000E+00 2.40730E+03 4.55945E-02 + 0.00000E+00 2.43743E+03-1.39286E-04 0.00000E+00 8.77099E+01-3.84337E-04 +NO IMAGINARY PART: + 1.0000000000000002E+00 -5.9460940886557245E-01 + 6.9285574025886665E-01 1.0000000000000000E+00 + 7.0805987238797719E-01 -4.9148565643201919E-01 + 4.2216590194629711E-01 7.0805987238797719E-01 +YES, IMAGINARY PART: +C Derive [Ti] from [Tv] ---- disable this declaration of preceding subcase +BLANK card ending branch cards + ENDA .00413 1.0 +BLANK card ending switch cards (just the fault switch, here) +14GENA 428. 60. -90.0 -1. +14GENB 428. 60. -210.0 -1. +BLANK card ending source cards + BEGINAENDA +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time BEGINA ENDA GENA GENB BEGINB +C BEGINA BEGINB ENDB +C 0 0.0 1.3173033 -1.93736 .417090545 -.25540157 -.25506625 +C 1 .2E-4 4.46159339 1.51090777 .416403376 -.25292062 -.25292062 +BLANK card ending node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 7 subcases illustrates selective branch current output for 3-phase +C Semlyen line. This was added 11 December 2000. There is no current +C output for phase "a" whereas there is output for phases "b" and "c". +C Also, the new "Derive [Ti] from [Tv]" is being used. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 20.E-6 20.E-6 60. 60. + 1 8 0 1 0 + 0GENA BEGINA 14. 1 + 0GENB BEGINBGENA BEGINA 1 + 0GENC BEGINCGENA BEGINA 1 +C L= 138.0MILES, RHO= 27.0, SS FREQ= 60.00, NSS=0, KFIT= 0, KPS=2, KYC=10 +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C +C 27. 5000. 1 138. +C 27. 60.00 1 138. +C 27. 6.00 1 138. 6 20 +C +-1BEGINAENDA 0.55456E-02 0.77998E-03 1 1 2 2 3 0 + 0.14938602E+02 0.90516313E+02-0.16261865E-03 0.14500324E-02 0.60000000E+02 + 0.00000E+00 0.15161E+05 0.75119E+00 0.00000E+00 0.17105E+04 0.24881E+00 + 0.00000E+00 0.59584E+03-0.11954E-02 0.00000E+00 0.39933E+05-0.74162E-03 +-1BEGINBENDB 0.74392E-02 0.74149E-03 2 2 2 2 3 1 + 0.83801231E+00 0.38634735E+02-0.44536501E-04 0.20637999E-02 0.60000000E+02 + 0.00000E+00 0.26608E+06 0.83767E+00 0.00000E+00 0.35627E+05 0.16233E+00 + 0.00000E+00 0.13630E+03-0.49171E-03 0.00000E+00 0.32940E+05-0.75349E-04 +-1BEGINCENDC 0.42823E-02 0.74017E-03 3 3 2 2 3 1 + 0.26535168E+01 0.67894100E+02-0.45225808E-04 0.11682248E-02 0.60000000E+02 + 0.00000E+00 0.61698E+06 0.90903E+00 0.00000E+00 0.15239E+05 0.90969E-01 + 0.00000E+00 0.25667E+03-0.34465E-03 0.00000E+00 0.11831E+05-0.28233E-04 + 0.10000E+01 0.00000E+00 0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00 + 0.71114E+00 0.00000E+00-0.41983E-15 0.00000E+00 0.10000E+01 0.00000E+00 + 0.10000E+01 0.00000E+00-0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00 + 0.42027E+00 0.00000E+00 0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00 + 0.22471E+00 0.00000E+00-0.27373E-15 0.00000E+00 0.84054E+00 0.00000E+00 + 0.42027E+00 0.00000E+00-0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00 +Derive [Ti] from [Tv] +BLANK card ending branch cards + ENDA .00413 1.0 +C ENDA -1.0 1.0 +BLANK card ending switch cards (just the fault switch, here) +14GENA 428. 60. -90.0 -1. +14GENB 428. 60. -90.0 -1. +14GENC 428. 60. -90.0 -1. +BLANK card ending source cards + BEGINAENDA +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 5 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time BEGINA ENDA GENA GENB GENC BEGINB BEGINC +C BEGINA BEGINB BEGINC ENDB ENDC +C 0 0.0 .433757964 -1.3235974 .255657761 .262352453 .255657761 .262352453 .255657761 +C 1 .2E-4 3.68776594 2.16693321 .255416888 .262183584 .255416888 .262183584 .255416888 +BLANK card ending node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 7th of 7 subcases illustrates selective branch current output for 3-phase +C Semlyen line. This was added 11 December 2000. It is identical to the +C preceding subcase except that "Derive [Ti] from [Tv]" is not being used +C to illustrate how the answer changes. Note inconsistent current at time +C zero but correct current for step 1. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 20.E-6 20.E-6 60. 60. + 1 8 0 1 0 + 0GENA BEGINA 14. 1 + 0GENB BEGINBGENA BEGINA 1 + 0GENC BEGINCGENA BEGINA 1 +C L= 138.0MILES, RHO= 27.0, SS FREQ= 60.00, NSS=0, KFIT= 0, KPS=2, KYC=10 +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C +C 27. 5000. 1 138. +C 27. 60.00 1 138. +C 27. 6.00 1 138. 6 20 +C +-1BEGINAENDA 0.55456E-02 0.77998E-03 1 1 2 2 3 0 + 0.14938602E+02 0.90516313E+02-0.16261865E-03 0.14500324E-02 0.60000000E+02 + 0.00000E+00 0.15161E+05 0.75119E+00 0.00000E+00 0.17105E+04 0.24881E+00 + 0.00000E+00 0.59584E+03-0.11954E-02 0.00000E+00 0.39933E+05-0.74162E-03 +-1BEGINBENDB 0.74392E-02 0.74149E-03 2 2 2 2 3 1 + 0.83801231E+00 0.38634735E+02-0.44536501E-04 0.20637999E-02 0.60000000E+02 + 0.00000E+00 0.26608E+06 0.83767E+00 0.00000E+00 0.35627E+05 0.16233E+00 + 0.00000E+00 0.13630E+03-0.49171E-03 0.00000E+00 0.32940E+05-0.75349E-04 +-1BEGINCENDC 0.42823E-02 0.74017E-03 3 3 2 2 3 1 + 0.26535168E+01 0.67894100E+02-0.45225808E-04 0.11682248E-02 0.60000000E+02 + 0.00000E+00 0.61698E+06 0.90903E+00 0.00000E+00 0.15239E+05 0.90969E-01 + 0.00000E+00 0.25667E+03-0.34465E-03 0.00000E+00 0.11831E+05-0.28233E-04 + 0.10000E+01 0.00000E+00 0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00 + 0.71114E+00 0.00000E+00-0.41983E-15 0.00000E+00 0.10000E+01 0.00000E+00 + 0.10000E+01 0.00000E+00-0.10000E+01 0.00000E+00-0.26698E+00 0.00000E+00 + 0.42027E+00 0.00000E+00 0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00 + 0.22471E+00 0.00000E+00-0.27373E-15 0.00000E+00 0.84054E+00 0.00000E+00 + 0.42027E+00 0.00000E+00-0.50000E+00 0.00000E+00-0.29908E+00 0.00000E+00 +C Derive [Ti] from [Tv] ---- disable this declaration of preceding subcase +BLANK card ending branch cards + ENDA .00413 1.0 +BLANK card ending switch cards (just the fault switch, here) +14GENA 428. 60. -90.0 -1. +14GENB 428. 60. -90.0 -1. +14GENC 428. 60. -90.0 -1. +BLANK card ending source cards + BEGINAENDA +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 5 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time BEGINA ENDA GENA GENB GENC BEGINB BEGINC +C BEGINA BEGINB BEGINC ENDB ENDC +C 0 0.0 .434025265 -1.3246378 .255853054 .262494222 .255853054 .262738399 .255858717 +C 1 .2E-4 3.66889251 2.16376453 .255617191 .262340836 .255617191 .262340836 .255617191 +BLANK card ending node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +$DISABLE { Begin discard of 4th subcase, which takes too long to execute +C 8th of 7 subcases will produce a solution comparable to the 3rd, but +C here constant-parameter K.C. Lee modeling of the line is replaced by +C frequency-dependent JMarti modeling. This illustrates a more complex +C in-line execution. On the other hand, JMARTI SETUP is relatively slow +C to execute. That is why this 8th subcase will not be executed each time +C the set of standard test cases is verified. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (if 8 output columns) + .000050 .005 60. 60. + 1 1 1 3 1 -1 2 + 5 5 20 20 100 100 + JDGA JDA 15. { 1st of 3 branches in series with one + JDGB JDB 15. { circuit of the Marti line. This is + JDGC JDC 15. { an approximation to source impedance +C Add /OUTPUT anywhere on right of following request to produce output of +C the supporting program. Without this, all output will be suppressed. +< TO SUPPORTING PROGRAM (NEXT) > { Request for jump to supporting programs +C The following data, through the blank card, is from 2nd subcase of DCNEW-3. +JMARTI SETUP, 1.0, { Note use of PDT0 = 1 to allow reduction of order +$ERASE +BRANCH JDA LMA JDB LMB JDC LMC +LINE CONSTANTS +C LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE. +TRANSPOSED + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK CARD ENDING CONDUCTOR CARDS OF &LINE CONSTANTS& CASE +100. 5000.0 1 138. 1 1 +100. 60.00 1 138. 1 1 +100. .01 1 138. 1 9 10 1 +BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +BLANK CARD ENDING "LINE CONSTANTS" CASES +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 +C SELECT +3 -3 + 1 .48D-7 + .30 30 0 1 1 1 0 + .30 30 0 1 1 1 0 .0 +$PUNCH, dc41d.pch ! +BLANK card ending JMARTI SETUP data cases { Last of supporting program data +$CLOSE, UNIT=7 STATUS=KEEP { Disconnect file containing JMarti branch cards +$INSERT, dc41d.pch, { Dynamic connection of disk file created 3 lines above + LMA 1000. { Resistive load at far end of 1st of 3 phases + LMB LMA { 2nd of 3 phases is terminated by the same R + LMC LMA +BLANK card ending branch cards +BLANK card ending switch cards +14JDGA 303000. 60. 0. -1. .001 +14JDGB 303000. 60. -120. -1. +14JDGC 303000. 60. 120. -1. +BLANK card ending source cards + JDGA LMA JDGB LMB JDGC LMC +BLANK card ending node names for selective voltage output + PRINTER PLOT + 144 1. 0.0 5.0 LMA LMB LMC +BLANK card ending plot cards +BEGIN NEW DATA CASE +$ENABLE { End discard of 4th subcase, which takes too long to execute +BLANK + diff --git a/benchmarks/dc42.dat b/benchmarks/dc42.dat new file mode 100644 index 0000000..191a6e0 --- /dev/null +++ b/benchmarks/dc42.dat @@ -0,0 +1,240 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-42 +C Test of batch-mode Fourier series and "X-Y PLOT" capability. Also, a +C Type-97 staircase time-varying resistance element, and Type 1-10 source +C is present. A Type-91 compensation-based nonlinear resistor was added. +C For answer to Fourier series, see EMTP Rule Book, page 43-m, HWD example +C 1st of 3 data subcases, of which only two are real (3rd is a near-dummy) +CHANGE PRINTOUT FREQUENCY + 10 5 + 1.0 60. + 1 1 + VALUE 1.0 + COS 1.0 1 + SIN 1.0 1 + GEN LOAD 1.0 +97LOAD -1. 1 + 0.0 1.0 + 2.01 0.5 + 6.01 2.0 + 7.01 1.E35 + 9999 + A1 A2 5.E+3 1 + A2 5.E+3 +91A2 3333. 1 + 300000. + 300. 0.0 + 200. 3.0 + 150. 6.0 + 150. 1000. + 9999. +BLANK card ends branch cards +BLANK card ends switch cards (none, for this case) + 1VALUE +14COS 4.0 .02 0.0 +14SIN 5.0 .02 -90. +14GEN 100. 60. -1. +14A1 620000. .06 -50. -1. +BLANK card ends source cards +C Total network loss P-loss by summing injections = 1.922250000000E+07 +C Step Time LOAD VALUE COS SIN GEN A2 +C 0 0.0 50. 0.0 0.0 0.0 100. 199264.159 +C Comment card. NUMDCD = 5527. |C Next come the data ca +C Another input card for Type 1-10 sources. | 3.4 +C 1 1.0 50. 3.4 3.96845881 .626666168 100. 272691.058 +C Another input card for Type 1-10 sources. |.8485282 +C 2 2.0 50. .8485282 3.87433264 1.24344944 100. 307819.308 +C Another input card for Type 1-10 sources. | 0.0 +C 3 3.0 50. 0.0 3.71910594 1.84062276 100. 32112.3483 + LOAD VALUE COS SIN GEN A2 +BLANK card ends requests for program outputs (here, just node voltages) +C Next come the data cards for user-defined Type-1 source on node "VALUE": + 3.4 +.8485282 + 0.0 +-.434314 + -.2 +-.848528 + -.4 +-1.56569 + 3.41 +.8500000 + 0.0 +-.430000 + -.2 + 9999 +C Last step: 60 60. 100. 0.0 1.23606798 4.75528258 100. +C Last step continued ..... : -17025.944 1.E-33 -113.50629 -116.91148 + PRINTER PLOT + FOURIER ON 10 +C Note HPI=7.6 is a special request for reduction of end-time HMAX until +C a match with the HMIN point (for periodicity) is found. + 1437.6 1.5 12. VALUE +C --- Back up the ending time from point number 11 to point number 8 in +C 8.4852820634841920E-1 0.0E+00 -1.5656900405883790E0 3.4100000858306880E+00 +C Harmonic Cosine Sine Complex Fraction of +C number coefficient coefficient amplitude fundamental +C 0 1.01249525324E-01 0.00000000000E+00 1.01249525324E-01 0.086661418 +C 1 1.13313862336E+00 -2.84609199533E-01 1.16833451383E+00 1.000000000 +C 2 5.00001057982E-01 -9.02500022203E-01 1.03174965377E+00 0.883094389 +C 3 -2.84610506422E-01 -8.50297213563E-01 8.96665206061E-01 0.767473010 +C 4 -6.01250493899E-01 0.00000000000E+00 6.01250493899E-01 0.514621871 + 143 5. 0.5 8.0 VALUE +C Begin the Fourier series computation using 8 equidistant points. The first +C 3.40000009536743 8.48528206348419E-1 -4.00000005960464E-1 -1.565690040588379 +C Harmonic Cosine Sine Complex Fraction of +C number coefficient coefficient amplitude fundamental +C 0 9.99995265156E-02 0.00000000000E+00 9.99995265156E-02 0.085748909 +C 1 9.99999101967E-01 6.00000909627E-01 1.16619007691E+00 1.000000000 +C 2 9.00000024587E-01 5.00001057982E-01 1.02956354939E+00 0.882843689 +C 3 8.00000947207E-01 4.00000906647E-01 8.94428443672E-01 0.766966262 +C 4 6.00000495091E-01 0.00000000000E+00 6.00000495091E-01 0.514496313 + FOURIER OFF + 143 8. 0.0 50. COS { Axis limits: (-4.000, 4.000) + X-Y PLOT + 10. -5. 5.0 + 13. -6.5 6.5 + 2Arbitrary 78-character case title text of which this is an example, I hope. + First and only line of multi-line, 78-byte, graph subheading text. + 193 5. 0.0 55. COS SIN { Axis limits: (-6.500, 6.500) + CALCOMP PLOT { Preceding was a line printer plot; switch to vector graphics + X-Y PLOT Horizontal Axis label123 + 10. -5. 5.0 + 8. -6.0 6.0 + 2Arbitrary 78-character case title text of which this is an example, I hope. + 143 5. 0.0 55. COS SIN 16-byte Heading Y-axis label +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 4 subcases modifies preceding data for nice bar charts. As built +C in this standard test case, both 5 (the original) and 13 vertical bars +C result. Screen plotting of Salford is slowed slightly by HP-GL output +C due to shading of hollow rectangular shells of bars by interior vertical +C lines. This progress is made 25 December 1997 as this case is added, +C forcing later cases down. See mention in January, 1998, newsletter. +CHANGE PRINTOUT FREQUENCY + 5 5 20 20 + 1.0 60. + 1 1 + VALUE 1.0 +BLANK card ends branch cards +BLANK card ends switch cards (none, for this case) + 1VALUE +BLANK card ends source cards (here, just user-defined Type-1 --- inline below) + 1 { Request for all node voltages outputs (here, just one) +C Next come the data cards for user-defined Type-1 source on node "VALUE": + 3.4 +.8485282 + 0.0 +-.434314 + -.2 +-.848528 + -.4 +-1.56569 + 3.41 +.8500000 + 0.0 +-.430000 + -.2 + 9999 + FOURIER ON 10 { For 5 vertical bars + 1437.6 1.5 12. VALUE { For 5 vertical bars +C The preceding produces bars so wide that internal filling by 8 vertical +C lines (drawn after the outline of a bar is drawn) still leaves lots of +C empty space. Nonetheless, the effect in MS Word 7 for Win95 is good. +C The following 15 bars look great in Word 7: + FOURIER ON 15 { For 13 vertical bars + 1433.0 1.5 25. VALUE { For 13 vertical bars + PRINTER PLOT { Toggle to line printer plotting for next subcase as b4 Jan, 97 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 4 subcases tests the use of the branch name "SSNAME" (variable +C SSONLY of the STARTUP file). The Type-91 true-nonlinear R(t) of +C the first subcase is repeated twice. The first copy is unchanged, so it +C provides a reference: no nonlinear element current in the phasor soution +C and flashover so it is present only beginning on step 5. This is node +C A2. The second copy, on node B2, has low phasor voltage because of +C an extra 300-ohm resistor added just for the phasor solution. Voltage +C on step 0 thus is small (21 kV). But the 300-ohm resistor is removed +C after the phasor solution, so voltage immediately rises to 240 kV on +C step 1. Then, since the flashover voltage was reduced to 100 kV, we +C have a flashover, and for step 2 onward of the 2nd copy, the Type-91 R +C is connected. With both NL elements flashed over, the 2 solutions are +C close, but not identical. This is because of the time shift of 3 steps +C (remember, R vs. t characteristics begin at the instant of flashover). +C Note that the following data puts the "PHASOR" resistor as the last +C branch, so that the EMTP will erase it completely before the time-step +C loop, which is most efficient. Identical answers have been obtained by +C replacing the single 300-ohm branch by two 600-ohm branches which can be +C mixed anywhere among the branch cards. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + 0.5 3.0 { Floating-point misc. data card + 1 1 1 1 + GEN A2 5.E+3 1 + A2 5.E+3 +91A2 3333. 1 + 300000. { Original element will be felt on step 5 (step 4 exceeds 300 kV) + 300. 0.0 + 200. 3.0 + 150. 6.0 + 150. 1000. + 9999. + GEN B2 5.E+3 1 + B2 5.E+3 + B2 NAME PHASOR 300. +91B2 3333. 1 + 100000. { Reduced flashover voltage means R(t) will be present for step 2 + 300. 0.0 + 200. 3.0 + 150. 6.0 + 150. 1000. + 9999. +BLANK card ends branch cards +BLANK card ends switch cards (none, for this case) +14GEN 620000. .06 -50. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GEN |A2 *B2 * +C A2 |TERRA *TERRA *GEN * +C B2 |TERRA *TERRA *TERRA *GEN * +C TERRA |A2 *A2 *B2 *B2 *B2 * +C --------------+------------------------------ +BLANK card ends source cards +C Total network loss P-loss by summing injections = 5.560071428571E+07 +C GEN 398528.31800565 620000. 115.28854913735 179.35714285714 +C -474947.5547338 -50.0000000 -137.3955426194 -50.0000000 + 1 { Request the output of all node voltages +C Step Time B2 A2 GEN A2 B2 +C TERRA TERRA +C 0 0.0 21349.73132 199264.159 398528.318 0.0 0.0 +C 1 0.5 240232.7915 240232.7915 480465.583 0.0 0.0 +C 2 1.0 29216.89903 272691.0576 545382.1152 0.0 97.38966342 +C 3 1.5 30079.72946 295489.107 590978.214 0.0 106.163751 +C 4 2.0 29669.33084 307819.3075 615638.615 0.0 111.2599907 +C 5 2.5 28113.16869 33133.37738 618489.7112 110.4445913 112.4526748 +C 6 3.0 25585.44821 30509.93568 599430.5009 107.6821259 109.6519209 + CALCOMP PLOT + 2Plot of both Type-91 voltages +C 78901234567890123456789012345678901234567890123456789012345678901234567890 + 143 .3 0.0 3.0 A2 B2 Type-91 nodes Voltages in [v] + PRINTER PLOT + 143 .6 0.0 3.0 A2 B2 { Axis limits: (0.000, 3.078) +$ABORT { Illustration of request to abort this subcase but continue with next +BLANK card ending plot cards --- needed to exit plotting where KILL is checked +C This and any later cards of data subcase should not be executed due to abort +$WIDTH, 79 { Switch to narrow output so case summary statistics will be compact +XXXXX XXXXX XXXXX { 1st of several dummy data cards that should be skipped over +YYYYY YYYYY YYYYY { 2nd of several dummy data cards that should be skipped over +ZZZZZ ZZZZZ ZZZZZ { 3rd of several dummy data cards that should be skipped over +AAAAA aaaaa AAAAA { 4th of several dummy data cards that should be skipped over +bbbbb BBBBB bbbbb { 5th of several dummy data cards that should be skipped over +CCCCC ccccc CCCCC { 6th of several dummy data cards that should be skipped over +BEGIN NEW DATA CASE +C 4th of 4 subcases is here just to service preceding $ABORT. Next, halt. +$STOP { Illustrate user-requested termination of execution via input card +CHANGE PRINTOUT FREQUENCY { 1st of otherwise-legal card that will not be used + 10 5 { 2nd of otherwise-legal card that will not be used +PRINTED NUMBER WIDTH, 13, 2, { 3rd of otherwise-legal card that will not be used +$MONITOR { 4th of otherwise-legal card that will not be used +DISK PLOT DATA { 5th of otherwise-legal card that will not be used + diff --git a/benchmarks/dc43.dat b/benchmarks/dc43.dat new file mode 100644 index 0000000..63fcea5 --- /dev/null +++ b/benchmarks/dc43.dat @@ -0,0 +1,166 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-43 +C Dynamic arc modeling donated to ATP by Mustafa Kizilcay, Universitat +C Hannover Institut fur Elektrische Energieversorgung, Welfengarten 1, +C 3000 Hannover 1, WEST GERMANY. This data file consists of two data +C cases that were adapted to ATP from Hannover's "M28." CDC by WSM and +C Mustafa on October 23rd, 1986. Results were explained by Mustafa to +C the 1986 LEC meeting that was held in Leuven on October 27th, 1986. +C The 1st of 2 subcases illustrates current interruption in an inductiv +C circuit consisting of a voltage source in series with an inductance +C and the circuit breaker arc (a Type-91, TACS-controlled, time-varying +C resistor). Only thermal behavior of circuit breaker is considered. +C The time-step size DELTAT has been increased from .2E-7 sec in order +C to speed the simulation. This introduces substantial error, but the +C shapes of curves remain valid. See comments preceding plot cards. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +C .2E-7 .25E-3 { Original card. Note increase of DELTAT to speed simulation. + .6E-7 .24E-3 { Decrease TMAX slightly, and triple the step size + 1 3 1 1 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID + GALT +G +90SCHLT +99STROM = 1.E6 * ABS(SCHLT) +99GSTAT = STROM * STROM / (170000. + 890. * STROM) +99GKOR = 1.003 * GSTAT +99SSGNL = ISTEP - 9. +99G' 58+GSTAT 1.0 .29E-6SSGNL GKOR +88LSGNL = G' .LE. 1.E-6 .OR. GALT .LE. 1.E-6 +88G = 1.E-6 * LSGNL + G' * NOT(LSGNL) +98RB = INVRS(G) +33RB G GSTAT STROM SCHLT SSGNL LSGNL G' GALT GKOR +77RB 1. +77G' 1. +77G 1. +77GALT 1. +BLANK card ending all TACS cards + GEN IND 31.8 + SCHLT 1.E-6 1 + IND SCHLT 1.E10 +91IND SCHLT TACS RB { R(t) controlled by TACS variable "RB" } 2 +BLANK card ending branch cards + IND SCHLT -1. 1.E20 +BLANK card ending switch cards +14GEN 141421.4 1. 179.928 -1. +BLANK card ending source cards +C Total network loss P-loss by summing injections = 2.504876348524E+05 +C GEN -141421.2883382 141421.4 885.90010697039 707796.06505328 +C 177.71532574734 179.9280000 707795.51064266 89.9282868 +C Step Time IND SCHLT IND GEN SCHLT +C SCHLT TERRA +C +C TACS TACS TACS TACS TACS +C STROM SCHLT SSGNL LSGNL G' +C *** Phasor I(0) = 8.8590011E+02 Switch "IND " to "SCHLT " closed +C 0 0.0 0.0 .8859001E-3 .8859001E-3 -141421.288 885.900107 +C 0.0 0.0 0.0 0.0 1.0 +C *** Open switch "IND " to "SCHLT " after 6.00000000E-08 sec. +C 1 .6E-7 0.0 .8856333E-3 .8856333E-3 -141421.288 885.6332743 +C 885.6332743 .8856333E-3 -8. 0.0 .8210062181 +C 2 .12E-6 1078.390644 .8853654E-3 1078.391529 -141421.288 885.3654244 +C 885.3654244 .8853654E-3 -7. 0.0 .8207138637 + 1 +C 4000 .24E-3 -141421.396 -.141436E-6 -141421.396 -141421.396 -.141435538 +C .1414355377 -.141436E-6 3991. 1.0 .1175836E-6 +C Variable max : 21435.85382 .8859001E-3 21435.85383 -141421.288 885.900107 +C 885.6332743 .8856333E-3 3991. 1.0 1.0 +C Times of max : .19614E-3 0.0 .19614E-3 0.0 0.0 +C .6E-7 .6E-7 .24E-3 .20172E-3 0.0 +C Variable min : -164752.212 -.120238E-5 -164752.212 -141421.4 -1.20237999 +C 0.0 -.120238E-5 -8. 0.0 .1175836E-6 +C Times of min : .20136E-3 .19752E-3 .20136E-3 .19998E-3 .19752E-3 +C 0.0 .19752E-3 .6E-7 0.0 .24E-3 + PRINTER PLOT +C Original Hannover simulation with DELTAT = .2E-7 sec has limits for this 1st +C plot variable (IND, SCHLT) of: minimum = -167207.752 at time 0.19952 msec; +C maximum = 23261.09003 at time 0.19618 msec. + 185 2.186.204. IND SCHLT { Plot limits : (-1.645, 0.214) +C Original Hannover simulation with DELTAT = .2E-7 sec has identical minimum +C and maximum for 2nd plot, since R varies between model limits of 1.0 & 1.E6: + 195 2.192.204. TACS RB { Plot limits : (0.000, 1.000) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C Second of two subcases. Here the dynamic arc model is imbedded in a more +C complicated problem. A short transmission line (modeled by single-phase, +C cascaded Pi-circuits) produces arc reignition. Arc model has conductance +C dependent parameters P(G) & TAU(G). TACS solution according to A. Gruetz. +PRINTED NUMBER WIDTH, 13, 2, +C 0.1E-6 400.E-6 + .2E-6 400.E-6 + 1 3 1 1 1 -1 + 5 5 20 20 100 100 +TACS HYBRID + GA +G +90IND +90SCHLT +99STRM = 1.E6 * ABS(IND - SCHLT) +99GST = STRM**1.351 / 81686. +99GKOR = 1.0134 * GST +88G" = GST - (GST-GA)*EXP(-DELTAT*INVRS(1.95E-6*GA**(-0.2))) +88G' 60+GKOR +GKOR +G" 19. ISTEP +88LSGNL = G' .LE. 1.E-6 .OR. GA .LE. 1.E-6 +88G = 1.E-6*LSGNL + G'*NOT(LSGNL) +98RB = INVRS(G) +33RB STRM GST G GA G' G" LSGNL GKOR +77G 1. +77G' 1. +77RB 1. +77GA 1. +BLANK CARD ending TACS data + GEN IND 8.0 + IND 15. 20. + 1LANF LPI2 0.15 0.003 + 1LPI2 LPI3 LANF LPI2 + 1LPI3 LPI4 LANF LPI2 + 1LPI4 LPI5 LANF LPI2 + 1LPI5 LPI6 LANF LPI2 + 1LPI6 LANF LPI2 + IND SCHLT 1.E-6 1 + SCHLT LANF 1.E10 +91SCHLT LANF TACS RB { R(t) controlled by TACS variable "RB" } 2 +BLANK card ending branch cards + SCHLT LANF -1. 1.E20 +BLANK card ending switch cards +14GEN 177720. 50. -3.6 -1. +BLANK card ending source cards +C Total network loss P-loss by summing injections = 9.711630317140E+04 +C +C GEN 177369.31017627 177720. -3989.277855594 63550.495266844 +C -11159.13113075 -3.6000000 -63425.16149646 -93.5990147 + GEN IND SCHLT LANF +C Step Time SCHLT GEN IND SCHLT LANF +C LANF +C +C TACS TACS TACS TACS TACS +C GST G GA G' G" +C *** Phasor I(0) = -4.0068784E+03 Switch "SCHLT " to "LANF " closed +C 0 0.0 0.0 177369.3102 17964.49305 17964.49706 17964.49706 +C 0.0 1.0 1.0 1.0 0.0 +C *** Open switch "SCHLT " to "LANF " after 2.00000000E-07 sec. +C 1 .2E-6 0.0 177370.011 17964.56422 17964.56822 17964.56822 +C .9008627603 .9129343213 1.0 .9129343213 .990336131 +C 2 .4E-6 -4320.27872 177370.7111 17143.06414 17143.06808 21463.3468 +C .8830444741 .8948772701 .9129343213 .8948772701 .9100706638 +C 3 .6E-6 -4491.59677 177371.4105 18332.40835 18332.41237 22824.00913 +C .9058958171 .918034821 .8948772701 .918034821 .8959289226 +BLANK card ending selective node voltage outputs +C 2000 .4E-3 4723.577299 177369.3102 26328.99868 26328.99512 21605.41783 +C .7689432041 .7551157337 .7537084043 .7551157337 .7551157337 +C Variable max : 34213.83832 177720. 39750.9701 39750.96985 28499.88741 +C .9058958171 1.0 1.0 1.0 .990336131 +C Times of max : .2624E-3 .2E-3 .282E-3 .282E-3 .3062E-3 +C .6E-6 0.0 0.0 0.0 .2E-6 +C Variable min : -7935.82748 177369.3102 11591.62848 11591.62859 -3236.73514 +C 0.0 .6352189E-3 .6352189E-3 .6352189E-3 0.0 +C Times of min : .1686E-3 .4E-3 .1754E-3 .1754E-3 .1916E-3 +C 0.0 .2392E-3 .2394E-3 .2392E-3 0.0 + PRINTER PLOT +C Original Hannover simulation with DELTAT = .1E-6 sec has limits for this +C plot that are very close: Plot limits : (-0.328, 3.991) +C maximum = at time msec. + 14535. 350. SCHLT LANF Plot limits : (-0.323, 3.975) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK CARD + diff --git a/benchmarks/dc44.dat b/benchmarks/dc44.dat new file mode 100644 index 0000000..e81d208 --- /dev/null +++ b/benchmarks/dc44.dat @@ -0,0 +1,51 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-44 +C Test of Type-16 controlled dc voltage source constructed and carefully +C validated by Prof. Dommel. To compare, punch a value for the isolation +C resistance R-epsiln (cols. 51-60 of 2nd Type-16 source card) equal to as +C small a resistor as can be tolerated (1.E-8 is fine for 60-bit numbers). +PRINTED NUMBER WIDTH, 13, 3, { Request 13-column output, with 3 separator blanks + .000050 .300 + 1 5 1 1 -1 + 10 10 100 100 + VR A 0.5 + GR 0.5 +BLANK card ending all branches +BLANK card ending (here non-existent) switches +11A -1 -1000. +13A -1 250. 0.0 0.1 0.0 0.2 .01 +16VR 1 1.39 7380. 4.4 .040 .0103 1000. +16GR -148000. 14800. -70000. 70000. 1.E-8 0.0 3 +14A -1 -1000. .001 0.0 0.0 0.0 -1. 1.E-6 +C The following forward and reverse flows are for 1st phasor branch: +C VR 6879.99999 6879.99999 1000. 1000. .3439999995E7 +C 0.0 0.0 0.0 0.0 0.0 +C +C A 6379.99999 6379.99999 -1000. 1000. -.3189999995E7 +C 0.0 0.0 0.0 180.0000 0.0 +BLANK card ending sources +C Total network loss P-loss by summing injections = 6.060077433932E+07 +C +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C ...... TYP-16 -1.00000000E+03 0.00000000E+00 1.00000000E+03 +C +C Step Time GR GR TYP-16 ...... VR +C VR +C *** Phasor I(0) = -1.0000000E+03 Switch "......" to "TYP-16" closed +C 0 0.0 -7380. -500. -500.00001 -500.00001 6879.99999 +C 1 .5E-4 -7380. -500. -500.00001 -500.00001 6879.99999 +C 2 .1E-3 -7380. -500. -500.00001 -500.00001 6879.99999 + 1 +C Final step: 6000 0.3 15276.8738 -612.5 -612.50001 +C Final step (cont.): -612.50001 -15889.374 -16501.874 1224.99999 +C Variable maxima : 15276.8738 -375. -375.00001 -375.00001 69628.6607 +C Times of maxima : 0.3 .11 .11 .11 .09115 +C Variable minima : -70027.223 -612.5 -612.50001 -612.50001 -15889.374 +C Times of minima : .09115 0.3 0.3 0.3 0.3 + PRINTER PLOT { Axis limits: (-1.493, 7.000) + 18430. 0.0300. VR GR Source Voltage Voltage in volts +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc45.dat b/benchmarks/dc45.dat new file mode 100644 index 0000000..d06f9be --- /dev/null +++ b/benchmarks/dc45.dat @@ -0,0 +1,288 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-45 +C 1st half of split version of DC-33 . Rather than use TACS to integrate +C flux during the simulation, that operation is now posponed until the post- +C processing of compansion case DC-46. Connection is via LUNIT4 plot file. +C Total of 4 subcases. +C DISK PLOT DATA { Toggle the Apollo default of LUNIT4 = -4 to +4 (use disk) +C $CLOSE, UNIT=4 STATUS=DELETE { Destroy empty date/time plot file of "SYSDEP" +C $OPEN, UNIT=4 FILE=DC45TO46.pl4 ! { Expected to be C-like (for L4BYTE = 1 ) +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .050 + 1 1 1 1 1 -1 0 2 + 5 5 20 20 100 100 +96 GEN 8888. 1.E-9 1 + 1.0 -0.7 + 2.0 0.9 + 3.5 1.0 + 9999. +BLANK card ending branch cards +BLANK card ending (here non-existent) switch cards +14GEN 377. 60. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses +C --------------+------------------------------ +C GEN |TERRA *TERRA * +C TERRA |GEN *GEN * +C --------------+------------------------------ +BLANK card ending source cards +C Total network loss P-loss by summing injections = 7.106450000000E-06 +C ---- Initial flux of coil " " to "GEN " = 1.00000000E-09 +C Inject: GEN 377. 377. .377E-16 2.6786345332877 .710645E-14 +C Inject: 0.0 0.0 -2.678634533288 -90.0000000 504.92260952473 +C Step Time GEN TERRA +C GEN +C 0 0.0 377. 0.0 +C 1 .5E-4 376.9330268 -.523564601 +C 2 .1E-3 376.7321312 -1.04694318 +C 3 .15E-3 376.3973844 -1.02374791 +C 4 .2E-3 375.9289054 -1.04551661 +C 5 .25E-3 375.3268607 -1.06725433 +C 10 .5E-3 370.3222935 -1.17520854 + 1 +C 800 .04 -304.999407 1.070136441 +C 900 .045 -116.499407 2.765761443 +C 1000 .05 377. -1.4375 +C Variable maxima : 377. 3.499909256 +C Times of maxima : 0.0 .0125 +C Variable minima : -377. -3.49990923 +C Times of minima : .025 .0375 + PRINTER PLOT + 194 4. 0.0 20. GEN { Axis limits: (-3.500, 3.500) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 4 subcases is unrelated to 1st (no hysteresis). But there is a +C nonlinear inductor (Type-93, true-nonlinear element). This example +C illustrates TACS control of the optional shunt current source that is +C declared by the second data field (columns 21-26) of the TACS CONTROL +C declaration. Since the controlling TACS signal is identically unity, +C this injects an extra amp of current into node "TRAN" beginning on +C the first time step. This would produce a discontinuity in the branch +C current (GEN, TRAN) at time zero, were it not for exact cancellation +C by a one-amp Type-11 current source that is connected to node "TRAN". +C It will be noted that the current (GEN, TRAN) continues smoothly out +C of the phasor solution. The current of the NL reactor (TRAN, TERRA) +C shows a one-amp jump beginning on the first step, due to the internal, +C TACS-controlled source (remember, the inductor current is continuous). +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000200 .020 + 1 1 1 1 1 -1 0 2 + 5 5 10 10 +TACS HYBRID { We use TACS only to produce signal that controls shunt current +99SHUNT = 1.0 { Unit current (dc source) is inserted in parallel with ZnO +33SHUNT { Output only this one TACS variable that controls NL shunt current +77SHUNT 1.0 { Initial condition required for smooth electrical step 1 +BLANK card ending all TACS data + GEN TRAN 2.0 1 +93TRAN 1.0 1.0 1 + 0.0 0.0 + 0.9 0.9 + 2.0 1.1 + 10. 1.2 + 9999 + TACS CONTROL SHUNT { Use 2nd of 3 names: for TACS-controled shunt current +BLANK card ending branch cards +BLANK card ending (here non-existent) switch cards +14GEN 377. 60. -1. +11TRAN -1 -1.0 { 1-amp external dc current cancels internal NL source +BLANK card ending source cards +C Total network loss P-loss by summing injections = 1.000018973436E+00 +C +C GEN 377. 377. .00530514044263 1.000009486673 1.0000189734357 +C 0.0 0.0 -.9999954144499 -89.6960393 188.49913562381 +C +C ---- Initial flux of coil "TRAN " to " " = 5.30514044E-03 +C +C Step Time TRAN GEN TRAN GEN TACS +C TERRA TRAN SHUNT +C 0 0.0 376.9893897 377. .0053051404 .0053051404 1.0 +C 1 .2E-3 375.7677437 375.9289054 -.919419146 .0805808538 1.0 + 1 +C 100 .02 114.1251632 116.4994069 .1871218422 1.187121842 1.0 +C Variable max : 376.9893897 377. .4424771753 1.442477175 1.0 +C Times of max : 0.0 0.0 .0042 .0042 0.0 +C Variable min : -376.817325 -376.880939 -2.44858983 -1.44858983 1.0 +C Times of min : .0084 .0084 .0124 .0124 0.0 + PRINTER PLOT +C -0.653 -0.353 -0.054 0.245 0.545 0.844 1.143 1.442 +C ------+---------+---------+---------+---------+---------+---------+---------+ +C BBBBBBBBBBBBBBBBBBBBBBBBBBBB*AA +C BBBBB | AAAAAA +C BBBBBBB | AAAAAAAA +C BBBBB | AAAAA +C BBBB | AAAA +C BBBBBBBBBBBBBB AAAAAAAAAAAAAA +C | BBB AAA +C | BBBBBBBBBB AAAAAAAAA +C BBBBBB AAAAAAA +C BBBBB | AAAA +C BBBBB | AAAAA +C BBBBBBBB | AAAAAAAA +C BB |AAAAAA + 194 4. 0.0 20. GEN TRAN TRAN { Axis limits: (-2.449, 1.442) + 144 4. 0.0 20. TRAN { Axis limits: (-3.768, 3.770) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 4 subcases is related to 2nd. There is the same nonlinear L(i) +C inductor (Type-93, true-nonlinear element). This example illustrates +C optional TACS control of the (i, PSI) characteristic by multiplicative +C scaling. The TACS multiplier of "i" is declared by the third data +C field (columns 27-32) of the "TACS CONTROL" card. For this example, +C the TACS variable is FACTOR, which varies smoothly (via one half a +C cosine cycle) from 2.0 to 1.0, thereby reducing the current that is +C drawn by approximately a factor of two. The series resistor is small, +C to it does not drop much voltage. As a result, the voltage, and hence +C the peak flux of the inductor, are nearly constant. Only the current +C increases by about a factor of two over the 10 msec "ramp" time. The +C presence of resistance merely reduces this ideal result: the factor is +C less than two --- maybe 1.5 or so. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000200 .030 + 1 1 1 1 1 -1 0 2 + 5 5 49 1 55 5 +TACS HYBRID { We use TACS only to produce signal that controls shunt current +99FACTOR = 1.5 + COSINE + STEP { Scaling factor changes from 3 to 1 over 0-10ms +14COSINE 0.5 50. { Smooth transition over 1st 10 msec } .010 +11STEP -0.5 50. { Hold COSINE value after 10 ms} .010 +33FACTORSTEP COSINE { Output only the 3 user-defined TACS variables +77FACTOR 2.0 { Initial condition required for smooth electrical step 1 +BLANK card ending all TACS data + GEN TRAN 20. 1 +93TRAN 2.0 1.0 1 + 0.0 0.0 + 0.9 0.9 + 2.0 1.1 { Execution does reach this 2nd seg of (i, PSI) + 9999 + TACS CONTROL FACTOR { Use 3rd of 3 names: TACS-scaled curve (x,y) +BLANK card ending branch cards +BLANK card ending (here non-existent) switch cards +14GEN 350. 50. -1.0 +BLANK card ending source cards +C Total network loss P-loss by summing injections = 4.885536661314E+01 +C ---- Initial flux of coil "TRAN " to " " = 1.39586762E-01 +C GEN 350. 350. .27917352350367 2.2103250125975 48.855366613143 +C 0.0 0.0 -2.19262372629 -82.7439171 383.7091521007 +C +C Step Time TRAN GEN TRAN GEN TACS +C TERRA TRAN FACTOR +C +C 0 0.0 344.4165295 350. .2791735235 .2791735235 2.0 +C 1 .2E-3 340.9842812 349.3093549 .4162536857 .4162536857 1.999013364 +C 2 .4E-3 336.2117309 347.2401455 .5514207281 .5514207281 1.996057351 +C +C 49 .0098 -347.838306 -349.309355 -.073552423 -.073552423 1.000986636 +C 50 .01 -347.141951 -350. -.14290245 -.14290245 1.0 +C 51 .0102 -345.0697 -349.309355 -.211982761 -.211982761 1.0 + 1 +C 150 .03 -347.789928 -350. -.110503595 -.110503595 1.0 +C Variable maxima : 349.3458152 350. 3.110373844 3.110373844 2.0 +C Times of maxima : .0198 0.0 .0042 .0042 0.0 +C Variable minima : -348.491847 -350. -2.24512833 -2.24512833 1.0 +C Times of minima : .0298 .01 .0146 .0146 .01 + PRINTER PLOT + 194 3. 0.0 30. GEN TRAN TACS FACTOR { Axis limits: (-2.245, 3.110) +C CALCOMP PLOT { Repeat this same plot, only in high-resolution mode +C 194 3. 0.0 30. GEN TRAN TACS FACTOR +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 4 subcases is related to 3rd. That nonlinear inductor L(i) +C (Type-93, true-nonlinear element) has been made linear by reduction of +C the flux-current characteristic to a single point. The result is a +C TACS-controlled linear inductor L(t). Except that here dynamics are +C involved (because L stores energy, and has history), this is the +C inductive equivalent of commonly-used TACS-controlled resistance R(t). +C Between time 0 and 100 msec, inductance is to be varied sinusoidally +C between 125 mH and 500 mH. Disconnected branches BEGIN and END +C correspond to these two limiting values, and they define assymptotes +C of the transition between the two. The graph is smooth, and it shows +C a smooth transition between the two steady-state assymptotes. +PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns) + .000400 .120 + 1 1 1 1 1 -1 + 5 5 +TACS HYBRID { We use TACS only to produce signal that controls shunt current +99FACTOR = 2.5 + COSINE + STEP { Scale factor changes from 4 to 1 over 0-100 ms +14COSINE 1.5 5.0 { Smooth transition over 1st 100 msec } .100 +11STEP -1.5 { Hold COSINE valu after 100 ms} .100 +33FACTORSTEP COSINE { Output only the 3 user-defined TACS variables +77FACTOR 4.0 { Initial condition to make output signal smooth at t = 0 +77COSINE 1.5 { Initial condition to make output signal smooth at t = 0 +BLANK card ending all TACS data + GEN TRAN 35. { R of series R-L branch to ground } 1 +93TRAN 8.0 1.0 { i-steady and PSI-steady for phasors + 0.0 0.0 { Symmetric curve always begins at origin 0,0 + 2.0 1.0 { Single (i, PSI) point defines L b4 FACTOR + 9999 { Terminate the characteristic after just the one point + TACS CONTROL FACTOR { Use 3rd of 3 names: TACS-scaled curve (x,y) +C That is all we need for the TACS-controlled L of series R-L circuit. But +C for a nice plot, we want assymptotic curves. The first in in the steady +C state, corresponding to i-steady and PSI-steady of the Type-93 branch +C card. This is L = PSI / i = 1.0 / 8.0 = 125 mH. Note that this matches +C the initial signal. Initial FACTOR = 4.0 and the characteristic gives +C L = PSI / i = 1.0 / 2.0 = 500 mH. Dividing by FACTOR gives 125 mH as the +C initial inductance within the dT loop. So, show phasor flow: + GEN BEGIN 35. 125. { Branch flow is phasor solution +C That was for the start. Next, we want the termination, which corresponds +C to FACTOR = 1.0 so no scaling. I.e., L = 500 mH (the characteristic): + GEN END 35. 500. { Branch flo is assymptote for infinite t +BLANK card ending branch cards +C Switches are used only to measure the currents through the preceding two +C branches. These are the two assymptotic signals of following plot: + BEGIN MEASURING 1 + END MEASURING 1 +BLANK card ending switch cards +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GEN |TRAN *BEGIN *END * +C TRAN |TERRA *GEN * +C BEGIN |TERRA *GEN * +C END |TERRA *GEN * +C TERRA |TRAN *BEGIN *END * +C --------------+------------------------------ +14GEN 420. 50. -1.0 +C TRAN 234.06699294777 313.5412844237 5.3123716300638 7.9842632447061 -.677791157E-13 -.677791157E-13 +C 208.61634607684 41.7095865 -5.960467030767 -48.2904135 1251.698076461 1251.6980765 +C +C TERRA 0.0 0.0 -5.312371630064 7.9842632447061 0.0 +C 0.0 0.0 5.9604670307669 131.7095865 0.0 +C Total network loss P-loss by summing injections = 2.350389825256E+03 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C BEGIN 5.31237163E+00 -5.96046703E+00 7.98426324E+00 -48.2904 0.00000000E+00 0.00000000E+00 +C END 5.67589241E-01 -2.54733456E+00 2.60980285E+00 -77.4387 0.00000000E+00 0.00000000E+00 +BLANK card ending source cards + GEN TRAN { Output node voltages for the controlled branch L(t) only +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 3 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time GEN TRAN BEGIN END GEN TACS TACS TACS +C TERRA TERRA TRAN FACTOR STEP COSINE +C *** Phasor I(0) = 5.3123716E+00 Switch "BEGIN " to " " closed in the steady-state. +C *** Phasor I(0) = 5.6758924E-01 Switch "END " to " " closed in the steady-state. +C 0 0.0 420. 234.06699 5.3123716 .56758924 5.3123716 4.0 0.0 1.5 +C 1 .4E-3 416.68817 206.10551 6.0166476 .88197067 6.0166476 3.9998816 0.0 1.4998816 +C 2 .8E-3 406.80493 174.8932 6.6262352 1.1824658 6.6260494 3.9995263 0.0 1.4995263 +C 3 .0012 390.50612 140.93094 7.1314997 1.464335 7.1307196 3.9989342 0.0 1.4989342 +BLANK card ending node voltage outputs +C 290 .116 129.78714 208.41029 -4.028677 -2.244816 -2.246376 1.0 -1.5 0.0 +C 295 .118 339.78714 376.14579 .78854743 -1.037462 -1.038819 1.0 -1.5 0.0 +C 300 .12 420. 400.22543 5.3045736 .56616677 .5649877 1.0 -1.5 0.0 +C Variable maxima : 420. 409.93775 7.9767416 2.6063662 7.9698488 4.0 0.0 1.5 +C Times of maxima : 0.0 .0992 .0028 .0044 .0028 0.0 0.0 0.0 +C Variable minima : -420. -409.6697 -7.973184 -2.60532 -7.845698 1.0 -1.5 -1.499882 +C Times of minima : .01 .1092 .1128 .1144 .0128 0.1 0.1 .0996 + CALCOMP PLOT +C Orlando Hevia in Santa Fe, Argentina, supplied the following one-line +C correction in E-mail dated 10 January 2007. He learned of the bad ATP data +C during experimentation with the new GNU F95 compiler, which choked on this: +C NOTE A MISTAKE IN DATA 120. IS ONE COLUMN TOO TO THE RIGHT +C DATA FM1180 / '( I2, 2I1, E3.0, 2E4.0, E5.0, E4.0, 4A6, 2A16 )' / +C -=---====----=====---- +C 19412. 0.0 120. BRANCH Vary linear L Inductor current + 19412. 0.0120. BRANCH Vary linear L Inductor current + BEGIN END GEN TRAN TACS FACTOR +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc46.dat b/benchmarks/dc46.dat new file mode 100644 index 0000000..0f7b92b --- /dev/null +++ b/benchmarks/dc46.dat @@ -0,0 +1,260 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-46 +C This is the 2nd half of the DC-45/46 matched pair, which together give +C an approximation to the total of DC-33. Postprocessing using TACS is +C involved. But note that here we skip every other point. Also, we use +C DELTAT is an independent, predictable fashion, as the named delay on +C a supplemental device that delays the signal GEN by one time step. +C For answers that exactly agree with DC-33, decrease DELTAT from 100 +C to 50 microsec, and convert ",2," to ",1," on POSTPROCESS card. +C 26 June 1995, modify as will be described in the July newsletter. +C Original data case will be copied below. New 2nd subcase added. +C --- template for next card. MULPPF LUNPPF L63TYP +POSTPROCESS PLOT FILE 2 63 3 +$OPEN, UNIT=63 FILE=[]dc45.pl4 ! { Expected to be C-like (L4BYTE = 1) + .000100 .050 { Note DELTAT is twice that of DC-45, since use every 2nd step + 1 1 0 0 1 -1 0 2 + 5 5 20 20 50 50 +TACS STAND ALONE + 1FLUX +GEN + 1.0 + 0.0 1.0 + 1NRG +POWER + 1.0 + 0.0 1.0 +11GEN 1.0 +11CURR 2.0 +99POWER = GEN * ( -CURR ) +33GEN CURR POWER FLUX GEN_1 NRG +C The following transport delay copies GEN, only delays the output by DELTAT +C 78901234567890123456789012345678901234567890123456789012345678901234567890 +99GEN_1 53+GEN { Type-53 supplemental device with named delay} .001 DELTAT +C Step Time GEN CURR POWER FLUX GEN_1 +C 0 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 +C 1 1.00000E-04 3.76732E+02-1.04694E+00 3.94417E+02 1.88366E-02 0.00000E+00 +C 2 2.00000E-04 3.75929E+02-1.04552E+00 3.93040E+02 5.64697E-02 3.76732E+02 +C 3 3.00000E-04 3.74591E+02-1.08895E+00 4.07913E+02 9.39957E-02 3.75929E+02 +BLANK card ending all TACS data cards +C 400 4.00000E-02 -3.04999E+02 1.07014E+00 3.26391E+02 5.68879E-01-2.96431E+02 +C 450 4.50000E-02 -1.16499E+02 2.76576E+00 3.22210E+02-9.69816E-01-1.29930E+02 +C 500 5.00000E-02 3.77000E+02-1.43750E+00 5.41938E+02-1.88500E-02 3.76732E+02 +C Row Name Minimum Maximum Time of min +C 1 GEN -3.7700000000E+02 3.7700000000E+02 0.025000 +C 2 CURR -3.4999091625E+00 3.4999091625E+00 0.037500 +C 3 POWER -3.4019847371E+02 5.8499138215E+02 0.005200 +C 4 FLUX -1.0187551143E+00 9.8105511427E-01 0.012500 +C 5 GEN_1 -3.7700000000E+02 3.7697024536E+02 0.025100 +C 6 NRG 0.0000000000E+00 1.3570878894E+01 0.000000 + PRINTER PLOT + 144 2. 0.0 20. POWER { Axis limits: (-3.402, 5.850) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C BENCHMARK DC-46 +C 2nd of 5 subcases produces the same solution, but illustrates the new +C Type-25 TACS sources within a TACS HYBRID framework. Zero for LUNPPF +C switches the I/O unit from 22 (LUNIT2 of preceding case) to the default +C number 63. The $OPEN must follow the PPF declaration that makes +C LUNPPF = 63 since for C-like files, this is needed for CIMAG2 to +C define the handle LHTACS as required by POSTPF (POSTP1 & POSTP2). +$CLOSE, UNIT=63 STATUS=KEEP { Disconnect file of preceding subcase +C Template for next card. MULPPF LUNPPF L63TYP +POSTPROCESS PLOT FILE 2 3 +$OPEN, UNIT=63 FILE=[]dc45.pl4 ! { Expected to be C-like (L4BYTE = 1) + .000100 .050 { Note DELTAT is twice that of DC-45, since use every 2nd step + 1 1 0 0 1 -1 0 2 + 5 5 20 20 50 50 +TACS HYBRID + 1FLUX +GEN + 1.0 + 0.0 1.0 + 1NRG +POWER + 1.0 + 0.0 1.0 +25GEN 1.0 { 1st of 2 sources is defined by 1st signal of .PL4 file +25CURR 2.0 { 2nd of 2 sources is defined by 2nd signal of .PL4 file +99POWER = GEN * ( -CURR ) +33GEN CURR POWER FLUX GEN_1 NRG +C The following transport delay copies GEN, only delays the output by DELTAT +C 78901234567890123456789012345678901234567890123456789012345678901234567890 +99GEN_1 53+GEN { Type-53 supplemental device with named delay} .001 DELTAT +BLANK card ending all TACS data cards + BUS3 1.0 +BLANK card ending electric network branches +BLANK card ending switches +11BUS3 1.0 +BLANK card ending electric network source cards. +BLANK card ending node voltage outputs + PRINTER PLOT + 194 2. 0.0 20. TACS POWER +BLANK card ending plot cards +BEGIN NEW DATA CASE +C BENCHMARK DC-46 +C 3rd of 5 subcases produces the same solution, but illustrates the new +C connection to a plot file from MODELS. Just like with TACS, first line +C of plot data at time t=0 is ignored. It is not required to use MODELS +C as STAND ALONE, but can also be mixed with solution of a circuit. +C Template for next card. MULPPF LUNPPF L63TYP +POSTPROCESS PLOT FILE 2 63 3 +$OPEN, UNIT=63 FILE=[]dc45.pl4 ! { Expected to be C-like (L4BYTE = 1) + .000100 .050 { Note DELTAT is twice that of DC-45, since use every 2nd step + 1 1 0 0 1 -1 0 2 + 5 5 20 20 50 50 +MODELS STAND ALONE +INPUT gen {PL4(1)}, curr {PL4(2)} +MODEL postprocess_example + INPUT voltage, current + VAR flux, energy, power, gen_1 + INIT + integral(voltage) := 0 + integral(power) := 0 + histdef(voltage) := 0 -- needed for the delay function at t=0 + ENDINIT + EXEC + flux := integral(voltage) + energy := integral(power) + power := voltage * current + gen_1 := delay(voltage, timestep) + ENDEXEC +ENDMODEL +USE postprocess_example AS test + INPUT voltage := gen, current := -curr +ENDUSE +RECORD gen AS gen curr AS curr + test.power AS power test.flux AS flux + test.gen_1 AS gen_1 test.energy AS nrg +ENDMODELS +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 5 subcases is the same as the first except that a Pisa-format +C .PL4 file is being used rather than a conventional, old, C-like .PL4 +C 12 March 2002, PPF was made compatible with Pisa-format C-like .PL4 +C files. In case the unit-63 .PL4 file is missing, it can be created +C easily enough by simulation of DC-45. Make sure NEWPL4 in STARTUP +C has value 2 before the simulation begins, however. When complete, +C rename DC45.PL4 to DC45PISA.PL4. For PPF use, note that L63TYP +C has been changed from value 3 (conventional C-like file) to value 4 +C (Pisa-format C-like): +C --- template for next card. MULPPF LUNPPF L63TYP +POSTPROCESS PLOT FILE 2 63 4 { 4 ==> Pisa-format +$OPEN, UNIT=63 FILE=[]dc45pisa.pl4 ! { Expected to be C-like (L4BYTE = 1) +C Note about preceding: Use of "[]" first became available for a $OPEN +C file name on 14 December 2002. Following subcase also illustrates. + .000100 .050 { Note DELTAT is twice that of DC-45, since use every 2nd step + 1 1 0 0 1 -1 0 2 + 5 5 20 20 50 50 +TACS STAND ALONE + 1FLUX +GEN + 1.0 + 0.0 1.0 + 1NRG +POWER + 1.0 + 0.0 1.0 +11GEN 1.0 +11CURR 2.0 +99POWER = GEN * ( -CURR ) +33GEN CURR POWER FLUX GEN_1 NRG +C The following transport delay copies GEN, only delays the output by DELTAT +C 78901234567890123456789012345678901234567890123456789012345678901234567890 +99GEN_1 53+GEN { Type-53 supplemental device with named delay} .001 DELTAT +BLANK card ending all TACS data cards +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 5 subcases is the same as the first except that a widexx-format +C .PL4 file is being used rather than a conventional, old, C-like .PL4 +C 11 December 2002, PPF was made compatible with widexx-format .PL4 file. +C In case the unit-63 .PL4 file is missing, it can be created easily +C Make sure FMTPL4 in STARTUP has value "wide11" before the simulation +C begins, however. When complete, rename DC45.PL4 to DC45WIDE.011 +C For PPF use, note that L63TYP has been changed from value 3 (for +C conventional C-like file) to value 5 (widexx-format). About the 11, +C it should be explained that this is the program limit for optimal +C encoding. A better comparison requires 12, but if used, ATP will +C drop the optimal and switch to normal E-field encoding. So, a column +C width of 11 is used to produce the maximum precision while retaining +C the desired optimal encoding. Using Mike Albert's free FC then will +C show perfect agreement between this .LIS output and the .LIS output +C of the first subcase except for 2 columns, which will differ in the +C final digit or two. Look for newsletter writing on this subject in +C the April, 2003, issue or later. Mustafa Kizilcay made the request +C for widexx compatibility, and this data proves that it works. WSM. +C --- template for next card. MULPPF LUNPPF L63TYP +POSTPROCESS PLOT FILE 2 63 5 +$OPEN, UNIT=63 FILE=[]dc45wide.011 STATUS=OLD FORM=FORMATTED ! + .000100 .050 { Note DELTAT is twice that of DC-45, since use every 2nd step + 1 1 0 0 1 -1 0 2 + 5 5 20 20 50 50 +TACS STAND ALONE + 1FLUX +GEN + 1.0 + 0.0 1.0 + 1NRG +POWER + 1.0 + 0.0 1.0 +11GEN 1.0 +11CURR 2.0 +99POWER = GEN * ( -CURR ) +33GEN CURR POWER FLUX GEN_1 NRG +C The following transport delay copies GEN, only delays the output by DELTAT +C 78901234567890123456789012345678901234567890123456789012345678901234567890 +99GEN_1 53+GEN { Type-53 supplemental device with named delay} .001 DELTAT +BLANK card ending all TACS data cards + PRINTER PLOT + 144 2. 0.0 20. POWER { Axis limits: (-3.402, 5.850) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF + + + +BEGIN NEW DATA CASE +C BENCHMARK DC-46 +C This is the 2nd half of the DC-45/46 matched pair, which together give +C an approximation to the total of DC-33. Postprocessing using TACS is +C involved. But note that here we skip every other point. Also, we use +C DELTAT is an independent, predictable fashion, as the named delay on +C a supplemental device that delays the signal GEN by one time step. +C For answers that exactly agree with DC-33, decrease DELTAT from 100 +C to 50 microsec, and convert ",2," to ",1," on POSTPROCESS card. +$OPEN, UNIT=22 FILE=dc45.pl4 ! { Expected to be C-like (L4BYTE = 1) +POSTPROCESS PLOT FILE, 2, { Use every other step from ".PL4" plot file of DC-45 + .000100 .050 { Note DELTAT is twice that of DC-45, since use every 2nd step + 1 1 0 0 1 -1 0 2 + 5 5 20 20 50 50 +TACS STAND ALONE + 1FLUX +GEN + 1.0 + 0.0 1.0 + 1NRG +POWER + 1.0 + 0.0 1.0 +11GEN 1.0 +11CURR 2.0 +99POWER = GEN * ( -CURR ) +33GEN CURR POWER FLUX GEN_1 NRG +C The following transport delay copies GEN, only delays the output by DELTAT +C 78901234567890123456789012345678901234567890123456789012345678901234567890 +99GEN_1 53+GEN { Type-53 supplemental device with named delay} .001 DELTAT +C Step Time GEN CURR POWER FLUX GEN_1 +C 0 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 +C 1 1.00000E-04 3.76732E+02-1.04694E+00 3.94417E+02 1.88366E-02 0.00000E+00 +C 2 2.00000E-04 3.75929E+02-1.04552E+00 3.93040E+02 5.64697E-02 3.76732E+02 +C 3 3.00000E-04 3.74591E+02-1.08895E+00 4.07913E+02 9.39957E-02 3.75929E+02 +BLANK card ending all TACS data cards +C 400 4.00000E-02 -3.04999E+02 1.07014E+00 3.26391E+02 5.68879E-01-2.96431E+02 +C 450 4.50000E-02 -1.16499E+02 2.76576E+00 3.22210E+02-9.69816E-01-1.29930E+02 +C 500 5.00000E-02 3.77000E+02-1.43750E+00 5.41938E+02-1.88500E-02 3.76732E+02 +C Row Name Minimum Maximum Time of min +C 1 GEN -3.7700000000E+02 3.7700000000E+02 0.025000 +C 2 CURR -3.4999091625E+00 3.4999091625E+00 0.037500 +C 3 POWER -3.4019847371E+02 5.8499138215E+02 0.005200 +C 4 FLUX -1.0187551143E+00 9.8105511427E-01 0.012500 +C 5 GEN_1 -3.7700000000E+02 3.7697024536E+02 0.025100 +C 6 NRG 0.0000000000E+00 1.3570878894E+01 0.000000 + PRINTER PLOT + 144 2. 0.0 20. POWER { Axis limits: (-3.402, 5.850) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + + diff --git a/benchmarks/dc46a.dat b/benchmarks/dc46a.dat new file mode 100644 index 0000000..d8a3fa1 --- /dev/null +++ b/benchmarks/dc46a.dat @@ -0,0 +1,22 @@ +BEGIN NEW DATA CASE +POSTPROCESS PLOT FILE 2 63 3 +$OPEN, UNIT=63 FILE=\data\dc45.pl4 ! { Expected to be C-like (L4BYTE = 1) + .000100 .002 { Note DELTAT is twice that of DC-45, since use every 2nd step + 1 1 0 0 1 -1 0 2 + 20 20 50 50 +TACS STAND ALONE + 1FLUX +GEN + 1.0 + 0.0 1.0 + 1NRG +POWER + 1.0 + 0.0 1.0 +11GEN 1.0 +11CURR 2.0 +99POWER = GEN * ( -CURR ) +33GEN CURR POWER FLUX GEN_1 NRG +99GEN_1 53+GEN { Type-53 supplemental device with named delay} .001 DELTAT +BLANK card ending all TACS data cards +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc47.dat b/benchmarks/dc47.dat new file mode 100644 index 0000000..21f33b0 --- /dev/null +++ b/benchmarks/dc47.dat @@ -0,0 +1,751 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-47 +C Realistic large case with Type-59 S.M. and TACS modeling, as set up and +C studied by Prof. Alfonso Capasso of the University of Rome during a 1980 +C visit to BPA. There are many cascaded, 25-mile, frequency-dependent, +C 3-phase line sections that originally were represented using weighting +C functions. But such code was removed from ATP around 1986, so for years +C this case lay unused. It was resurrected during November of 1989 when Dan +C Goldsworthy of BPA supplied replacement Marti branch cards. Dimensioning +C of EMTP tables is tricky. Except for list sizes 20 and 22, twice default +C dimensioning is adequate. On the other hand 3 times default dimensioning +C of all lists fails quickly. For testing on Apollo, use: DEFAULT = 2.00, +C and the following 3 cards blank except for list 20 = 13000 and list 22 = +C 1750. Default sizes of these two are only 660 and 150, respectively. +C 20 Oct 93, the new dynamic dimensioning of Salford EMTP saves the day. +C The following five lines apply this old 1989 Apollo recommendation: +C Answers change slightly on 10 February 1999 following the massive changes +C from TEPCO (Tokyo Electric Power Company) in Japan. See April newsletter. +C Most extrema agree to 6 decimal digits or more. All printer plots are +C identical. +C 16 February 2002, add the optional NBHDSW line to the following NLS +C data structure. In fact, this does nothing since value 5.0 is the +C default. But such a declaration is critically important for some data +C that is overloaded with switches. For example, Hong Xiao's data NAVSYS +C at Texas A&M had 894 switches. If the List 6 switch limit was 2500, +C slightly more than a factor of 5.0 was required. Of course, the user +C can only expand what exists (i.e., make sure VARDIM created the same or +C greater NBHDSW space when the program was linked). Although use with +C NLS is being illustrated here, the declaration applies to LISTSIZE, +C too --- either as used prior to linking ATP, or as used at the start +C of ATP execution. The total size of NBHDSW is equal to this factor +C times the limit on switches (List 6). So, here, default List 6 is 40, +C and 5 times this ==> 200 cells of NBHDSW are available for use. Much +C more typically was created at linking time, of course. +NEW LIST SIZES +NBHDSW 5.0 { Five is the default factor for sizing switch vector NBHDSW +DEFAULT 2.0 +BLANK +C 0 0 0 0 0 0 0 0 3400 13000 + 0 0 0 0 0 0 0 0 3540 13000 + 0 1750 + 240000 742 +ABSOLUTE TACS DIMENSIONS +C Expand TACS Table 1 from 57 to 130 on 1 April 2007. Copy use from DC-2 +C without worrying about probably waste that might be involved: +C 57 256 285 36 85 713 998 171 --- default + 130 65 80 20 70 325 120 115 +PRINTED NUMBER WIDTH, 13, 2, { Full precision on each of 8 columns of printout + .000100 .100 60. + 1 3 1 0 1 -1 + 5 15 50 50 200 100 +TACS HYBRID +C EXCITATION SYSTEM FOR THE COALSTRIP STEAM TURBINES. +C CONVERSION TO MACHINE PER UNIT SYSTEM, SQRT(3)*RF/LAF. + 0VF +EFO .01862 +C FEED FORWARD PATH + 1EF1 -VT +UNITY -EFFBL1 195.6 +1. +1. 1.3 + 1EFO +EF1 -4.13 4.13 +1. +1. .02 +C FEEDBACK PATH + 1EFFBL +EFO .164 +0. 1. +1. 1. +C SPEED GOVERNOR SYSTEM FOR COLSTRIP GENERATOR +C CONVERSION OMEGA PER UNIT SYSTEM + 0DIFOME -UNITY +TACOME + 0PS1 +UNITY -KDIFOM -PGV + 0PS2 +PS1 10. -.4 .4 + 0KDIFOM +DIFOME 20. + 1PGV +PS21 1.0 0. 1.1 + 1. + 1. + 1PGV1 +PGV 1. + 1. + 1. .25 + 1PGV2 +PGV1 1. + 1. + 1. 10. + 1PGV3 +PGV2 1. + 1. + 1. .5 + 0PMT +PM1 +PM2 +PM3 +C POWER SYSTEM STABLIZER (PSS) +C ADD SQUARED TERMINAL VOLTAGES + 0VMS +VSQA +VSQB +VSQC +C FILTER TERMINAL VOLTAGE + 1VT +VRMS +1. +1. .0133 +C EMTP PARAMETERS PASSED TO TACS +C TERMINAL VOLTAGE INPUTS +90CSGENA +90CSGENB +90CSGENC +C SHAFT SPEED INPUT +C SPEED SOURCE FOR TACS +92VEL1 +C COMPUTATIONS +C SQUARE ROOT OF SUM OF SQUARED TERMINAL VOLTAGES. +88VRMS SQRT VMS / 26000. +C SQUARE INSTANTANEOUS TERMINAL VOLTAGES. +99VSQA CSGENA* CSGENA +99VSQB CSGENB* CSGENB +99VSQC CSGENC* CSGENC +C UNITY INITIAL INPUT TO S.M., DIVIDE BY INITIAL VF. +98EFDPP 36.4528 * VF +88PM1 .274 * PGV1 +88EFFBL1 = EFFBL +88PS21 = PS2 +88PM2 .243 * PGV2 +88PM3 .483 * PGV3 +98FACTOR 1. * PMT +C SWITCH FOR FREE-FORMAT. +99TACOME = .002651* VEL1 +C FAST VALVING +33EFO VT VF EFDPP EFFBL UNITY EF1 +33DIFOMEPGV PS1 PMT VEL1 TACOMEKDIFOM +C INITIAL CONDITIONS +77EF1 1.4730 +77EFO 1.4730 +77VT 1.0 +77VRMS 1.0 +77EFDPP 1.0 +77EFFBL 0.0 +77PS1 0. +77PGV 1. +77PGV1 1. +77PGV2 1. +77PGV3 1. +77PMT 1. +77TACOME 1. +77VEL1 376.99 +BLANK card ending all TACS data +C ** SOURCE IMPEDANCE CARDS **** + 0SOA BEGINA .001 1 + 0SOB BEGINB .001 1 + 0SOC BEGINC .001 1 + 0V2A HSA 36. 1 + 0V2B HSB 36. 1 + 0V2C HSC 36. 1 +C LOAD AT THE RECEIVING END +C ** SOURCE IMPEDANCE CARDS **** +C SOURCE IMPEDANCE CARDS +C SWITCH SHUNTS + 0GA G1A .001 + 0GB G1B .001 + 0GC G1C .001 + 0GA G5A .001 + 0GB G5B .001 + 0GC G5C .001 +C 100MVAR SHUNT REACTORS + 0BEGINA 7.0 3025. + 0BEGINB 7.0 3025. + 0BEGINC 7.0 3025. + 0BVA 7.0 3025. + 0BVB 7.0 3025. + 0BVC 7.0 3025. + 014A 7.0 3025. + 014B 7.0 3025. + 014C 7.0 3025. + 0HSA 7.0 3025. + 0HSB 7.0 3025. + 0HSC 7.0 3025. +C 225 MVAR SHUNT REACTORS + 05A 3.0 1344. + 05B 3.0 1344. + 05C 3.0 1344. + 0G4A 3.0 1344. + 0G4B 3.0 1344. + 0G4C 3.0 1344. +C SHUNT REACTORS 100 MVAR + 0BEGINA 7.0 3025. + 0BEGINB 7.0 3025. + 0BEGINC 7.0 3025. + 0BVA 7.0 3025. + 0BVB 7.0 3025. + 0BVC 7.0 3025. +C * 225 MVAR + 05AA 3.0 1344. + 05BB 3.0 1344. + 05CC 3.0 1344. + 0G8A 3.0 1344. + 0G8B 3.0 1344. + 0G8C 3.0 1344. +C * 100 MVAR + 014AA 7.0 3025. + 014BB 7.0 3025. + 014CC 7.0 3025. + 0HSA 7.0 3025. + 0HSB 7.0 3025. + 0HSC 7.0 3025. +C 25- MILE SECTION CARDS. For data, see normally unused bottom on DCNEW-5. +C <++++++> Cards punched by support routine on 25-Nov-89 01.41.53 <++++++> +C JMARTI SETUP, 1.0, { Note use of PDT0 = 1 to allow reduction of ord +C BRANCH BEGINA1A BEGINB1B BEGINC1C +C LINE CONSTANTS +C 1.375 .0776 4 1.302 - 15.3 47.8 47.8 +C 1.375 .0776 4 1.302 - 16.2 48.8 48.8 +C 1.375 .0776 4 1.302 - 14.5 48.8 48.8 +C 2.375 .0776 4 1.302 0.0 76.8 76.8 +C 2.375 .0776 4 1.302 - 0.8 77.8 77.8 +C 2.375 .0776 4 1.302 + 0.8 77.8 77.8 +C 3.375 .0776 4 1.302 + 15.3 47.8 47.8 +C 3.375 .0776 4 1.302 + 14.5 48.8 48.8 +C 3.375 .0776 4 1.302 + 16.2 48.8 48.8 +C 0.5 3.56 4 0.495 - 12.0 109.3 109.3 +C 0.5 3.56 4 0.495 12.0 109.3 109.3 +C BLANK card ending conductor cards of imbedded "LINE CONSTANTS" data +C 100. 1000. 1 25.00 1 1 +C 100. 60. 1 25.00 1 1 +C 100. .001 1 25.00 1 9 10 1 +C BLANK card ending frequency cards of inbedded "LINE CONSTANTS" data +C BLANK card ending "LINE CONSTANTS" cases (back to "JMARTI SETUP") +C C 3456789012345678901234567890123456789012345678901234567890123456789012345678 +C C LECT +0 -3 +C 1 +C C .30 30 0 1 1 0 0 +C C .30 30 0 1 1 0 0 .0 +C .30 30 0 1 3 0 0 +-1BEGINA1A 2. 1.00 -2 3 + 14 0.47293192457610910000E+03 + -0.692872546664471400E+00 -0.289997290946665200E+01 -0.642465234009757800E+01 + -0.263126866758512600E+02 -0.112197664116317600E+03 0.120003724331559200E+04 + 0.534855106416246700E+04 0.265735664895556200E+05 0.102299437025596100E+06 + 0.378064088036946100E+06 0.132921127921708400E+07 0.513934786170517100E+07 + 0.925674681170112800E+07 0.288450507277665100E+08 + 0.193740761292982800E+00 0.845745890606555900E+00 0.158002669592290500E+01 + 0.166026211278831900E+01 0.245330041260623900E+01 0.189362602308108900E+02 + 0.114161260221103000E+03 0.603227605191941700E+03 0.248970479870548400E+04 + 0.984189709230105300E+04 0.371843313566798500E+05 0.154256975765183100E+06 + 0.584765486140849700E+06 0.189661890222411100E+07 + 16 0.14611089425809670000E-03 + 0.321843918913226800E+00 0.162311293633336900E+01 0.215973805406543600E+01 + 0.469951431259633000E+01 0.327308002733053700E+02 0.452437760931982100E+02 + 0.328756421277238100E+03 0.200177420834287000E+04 -0.354515696612718900E+04 + 0.155705219977707800E+05 0.151221170895251900E+05 0.106915368104621200E+06 + -0.344719217999650700E+08 0.341080435346218900E+08 0.184594442012013500E+08 + -0.182320460954986800E+08 + 0.120261736819556900E+03 0.586377706864171600E+03 0.785729396647819200E+03 + 0.153582968615116900E+04 0.292216408325832800E+04 0.197211684817117800E+04 + 0.646946699809216000E+04 0.153758728646538300E+05 0.336431053557711100E+05 + 0.298806156726226600E+05 0.626456551850810500E+05 0.108192223183447900E+06 + 0.203944809477644400E+06 0.204148754287121900E+06 0.227695290201973200E+06 + 0.227922985492175000E+06 +-2BEGINB1B 2. 1.00 -2 3 + 11 0.24662476420370340000E+03 + 0.768995655381981900E+03 0.357946515159924200E+03 0.605800489377626000E+03 + 0.115846813162034100E+03 0.601598942354618800E+02 0.129603353249450600E+03 + 0.124322546275003900E+03 0.590000752707421200E+02 0.220555895798305100E+04 + 0.157374743868763000E+05 0.852520795579153100E+06 + 0.260905187905774000E+01 0.411855521834657500E+01 0.771404316437598300E+01 + 0.110187727317372200E+02 0.139680485049492400E+02 0.240091291541332100E+02 + 0.394513496124981500E+02 0.678919942549256600E+02 0.217073311495445300E+04 + 0.155198039317144100E+05 0.843266115513732800E+06 + 10 0.13423855276504470000E-03 + 0.156109695496983100E+02 0.207664299896075400E+03 0.253250298139870400E+03 + 0.182704839566228600E+03 0.247234491946191700E+04 0.330281306977220200E+05 + 0.979732483249094900E+05 0.551807975650099700E+05 0.155746415195975200E+07 + 0.651738564168535400E+06 + 0.379023174699368500E+04 0.493260943720562800E+05 0.620894169605181600E+05 + 0.411709275865929300E+05 0.140741388619576300E+06 0.563969432263966900E+06 + 0.731398783309924900E+06 0.828090639159713400E+06 0.285651731185617700E+07 + 0.406516792268231300E+07 +-3BEGINC1C 2. 1.00 -2 3 + 11 0.25189000703436050000E+03 + 0.705625882215074600E+03 0.480037666605113300E+03 0.523476975958925000E+03 + 0.101303478940912900E+03 0.730107254632987800E+02 0.135394935113372000E+03 + 0.117137840471522300E+03 0.558311320674074200E+02 0.124472273810087900E+03 + 0.627682104800954300E+04 0.240980689874141800E+06 + 0.256960827808081800E+01 0.435244353197636700E+01 0.749429585075439400E+01 + 0.106024369367294000E+02 0.138594221660724100E+02 0.239678957610427000E+02 + 0.375429307533879400E+02 0.639863500328914500E+02 0.130791036571128600E+03 + 0.615083978087696500E+04 0.237064293040221300E+06 + 14 0.13539861053437450000E-03 + 0.269179702767214200E+01 0.210140414716693800E+02 0.764589314809415700E+02 + 0.110678295975407300E+03 0.129037590729584400E+03 0.154905865724887900E+03 + 0.973468183688154800E+02 0.125397291104907200E+03 0.946997596373924000E+04 + 0.324310548935950100E+05 0.405933736771673600E+05 0.230683862157762600E+06 + -0.173236283555902400E+07 0.619672413081824600E+07 + 0.127520846547645700E+04 0.991859082931559900E+04 0.352599882601353600E+05 + 0.470219434319579600E+05 0.598736861767069000E+05 0.738954426067940100E+05 + 0.481920080235604800E+05 0.616738461673569000E+05 0.420313332159116900E+06 + 0.921318128971279800E+06 0.557714717553727900E+06 0.169631694566225400E+07 + 0.116008957300778400E+08 0.716479108546823500E+07 + 0.59100946 0.70710678 -0.40296093 + 0.00000000 0.00000000 0.00000000 + 0.54901333 0.00000000 0.82173291 + 0.00000000 0.00000000 0.00000000 + 0.59100946 -0.70710678 -0.40296093 + 0.00000000 0.00000000 0.00000000 +-11A 2A BEGINA1A +-21B 2B +-31C 2C +-12A 3A BEGINA1A +-22B 3B +-32C 3C +-13A 4A BEGINA1A +-23B 4B +-33C 4C +-14A C1A BEGINA1A +-24B C1B +-34C C1C + 0C1A BVA .001 138. + 0C1B BVB .001 138. + 0C1C BVC .001 138. + 0C2A G4A .001 70. + 0C2B G4B .001 70. + 0C2C G4C .001 70. + 0C3A 14A 128. + 0C3B 14B 128. + 0C3C 14C 128. + 0C4A BVA C1A BVA + 0C4B BVB C1A BVA + 0C4C BVC C1A BVA + 0C5A G8A C2A G4A + 0C5B G8B C2A G4A + 0C5C G8C C2A G4A +-15A 6A BEGINA1A +-25B 6B +-35C 6C +-16A 7A BEGINA1A +-26B 7B +-36C 7C +-17A 8A BEGINA1A +-27B 8B +-37C 8C +-18A 9A BEGINA1A +-28B 9B +-38C 9C +-19A 10A BEGINA1A +-29B 10B +-39C 10C +-110A 11A BEGINA1A +-210B 11B +-310C 11C +-111A 12A BEGINA1A +-211B 12B +-311C 12C +-112A 13A BEGINA1A +-212B 13B +-312C 13C +-113A C2A BEGINA1A +-213B C2B +-313C C2C +-1C3A 15A BEGINA1A +-2C3B 15B +-3C3C 15C +-115A 16A BEGINA1A +-215B 16B +-315C 16C +-116A 17A BEGINA1A +-216B 17B +-316C 17C +-117A 18A BEGINA1A +-217B 18B +-317C 18C +-118A HSA BEGINA1A +-218B HSB +-318C HSC +C SECOND CIRCUIT +-1BEGINA1AA BEGINA1A +-2BEGINB1BB +-3BEGINC1CC +-11AA 2AA BEGINA1A +-21BB 2BB +-31CC 2CC +-12AA 3AA BEGINA1A +-22BB 3BB +-32CC 3CC +-13AA 4AA BEGINA1A +-23BB 4BB +-33CC 4CC +-14AA C4A BEGINA1A +-24BB C4B +-34CC C4C +-15AA 6AA BEGINA1A +-25BB 6BB +-35CC 6CC +-16AA 7AA BEGINA1A +-26BB 7BB +-36CC 7CC +-17AA 8AA BEGINA1A +-27BB 8BB +-37CC 8CC +-18AA 9AA BEGINA1A +-28BB 9BB +-38CC 9CC +-19AA 10AA BEGINA1A +-29BB 10BB +-39CC 10CC +-110AA 11AA BEGINA1A +-210BB 11BB +-310CC 11CC +-111AA 12AA BEGINA1A +-211BB 12BB +-311CC 12CC +-112AA 13AA BEGINA1A +-212BB 13BB +-312CC 13CC +-113AA C5A BEGINA1A +-213BB C5B +-313CC C5C +C NO SERIES CAPS ON THE SECOND CKT OF GARRISON-HS LINE +-114AA 15AA BEGINA1A +-214BB 15BB +-314CC 15CC +-115AA 16AA BEGINA1A +-215BB 16BB +-315CC 16CC +-116AA 17AA BEGINA1A +-216BB 17BB +-316CC 17CC +-117AA 18AA BEGINA1A +-217BB 18BB +-317CC 18CC +-118AA HSA BEGINA1A +-218BB HSB +-318CC HSC +C LINE SHUNTS + 0BVA 5AA .001 1 + 0BVB 5BB .001 1 + 0BVC 5CC .001 1 +C 1 CKT GAR-HS LINE OUT + 0SA 5A 600. + 0SB 5B 600. + 0SC 5C 600. + 0SA S1A .001 + 0SB S1B .001 + 0SC S1C .001 + 0S2A 14A 600. + 0S2B 14B 600. + 0S2C 14C 600. + 0S2A S3A .001 + 0S2B S3B .001 + 0S2C S3C .001 + 0G2A G4A 600. + 0G2B G4B 600. + 0G2C G4C 600. + 0G2A G3A .001 + 0G2B G3B .001 + 0G2C G3C .001 + 0G6A G8A 600. + 0G6B G8B 600. + 0G6C G8C 600. + 0G6A G7A .001 + 0G6B G7B .001 + 0G6C G7C .001 + TRANSFORMER 2.0 1140. T1A 1.E5 +.188 912. +.6 1026. +1.5 1106. +3.0 1163. +6.0 1208. +11.4 1244. +21. 1277. +50. 1300. +250. 1350. + 9999 + 1BVA .1 35.6 429. + 2BVS2A .1 .001 188. + 3TER1A TER1B .1 .071 13.8 + TRANSFORMER T1A T1B + 1BVB + 2BVS2B + 3TER1B TER1C + TRANSFORMER T1A T1C + 1BVC + 2BVS2C + 3TER1C TER1A + TRANSFORMER T1A T2A + 1GAA + 2GAS2A + 3TER2A TER2B + TRANSFORMER T1A T2B + 1GAB + 2GAS2B + 3TER2B TER2C + TRANSFORMER T1A T2C + 1GAC + 2GAS2C + 3TER2C TER2A +C *****GENERATOR TRANSFORMER********************* + TRANSFORMER 236.9 97.5T3A 1.E+5 + 67.8 87.8 +236.9 97.5 +504.5 107.3 + 9999 + 1CSIA CSIB .0001 .001 26. + 2SOA .0001 34.57 317. + TRANSFORMER T3A T3B + 1CSIB CSIC + 2SOB + TRANSFORMER T3A T3C + 1CSIC CSIA + 2SOC + TRANSFORMER T3A T3D + 1CSGN1ACSGN1B + 2SOA + TRANSFORMER T3A T3E + 1CSGN1BCSGN1C + 2SOB + TRANSFORMER T3A T3F + 1CSGN1CCSGN1A + 2SOC +C *********************************************** + 0CSIA .1 + 0CSIB .1 + 0CSIC .1 + 0CSGN1A .1 + 0CSGN1B .1 + 0CSGN1C .1 +C *********************************************** + 0 BVS2A 529. + 0 BVS2B 529. + 0 BVS2C 529. + 0TER1A 9500. + 0TER1B 9500. + 0TER1C 9500. + 0 GAS2A 400. + 0 GAS2B 400. + 0 GAS2C 400. + 0TER2A 9500. + 0TER2B 9500. + 0TER2C 9500. +BLANK card ending branch cards + BVA SA -1. 1. + BVB SB -1. 1. + BVC SC -1. 1. + S1A 5A -1. 1. + S1B 5B -1. 1. + S1C 5C -1. 1. + GA S2A -1. 1.0 + GB S2B -1. 1.0 + GC S2C -1. 1.0 + S3A 14A -1. .085 + S3B 14B -1. .085 + S3C 14C -1. .085 + G1A G2A -1. 1.30 + G1B G2B -1. 1.030 + G1C G2C -1. 1.030 + G3A G4A -1. 1.010 + G3B G4B -1. 1.010 + G3C G4C -1. 1.010 + G5A G6A -1. 1.34 + G5B G6B -1. 1.034 + G5C G6C -1. 1.034 + G7A G8A -1. 1.014 + G7B G8B -1. 1.014 + G7C G8C -1. 1.014 + C3A .01695 1. +C *******MEASURING COALSTRIP GENERATOR ARMATURE CURRENT******* + CSGENACSIA MEASURING 1 + CSGENBCSIB MEASURING 1 + CSGENCCSIC MEASURING 1 +C ************************************************************ +BLANK card ending switch cards +C * +C * +14V2A 452000. 60. -10. -1. +14V2B 452000. 60. -130. -1. +14V2C 452000. 60. 110. -1. +59CSGENA 21229. 60. .0 + CSGENB + CSGENC +TOLERANCES 20 +PARAMETER FITTING 2.+00 + 1 1 2 819.0 26.0 1600. +BLANK CARD INDICATING NO SATURATION OF Q-AXIS OF MACHINE + .0013 .1284 1.236 1.222 .2197 .3482 .1776 .1742 + 4.78 .53 .041 .067 .0861 + 1 1.0 1.070 0.0 0.0 +BLANK card + 51 + 1 1 2 3 4 11 14 + 1 8 9 10 + 21 + 31 +BLANK CARD +71EFDPP +72FACTOR 1 +74VEL1 2 + FINISH +59CSGN1A 21229. 60. 0.0 + CSGN1B + CSGN1C +PARAMETER FITTING 2.+00 + 1 1 2 819.0 26.0 1600. +BLANK CARD INDICATING NO SATURATION OF Q-AXIS OF MACHINE + .0013 .1284 1.236 1.222 .2197 .3482 .1776 .1742 + 4.78 .53 .041 .067 .0861 + 1 1.0 1.070 0.0 0.0 +BLANK + 51 + 1 1 2 3 4 11 14 + 1 8 9 10 + 21 + 31 +BLANK CARD +71EFDPP +72FACTOR 1 +C BECAUSE THE TWO GENERATORS HAVE THE SAME SPEED IT IS NOT +C NECESSARY TO USE THE SPEED OF THE SECOND GENERATOR AS TACS SOURC + FINISH +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C SOA |TERRA *TERRA *BEGINA* +C BEGINA |TERRA *TERRA *SOA *1A *1AA * +C SOB |TERRA *TERRA *BEGINB* +C BEGINB |TERRA *TERRA *SOB *1B *1BB * +C SOC |TERRA *TERRA *BEGINC* +C BEGINC |TERRA *TERRA *SOC *1C *1CC * +C V2A |HSA * +C .... Etc. (many more rows) +BLANK card ending source cards +C Total network loss P-loss by summing injections = 1.435490932846E+08 +C MACH 1 Data parameters and initial conditions of next machine ..... +C "CSGENA" Unit 1 +C Id Iq Io +C -2.09832081140E+04 1.82690972572E+04 8.06549008735E-10 +C Field current of the generator in units ... Total dc component +C 2.4585598153E+03 2.4539876356E+03 +C Electromechanical torque of the generator ... total dc component +C 1.9154270026E+00 1.8933493498E+00 +C ---- Initial flux of coil "T1A " to " " = 3.74851587E+02 +C ---- Initial flux of coil "T1B " to " " = -1.16312212E+03 +C Warning. Preceding flux exceeds the 1st segment. This means that the stead +C ---- Initial flux of coil "T1C " to " " = 7.91924375E+02 +C ---- Initial flux of coil "T3A " to "CSIB " = 4.87345928E+01 +C ---- Initial flux of coil "T3B " to "CSIC " = -9.75282819E+01 +C Warning. Preceding flux exceeds the 1st segment. This means that the stead +C ---- Initial flux of coil "T3C " to "CSIA " = 4.87941256E+01 +C ---- Initial flux of coil "T3D " to "CSGN1B" = 4.87345928E+01 +C ---- Initial flux of coil "T3E " to "CSGN1C" = -9.75282819E+01 +C Warning. Preceding flux exceeds the 1st segment. This means that the stead +C ---- Initial flux of coil "T3F " to "CSGN1A" = 4.87941256E+01 + BEGINABEGINBBEGINC + BVA BVB BVC GA GB GC + G4A G4B G4C G8A G8B G8C + C2A C2B C2C 10A 10B 10C 6A 6B 6C + C5A C5B C5C 10AA 10BB 10CC 6AA 6BB 6CC + CSIA CSIB CSIC CSGN1ACSGN1BCSGN1CSOA SOB SOC +C Step Time BEGINA BEGINB BEGINC BVA BVB +C +C +C GC G4A G4B G4C G8A +C +C +C C2B C2C 10A 10B 10C +C +C +C C5A C5B C5C 10AA 10BB +C +C +C 6CC CSIA CSIB CSIC CSGN1A +C +C +C SOB SOC CSGENA CSGENB CSGENC +C CSIA CSIB CSIC +C +C V2A V2B V2C BVA BVB +C HSA HSB HSC 5AA 5BB +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C I0 IF IA IB IC +C +C MACH 1 MACH 2 MACH 2 MACH 2 MACH 2 +C VEL 1 ID IQ I0 IF +C +C MACH 2 MACH 2 MACH 2 MACH 2 TACS +C EFD TQ GEN ANG 1 VEL 1 EFO +C +C TACS TACS TACS TACS TACS +C EFFBL UNITY EF1 DIFOME PGV +C +C TACS TACS +C TACOME KDIFOM +C *** Phasor I(0) = 9.3141980E+02 Switch "BVA " to "SA " closed +C *** Phasor I(0) = -2.1484379E+02 Switch "BVB " to "SB " closed +C *** Phasor I(0) = -7.3079055E+02 Switch "BVC " to "SC " closed +C *** Phasor I(0) = 9.3142027E+02 Switch "S1A " to "5A " closed +C *** Phasor I(0) = -2.1484535E+02 Switch "S1B " to "5B " closed +C *** Phasor I(0) = -7.3078946E+02 Switch "S1C " to "5C " closed +C *** Phasor I(0) = 1.8917593E+03 Switch "GA " to "S2A " closed +C *** Phasor I(0) = -7.0729311E+02 Switch "GB " to "S2B " closed +C *** Phasor I(0) = -1.1803057E+03 Switch "GC " to "S2C " closed +C *** Phasor I(0) = 1.8917596E+03 Switch "S3A " to "14A " closed +C *** Phasor I(0) = -7.0729599E+02 Switch "S3B " to "14B " closed +C *** Phasor I(0) = -1.1803032E+03 Switch "S3C " to "14C " closed +C *** Phasor I(0) = -9.4587964E+02 Switch "G1A " to "G2A " closed +C *** Phasor I(0) = 3.5364656E+02 Switch "G1B " to "G2B " closed +C *** Phasor I(0) = 5.9015285E+02 Switch "G1C " to "G2C " closed +C *** Phasor I(0) = -9.4587982E+02 Switch "G3A " to "G4A " closed +C *** Phasor I(0) = 3.5364800E+02 Switch "G3B " to "G4B " closed +C *** Phasor I(0) = 5.9015160E+02 Switch "G3C " to "G4C " closed +C *** Phasor I(0) = -9.4587964E+02 Switch "G5A " to "G6A " closed +C *** Phasor I(0) = 3.5364656E+02 Switch "G5B " to "G6B " closed +C *** Phasor I(0) = 5.9015285E+02 Switch "G5C " to "G6C " closed +C *** Phasor I(0) = -9.4587982E+02 Switch "G7A " to "G8A " closed +C *** Phasor I(0) = 3.5364800E+02 Switch "G7B " to "G8B " closed +C *** Phasor I(0) = 5.9015160E+02 Switch "G7C " to "G8C " closed +C *** Phasor I(0) = 2.2639721E+04 Switch "CSGENA" to "CSIA " closed +C *** Phasor I(0) = -1.2935334E+04 Switch "CSGENB" to "CSIB " closed +C *** Phasor I(0) = -9.7043863E+03 Switch "CSGENC" to "CSIC " closed +C 0 0.0 404269.4395 -36345.7247 -367765.459 424359.4611 -84333.1188 +C -289436.093 451772.5587 -159713.498 -289437.588 451772.5587 +C -187973.815 -252930.485 447042.9429 -145948.56 -298112.48 +C 443329.9408 -187973.815 -252930.485 447042.9429 -145948.56 +C -331794.91 21229. -10614.5 -10614.5 21229. +C -36343.631 -367766.638 22639.72062 -12935.3343 -9704.38629 +C -1927.84839 998.3131661 907.993979 931.4197995 -214.843795 +C .806549E-9 2458.559762 22639.72062 -12935.3343 -9704.38629 +C -.002099483 -20983.2062 18269.09946 -.134425E-8 2458.559762 +C -428.682116 1.91542705 134.2452118 -.002099483 1.473 +C 0.0 1.0 1.473 0.0 1.0 +C 1.0 0.0 +C 1 .1E-3 397129.7612 -20133.32 -376846.599 418465.6003 -67710.5661 +C -302506.957 448484.4919 -143505.185 -302508.399 448484.4919 +C -172703.477 -266495.267 443279.2437 -129655.083 -310805.237 +C 441481.0763 -172703.477 -266495.267 443279.2437 -129655.083 +C -343039.501 21237.96722 -10136.0111 -11101.9561 21237.96722 +C -20131.4818 -376847.601 22692.68415 -12202.5948 -10490.0893 +C -1930.51013 937.527959 970.8510997 920.1216638 -179.573848 +C -.31225E-10 2458.019684 22692.68415 -12202.5948 -10490.0893 +C -.006347691 -20963.4593 18287.60729 -.45505E-10 2458.019684 +C -428.682116 1.915678723 134.2451876 -.006347691 1.472999717 +C -.463451E-7 1.0 1.472886675 -.613373E-3 1.0 +C .9993866272 -.012267455 +BLANK card ending program output variables (just node voltages, here) +C *** Open switch "S3B " to "14B " after 9.23000000E-02 sec. +C 1000 0.1 456587.9539 72810.69446 -528451.693 518738.6488 36108.45381 +C -580084.928 558077.5006 -89099.3773 -580088.607 558077.5006 +C -82089.0245 -595679.834 559039.9578 -24740.4007 -590969.55 +C 554457.9176 -82089.0245 -595679.834 559039.9578 -24740.4007 +C -563417.016 24790.5224 -9299.2942 -15491.2282 24790.5224 +C 72810.84876 -528449.542 4177.258464 9977.667495 -14154.926 +C -899.895095 -123.78439 364.4939864 -20.5855009 671.1300102 +C -.325876E-9 1692.849684 4177.258464 9977.667495 -14154.926 +C .5571416296 8388.658546 15716.096 -.325264E-9 1692.849684 +C -541.656604 .5784421055 135.2190602 .5571416296 1.862272185 +C .0620160273 1.0 1.931667198 .8804374E-3 1.000154281 +C 1.000880437 .0176087484 + PRINTER PLOT + 194 4. 12. 50. MACH 1TQ GEN { Axis limits: (-0.316, 3.238) + 194 4. 12. 50. MACH 2VEL 1 { Axis limits: (-0.835, 2.206) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc48.dat b/benchmarks/dc48.dat new file mode 100644 index 0000000..902bbd4 --- /dev/null +++ b/benchmarks/dc48.dat @@ -0,0 +1,498 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-48 +C Demonstration of random switch opening: A Monte Carlo ("STATISTICS") study +C only with random opening rather than the more common closing. The network +C is purely resistive by design, in order that switch current is known to +C have a current zero at 0.625 seconds. There are 3 parallel, independent +C networks radially branched off of generator GEN to nodes LOAD, LOAD1, +C and LOAD2. All 3 involve statistical opening. If a switch opens early +C (before .625 sec), then negative peak of -100 at t = 3/4 will be kept +C for extrema. If not (nearly half the time, since the mean of the switches +C shorting LOAD, LOAD1, and LOAD2 to ground is t = 0.6, which is very +C close to the current zero), the opening is delayed until t = .875, and +C then the peak is +30.9 at the end time t = 0.9 seconds. Why? This is +C because frequency equal to 2 Hz and use of BEGIN PEAK VALUE SEARCH at +C 0.525 means that we ignore the positive peak at 0.5 sec, and we never +C make the next one at 1.0 sec since TMAX = 0.9 sec. The negative peak +C at 0.750 sec is seen only for the early opening at 0.625 sec. As for the +C randomness, we have mixed random closing and opening as an illustration +C of this new capability that first worked on 9 July 1987. All the actual +C switchings of interest (three) use opening, whereas the reference switch +C (one of two components of the opening time) uses random closing. Because +C of use of built-in random numbers (data value XMAXMX is negative), all +C computers should produce identical results. Confirmation of the actual +C opening times can be deduced from the resultant peak voltage: +C 1) For opening at 0.63 sec, source voltage appears at this time, and it +C lasts through the end of the simulation. The negative peak occurs +C at time 0.75 sec, and this shows up in the printout (the extrema +C will have a value of -100.0 volts). +C 2) For opening at 0.875 sec, source voltage appears at this time, and +C only last through the positive rise toward the peak at 1.0 sec. But +C this rise is prematurely ended at time TMAX = 0.90 sec, when the +C voltage is 30.901699 volts, and this will be the extrema. +C Not all computers require that variable NSEED of columns 73-80 of the +C STATISTICS miscellaneous data card be punched, meaning use of the fixed +C seed. But Apollo does require this, since built-in random numbers are no +C different than installation-dependent ones: the VAX-11 algorithm is used. +PRINTED NUMBER WIDTH, 18, 3, { Extra precision and separation for 3 variables +CHANGE PRINTOUT FREQUENCY + 5 5 +BEGIN PEAK VALUE SEARCH, 0.525, { Ignore 1st cycle, which has time less than 1/2 + .01 .90 + 1 1 0 0 1 1 5 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 1 + GEN LOAD 1.0 { 1st of 3 identical resistors hung from source + GEN LOAD1 1.0 { 2nd of 3 identical resistors hung from source + GEN LOAD2 1.0 { 3rd of 3 identical resistors hung from source + DUMY 1.0 { Connect independent Monte Carlo switch node +BLANK card ending branch cards + DUMY .40 .06 STATISTICS { Reference +C Preceding switch does nothing for network; but it is referenced by the two +C dependent switches of LOAD1 and LOAD2. Following LOAD is independent: + LOAD .60 0.10 3333.STATISTICS { Independent + LOAD1 .20 0.08 3333.STATISTICSDUMY { Dependent +C Mustafa's STAT*.DAT within \TEPCO introduces current margin Ie to open: +C < n 1>< n 2>< Tclose >< Ie >< type > +C GEN LOAD .0051 .0028868 3. 3333.STATISTICS 1 +C Make a comparable addition here, to the LOAD2 switch: +C LOAD2 .20 0.08 3333.STATISTICSDUMY { Dependent +C LOAD2 .20 0.08 40. 3333.STATISTICSDUMY { Dependent + LOAD2 .20 0.08 45. 3333.STATISTICSDUMY { Dependent +C The preceding Ie = 40 advanced the LOAD2 switch-opening time slightly: +C With zero or blank: Open switch "LOAD2 " to " " after 6.30000000E-01 sec. +C With Ie = 40 amps : Open switch "LOAD2 " to " " after 6.00000000E-01 sec. +C But this was just base case output. Extrema were not affected. Adding five +C amps (40 becomes 45) affected the extrema, so data is left this way. +BLANK card terminating switch cards +14GEN 100. 2.0 -1. +BLANK card terminating sources + LOAD LOAD1 LOAD2 GEN +C Step Time LOAD LOAD1 LOAD2 GEN +C +C *** Phasor I(0) = 1.0000000E+02 Switch "LOAD " to " " closed +C *** Phasor I(0) = 1.0000000E+02 Switch "LOAD1 " to " " closed +C *** Phasor I(0) = 1.0000000E+02 Switch "LOAD2 " to " " closed +C 0 0.0 0.0 0.0 0.0 100. +C 1 .01 0.0 0.0 0.0 99.211470131448 +C 2 .02 0.0 0.0 0.0 96.858316112863 +BLANK card ending requests for program outputs (just node voltages, here) +C *** Open switch "LOAD2 " to " " after 6.00000000E-01 sec. +C 60 0.6 0.0 0.0 0.0 30.901699437494 +C *** Open switch "LOAD " to " " after 6.30000000E-01 sec. +C *** Open switch "LOAD1 " to " " after 6.30000000E-01 sec. +C 65 .65 -30.9016994375 -30.9016994375 -30.9016994375 -30.9016994375 +C 70 0.7 -80.9016994375 -80.9016994375 -80.9016994375 -80.9016994375 +C 75 .75 -100. -100. -100. -100. +C 80 0.8 -80.90169943749 -80.90169943749 -80.90169943749 -80.90169943749 +C 85 .85 -30.90169943749 -30.90169943749 -30.90169943749 -30.90169943749 +C 90 0.9 30.901699437495 30.901699437495 30.901699437495 30.901699437495 +C Variable maxima: 30.901699437495 30.901699437495 30.901699437495 92.977648588825 +C Times of maxima: 0.9 0.9 0.9 .53 +C Variable minima: -100. -100. -100. -100. +C Times of minima: .75 .75 .75 .75 + PRINTER PLOT +BLANK card ending non-existent plot cards for the base case +C The following documents extrema for the 3rd shot as found on 22 March 2007: +C Random switching times for energization number 3 : +C 1 3.3795450E-01 2 4.3170384E-01 3 6.2506590E-01 4 6.5220506E-01 +C -100. -100. -100. -100. +C Times of maxima : .75 .75 .75 .75 +C This is using Ie = 45 amps. Using an older version of ATP with this new +C data should produce the following different and wrong answer: +C -100. -100. 30.901699437495 -100. +C Times of maxima : .75 .75 0.9 .75 +C How old? A month or more. The wrong answer corresponds to use of the +C current margin Ie = 0 with either the old or the new program. As +C pointed out by Prof. Mustafa Kizilcay about a month ago using other data, +C ATP seemed to be ignoring current margin for the 2nd and later shots. In +C response, WSM proposed avoidance by making TENERG of STARTUP negative +C (simply append a minus sign). This was prior to correction of code, of +C course. That 3rd output variable is the voltage at node LOAD2 --- +C the node of the switch that has current chopping. +STATISTICS DATA 1.0500001 0.0 + LOAD + LOAD1 + LOAD2 +C Note about change to preceding. The LOAD2 tabulation continues to span +C compartments 7-20. However, compartment 7 used to have 2 but now it has +C only one energization. Where did one of them move? To final compartment +C 20 which increased from 3 to 4. The change of summary statistics is big: +C Old solution : Mean = 7.15001430E-01 ... Variance = 1.26750507E-01 +C New solution : Mean = 8.45001690E-01 ... Variance = 8.45003380E-02 +C This is for "Grouped data." The "Ungrouped data" are comparable. +C Add "FIND" usage with "DISK" output to demonstrate that Ie of the LOAD2 +C switch is not erased on 17 March 2007. Prior to correction of DICTAB, +C this was the case according to a trouble report from Orlando Hevia. +FIND { Enter interactive search for which shot and which variable gave extremum + LOAD LOAD1 { Search these 3 node voltages for extremum +EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +DISK /LIST /FULL { Create disk file of data for deterministic simulation of EXCLUDEd shot +QUIT { Done locating extrema, so exit the "FIND" alternative +C Historical note. Upon learning that we had corrected Ie treatment for Prof. +C Mustafa Kizilcay, Orlando Hevia reminded the workers in Portland that he had +C submitted a comparable complaint earlier. In his mail archive, he found a +C message to BPA having time stamp Fri, 28 Jan 2005 17:37:39 -0300. Without +C doubt, Orlando's complaint was the same, fundamentally. Why it was not +C handled at the time remains unclear. In that an additional problem with +C DISK output was noted, Orlando's complaint was more complete. How did +C Orlando first note the phenomenon? He explained : "The first users that +C discovered a problem with Ie and 3333 switches are a couple from Uruguay .." +BLANK card ending requests for statistical tabulation +BEGIN NEW DATA CASE +C 2nd of 5 subcases verify that STATISTICS (Monte Carlo) can involve TACS. +C The data comes from BPA's Dan Goldsworthy. Between August of 1993 and +C May ?? of 1994 (see the July, 1994, newsletter), this was not possible. +C Data is not at all realistic. TMAX is artificially small, etc.. +LINEAR BIAS USAGE { Reference angle will vary linearly rather than randomly +PRINTED NUMBER WIDTH, 11, 1, { Restore default precision for dt-loop columns +C $STARTUP, dc37star.dat { Use disk file for re-initialization at this point +C This is a Monte Carlo case, for which TENERG is critical. But this +C parameter is initialized only in the STARTUP file. For this 2nd or +C later data case, we reinitialize via the preceding $STARTUP request +CHANGE PRINTOUT FREQUENCY + 5 5 20 20 + .000100 .020 60. 0.0 + 1 1 0 0 1 0 0 0 3 + 1 2 1 1 +TACS HYBRID CASE +90PCBA +90A1 +88PS5A = ABS(PCBA - A1) +93STATA +88PS2A 58+PLUS1 1000. 0.0 1.0 STATA +88PS4A 56+PS2A 1. + -1.0 480. + 0.0 480. + 8.0 0.0 + 1000.0 0.0 + 9999. +88PS6A = (PS5A - PS4A) .AND. STATA +88CLSA 62+PLUS1 PS6A +33PS5A PS2A PS4A PS6A +33STATA +33CLSA +BLANK CARD ENDING TACS DATA CASE + SENDA PCBA 10.0 5.0 + A1 10.0 15. + DUMMY 1. + STATA 1. +BLANK CARD ENDING BRANCH CARDS + DUMMY .001 .000001 STATISTICS 0 +76STATA .005 .0015 STATISTICSDUMMY 0 +13PCBA A1 CLSA 13 +BLANK CARD ENDING SWITCH CARDS +14SENDA 188.0 60. 0.0 -1. +BLANK CARD ENDING SOURCES + PCBA A1 +C Step Time PCBA PCBA A1 PCBA TACS +C A1 A1 PS5A +C 0 0.0 188. 188. 0.0 0.0 0.0 +C 1 .1E-3 187.866421 187.866421 0.0 0.0 187.866421 +C 2 .2E-3 187.465873 187.465873 0.0 0.0 187.465873 +C 3 .3E-3 186.798926 186.798926 0.0 0.0 186.798926 +BLANK CARD ENDs NODE VOLTAGE OUTPUTS +C 120 .012 -35.227687 -35.227687 0.0 0.0 35.2276871 +C Switch "PCBA " to "A1 " closing after 1.32000000E-02 sec. +C 140 .014 0.0 70.7309673 70.7309673 .964122164 0.0 +C 160 .016 0.0 113.976248 113.976248 4.51879549 0.0 +C 180 .018 0.0 88.9755078 88.9755078 6.91674682 0.0 +C 200 .02 0.0 12.7036093 12.7036093 6.17355737 0.0 +C Variable maxima : 188. 188. 114.548243 7.06193095 187.985156 +C Times of maxima : 0.0 0.0 .0163 .0186 .0083 +C Variable minima : -187.98516 -187.98516 0.0 0.0 0.0 +C Times of minima : .0083 .0083 0.0 0.0 0.0 +BLANK CARD ending plot +C Random switching times for energization number 1 : +C 1 6.5564603E-03 2 9.7966634E-03 +C ==== Table dumping for all subsequent restorations. Time [sec] = 9.0000000E-4 +C Switch "PCBA " to "A1 " closing after 1.52000000E-02 sec. +C 120. 188. 188. 125.885042 6.21833213 187.985156 10.25 480. +C Times of maxima : 0.0 0.0 .016 .0189 .0083 .02 .1E-3 +C +C MAIN20 dumps OVER12 dice seed SEEDSV = 5.7295779513082323E+01 +C Statistical distribution of peak voltage at node "A1 ". The base voltag +C Interval voltage voltage in Frequency Cumulative +C number in per unit physical units (density) frequency +C 1 0.0500000 0.94165000E+01 2 2 +C 2 0.1000000 0.18833000E+02 0 2 +C < < Etc. (omit the zero rows) > > +C 14 0.7000000 0.13183100E+03 1 3 +C Summary of preceding table follows: Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.22809327E-01 +C Variance = 1.40833333E-01 1.48931988E-01 +C Standard deviation = 3.75277675E-01 3.85917075E-01 +0 188.33 A1 { One and only request for statistical tabulation, of A1 +C Column positioning of "NO SWITCH PLOTS" on blank terminator is arbitrary: +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE +C 3rd of 5 subcases verify that STATISTICS (Monte Carlo) works with MODELS +C The case is similar to subcase 2, with TACS section converted to a model +C Data is not at all realistic. TMAX is artificially small, etc.. +LINEAR BIAS USAGE { Reference angle will vary linearly rather than randomly +PRINTED NUMBER WIDTH, 11, 1, { Restore default precision for dt-loop columns +CHANGE PRINTOUT FREQUENCY + 5 5 20 20 + .000100 .020 60. 0.0 + 1 1 0 0 1 0 0 0 3 + 1 2 1 1 +MODELS +INPUT pcba { v(PCBA) } -- voltage at node PCBA + a1 { v(A1) } -- voltage at node A1 + stata { switch(STATA) } -- switch status at node STATA +OUTPUT clsa -- used to contol switch PCBA-A1 +MODEL subcase3 + INPUT dv -- voltage across controlled switch + sw_status -- switch status of type-76 switch + OUTPUT sw_control + VAR sw_control, dvi, ps2, ps4, ps6, ps2x, ps2i + FUNCTION ptlst POINTLIST (-1E6,480),(0,480),(8,0),(1E6,0) + INIT + sw_control :=0 + histdef(ps6):=0 + integral(ps2x):=0 + histdef(ps2x) :=0 + ENDINIT + EXEC + ps2x := sw_status * 1000 + ps2 := integral(ps2x) -- corresponds to TACS type-58 + ps4 := ptlst(ps2) -- corresponds to TACS type-56 + ps6 := (dv-ps4) AND sw_status + IF ps6>0 AND prevval(ps6)<=0 THEN -- corresponds to TACS type-62 + sw_control := 1 + ENDIF + ENDEXEC +ENDMODEL +USE subcase3 AS sub + INPUT dv:=abs(pcba-a1) -- voltage across controlled switch + sw_status:=stata -- status of type-76 switch + OUTPUT clsa:=sw_control -- control signal to controlled switch +ENDUSE +RECORD sub.dv AS dv + sub.ps2 AS ps2 + sub.ps4 AS ps4 + sub.ps6 AS ps6 + stata AS stata + clsa AS clsa +ENDMODELS + SENDA PCBA 10.0 5.0 + A1 10.0 15. + DUMMY 1. + STATA 1. +BLANK CARD ENDING BRANCH CARDS + DUMMY .001 .000001 STATISTICS 0 +76STATA .005 .0015 STATISTICSDUMMY 0 +13PCBA A1 CLSA 13 +BLANK CARD ENDING SWITCH CARDS +14SENDA 188.0 60. 0.0 -1. +BLANK CARD ENDING SOURCES + PCBA A1 +C Step Time PCBA PCBA A1 PCBA TACS TACS TACS TACS TACS TACS +C A1 A1 DV PS2 PS4 PS6 STATA CLSA +C 0 0.0 188. 188. 0.0 0.0 188. 0.0 480. 0.0 0.0 0.0 +C 1 .1E-3 187.866421 187.866421 0.0 0.0 187.866421 0.0 480. 0.0 0.0 0.0 +C 2 .2E-3 187.465873 187.465873 0.0 0.0 187.465873 0.0 480. 0.0 0.0 0.0 +C 3 .3E-3 186.798926 186.798926 0.0 0.0 186.798926 0.0 480. 0.0 0.0 0.0 +BLANK CARD ENDs NODE VOLTAGE OUTPUTS +C 120 .012 -35.227687 -35.227687 0.0 0.0 35.2276871 6.05 117. 0.0 1.0 0.0 +C Switch "PCBA " to "A1 " closing after 1.32000000E-02 sec. +C 140 .014 0.0 70.7309673 70.7309673 .964122164 0.0 8.05 0.0 0.0 1.0 1.0 +C 160 .016 0.0 113.976248 113.976248 4.51879549 0.0 10.05 0.0 0.0 1.0 1.0 +C 180 .018 0.0 88.9755078 88.9755078 6.91674682 0.0 12.05 0.0 0.0 1.0 1.0 +C 200 .02 0.0 12.7036093 12.7036093 6.17355737 0.0 14.05 0.0 0.0 1.0 1.0 +C Variable maxima : 188. 188. 114.548243 7.06193095 188. 14.05 480. 1.0 1.0 1.0 +C Times of maxima : 0.0 0.0 .0163 .0186 0.0 .02 0.0 .0132 .006 .0132 +C Variable minima : -187.98516 -187.98516 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C Times of minima : .0083 .0083 0.0 0.0 .0133 0.0 .014 0.0 0.0 0.0 +BLANK CARD ending plot +C Random switching times for energization number 1 : +C 1 6.5564603E-03 2 9.7966634E-03 +C ==== Table dumping for all subsequent restorations. Time [sec] = 9.00000000E-04 +C Switch "PCBA " to "A1 " closing after 1.52000000E-02 sec. +C 120. 188. 188. 125.885042 6.21833213 188. 10.25 480. 1.0 1.0 1.0 +C Times of maxima : 0.0 0.0 .016 .0189 0.0 .02 0.0 .0152 .0098 .0152 +C +C MAIN20 dumps OVER12 dice seed SEEDSV = 5.7295779513082323E+01 +C Statistical distribution of peak voltage at node "A1 ". The base voltage for per unit printout is V-base = 1.88330000E+02 +C Interval voltage voltage in Frequency Cumulative Per cent +C number in per unit physical units (density) frequency .GE. current value +C 1 0.0500000 0.94165000E+01 2 2 33.333333 +C 2 0.1000000 0.18833000E+02 0 2 33.333333 +C < < Etc. (omit the zero rows) > > +C 14 0.7000000 0.13183100E+03 1 3 0.000000 +C Summary of preceding table follows: Grouped data Ungrouped data +C Mean = 2.41666667E-01 2.22809327E-01 +C Variance = 1.40833333E-01 1.48931988E-01 +C Standard deviation = 3.75277675E-01 3.85917075E-01 +C +0 188.33 A1 { One and only request for statistical tabulation, of A1 +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE +C 4th of 5 subcases is unrelated to other subcases other than that it +C involves Monte Carlo simulation. It is added 27 November 2002 to +C demonstrate that KIZILCAY F-DEPENDENT (KFD) modeling is compatible +C with STATISTICS (and/or SYSTEMATIC or START AGAIN, although only +C STATISTICS is demonstrated). As first reported by Ricardo Tenorio of +C ABB in Vasteras, Sweden, there was incompatibility (execution would +C hang after the 1st energization had begun) prior to correction on +C 16 November 2002. Ricardo's initial complaint was about minimum dT (see +C the January, 2003, newsletter), but shortly thereafter, privately, he +C reported inability to use STATISTICS switches with KFD data. The data +C used here is the same as will be found in the 7th subcase of DC-23. +C Step size dT is plenty big, so there is no question of instability +C caused by roundoff error. A switch has been added in series with the +C voltage source, and the associated mean and standard deviation are +C arbitrarily chosen to give a nice distribution of 4 energizations. +C Finally, the sinusoidal source has been restored to 60 Hz (in DC-23, +C 50 Hz was used in order that the period be a rounder number), and the +C angle has been rotated so the voltage upon closure is small. I.e., +C the closures are artificially soft, intentionally, so the base case +C plot has no big spike at 4 msec. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000100 .040 + 5 1 1 0 1 -1 4 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 0 + 60 20 100 100 + ELEM 99. 1 +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +KIZILCAY F-DEPENDENT 6 1.00000E+000 S + 2.55564999999999990E-002 1.00000000000000000E+000 + 2.58174256593059220E-006 1.26190169827623520E-003 + 3.44528114161255420E-008 6.56757488674167030E-007 + 2.16578732571550020E-012 6.22037676357393080E-010 + 7.77318622992575270E-015 1.10717058895704090E-013 + 2.25856143523397890E-019 5.18376352266273340E-017 + 3.19918022205034290E-022 4.41171918010679540E-021 +BLANK card ending branch cards + GEN ELEM .004 .001 STATISTICS 1 +C Preceding column-80 punch really is not needed. It was added simply to +C demonstrate that current output of the KFD branches agrees with it. +BLANK card ending switch cards (none) +14GEN 187794.214 60. 20. -1. +BLANK card ending source cards + GEN +C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 2 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time GEN GEN ELEM +C ELEM TERRA +C 0 0.0 176468.8371 0.0 0.0 +C 5 .5E-3 161307.6987 0.0 0.0 +C 10 .1E-2 140432.1546 0.0 0.0 +C 15 .0015 114581.7315 0.0 0.0 +C 20 .002 84672.19336 0.0 0.0 +C 25 .0025 51763.10058 0.0 0.0 +C 30 .003 17020.27416 0.0 0.0 +C 35 .0035 -18325.504 0.0 0.0 +C 40 .004 -53022.092 0.0 0.0 +C *** Close switch "GEN " to "ELEM " after 4.10000000E-03 sec. +C 45 .0045 -85840.3459 -1534.79533 -1534.79533 +C 50 .005 -115617.663 -2541.85468 -2541.85468 +BLANK card ending node voltage output requests + CALCOMP PLOT +C 400 .04 -180519.385 -3271.23717 -3271.23717 +C Variable maxima : 187793.4818 4132.085734 4132.085734 +C Times of maxima : .0324 .0344 .0344 +C Variable minima : -187793.482 -5009.38242 -5009.38242 +C Times of minima : .0074 .0089 .0089 +C Max>Name1 Name2 Name3 Name4 16-byte title Y-axis label + 194 4. 0.0 40.-6.E34.E3ELEM dT = 100 usec H(s) current +BLANK card ending base-case plot cards +-2 4000. ELEM { -2 ==> tatistical tabulation of branch current +C The preceding base current of 4K amps is close to the peak value of the +C base-case (no-variance) solution. It results in per unit values of a +C little more than 1. Using default compartment size of .05, this results +C in reasonable compartment numbers, and a pleasing dispersion of results: +C Statistical distribution of peak current for branch "ELEM " to " ". Base current for per unit output = 4.00000000E+03 +C Interval current current in Frequency Cumulative Per cent +C number in per unit physical units (density) frequency .GE. current value +C 22 1.1000000 4.40000000E+03 0 0 100.000000 +C 23 1.1500000 4.60000000E+03 1 1 75.000000 +C 24 1.2000000 4.80000000E+03 0 1 75.000000 +C 25 1.2500000 5.00000000E+03 1 2 50.000000 +C 26 1.3000000 5.20000000E+03 0 2 50.000000 +C 27 1.3500000 5.40000000E+03 1 3 25.000000 +C 28 1.4000000 5.60000000E+03 1 4 .000000 +C Summary of preceding table follows: Grouped data Ungrouped data +C Mean = 1.26250000E+00 1.26057789E+00 +C Variance = 1.22916667E-02 1.35490825E-02 +C Standard deviation = 1.10867789E-01 1.16400526E-01 +BLANK card ending statistical tabulation requests +BEGIN NEW DATA CASE +C 5th of 5 subcases is a modified version of the 1st. The FIND command +C is added as earlier illustrated in DC-24. That already illustrates the +C use of DISK to create deterministic data SHOT*.DAT corresponding to +C an EXCLUDE-d shot. But what DC-24 does not illustrate is RESIMULATE +C to simulate the just-created data. Also missing was random opening and +C use of the optional /MEMSAV switch. So, provide these here. This +C data subset is added 6 October 2002. Until 27 November 2002, it was +C the 4th subcase. Note it always must be last. +PRINTED NUMBER WIDTH, 18, 3, { Extra precision and separation for 3 variables +CHANGE PRINTOUT FREQUENCY + 5 5 +BEGIN PEAK VALUE SEARCH, 0.525, { Ignore 1st cycle, which has time less than 1/2 + .01 .90 +C MEMSAV Note value 0 is keyed + 1 1 0 0 1 0 1 2 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 1 + GEN LOAD 1.0 { 1st of 3 identical resistors hung from source + GEN LOAD1 1.0 { 2nd of 3 identical resistors hung from source + GEN LOAD2 1.0 { 3rd of 3 identical resistors hung from source + DUMY 1.0 { Connect independent Monte Carlo switch node +BLANK card ending branch cards + DUMY .40 .06 STATISTICS { Reference +C Preceding switch does nothing for network; but it is referenced by the two +C dependent switches of LOAD1 and LOAD2. Following LOAD is independent: + LOAD .60 0.10 3333.STATISTICS { Independent + LOAD1 .20 0.08 3333.STATISTICSDUMY { Dependent + LOAD2 .20 0.08 3333.STATISTICSDUMY { Dependent +BLANK card terminating switch cards +14GEN 100. 2.0 -1. +BLANK card terminating sources + LOAD LOAD1 LOAD2 GEN +BLANK card ending requests for program outputs (just node voltages, here) + PRINTER PLOT +$CLOSE, UNIT=4 STATUS=KEEP { Disconnect base-case .PL4 file for TPPLOT use +$OPEN, UNIT=4 STATUS=C-like FILE=dummy.pl4 ! { Connect C-like scratch file +BLANK card ending non-existent plot cards for the base case +STATISTICS DATA 1.0500001 0.0 + LOAD +FIND { Enter interactive search for which shot and which variable gave extremum +C Normally the user does not know which shot he wants, so he first will use +C EXCLUDE to find the worst transients, and then he wants data for this. +C See DC-24 for this technique. But it also is possible for the user manually +C to name the shot of interest. This is what is done here: +C EXCLUDE { Repeat the preceding search after 1st excluding the just-found shot +C < Shot # Cols 25-32 are I8 data for shot # of interest +DISK /LIST /MEMSAV 1 { Create determinstic disk file for shot # 1 +RESIMULATE { Abort this data case. Begin with SHOT0001.DAT just created by DISK +C Any data card following RESIMULATE should be ignored. So, this is a good +C place to add miscellaneous comments. Begin these with mention of /OPEN +C --- another flag of the DISK subcommand that is not being illustrated. +C Because there is no /OPEN qualifier, $OPEN and $CLOSE cards will be +C converted to comment cards. If /OPEN were added, they would be passed +C through without modification. Another unused feature is /FULL (see DC-24 +C for an illustration). Lack of /FULL means that switch times will be +C optimally encoded but with a leading blank byte. This provides separation +C from what precedes the number. Yes, one digit is being given up, but it is +C highly unlikely that this will make any difference, considering the DELTAT +C discretization of use. Use of /MEMSAV has no practical effect in this +C case because the value keyed on the integer miscellaneous data card is zero. +C This is deliberate. Normally, the field would be left blank, but if this +C were the case, one could not be sure that the /MEMSAV flag was working. +C The user will note that the zero is passed through, demonstrating opeation. +C A final item: For the record, request cards that always are destroyed +C (missing in the DISK output) are: +C OMIT BASE CASE LINEAR BIAS USAGE +C TRULY RANDOM NUMBERS MODELS PROCESSES EXTREMA +C REPEATABLE RANDOM NUMBERS USER SUPPLIED SWITCH TIMES +C RANDOM NUMBER GENERATOR SEED +C 30 December 2003, add /CYCLE qualifier to continue to have T-open = 0.0 +C As Orlando Hevia observed in E-mail of that day, this normally is not the +C engineering choice. Normally, a switch that closes should remain closed, +C and DICTAB is being modified to do this. T-close = 1.E+9 will be seen on +C the modified switch card. To restore 0.0, add /CYCLE (which will allow +C the switch to cycle open again (the status at time zero). +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc49.dat b/benchmarks/dc49.dat new file mode 100644 index 0000000..68d4d2a --- /dev/null +++ b/benchmarks/dc49.dat @@ -0,0 +1,30 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-49 +C Companion case to DC-32, which had MEMSAV=1 use. Development was first +C documented in Volume X EMTP Memoranda, 3 July 1980, Pagination MSDO. +C Node LOADA has a one-ohm resistor connected to FAULT, and this in turn +C is connected to ground via switch number one. This fault switch was open +C during DC-32, but will here be closed at 12 msec (the 1st step beyond +C the backed-off switching time of 11.99 msec). +C $OPEN, UNIT=22 FILE=dc32to49.bin STATUS=OLD FORM=UNFORMATTED ! { (hold case) +$OPEN, UNIT=LUNIT2 FILE=dc32.bin STATUS=OLD FORM=UNFORMATTED ! { (hold case) +START AGAIN + 1 .011990 + 9999 +$CLOSE, UNIT=LUNIT2 STATUS=KEEP +$OPEN, UNIT=LUNIT2 STATUS=SCRATCH FORM=UNFORMATTED +MISCELLANEOUS DATA CARDS + .000020 .018 .010 + 1 1 0 0 1 0 0 2 +$OPEN, UNIT=LUNIT4 FILE=dc32.pl4 STATUS=APPEND ! { C-like usage adds at end +C The following step numbers are a continuation of DC-32, which simulated +C 500 steps (DELTAT = 20 microseconds, TMAX = 10 milliseconds). +CHANGE PRINTOUT FREQUENCY + 500 1 502 2 510 10 550 50 +TIME STEP LOOP + PRINTER PLOT + 144 1. 10. 18. LOADA LOADB { Axis limits: (-2.784, 1.443) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc49old.dat b/benchmarks/dc49old.dat new file mode 100644 index 0000000..525707f --- /dev/null +++ b/benchmarks/dc49old.dat @@ -0,0 +1,73 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-49 +C Companion case to DC-32, which had MEMSAV=1 use. Development was first +C documented in Volume X EMTP Memoranda, 3 July 1980, Pagination MSDO. +C Node LOADA has a one-ohm resistor connected to FAULT, and this in turn +C is connected to ground via switch number one. This fault switch was open +C during DC-32, but will here be closed at 12 msec (the 1st step beyond +C the backed-off switching time of 11.99 msec). +$OPEN, UNIT=22 FILE=dc32to49.bin STATUS=OLD FORM=UNFORMATTED ! { (hold case) +C $OPEN, UNIT=22 FILE=dc32.bin STATUS=OLD FORM=UNFORMATTED ! { (hold case) +START AGAIN + 1 .011990 + 9999 +$CLOSE, UNIT=22 STATUS=KEEP +$OPEN, UNIT=22 STATUS=SCRATCH FORM=UNFORMATTED +MISCELLANEOUS DATA CARDS + .000020 .018 .010 + 1 1 0 0 1 0 0 2 +$OPEN, UNIT=4 FILE=dc32.pl4 STATUS=APPEND ! { C-like usage adds at end +C The following step numbers are a continuation of DC-32, which simulated +C 500 steps (DELTAT = 20 microseconds, TMAX = 10 milliseconds). +CHANGE PRINTOUT FREQUENCY + 500 1 502 2 510 10 550 50 +C Step Time SECB SECA SECC AN4 AN5 +C CATH1 CATH2 CATH3 CATH4 CATH5 +C +C AN6 AN5 AN4 CATH6 CATH5 +C +C TRANC TRANB TRANA POLEB POLEA +C +C GENB GENC SECB SECA SECC +C CATH1 CATH2 CATH3 +C TRANB TRANC +C GENC GENA +C 502 .01004 -211.3618 0.0 -239.0341 -46.136559 -300.6658 +C -141.67108 -141.67108 -141.67108 -67.862224 158.994718 +C -9.9160749 -77.285888 86.0849016 -141.67108 143.499575 +C -76.194786 -9.4236639 0.0 3.09902854 0.0 +C -.01815669 .012150754 +C Etc. (skip to next interesting event, which is the 1st switching): +C Diode "SECA " to "CATH2 " opening after 1.02000000E-02 sec. +C 510 .0102 -150.8714 0.0 -285.45775 -.45751033 -283.77559 +C -140.50318 -140.50318 -140.50318 -5.4593198 143.272405 +C -45.725494 -49.733993 97.8757247 -140.50318 145.412079 +C -48.641182 -45.235225 0.0 -.42793493 0.0 +C -.03153852 .006633174 +C Diode "AN4 " to "CATH4 " closing after 1.02200000E-02 sec. +TIME STEP LOOP +C Diode "SECC " to "CATH3 " opening after 1.72000000E-02 sec. +C Diode "AN6 " to "CATH6 " opening after 1.72200000E-02 sec. +C Diode "AN4 " to "CATH4 " closing after 1.77800000E-02 sec. +C Diode "SECB " to "CATH1 " closing after 1.78400000E-02 sec. +C 900 .018 0.0 0.0 -200.80168 0.0 -207.67249 +C -156.26361 -156.26361 -157.81916 105.964948 51.408884 +C -89.469147 18.0212454 73.9589646 -156.26361 41.4269674 +C 19.522284 -89.301354 12.9075961 1.99638332 0.0 +C -.00951582 -.00302247 +C Variable minima : -307.90065 -319.51502 -314.74562 -347.33303 -354.13903 +C -193.81352 -193.81352 -193.81352 -165.05691 -166.43183 +C -94.926015 -95.222122 -99.426568 -193.81352 38.4109479 +C -93.876407 -93.889586 -.89624956 -1.2792333 -.74181951 +C -.0346548 -.03640764 +C Times of minima : .00706 .00624 .00544 .0142 .015 +C .01488 .01488 .01488 .0146 .01626 +C .01564 .0148 .01646 .01488 .01726 +C .0173 .00312 .00372 .01552 .00216 +C .0177 .01604 + PRINTER PLOT + 144 1. 10. 18. LOADA LOADB { Axis limits: (-2.784, 1.443) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc4bincl.dat b/benchmarks/dc4bincl.dat new file mode 100644 index 0000000..a597ab7 --- /dev/null +++ b/benchmarks/dc4bincl.dat @@ -0,0 +1,12 @@ +93TRAN NAME Magnet .000 30. 3 + -5.0 -100. { Unlike 1st subcase of DC-4, we here input + -.1 -50. { the 3rd quadrant of the characteristic as + -.02 -45. { explicit data points. This is required in + -.01 -40. { order latr to apply a 3rd-quadrant initial + -.000 -30. { condition and avoid "OVER13" KILL = 34. + .000 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 diff --git a/benchmarks/dc4bins.dat b/benchmarks/dc4bins.dat new file mode 100644 index 0000000..fd25e66 --- /dev/null +++ b/benchmarks/dc4bins.dat @@ -0,0 +1,58 @@ +/SOURCE +14GEN 377. 60. -1. +/TACS +TACS HYBRID + 1FLUX +GEN + 1.0 + 0.0 1.0 +90GEN +91GROUND +99CURR -1.0* GROUND +33FLUX GEN GROUNDCURR +/OUTPUT + GEN +/PLOT + CALCOMP PLOT { Needed because 1st subcase leaves plotting in PRINTER PLOT mode +C Last step: 400 .02 116.4994069 2.765761424 -2.76576141 .9416257618 +C Last step continued .....: 116.4994069 2.765761424 -2.76576142 + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + 194 2. 0.0 20. TACS CURR ABCDEFGHIJKLMNOP1234567890123456 + X-Y PLOT Horizontal Axis label123 + 10. -1.1 1.1 + 8. -4.0 4.0 + 194 4. 0.0 20. TACS FLUX TACS CURR Graph heading---Vertical axis la + X-Y PLOT Horizontal Axis label123 + 9999. -1.1 1.1 "9999." returns to conventional (vs. time) plotting + 8. -4.0 4.0 + PRINTER PLOT + 194 4. 0.0 20. TACS CURR { Axis limits: (-3.500, 3.500) +C Now that all plotting is done with, let's illustrate the three declarations +C that will choose the destination of any subsequent "CALCOMP PLOT" use: + SCREEN PLOT { If a vector plot were to follow, it would go only to the screen + PEN PLOT { If a vector plot were to follow, ... go only to CalComp plotter + SCREEN PEN { If a vector plot were to follow, .. go to both screen & plotter +C The preceding 3 declarations really could only be tested by a user who +C had both a vector-graphic screen and a CalComp plotter. Hence no use. +C The following active card of DC-33 must be disabled for $INSERT use. The +C problem is this. For $INCLUDE, the /LOAD FLOW disappears during data +C assembly, leaving just comment cards that have nothing to do with any load +C flow. So, they were tolerated. But not so for $INSERT which retains +C the data for this non-existent feature. So, remove entire block: +C /LOAD FLOW +/BRANCH +96GROUNDGEN 8888. 1.E-9 1 + 1.0 -0.7 + 2.0 0.9 + 3.5 1.0 + 9999. +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/INITIAL + 2GROUND 0. { Node voltage initial condition in fact changes nothing +C Initial conditions really are not a part of this problem, although we do want +C to illustrate that they, too, can be sorted, and inserted after /LOADFLOW +C The preceding redefinition of node voltage at GROUND changes zero to zero. +/SWITCH + GROUND MEASURING 1 diff --git a/benchmarks/dc4cins.dat b/benchmarks/dc4cins.dat new file mode 100644 index 0000000..5497e7c --- /dev/null +++ b/benchmarks/dc4cins.dat @@ -0,0 +1,60 @@ +/SOURCE +14GEN 377. 60. -1. +/MODELS { 9 July 1995, the former /TACS was changed to this new class +MODELS { Note the change; the 1st subcase had "TACS HYBRID" here +INPUT GEN {V(GEN)}, GROUND {I(GROUND)} +MODEL DC33 +INPUT gen, ground +VAR flux, curr +HISTORY gen {DFLT: 0}, flux {DFLT: 0}, ground {DFLT: 0} +INIT + curr:=0 +ENDINIT +EXEC + COMBINE AS INTEGRATOR + LAPLACE(flux/gen):=(1.0|S0)/(1.0|S1) + ENDCOMBINE + curr:=-ground +ENDEXEC +ENDMODEL +USE DC33 AS DC33 + INPUT GEN:=GEN, GROUND:=GROUND +ENDUSE +RECORD + DC33.FLUX AS FLUX + DC33.GEN AS GEN + DC33.GROUND AS GROUND + DC33.CURR AS CURR +ENDRECORD +ENDMODELS +/OUTPUT + GEN +/PLOT +C Last step: 400 .02 116.4994069 2.765761424 -2.76576141 .9604757618 +C Variable maxima : 377. 3.499613141 3.499909256 1.00939921 +C Times of maxima : 0.0 .00415 .0125 .00415 +C Variable minima : -376.992558 -3.49990926 -3.49961314 -.990568949 +C Times of minima : .00835 .0125 .00415 .0125 + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + CALCOMP PLOT + SCREEN PLOT + 194 2. 0.0 20. MODELSCURR ABCDEFGHIJKLMNOP1234567890123456 + X-Y PLOT Horizontal Axis label123 + 10. -1.1 1.1 + 8. -4.0 4.0 + 194 4. 0.0 20. MODELSFLUX MODELSCURR Graph heading---Vertical axis la + X-Y PLOT Horizontal Axis label123 + 9999. -1.1 1.1 "9999." returns to conventional (vs. time) plotting + 8. -4.0 4.0 +/BRANCH +96GROUNDGEN 8888. 1.E-9 1 + 1.0 -0.7 + 2.0 0.9 + 3.5 1.0 + 9999. +/REQUEST +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +/SWITCH + GROUND MEASURING 1 diff --git a/benchmarks/dc4dins.dat b/benchmarks/dc4dins.dat new file mode 100644 index 0000000..f45632f --- /dev/null +++ b/benchmarks/dc4dins.dat @@ -0,0 +1,64 @@ +/MODELS +MODELS { Request to begin MODELS data appears just once +C End of fixed data. Begin variable /-cards, which can appear in any +C order. To illustrate that TACS data really will be sorted to precede +C MODELS data, note that /TACS follows /MODELS in the following. +C I.e., we rely on /-card sorting to correct this. TACS data is +C separate and distinct from MODELS data just as branch data is +C separate and distinct from switch or source data. +/MODELS +INPUT deltav {TACS(vsw)} +OUTPUT grid +MODEL dc30 + INPUT dv + VAR grid + OUTPUT grid + EXEC + IF abs(dv)>=1.5e8*t +1e5 THEN grid:=1 ELSE grid:=0 ENDIF + ENDEXEC +ENDMODEL +USE dc30 AS dc30 + INPUT dv:=deltav + OUTPUT grid:=grid +ENDUSE +RECORD + dc30.dv AS dv +/TACS +TACS HYBRID { Request to begin TACS data appears just once + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW = BUS2 - BUS3 +27DV { MODELS variable DV will define Type-27 TACS source of the same name +33BUS2 BUS3 VSW DV +/BRANCH + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +/SWITCH + BUS2 BUS3 -1. 1.E9 + NAME: Valve ! { Request "NAME: " of cols. 3-8 precedes A6 valve name in 9-14 +11BUS2R BUS3R 20. GRID 12 +/SOURCE +14GEN 66500. 50. -2.0508 -1. +/OUTPUT +C Step Time BUS2R TACS TACS TACS TACS MODELS +C BUS3R BUS2 BUS3 VSW DV DV +C *** Phasor I(0) = -1.5049840E+01 Switch "BUS2 " to "BUS3 " closed in the steady-state. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C *** Open switch "BUS2 " to "BUS3 " after 1.00000000E-06 sec. +C 1 .1E-5 0.0 64752.0751 64752.0751 0.0 0.0 0.0 +C 2 .2E-5 -506.98951 64680.6667 65187.6562 -506.98951 0.0 -506.98951 +C 3 .3E-5 -1509.364 64544.7937 66054.1577 -1509.364 -506.98951 -1509.364 +C 4 .4E-5 -2482.2238 64430.506 66912.7297 -2482.2238 -1509.364 -2482.2238 +C 5 .5E-5 -3414.3602 64348.9091 67763.2693 -3414.3602 -2482.2238 -3414.3602 +C End of /-card data. The only thing that remains are the various blank +C cards that terminate the various data classes. Note the one for MODELS +C (optional for MODELS, but necessary for sorting): diff --git a/benchmarks/dc4drtt.dat b/benchmarks/dc4drtt.dat new file mode 100644 index 0000000..6275ceb --- /dev/null +++ b/benchmarks/dc4drtt.dat @@ -0,0 +1,62 @@ +KARD 2 2 2 3 3 4 4 4 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 + 9 10 10 10 10 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 18 19 19 + 20 20 21 21 22 22 23 23 24 24 26 +KARG 2 3 4 4 5 2 4 6 6 7 5 5 6 8 5 5 6 9 5 5 6 10 5 5 6 + 11 5 5 6 12 4 13 4 5 14 4 5 15 4 5 16 4 5 17 4 5 18 1 7 13 + 8 14 9 15 10 16 11 17 12 18 3 +KBEG 45 26 -7 26 -7 32 24 -7 26 -7 41 57 26 -7 41 62 26 -7 41 62 26 -7 41 62 26 + -7 41 62 26 -7 26 -7 26 34 -7 26 34 -7 26 34 -7 26 34 -7 26 34 -7 3 17 1 + 17 1 17 1 17 1 17 1 17 1 25 +KEND 50 31 13 32 12 37 30 20 39 22 46 62 39 22 46 67 39 22 46 67 39 22 46 67 39 + 22 46 67 39 22 32 22 32 39 22 32 39 22 32 39 22 32 39 22 32 39 22 8 32 16 + 32 16 32 16 32 16 32 16 32 16 30 +KTEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 + 0 0 0 0 0 0 0 0 0 0 0 +$LISTON + IMINIMA = 300000.0*RRRRRR/6.283185307/AAAAAA**2 + FACTOR = (200000.0/IMINIMA)**(0.2) + EEEEEEEEEEEEEE = IMINIMA*AAAAAA + VOLTI1__________ = EEEEEEEEEEEEEE/SQRT(1.0+1.0) + VOLTI2__________ = EEEEEEEEEEEEEE*FACTOR/SQRT(1.0+FACTOR) + VOLTI3__________ = EEEEEEEEEEEEEE*FACTOR**2.0/SQRT(1.0+FACTOR**2.0) + VOLTI4__________ = EEEEEEEEEEEEEE*FACTOR**3.0/SQRT(1.0+FACTOR**3.0) + VOLTI5__________ = EEEEEEEEEEEEEE*FACTOR**4.0/SQRT(1.0+FACTOR**4.0) + VOLTI6__________ = EEEEEEEEEEEEEE*FACTOR**5.0/SQRT(1.0+FACTOR**5.0) + KORRI1__________ = IMINIMA + KORRI2__________ = IMINIMA*FACTOR + KORRI3__________ = IMINIMA*FACTOR**2.0 + KORRI4__________ = IMINIMA*FACTOR**3.0 + KORRI5__________ = IMINIMA*FACTOR**4.0 + KORRI6__________ = IMINIMA*FACTOR**5.0 +$LISTON +99BUSBUS +KORRI1__________VOLTI1__________ +KORRI2__________VOLTI2__________ +KORRI3__________VOLTI3__________ +KORRI4__________VOLTI4__________ +KORRI5__________VOLTI5__________ +KORRI6__________VOLTI6__________ + 9999. +$INSERT dc4DRTT2.dat WSMWSM +$EOF User-supplied header cards follow. 24-Jun-04 10:04:06 +C Note about modification. The original file ended on changes to +C card 24. Card 25 is the "9999." card, and I insert new card 26 to +C test nested insert. This takes 1 more arg use, to replace cols. 21-26). +ARG, BUSBUS, AAAAAA, RRRRRR +NUM, AAAAAA, RRRRRR +DEP, IMINIMA +DEP, FACTOR +DEP, EEEEEEEEEEEEEE +DEP, VOLTI1__________ +DEP, VOLTI2__________ +DEP, VOLTI3__________ +DEP, VOLTI4__________ +DEP, VOLTI5__________ +DEP, VOLTI6__________ +DEP, KORRI1__________ +DEP, KORRI2__________ +DEP, KORRI3__________ +DEP, KORRI4__________ +DEP, KORRI5__________ +DEP, KORRI6__________ diff --git a/benchmarks/dc4drtt2.dat b/benchmarks/dc4drtt2.dat new file mode 100644 index 0000000..1014ee8 --- /dev/null +++ b/benchmarks/dc4drtt2.dat @@ -0,0 +1,12 @@ +KARD 1 +KARG 1 +KBEG 53 +KEND 58 +KTEX 0 + DUMMY 1.0 { " " +C 2nd of two cards of DRTT2.LIB is just a fixed comment card. +$EOF +Note that argument AAAAAA is to fill the 6 blanks between the quotation marks. +Because of the preceding "{", this is just a comment field, so will be +ignored by ATP. As for the data, this is a 1-ohm resistor from new +node DUMMY to ground. This should not modify the simulation at all. diff --git a/benchmarks/dc4ins.dat b/benchmarks/dc4ins.dat new file mode 100644 index 0000000..f529777 --- /dev/null +++ b/benchmarks/dc4ins.dat @@ -0,0 +1,22 @@ +/SOURCE +14WHITE 1.02 60. 0.0 -1. +/BRANCH + WHITE YELLOW .05 .20 + YELLOWGREEN .05 .20 + GREEN RED .05 .20 + RED BLUE .10 .40 +/LOAD FLOW +C Next come power constraints of the load flow. There will be one +C for each non-slack generator: + RED -0.4 -.14 .85 1.15 + GREEN 1.0 0.3 .85 1.15 + BLUE -.15 .025 .85 1.15 + YELLOW -0.6 -0.2 .85 1.15 +C The following load-flow miscellaneous data card has two peculiarities. The +C use of VSCALE = 1.414 is the special flag requesting RMS rather than peak +C voltages. The use of KTAPER = 0 ensures constant acceleration factors +C (this works for this data). +C NNNOUT NITERA NFLOUT NPRINT RALCHK CFITEV CFITEA VSCALE KTAPER + 1 500 20 1 .00001 0.1 7.0 1.414 0 +/REQUEST +FIX SOURCE { An EMTP load flow will satisfy requested phasor power injections. diff --git a/benchmarks/dc5.dat b/benchmarks/dc5.dat new file mode 100644 index 0000000..2388354 --- /dev/null +++ b/benchmarks/dc5.dat @@ -0,0 +1,387 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-5 +C Saturable TRANSFORMER problem with the same basic solution as DC-4. +C 1st of 7 subcases illustrates narrow (79-column) output. +$WIDTH, 79, { Request narrow, 80-column LUNIT6 output as an illustration +BEGIN PEAK VALUE SEARCH, -1, { Time of -1 is request to read following card + 0.5 1.5 2.5 3.5 { Limit extrema to these 2 subranges +PRINTED NUMBER WIDTH, 10, 2, { Request max precision of 6 numbers in 80 bytes + .010 6.0 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +C The following $VINTAGE restoration is added 3 November 2001 to illustrate +C the associated rejection message. The request is meaningless since there is +C no preceding $VINTAGE request. For correct use, see later subcase. +$VINTAGE, -1 { Cancel preceding $VINTAGE request, returning the value to zero + GEN GENT 1.E-3 3 + LOAD 1.0E3 3 + TRANSFORMER .005 30.TRANFF 1.E4 3 + .005 30. + .01 40. + .02 45. + 0.1 50. + 5.0 100. + 9999 + 1GENT OPEN 5.0 5.E4 50. + 2LOADFF 20. 2.E5 100. + OPEN 1.E7 + TRANSFORMER TRANFF TRAN 3 + 1GENT + 2LOAD +BLANK card finishing all branch cards +BLANK card ending non-existent switch cards +14GEN 70. .1591549 -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GEN |GENT * +C GENT |GEN *TRANFF*TRAN * +C LOAD |TERRA *TERRA * +C TRANFF |GENT *OPEN *OPEN *OPEN * +C OPEN |TERRA *TRANFF*TRANFF*TRANFF* +C LOADFF |TERRA * +C TRAN |TERRA *TERRA *TERRA *GENT * +C TERRA |LOAD *LOAD *OPEN *LOADFF*TRAN *TRAN *TRAN * +C | +C --------------+------------------------------ +BLANK card terminating program source cards +C Total network loss P-loss by summing injections = 8.286936503209E+00 +C Inject: GEN 70. .25769841013987 8.2869365032093 9.0194443548954 +C Inject: 0.0 -23.2507996 3.5604859026308 0.9187857 +C ---- Initial flux of coil "TRANFF" to "OPEN " = 3.08658228E-02 +C ---- Initial flux of coil "TRAN " to " " = -1.13293881E+01 +C Step Time GEN LOAD TRANFF TRAN LOAD TRAN +C GENT TERRA OPEN TERRA +C +C GENT LOADFF OPEN TRANFF GEN TRANFF +C OPEN +C +C TRAN GEN LOAD +C TERRA GENT TERRA +C 0 0.0 .2368E-3 116.1389 .0185382 63.72954 116.1389 63.72954 +C 69.99976 .0370763 69.98119 69.99973 70. .5144E-5 +C -.001888 .2367696 .1161389 +C 1 .01 .2378E-3 116.583 .0182286 63.83965 116.583 63.83965 +C 69.99626 .0364571 69.978 69.99623 69.9965 .5175E-5 +C -.001782 .237775 .116583 + 1 { Request for all node voltage outputs +C 600 6.0 .1743E-3 86.66574 .0264244 54.92308 86.66574 54.92308 +C 67.21171 .0528488 67.18516 67.21158 67.21189 .4076E-5 +C -.004558 .1742727 .0866657 +C Variable maxima : .3281E-3 123.4893 .0360051 61.35953 123.4893 61.35953 +C 67.21171 .0720101 67.18516 67.21158 67.21189 .6001E-5 +C .2904095 .3281234 .1234893 +C Times of maxima : 1.49 0.5 5.25 0.5 0.5 0.5 +C 6.0 5.25 6.0 6.0 6.0 .54 +C 1.49 1.49 0.5 +C Variable minima : -.349E-3 -122.626 -.033186 -63.9283 -122.626 -63.9283 +C -69.9997 -.066372 -69.9811 -69.9996 -69.9999 -.6E-5 +C -.32526 -.349375 -.122626 +C Times of minima : 4.67 3.56 2.51 3.35 3.56 3.35 +C 3.14 2.51 3.14 3.14 3.14 3.68 +C 4.76 4.67 3.56 + PRINTER PLOT +C Axis limits: (-2.544, 2.624) + 193 .5 0.0 4.0 LOAD GEN GENT +BLANK card terminating plot cards +$WIDTH, 132, { Done with 80 columns, so return to wide, 132-column LUNIT6 output +BEGIN NEW DATA CASE +C 2nd of 7 subcases. This is the former (before January, 1987) DC-43. +C Test of [A], [R] usage ("USE AR"). For DIAGNOSTIC, see DCPRINT-14. +C [A],[R] data cards used here were punched by 3rd subcase of DCNEW-8. +C Solution can be checked by hand, since it is really just 1 big series +C circuit, with an ideal transformer separating the primary & secondary. +C The turns ratio is 2:1, with the primary being the high-voltage side. +C Transformer has bottoms of primary and secondary grounded. The primary +C has a 1-volt, 1-[rad/sec] sinusoidal voltage source, that is connected +C to the transformer through a reactance X = j0.1. Values X = 0.1 ohm +C and R = 0.2 ohm are next, coming from the [A], [R] matrices when +C reflected entirely to the primary of the ideal transformer. Finally, +C the secondary is closed through a 1-ohm resistor. Reflecting all to +C the primary, R = 4.2 ohm, X = j0.2, or Z-tot = 4.2047592083257 at +C an angle of 2.726226 degrees. Reciprocating gives phasor current +C I-source = .23782576065627 at an angle of -2.726226 degrees. This +C can be checked exactly. Then, correctness of the time-step solution +C follows by smoothness (there is no discontinuity on the first step). +PRINTED NUMBER WIDTH, 25, 2, { Request 25-column precision for 4 output columns +C Apollo will not deliver more than about 16 digits of output, since +C this is the precision limit of REAL*8. Hence the preceding width +C request will in fact have more than two blank separator columns. + .100 6.0.1591549 { Note XOPT = 1 / (2 * Pi ), and w = 1.0 [rad/sec] + 1 1 1 1 1 -1 + 5 5 + GEN PRIM NAME Excite 0.1 { Branch named for later current output + USE AR { Col. 3-8 request switches to [A], [R] usage + 1SEC 40. .025 + 2PRIM -20. 10. 0.1 + USE RL { Col. 3-8 request returns to [R], [L] usage + SEC 1.0 +BLANK card ending branches +BLANK card ending non-existent switches +14GEN 1.0 .15915 0.0 -1. +C The following forward and reverse flows are for 1st phasor branch: +C GEN 1.0 1.0 .23755659127612 .23782576065627 +C 0.0 0.0 -.0113118686787 -2.7262268 +C +C PRIM .99886884795867 .99915127584094 -.2375565912761 .23782576065627 +C -.0237549277475 -1.3623416 .01131186867874 177.2737732 +BLANK card ending source cards +C Total network loss P-loss by summing injections = 1.187782956381E-01 +C Inject: GEN 1.0 1.0 .23755659127612 .23782576065627 .11877829563806 +C Inject: 0.0 0.0 -.0113118686787 -2.7262268 .00565593433937 +C +C Step Time SEC PRIM GEN GEN +C PRIM +C 0 0.0 .4751131825522436 .9988688479586737 1.0 .2375565912761218 +C 1 0.1 .4749983247294277 .9962504852347109 .9950044753394702 .2374991623647137 +C 2 0.2 .470139617191015 .9836805108498354 .9800678118911468 .2350698085955073 +C 3 0.3 .460583675647767 .961282487768105 .9553392425962317 .2302918378238831 + 1 XXXX { Cols. 1-2 requests all node voltage outputs; A6 nonblank ==> another +-1Excite { Cols 1-2 type code "-1" ===> request for branch current outputs +BLANK card terminating selective (and all node voltages) output requests +C The secondary current need not be monitored, since it is twice +C the primary current, and is equal to the voltage of node SEC. +C 55 5.5 .3206618611460799 .690969577591206 .708549242853354 .1603309305730407 +C 60 6.0 .4498323687101901 .9523830926143848 .9601182008522722 .2249161843550953 +C Max : .4751131825522436 .9988688479586737 1.0 .2375565912761218 +C Times of max: 0.0 0.0 0.0 0.0 +C Min -.4756234626742181 -.9985549285218509 -.999131142217714 -.2378117313371089 +C T-min 3.200000000000002 3.200000000000002 3.100000000000001 3.200000000000002 + PRINTER PLOT +C Following plot shows in-phase V-prim and V-sec, with ratio about 2 to 1: + 143 1. 0.0 6.0 PRIM SEC { Axis limits: (-9.986, 9.989) +C Following plot shows gen current, I = .23782576065627 /__ -2.726226 degrees + 193 1. 0.0 6.0 GEN PRIM { Axis limits: (-2.378, 2.376) +BLANK card ending non-existent plot cards +BEGIN NEW DATA CASE +C 3rd of 7 subcases. Test of [A], [R] usage ("USE AR"), with the +C branch cards punched by the 3rd subcase of DCNEW-8. Trivial 1-phase +C problem. For identical network using [R], [L], see the 4th subcase +PRINTED NUMBER WIDTH, 15, 2, { Request more than enough precision for 3 outputs + .0005 .050 50. + 1 1 1 1 2 -1 + 5 5 + S1 25.782 1 +$VINTAGE, 1 +$UNITS, 0., 0. {XOPT, COPT + USE AR + 1P1 609.14725451514 .05780196523054 + 2S1 -355.0194488376 0.0 + 207.17315316786 .16973833711262 +C $VINTAGE, 0 +C 3 November 2001, replace the preceding by just-added cancellation of +C the preceding $VINTAGE,1. Of course, the starting value is zero: +$VINTAGE, -1 { Cancel preceding $VINTAGE request, returning the value to zero +BLANK card ending branches +BLANK card ending non-existent switches +14P1 311. 50. 000.0 0. -1. +BLANK card ending source cards +C Total network loss P-loss by summing injections = 5.418483002156E+03 +C P1 311. 311. 34.845549853093 34.95612473617 5418.483002156 +C 0.0 0.0 -2.77818502017 -4.5584667 432.0077706365 +C Step Time S1 P1 S1 +C TERRA +C 0 0.0 524.252284827 311. 20.3340425424 +C 1 .5E-3 522.548672234 307.171073925 20.2679649458 +C 2 .1E-2 507.987759921 295.778576568 19.7031944737 +C 3 .0015 480.917065702 277.103029023 18.6532102126 + 1 +C 95 .0475 -349.18551236 -219.91020895 -13.543771327 +C 100 .05 -524.24501851 -311. -20.333760706 +C Variable maxima : 524.252284827 311. 20.3340425424 +C Times of maxima : 0.0 0.0 0.0 +C Variable minima : -524.24501851 -311. -20.333760706 +C Times of minima : .01 .01 .01 + PRINTER PLOT + 144 4. 0.0 20. S1 { Axis limits: (-5.242, 5.243) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 7 subcases. Test of [R], [wL] usage ("USE RL"), with the +C branch cards punched by the 3rd subcase of DCNEW-8. This is the same +C simulation as the preceding subcase, only [R],[L] replaces [A],[R] +PRINTED NUMBER WIDTH, 15, 2, { Request more than enough precision for 3 outputs + .0005 .050 50. + 1 1 1 1 2 -1 + 5 5 + S1 25.782 1 +$VINTAGE, 1, +$UNITS, 50., 0., {XOPT, COPT + USE RL + 1P1 .05780196523054 406.40657142442 + 2S1 0.0 696.43307921366 + .16973833711262 1194.949458531 +$VINTAGE, 0 +BLANK card ending branches +BLANK card ending non-existent switches +14P1 311. 50. 000.0 0. -1. +BLANK card ending source cards +C Total network loss P-loss by summing injections = 5.418483002158E+03 +C P1 311. 311. 34.845549853106 34.956124736168 5418.483002158 +C 0.0 0.0 -2.778185019985 -4.5584667 432.00777060763 +C Step Time S1 P1 S1 +C TERRA +C 0 0.0 524.252284827 311. 20.3340425424 +C 1 .5E-3 522.548672234 307.171073925 20.2679649458 +C 2 .001 507.987759921 295.778576568 19.7031944737 +C 3 .0015 480.917065702 277.103029023 18.6532102126 + 1 +C 95 .0475 -349.18551236 -219.91020895 -13.543771327 +C 100 .05 -524.24501851 -311. -20.333760706 +C Variable maxima : 524.252284827 311. 20.3340425424 +C Times of maxima : 0.0 0.0 0.0 +C Variable minima : -524.24501851 -311. -20.333760706 +C Times of minima : .03 .01 .03 + PRINTER PLOT + 144 4. 0.0 20. S1 { Axis limits: (-5.242, 5.243) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 7 subcases is used to illustrate RENUMBER WITHOUT COUPLING +C Same data as 1st subcase, but with two important changes. First, output is +C wide (not 80-column). Second and critically important, the transient node +C renumbering is different because of the following request that is introduced +C in the January, 1999, newsletter. Output variables are the same, but the +C "1" request for all node voltage outputs will change the order of occurance +C of these variables in the output vector. +RENUMBER WITHOUT COUPLING { Upset node renumbering; change output of all V-node +PRINTED NUMBER WIDTH, 10, 2, { Request max precision of 6 numbers in 80 bytes + .010 .030 { Take only 3 steps (plenty to illustrate the effect) + 1 1 { Note no extrema (values would not agree, anyway) + GEN GENT 1.E-3 3 + LOAD 1.0E3 3 + TRANSFORMER .005 30.TRANFF 1.E4 3 + .005 30. + .01 40. + .02 45. + 0.1 50. + 5.0 100. + 9999 + 1GENT OPEN 5.0 5.E4 50. + 2LOADFF 20. 2.E5 100. + OPEN 1.E7 + TRANSFORMER TRANFF TRAN 3 + 1GENT + 2LOAD +BLANK card finishing all branch cards +BLANK card ending non-existent switch cards +14GEN 70. .1591549 -1. +BLANK card terminating program source cards + 1 { Request for all node voltage outputs +BLANK card terminating plot cards +BEGIN NEW DATA CASE +C 6th of 7 subcases is identical to the 2nd. But because KOMPAR > 4 +C (see the $DEPOSIT use immediately below), KOMPAR is interpreted +C to be the output width of phasor and dT-loop numbers. It works. Not +C only are the numbers reduced in precision, the dT-loop headings also +C are adjusted to match. I.e., the 25 of the PRINTED NUMBER WIDTH +C declaration below is overridden. Although operation was described in +C the April, 1998, newsletter, an illustration (this data) did not +C exist prior to 5 December 2001. +C Add Type-15 USRFUN source on 28 July 2002 to illustrate this new +C feature from Orlando Hevia. The USRFUN source provides a higher- +C level replacement for ANALYTIC SOURCES USAGE that is illustrated +C in DC-6. The same node name NODE1 will be used. The same signal +C is generated. +$DEPOSIT, KOMPAR=11, { Illustrate reduced field width of phasor & dT-loop #-s +PRINTED NUMBER WIDTH, 25, 2, { Request 25-column precision for 4 output columns +C Apollo will not deliver more than about 16 digits of output, since +C this is the precision limit of REAL*8. Hence the preceding width +C request will in fact have more than two blank separator columns. + .100 6.0.1591549 { Note XOPT = 1 / (2 * Pi ), and w = 1.0 [rad/sec] + 1 1 0 1 0 -1 + 10 5 + GEN PRIM NAME Excite 0.1 { Branch named for later current output + USE AR { Col. 3-8 request switches to [A], [R] usage + 1SEC 40. .025 + 2PRIM -20. 10. 0.1 + USE RL { Col. 3-8 request returns to [R], [L] usage + SEC 1.0 + NODE1 1.0 { Dummy resistor serves to anchor USRFUN source +BLANK card ending branches +BLANK card ending non-existent switches +14GEN 1.0 .15915 0.0 -1. +C Each Type-15 USRFUN source must be provided by the user in the user-supplied +C FUNCTION USRFUN. Here, illustrate type code 5 (CREST in columns 11-20) that +C is identical to the ANALYT function of DC-6. There is a difference, however +C Whereas ANALYT internally zeroed the function after T = .75 seconds, here +C no such logic has been built into USRFUN. Instead, use T-stop of 71-80 to +C zero the function beginning on time step number 8. Speaking of time steps, +C modify the printout frequency to show the first 10 steps. About columns, +C the request word "USRFUN " (note 2 trailing blanks) must occupy 43-50. +C < BUS> < Index > Request T-start T-stop +15NODE1 5.0 USRFUN 0.0 0.75 +BLANK card ending source cards +C SEC .475113189 .475651527 .475113189 .475651527 .113122188 .113122188 +C -.02262374 -2.7262268 -.02262374 -2.7262268 0.0 0.0 +C +C TERRA 0.0 0.0 -.47511319 .475651527 0.0 +C 0.0 0.0 .022623738 177.2737732 0.0 +C Total network loss P-loss by summing injections = 1.187782971625E-01 +C Note all of the white space surrounding the preceding phasor valus. +C The precision is reduced but column positioning and headings are +C unchanged. This is unlike dT-loop output, for which the headings, +C too, are modified so as to maintain the same inter-# separation. + 1 XXXX { Cols. 1-2 requests all node voltage outputs; A6 nonblank ==> another +-1Excite { Cols 1-2 type code "-1" ===> request for branch current outputs +C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time SEC PRIM GEN NODE1 GEN +C PRIM +C 0 0.0 .47511319 .99886885 1.0 0.0 .23755659 +C 1 0.1 .47499833 .99625049 .99500448 40. .23749917 +C 2 0.2 .47013962 .98368051 .98006781 80. .23506981 +C 3 0.3 .46058368 .96128249 .95533924 95. .23029184 +C 4 0.4 .44642603 .92928025 .92106583 85. .22321301 +C 5 0.5 .42780811 .88799352 .87759001 75. .21390405 +C 6 0.6 .40491594 .8378348 .82534614 65. .20245797 +C 7 0.7 .37797823 .77930524 .76485619 55. .18898912 +C 8 0.8 .34726412 .7129896 .69672453 0.0 .17363206 +BLANK card terminating selective (and all node voltages) output requests +C 60 6.0 .44983237 .95238309 .9601182 0.0 .22491619 + PRINTER PLOT +C Following plot shows in-phase V-prim and V-sec, with ratio about 2 to 1: + 143 1. 0.0 6.0 PRIM SEC { Axis limits: (-9.986, 9.989) +BLANK card ending non-existent plot cards +BEGIN NEW DATA CASE +C 7th of 7 subcases is fundamentally different from preceding subcases +C in that it involves a frequency scan rather than time simulation. But +C there is similarity to the preceding subcase in the user-supplied +C source code is involved. This tests USER10 as built into the UTPF +C beginning 26 October 2003. +PRINTED NUMBER WIDTH, 10, 2, { Request maximum precision (for 8 output columns) +C FMIMFS--DELFFS--FMAXFS--NPD----- +C 11111111222222223333333344444444 +FREQUENCY SCAN 25.0 25.0 200.0 0 { F = 25, 50, ... 200 + 0.00010 0.0 + 1 1 + RRR 10. { 10 ohm resistor so V = 10 * source curr } 1 +BLANK card ending branches +BLANK card ending switches (none) + BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag +C Preceding is one of 3 alternatives. The other two are, after commented: +C POLAR OUTPUT VARIABLES { 2nd of 3 alternatives for output gives mag, angle +C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag +C Following ANALYTIC source is user-defined. The function name HYPERB must +C be defined in USER10. Note T-start of cols. 61-70 is left blank as an +C illustration that ATP automatically will set this to value -1.0 Amplitude +C (columns 11-20) and frequency (columns 21-30) likewise will be defined +C internally. Only columns 1-10, plus the text in 43-57, is required: +C Node V? Request> -Name- +14RRR -1 ANALYTIC HYPERB +C Preceding is defined as follows: Real part = 100. * Pi / Omega +C Imaginary part = ( Real part + 1.0 ) / 2 +BLANK card ending source cards + RRR { Node voltage will be 10 times the source current, note. +BLANK card ending requests for node voltage output +C Step F [Hz] RRR RRR RRR RRR RRR RRR RRR RRR +C TERRA TERRA TERRA TERRA +C 1 25. 25. 36.8699 20. 15. 2.5 36.8699 2.0 1.5 +C 2 50. 14.14214 45. 10. 10. 1.414214 45. 1.0 1.0 +C 3 75. 10.67187 51.34019 6.666667 8.333333 1.067187 51.34019 .6666667 .8333333 +C 4 100. 9.013878 56.30993 5.0 7.5 .9013878 56.30993 0.5 .75 +C 5 125. 8.062258 60.25512 4.0 7.0 .8062258 60.25512 0.4 0.7 +C 6 150. 7.45356 63.43495 3.333333 6.666667 .745356 63.43495 .3333333 .6666667 +C 7 175. 7.034898 66.03751 2.857143 6.428571 .7034898 66.03751 .2857143 .6428571 +C 8 200. 6.731456 68.19859 2.5 6.25 .6731456 68.19859 .25 .625 +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc50.dat b/benchmarks/dc50.dat new file mode 100644 index 0000000..106031c --- /dev/null +++ b/benchmarks/dc50.dat @@ -0,0 +1,153 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-50 +C Test of the installation-dependent random number generator that is used +C for Monte Carlo studies, ENTRY RANDNZ of RFUNL1. The 4444 means that +C no simulation is actually to occur. Rather, after the input of switch +C cards, there will be dice rolling and a statistical analysis of results. +C Answers are repeatable: use of standard random numbers (column-80 punch) + 100.E-6 20.E-3 60. + { NENERG = 100 imaginary shots } 100 +C ISW ITEST IDICE KNTRPT NSEED + 4444 2 1 2 1 + 0GENA A1 7. 3 + 0GENB B1 7. 3 + 0GENC C1 7. + 0ENDA A10 7. + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards + A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 1.0E-3 STATISTICSTARGET + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 8.E-3 2.E-3 STATISTICSA1 ASW1 +C The following two switches will be missing from the statistical output. +C The first has a uniform distribution, while the second is deterministic. +76B10 BSW10 10.E-3 1.E-3 STATISTICS + C10 CSW10 12.E-3 1.0 +C Switch pair 1 : "B1 " to "BSW1 " and "A1 " to "ASW1 ". +C Sample: 0.0000 0.0000 0.0000 0.0400 0.0800 0.1700 0.3400 0.5500 0.7000 +C Sample: 0.9000 0.9400 0.9600 0.9900 1.0000 1.0000 1.0000 +BLANK card ending switch cards { Data input stops here, effectively +C Switch pair 6 : "A10 " to "ASW10 " and "C1 " to "CSW1 ". +C Sample: 0.0000 0.0000 0.0100 0.0300 0.0700 0.1400 0.2600 0.4500 0.6700 +C Sample: 0.8400 0.9300 0.9600 1.0000 1.0000 1.0000 1.0000 +C To omit miniature character plots of switching times, omit the following card: +C Switch "A1 " to "ASW1 " ---- First mini printer plot that follows: +C 4.45814013E-01 switch closings per column +C Columns +C 5 10 15 20 25 30 +C +----+----+----+----+----+----+ +C X +C X +C X +C * A +C A* +C | X +C | * A +C | A* +C A * +C | * A +C | A * +C | * A +C | 2.0000E-03 * A +C | * A +C | A * +C | A * +C | A * +C | A * +C | A * +C A * +C A* +C X +C X +C X +C X +C Time (scale = 3.33333333E-05 Sec/line) +BLANK card ending non-existent overlay-20 requests for statistical tabulations +BEGIN NEW DATA CASE +C 2nd of 2 subcases is for random opening (1st was random closing only). +C All random closing switches of preceding subcase have been converted to +C random opening. Also, ITEST is set to 3 (extra random offset is only +C for opening; preceding case had 2, which was only for closing). The +C number of shots will be increased to 300 to illustrate better smoothness +C (but restoring to 100 should produce tabulations identical to preceding) + 100.E-6 20.E-3 60. + { NENERG = 300 imaginary shots } 300 +C ISW ITEST IDICE KNTRPT NSEED + 4444 3 1 2 1 + 0GENA A1 7. 3 + 0GENB B1 7. 3 + 0GENC C1 7. + 0ENDA A10 7. + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards + A1 ASW1 2.E-3 .1E-3 3333.STATISTICS + B1 BSW1 4.E-3 1.0E-3 3333.STATISTICSTARGET + C1 CSW1 6.E-3 1.E-3 3333.STATISTICS + A10 ASW10 8.E-3 2.E-3 3333.STATISTICSA1 ASW1 +C The following two switches will be missing from the statistical output. +C The first has a uniform distribution, while the second is deterministic. +76B10 BSW10 10.E-3 1.E-3 3333.STATISTICS + C10 CSW10 12.E-3 1.0 +C Switch pair 1 : "B1 " to "BSW1 " and "A1 " to "ASW1 ". +C Time -3.5000 -3.0000 -2.5000 -2.0000 -1.5000 -1.0000 -0.5000 0.0000 0.5000 +C Sample 0.0000 0.0000 0.0000 0.0367 0.0667 0.1600 0.2933 0.5300 0.7000 +C Sample 0.8767 0.9367 0.9733 0.9933 1.0000 1.0000 1.0000 +BLANK card ending switch cards { Data input stops here, effectively +C Switch pair 6 : "A10 " to "ASW10 " and "C1 " to "CSW1 ". +C Time: -3.5000 -3.0000 -2.5000 -2.0000 -1.5000 -1.0000 -0.5000 0.0000 0.5000 +C Sample: 0.0000 0.0000 0.0133 0.0367 0.0800 0.1467 0.2633 0.4367 0.6500 +C Sample: 0.8133 0.9200 0.9667 0.9967 1.0000 1.0000 1.0000 +C Switch "A1 " to "ASW1 " +C 1.32420000E+00 switch closings per column +C Columns +C 5 10 15 20 25 30 +C +----+----+----+----+----+----+ +C X +C X +C X +C *A +C |X +C | *A +C | * A +C | A* +C | A * +C | * A +C | A * +C | * A +C | 4.0000E-03 * A +C | * A +C | A * +C | A* +C | A* +C | A * +C | A * +C |A* +C |*A +C X +C X +C X +C X +C Time (scale = 3.33333333E-05 Sec/line) +BLANK card ending non-existent overlay-20 requests for statistical tabulations +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc51.dat b/benchmarks/dc51.dat new file mode 100644 index 0000000..2b32ac2 --- /dev/null +++ b/benchmarks/dc51.dat @@ -0,0 +1,753 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-51 +C "FREQUENCY SCAN" use, with subsequent plotting of phasors vs. frequency +C This test cases uses uniform spacing; See DC-52 for geometric spacing. +C Because IOUTLP = 2, the solutions for step numbers 3 and 5 are omitted. +C 1st of 3 data subcases (2 LINE MODEL FREQUENCY SCAN, LMFS, cases follow) +FREQUENCY SCAN, 60., 20., 130., 0, { 60 < f < 130 Hz in 20-Hz increments + 0.1 0.0 + 2 1 1 { IOUTLP (cols. 1-8) only prints every other point +C Note col-80 punch of "1" on following branch to output current. This was +C added in March of 1998 when original limitation to node volt was removed. +C In the output, this current should be the same as node voltage at CUR. +C The two quadruplets will be found side by side, ending the output vector. + LOAD MID .99 1.0 1 +C The following is a sampling resistor to produce a node voltage that is +C proportional to branch current. Note 1.0 = .99 + .01 (next card): + MID .01 +C The following is a measurement transformer. It is used to produce a +C node voltage (node "CUR") that is proportional to the branch current +C of interest. For minimum error, leakage impedance should, of course, +C be small. Magnetizing impedance is infinite. The turns ratio equals +C the resistance of sampling resistor. See end Sec. 1.0G3 Rule Book. + TRANSFORMER TRAN + 9999 + 1MID .0005 1.0 + 2CUR .001 100. +BLANK card ending branches +BLANK card ending (here, non-existent) switches +C The following request for complete output (rather than the default choice +C of magnitude only) is read as part of source data, but it must precede the +C first source. This is for FS use (HFS allows it anywhere among sources). + BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag +C Preceding is one of 3 alternatives. The other two are, after commented: +C POLAR OUTPUT VARIABLES { 2nd of 3 alternatives for output gives mag, angle +C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag +14LOAD 100. 60. -1. +BLANK card ending sources +C Column headings for the 5 output variables follow. These are divided ... +C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables are branch currents (flowing from the upper node to the lower node); +C For each variable, magnitude is 1st, angle is 2nd, real part is 3rd, and imaginary is 4th. All 4 are labeled identically, note. +C Step F [Hz] LOAD LOAD LOAD LOAD MID MID MID MID TRAN TRAN +C TERRA TERRA TERRA TERRA +C +C TRAN TRAN CUR CUR CUR CUR LOAD LOAD LOAD LOAD +C TERRA TERRA TERRA TERRA MID MID MID MID +C 1 60. 100. 0.0 100. 0.0 .93571522 -20.655997 .875562973 -.33007946 .93571522 -20.655997 +C .875562973 -.33007946 93.571522 -20.655997 87.5562973 -33.007946 93.571522 -20.655997 87.5562973 -33.007946 +C The preceding agrees with what existed for many years prior to March of 1998: +C mag:LOAD angle:LOAD mag:MID angle:MID mag:TRAN angle:TRAN mag:CUR angle:CUR +C real:LOAD imag:LOAD real:MID imag:MID real:TRAN imag:TRAN real:CUR imag:CUR +C ----- Output vector for step number 1. Frequency = 6.00000000E+01 Hz. +C 1.0000000E+02 0.0000000E+00 9.3571522E-01 -2.0655997E+01 9.3571522E-01 -2.0655997E+01 9.3571522E+01 -2.0655997E+01 +C 1.0000000E+02 0.0000000E+00 8.7556297E-01 -3.3007946E-01 8.7556297E-01 -3.3007946E-01 8.7556297E+01 -3.3007946E+01 +-5LOAD { -5 ==> 2A6 name pairs for voltage differences (branch V) + MID TRAN { 0 ==> Request for the output of these node voltages +-5CUR { -5 ==> 2A6 name pairs for voltage differences (branch V) +BLANK card ending output requests +C Printout for remaining steps follows. Note steps 2 and 4 are missing (IOUT=2) +C 3 100. 100. 0.0 100. 0.0 .846733016 -32.141908 .7169568 -.45047724 .846733016 -32.141908 +C .7169568 -.45047724 84.6733016 -32.141908 71.69568 -45.047724 84.6733016 -32.141908 71.69568 -45.047724 +C 5 140. 100. 0.0 100. 0.0 .750845344 -41.336343 .563768731 -.49591688 .750845344 -41.336343 +C .563768731 -.49591688 75.0845344 -41.336343 56.3768731 -49.591688 75.0845344 -41.336343 56.3768731 -49.591688 + PRINTER PLOT + F-SCAN COMPONENTS MAG ANGLE { Access "mag" and "angle" next +C 19630. 60.150. CUR mag CUR angle { Axis limits: (-4.134, 9.357) + 18630. 60.150. CUR CUR { Node voltage at CUR is branch voltage to ground +C The following card involves a deliberate spelling error in order to +C show how this results in rejection of the card: + F-SCAN COMPONENTS REAL IMxx { Access "real" and "imag" next + F-SCAN COMPONENTS REAL IMAG { Access "real" and "imag" next +C 19630. 60.150. CUR real CUR imag { Axis limits: (-4.959, 8.756) + 18630. 60.150. CUR CUR { Node voltage at CUR is branch voltage to ground +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 3 data subcases. +C Illustration of LINE MODEL FREQUENCY SCAN (LMFS). For background of this +C feature that was first available in ATP at the end of March, 1992, see the +C story that appeared in the April, 1992, issue of Can/Am EMTP News. This new +C feature is to compare any "line model" with the exact Pi-model of a single +C segment of overhead line over an arbitrary range of frequencies. The user +C instructions are attached at the end of this test case. +C In the current case a single-circuit line generated by JMARTI SETUP is to +C be tested. +C DISK PLOT DATA { Has no effect as explained in Can/Am EMTP News of April, 1992 +C Warning! This is degenerate use for initial testing only. +C Note following card will produce scan of 2 points only: +C LINE MODEL FREQUENCY SCAN, 60, , 599.9, 1, , , { f-begin, f-end, points/decade +LINE MODEL FREQUENCY SCAN, 60, , 599.9, 1, , , First + 40.E-6 -.0600 60. + 1 1 0 0 0 0 0 2 +C IOUT KSSOUT ICAT +$INCLUDE, []dc51fs3.dat +$INCLUDE, []dc51fs3z.dat, JDA###, LMA###, JDB###, LMB###, JDC###, LMC###, +C []dc51fs3p.dat +C Unused! ----- 2nd of 2 file names is not used for this single-circuit case +C Observation about the following is added 21 November 2003. Normally, a +C LINE CONSTANTS declaration would begin the data since it is this choice +C (not CC or CP) that is desired. But when LMFS began, LC was the +C only choice. It seems to be the default choice. Lack of the declaration +C here no longer is recommended, but it does demonstrate the default choice: +C LINE CONSTANTS { Activate this comment to prove that the solution is unchanged + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK card ennds conductor cards of "LINE CONSTANTS" data +100. 5000. 1 138. 1 1 +BLANK card ending frequency cards of "LINE CONSTANTS" data +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 3rd of 3 data subcases illustrates LINE MODEL FREQUENCY SCAN (LMFS) for +C an untransposed double-circuit line generated by JMARTI SETUP. +C DISK PLOT DATA { Has no effect as explained in Can/Am EMTP News of April, 1992 +C LINE MODEL FREQUENCY SCAN, 6, , 60000, 10, , , { f-begin, f-end, points/decade +C Preceding free-format alternative was used successfully for more than a +C decade. 2 September 2003, replace it by this fixed-format alternative: +C f-begin del-f f-end #/dec FUNDFS +LINE MODEL FREQUENCY SCAN 6.0 0.0 6.E4 10 + 40.E-6 -.0600 60. 1.E-15 + 1 1 0 0 0 0 0 2 +C IOUT KSSOUT ICAT +$INCLUDE, []dc51fs6.dat { 1st of 2 $INCLUDE contains line section to be tested +$INCLUDE, []dc51fs6z.dat,MR02A# ,MR04A# ,MR02B# ,MR04B# ,MR02C# ,MR04C#, $$ +C MR02D# ,MR04D# ,MR02E# ,MR04E# ,MR02F# ,MR04F# +C []dc51fs6p.dat +C []dc51fs6m.dat +C Raw LINE CONSTANTS data for the overhead transmission line being considered: + 1.4138 .0497 4 1.603 -15. 52.0 A1-1 + 1.4138 .0497 4 1.603 -16.06 53.06 A1-2 + 1.4138 .0497 4 1.603 -13.94 53.06 A1-3 + 2.4138 .0497 4 1.603 -25. 83.0 B1-1 + 2.4138 .0497 4 1.603 -26.06 84.06 B1-2 + 2.4138 .0497 4 1.603 -23.94 84.06 B1-3 + 3.4138 .0497 4 1.603 -15. 114.0 C1-1 + 3.4138 .0497 4 1.603 -16.06 115.06 C1-2 + 3.4138 .0497 4 1.603 -13.94 115.06 C1-3 + 4.4138 .0497 4 1.603 15. 114.0 A2-1 + 4.4138 .0497 4 1.603 13.94 115.06 A2-2 + 4.4138 .0497 4 1.603 16.06 115.06 A2-3 + 5.4138 .0497 4 1.603 25. 83.0 B2-1 + 5.4138 .0497 4 1.603 23.94 84.06 B2-2 + 5.4138 .0497 4 1.603 26.06 84.06 B2-3 + 6.4138 .0497 4 1.603 15. 52.0 C2-1 + 6.4138 .0497 4 1.603 13.94 53.06 C2-2 + 6.4138 .0497 4 1.603 16.06 53.06 C2-3 + 0.5 3.56 4 .495 -7.0 150.7 OHGW-L + 0.5 3.56 4 .495 7.0 150.7 OHGW-R +BLANK CARD ENDING CONDUCTOR CARDS OF "LINE CONSTANTS" CASE + 100. .001 1 53.00 1 1 +C RHO ] [FCAR] [ DIST ] S T +BLANK card ending frequency cards of "LINE CONSTANTS" data + PRINTER PLOT + 186 .5 0.0 5.0 GENIA MAG Marti Section Z in Ohms + 196 .5 0.0 5.0 GENIA MAG Equivalent Pi Z in Ohms + 196 .5 0.0 5.0 GENIB % MAG Error Percent +BLANK card ending batch-mode (CalComp) plot cards +BEGIN NEW DATA CASE +BLANK +BEGIN NEW DATA CASE +BLANK +EOF { Instruct EMTP input code to ignore all following records of disk file + + + + + INSTRUCTIONS FOR USING "LINE MODEL FREQUENCY SCAN (LMFS)" + + + + This is a new feature in the EMTP to compare any "line model" with +the exact Pi-model of a single segment of overhead line over an arbitrary +range of frequencies. The "line model" that is being tested can be any +combination of linear branches, such as lumped elements, lines (constant +distributed parameters, frequency-dependent representation of any type), +coupled R-L elements, etc. + + Set up an EMTP simulation data case similar to that of a "FREQUENCY SCAN" +(ATP Rule Book, pp. II-18 to II-21 ) as follows: + + (1) Use a new special request card: LINE MODEL FREQUENCY SCAN (or LMFS). + The data fields and their format on this card are the same as those for + the regular "FREQUENCY SCAN" case: FMIMFS, DELFFS, FMAXFS, NPD. Leave + the data field for DeltaF blank, and enter the number of points per + decade for the logarithmic (geometric) spacing as NPD. FMIMFS and + FMAXFS are the beginning and the ending frequencies respectively. + + (2) Input the misc. data cards. + + (3) Input the branch cards for "line model" to be tested. + + (4) Input the appropriate generic data files which consist of the needed + branch cards and source cards by using $INCLUDE. Also required on + this card are the names of sending end and receiving end of each + phase of the line being tested. Eight generic data files for 3-, + 6- and 9-phase lines are provided along with the EMTP. They are + called "linescan#?.brn". "#" is the number of phases of the test + line. "?" is either z (zero-sequence), or p (positive-sequence), or + m (mutual-coupling). E.g., linescan6z.brn consists of the needed + branch cards and source cards for a "6"-phase "Z"ero-sequence + impedance test. Following is an example of the data cards for the + generic files which are needed for a 6-phase line LMFS case: + + Col. 79-80 +$INCLUDE,linescanz6.brn,MR02A# ,MR04A# ,MR02B# ,MR04B# ,MR02C# ,MR04C#, $$ +C MR02D# ,MR04D# ,MR02E# ,MR04E# ,MR02F# ,MR04F# +C linescanp6.brn +C linescanm6.brn + + Note that 12 node names are needed for a 6-phase line: MR02A and + MR04A are names of sending end and receiving end of the first phase + respectively, etc. "$$" in columns 79-80 indicate there is a + continuation card following the current $INCLUDE card. "C linescanp6.brn" + card provides the name of the file that EMTP can generate the needed + branch and source cards for the positive-sequence impedance test case; + and "C linescanm6.brn" provides information for generating mutual- + coupling impedance test case. One does not need the latter data card if + the test line is a single circuit. + + (5) Input the geometry data of a single segment of overhead line. Prepare + this line geometry data just like one does for the standard "LINE CONSTANTS" + data except only ONE frequency card is needed. This frequency card needs + the following data: RHO (earth resistivity), FCAR (Carson accuracy), + DIST (length of the line), ISEG (segmentation option), MODAL + (transposition of the line). End this group of cards with a BLANK + card ending frequency card. + + (6) Input optional plot card(s). E. g., + + PRINTER PLOT + 186 .2 0.0 5.0 GENIA MAG + 196 .2 0.0 5.0 GENIB % MAG + + Like the "FREQUENCY SCAN" cases, the plotting of the node voltage output + variables are given the type of branch quantities. The results of the + tested line model are treated as branch voltages ("8" in column 4), those + of the exact Pi-model are treated as branch current, so are the percentage + errors ("9" in column 4.) + + (7) Input the following three cards to end the data: + + BLANK CARD ENDING PLOT REQUESTS + BEGIN NEW DATA CASE + BLANK + + + + Three frequency scan cases are run and three output files are generated +with this single set of data to give the zero-sequence, positive-sequence, +and mutual (if multiple circuits) impedance check for the tested line model. + + The line printer output includes tabulation of results of the requested +node voltage output variables for the tested line model, for the exact Pi- +model, and the percentage errors. Using IOUT (misc. data card) to control +the frequency of this tabulation. Tabulation after 100 entries will be +truncated. Be careful with input of KSSOUT on the misc. data card. + + Like the "FREQUENCY SCAN" cases, the plotting of the node voltage output +variables are given the type of branch quantities. The results of the tested +line model are treated as branch voltages, those of the exact Pi-model are +treated as branch current, so are the percentage errors. + + If one wants to plot all the output variables, simply enter "ALL" to +the prompt: + + SEND NODE NAME & OPT. A24 DESCR. OR END ( ) :ALL + +then, provide information of number of phases and kind of impedance test at +the prompt: + + SEND A2 FILE SPECIFICATION:3P + +where "3" means 3-phase circuit, "P" means ploting of the results of +Positive-sequence impedance test. TPPLOT at this point will automatically +attach the appropriate pre-existing, user-controlled, plot data file +LMPLT3P.DAT (i.e. one of the LMPLT##.DAT files), and complete the whole +set of postscript output. In other words, the nodes specified in the +LMPLT##.DAT defines what user means by "ALL". + + + Tsu-huei Liu + March 24, 1992 + + +Solution of DC51.LIS : +--------------------- + + --- Pass 1. Card = 19. Ready to open $INCLUDE = dc51fs3.dat + --- Pass 1. Card = 121. Ready to open $INCLUDE = dc51fs3z.dat +Alternative Transients Program (ATP), Salford 80386 translation. All rights reserved by Can/Am user group of Portland, Oregon, USA. + Date (dd-mth-yy) and time of day (hh.mm.ss) = 30-Jul-93 09.55.41 Name of disk plot file, if any, is D:37300955.pl4 +Consult the 800-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Program is no older than July, 1992. +Total size of LABCOM tables = 227363 INTEGER words. VARDIM List Sizes follow : 752 900 1500 150 7500 120 + 2100 5250 225 480 150 150 15000 60 10800 120 12 15 4800 1980 300 450 12000 9 1200 252 4 9600 +--------------------------------------------------+-------------------------------------------------------------------------------- +Descriptive interpretation of input data cards. | Input data card images are shown below, all 80 columns, character by character + 0 1 2 3 4 5 6 7 8 + 012345678901234567890123456789012345678901234567890123456789012345678901234567890 +--------------------------------------------------+-------------------------------------------------------------------------------- +Marker card preceding new EMTP data case. |BEGIN NEW DATA CASE +Comment card. KOMPAR = 1. |C 2nd of 3 data subcases. +Comment card. KOMPAR = 1. |C Illustration of LINE MODEL FREQUENCY SCAN (LMFS). For background of this +Comment card. KOMPAR = 1. |C feature that was first available in ATP at the end of March, 1992, see the + < < < Etc. (section removed) > > > +Blank card terminating frequency cards. |BLANK card ending frequency cards of "LINE CONSTANTS" data + 1) Freq [Hz] = 6.0000000E+01 Total network loss = 7.284400782006E+01 + 2) Freq [Hz] = 6.0000000E+02 Total network loss = 5.660068288220E+02 + +******************************************************************************** +* * +* LINE MODEL FREQUENCY SCAN COMPARISON TABLE 30-Jul-93 * +* ZERO-SEQUENCE IMPEDANCE TEST * +* * +******************************************************************************************* + + LINE MODEL BEING TESTED EXACT-PI MODEL % ERROR + + FREQUENCY NODE MAG ANG REAL IMAG MAG ANG REAL IMAG PCTMAG PCTANG + + 6.000E+01 GENIA 3.258E+02 8.126E+01 4.950E+01 3.220E+02 3.240E+02 8.140E+01 4.845E+01 3.204E+02 .5405 -.173 + GENIB 3.258E+02 8.126E+01 4.950E+01 3.220E+02 3.271E+02 8.142E+01 4.878E+01 3.235E+02 -.427 -.204 + GENIC 3.258E+02 8.126E+01 4.950E+01 3.220E+02 3.240E+02 8.140E+01 4.845E+01 3.204E+02 .5405 -.173 + + 6.000E+02 GENIA 6.545E+02 5.425E+01 3.824E+02 5.312E+02 6.499E+02 5.467E+01 3.758E+02 5.303E+02 .7028 -.773 + GENIB 6.545E+02 5.425E+01 3.824E+02 5.312E+02 6.574E+02 5.464E+01 3.804E+02 5.361E+02 -.44 -.716 + GENIC 6.545E+02 5.425E+01 3.824E+02 5.312E+02 6.499E+02 5.467E+01 3.758E+02 5.303E+02 .7028 -.773 + +Blank card terminating all plot cards. |BLANK card ending batch-mode plot cards +Actual List Sizes for the preceding solution follow. 30-Jul-93 09.52.45 + Size 1-10: 10 12 15 3 -9999 0 -9999 -9999 0 0 + Size 11-20: -9999 30 -9999 -9999 -9999 0 0 0 23 470 + Size 21-29: 18 -9999 27 -9999 -9999 -9999 -9999 -9999 -9999 +Seconds for overlays 1-5 : 1.207 0.000 1.207 --- (CP: I/O; tot) +Seconds for overlays 6-11 : 1.430 0.000 1.430 +Seconds for overlays 12-15 : 0.000 0.000 0.000 +Seconds for time-step loop : 1.098 0.000 1.098 +Seconds after DELTAT-loop : 0.055 0.000 0.055 + --------------------------- + Totals : 3.789 0.000 3.789 + +EMTP begins. Send (SPY, file_name, DISK, HELP, GO, KEY, STOP, BOTH, DIR) : + --- 35 cards of disk file read into card cache cells 1 onward. + --- Pass 1. Card = 20. Ready to open $INCLUDE = dc51fs3.dat + --- Pass 1. Card = 122. Ready to open $INCLUDE = dc51fs3p.dat +Alternative Transients Program (ATP), Salford 80386 translation. All rights reserved by Can/Am user group of Portland, Oregon, USA. + Date (dd-mth-yy) and time of day (hh.mm.ss) = 30-Jul-93 09.56.45 Name of disk plot file, if any, is D:37300956.pl4 +Consult the 800-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Program is no older than July, 1992. +Total size of LABCOM tables = 227363 INTEGER words. VARDIM List Sizes follow : 752 900 1500 150 7500 120 + 2100 5250 225 480 150 150 15000 60 10800 120 12 15 4800 1980 300 450 12000 9 1200 252 4 9600 +--------------------------------------------------+-------------------------------------------------------------------------------- +Descriptive interpretation of input data cards. | Input data card images are shown below, all 80 columns, character by character + 0 1 2 3 4 5 6 7 8 + 012345678901234567890123456789012345678901234567890123456789012345678901234567890 +--------------------------------------------------+-------------------------------------------------------------------------------- +Comment card. KOMPAR = 1. |C data:GO +Marker card preceding new EMTP data case. |BEGIN NEW DATA CASE +Comment card. KOMPAR = 1. |C 2nd of 3 data subcases. +Comment card. KOMPAR = 1. |C Illustration of LINE MODEL FREQUENCY SCAN (LMFS). For background of this +Comment card. KOMPAR = 1. |C feature that was first available in ATP at the end of March, 1992, see the + < < < Etc. (section removed) > > > +Blank card terminating frequency cards. |BLANK card ending frequency cards of "LINE CONSTANTS" data + 1) Freq [Hz] = 6.0000000E+01 Total network loss = 6.240924861294E+00 + 2) Freq [Hz] = 6.0000000E+02 Total network loss = 7.142960437129E+00 + +******************************************************************************** +* * +* LINE MODEL FREQUENCY SCAN COMPARISON TABLE 30-Jul-93 * +* POSITIVE-SEQUENCE IMPEDANCE TEST * +* * +******************************************************************************** + + LINE MODEL BEING TESTED EXACT-PI MODEL % ERROR + + FREQUENCY NODE MAG ANG REAL IMAG MAG ANG REAL IMAG PCTMAG PCTANG + + 6.000E+01 GENIA 8.329E+01 8.706E+01 4.276E+00 8.318E+01 8.381E+01 8.548E+01 6.605E+00 8.355E+01 -.624 1.845 + GENIB 8.329E+01 -3.294E+01 6.990E+01 -4.529E+01 8.257E+01 -3.296E+01 6.927E+01 -4.492E+01 .8778 -.061 + GENIC 8.329E+01 -1.529E+02 -7.417E+01 -3.789E+01 8.376E+01 -1.511E+02 -7.333E+01 -4.048E+01 -.561 1.219 + + 6.000E+02 GENIA 8.819E+01 -8.678E+01 4.952E+00 -8.805E+01 9.319E+01 -8.908E+01 1.488E+00 -9.317E+01 -5.36 -2.59 + GENIB 8.819E+01 1.532E+02 -7.873E+01 3.974E+01 8.182E+01 1.544E+02 -7.379E+01 3.536E+01 7.784 -.764 + GENIC 8.819E+01 3.322E+01 7.378E+01 4.832E+01 9.071E+01 3.412E+01 7.509E+01 5.089E+01 -2.77 -2.65 + + +Blank card terminating all plot cards. |BLANK card ending batch-mode plot cards +Actual List Sizes for the preceding solution follow. 30-Jul-93 09.52.47 + Size 1-10: 10 12 15 3 -9999 0 -9999 -9999 0 0 + Size 11-20: -9999 30 -9999 -9999 -9999 0 0 0 23 470 + Size 21-29: 18 -9999 27 -9999 -9999 -9999 -9999 -9999 -9999 +Seconds for overlays 1-5 : 1.262 0.000 1.262 --- (CP: I/O; tot) +Seconds for overlays 6-11 : 0.496 0.000 0.496 +Seconds for overlays 12-15 : 0.000 0.000 0.000 +Seconds for time-step loop : 0.000 0.000 0.000 +Seconds after DELTAT-loop : 0.055 0.000 0.055 + --------------------------- + Totals : 1.813 0.000 1.813 + + --- Pass 1. Card = 9. Ready to open $INCLUDE = dc51fs6.dat + --- Pass 1. Card = 193. Ready to open $INCLUDE = dc51fs6z.dat +Alternative Transients Program (ATP), Salford 80386 translation. All rights reserved by Can/Am user group of Portland, Oregon, USA. + Date (dd-mth-yy) and time of day (hh.mm.ss) = 30-Jul-93 09.57.47 Name of disk plot file, if any, is D:37300957.pl4 +Consult the 800-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Program is no older than July, 1992. +Total size of LABCOM tables = 227363 INTEGER words. VARDIM List Sizes follow : 752 900 1500 150 7500 120 + 2100 5250 225 480 150 150 15000 60 10800 120 12 15 4800 1980 300 450 12000 9 1200 252 4 9600 +--------------------------------------------------+-------------------------------------------------------------------------------- +Descriptive interpretation of input data cards. | Input data card images are shown below, all 80 columns, character by character + 0 1 2 3 4 5 6 7 8 + 012345678901234567890123456789012345678901234567890123456789012345678901234567890 +--------------------------------------------------+-------------------------------------------------------------------------------- +Marker card preceding new EMTP data case. |BEGIN NEW DATA CASE +Comment card. KOMPAR = 1. |C 3rd of 3 data subcases illustrates LINE MODEL FREQUENCY SCAN (LMFS) for +Comment card. KOMPAR = 1. |C an untransposed double-circuit line generated by JMARTI SETUP. + < < < Etc. (section removed) > > > +Blank card ending node names for voltage output. |BLANK CARD ENDING NODE VOLTAGE OUTPUTS ==================================== + 2) Freq [Hz] = 7.5535525E+00 Total network loss = 1.460350203292E+01 + 3) Freq [Hz] = 9.5093592E+00 Total network loss = 1.740069938004E+01 + < < < Etc. (section removed) > > > + 40) Freq [Hz] = 4.7659694E+04 Total network loss = 2.219525952980E+03 + 41) Freq [Hz] = 6.0000000E+04 Total network loss = 2.202395130215E+03 +Compute overhead line constants. Limit = 100 | +Comment card. KOMPAR = 1. |C End of $INCLUDE. File name = 30 +Comment card. KOMPAR = 1. |C MR02D# ,MR04D# ,MR02E# ,MR04E# ,MR02F# ,MR04F# +Comment card. KOMPAR = 1. |C dc51fs6p.dat +Comment card. KOMPAR = 1. |C dc51fs6m.dat +Comment card. KOMPAR = 1. |C Raw LINE CONSTANTS data for the overhead transmission line being considered: +Line conductor card. 4.138E-01 4.970E-02 4 | 1.4138 .0497 4 1.603 -15. 52.0 A1-1 +Line conductor card. 4.138E-01 4.970E-02 4 | 1.4138 .0497 4 1.603 -16.06 53.06 A1-2 + < < < Etc. (section removed) > > > +Blank card terminating frequency cards. |BLANK card ending frequency cards of "LINE CONSTANTS" data + 1) Freq [Hz] = 6.0000000E+00 Total network loss = 1.163993843730E+01 + 2) Freq [Hz] = 7.5535525E+00 Total network loss = 1.392642800817E+01 + < < < Etc. (section removed) > > > + 40) Freq [Hz] = 4.7659694E+04 Total network loss = 2.223352249386E+03 + 41) Freq [Hz] = 6.0000000E+04 Total network loss = 2.203817311869E+03 + +******************************************************************************** +* * +* LINE MODEL FREQUENCY SCAN COMPARISON TABLE 30-Jul-93 * +* ZERO-SEQUENCE IMPEDANCE TEST * +* * +******************************************************************************** + + LINE MODEL BEING TESTED EXACT-PI MODEL % ERROR + + FREQUENCY NODE MAG ANG REAL IMAG MAG ANG REAL IMAG PCTMAG PCTANG + + 6.000E+00 GENIA 2.366E+01 8.006E+01 4.083E+00 2.331E+01 2.351E+01 8.070E+01 3.797E+00 2.320E+01 .6696 -.791 + GENIB 2.368E+01 7.984E+01 4.176E+00 2.331E+01 2.381E+01 8.038E+01 3.979E+00 2.347E+01 -.552 -.671 + GENIC 2.347E+01 7.996E+01 4.092E+00 2.311E+01 2.352E+01 8.055E+01 3.864E+00 2.320E+01 -.221 -.728 + GENID 2.347E+01 7.996E+01 4.092E+00 2.311E+01 2.352E+01 8.055E+01 3.864E+00 2.320E+01 -.221 -.728 + GENIE 2.368E+01 7.984E+01 4.176E+00 2.331E+01 2.381E+01 8.038E+01 3.979E+00 2.347E+01 -.552 -.671 + GENIF 2.366E+01 8.006E+01 4.083E+00 2.331E+01 2.351E+01 8.070E+01 3.797E+00 2.320E+01 .6696 -.791 + + 7.554E+00 GENIA 2.914E+01 8.041E+01 4.857E+00 2.873E+01 2.901E+01 8.092E+01 4.577E+00 2.865E+01 .4326 -.641 + GENIB 2.917E+01 8.030E+01 4.916E+00 2.876E+01 2.939E+01 8.073E+01 4.734E+00 2.900E+01 -.728 -.533 + GENIC 2.892E+01 8.038E+01 4.831E+00 2.851E+01 2.904E+01 8.085E+01 4.616E+00 2.867E+01 -.408 -.581 + GENID 2.892E+01 8.038E+01 4.831E+00 2.851E+01 2.904E+01 8.085E+01 4.616E+00 2.867E+01 -.408 -.581 + GENIE 2.917E+01 8.030E+01 4.916E+00 2.876E+01 2.939E+01 8.073E+01 4.734E+00 2.900E+01 -.728 -.533 + GENIF 2.914E+01 8.041E+01 4.857E+00 2.873E+01 2.901E+01 8.092E+01 4.577E+00 2.865E+01 .4326 -.641 + + < < < Etc. (section removed) > > > + + + 6.000E+04 GENIA 7.446E+02 -5.713E+00 7.409E+02 -7.413E+01 7.156E+02 -3.941E+00 7.139E+02 -4.919E+01 4.062 44.95 + GENIB 7.249E+02 -1.238E+00 7.247E+02 -1.566E+01 7.120E+02 -3.456E-01 7.120E+02 -4.295E+00 1.804 258.2 + GENIC 7.372E+02 -2.027E+00 7.367E+02 -2.607E+01 7.801E+02 -4.349E+00 7.779E+02 -5.916E+01 -5.51 -53.4 + GENID 7.372E+02 -2.027E+00 7.367E+02 -2.607E+01 7.801E+02 -4.349E+00 7.779E+02 -5.916E+01 -5.51 -53.4 + GENIE 7.249E+02 -1.238E+00 7.247E+02 -1.566E+01 7.120E+02 -3.456E-01 7.120E+02 -4.295E+00 1.804 258.2 + GENIF 7.446E+02 -5.713E+00 7.409E+02 -7.413E+01 7.156E+02 -3.941E+00 7.139E+02 -4.919E+01 4.062 44.95 + +Request for character (line printer) plotting. | PRINTER PLOT +>> Plot card. 5.000E-01 0.000E+00 5.000E+00 | 186 .5 0.0 5.0 GENIA MAG MARTI SECTION Z IN OHMS + +30-Jul-93 09.57.47 1 +Plot type 8 +Node names GENIA MAG +Time-axis legend : Frequency f in Hertz + + Z IN OHMS ( x 10**( 3) ) + 0.000 0.515 1.030 1.545 2.059 2.574 3.089 3.604 4.119 4.634 5.149 5.663 6.178 6.693 ++---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ +| +| +| +| +| +| +| 0.5 +| +| +A +| +|A +|A +|A +|A +|A +| +| A +| A +| A +| A +| A +| +| A +| 2.0 A +| A +| A +| A +| +| A +| 2.5 A +| A +| A +| A +| +| A +| 3.0 A +| A +| A +| A +| +| A +| 3.5 A +| A +| A +| A +| +| A +| 4.0 A +| A +| A +| A +| +| A +| 4.5 A +| A +| A +| A +End of graph. + + < < < Etc. (section removed) > > > + +Blank card terminating all plot cards. |BLANK card ending batch-mode (CalComp) plot cards +Actual List Sizes for the preceding solution follow. 30-Jul-93 09.52.59 + Size 1-10: 19 24 39 6 -9999 0 -9999 -9999 0 0 + Size 11-20: -9999 60 82 -9999 -9999 0 0 0 23 1073 + Size 21-29: 72 -9999 90 -9999 -9999 -9999 -9999 -9999 -9999 +Seconds for overlays 1-5 : 1.703 0.000 1.703 --- (CP: I/O; tot) +Seconds for overlays 6-11 : 8.461 0.000 8.461 +Seconds for overlays 12-15 : 0.000 0.000 0.000 +Seconds for time-step loop : 1.047 0.000 1.047 +Seconds after DELTAT-loop : 0.879 0.000 0.879 + --------------------------- + Totals : 12.090 0.000 12.090 + +EMTP begins. Send (SPY, file_name, DISK, HELP, GO, KEY, STOP, BOTH, DIR) : + --- 44 cards of disk file read into card cache cells 1 onward. + --- Pass 1. Card = 10. Ready to open $INCLUDE = dc51fs6.dat + --- Pass 1. Card = 194. Ready to open $INCLUDE = dc51fs6p.dat +Alternative Transients Program (ATP), Salford 80386 translation. All rights reserved by Can/Am user group of Portland, Oregon, USA. + Date (dd-mth-yy) and time of day (hh.mm.ss) = 30-Jul-93 09.58.00 Name of disk plot file, if any, is D:37300958.pl4 +Consult the 800-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Program is no older than July, 1992. +Total size of LABCOM tables = 227363 INTEGER words. VARDIM List Sizes follow : 752 900 1500 150 7500 120 + 2100 5250 225 480 150 150 15000 60 10800 120 12 15 4800 1980 300 450 12000 9 1200 252 4 9600 +--------------------------------------------------+-------------------------------------------------------------------------------- +Descriptive interpretation of input data cards. | Input data card images are shown below, all 80 columns, character by character + 0 1 2 3 4 5 6 7 8 + 012345678901234567890123456789012345678901234567890123456789012345678901234567890 +--------------------------------------------------+-------------------------------------------------------------------------------- +Comment card. KOMPAR = 1. |C data:GO +Marker card preceding new EMTP data case. |BEGIN NEW DATA CASE +Comment card. KOMPAR = 1. |C 3rd of 3 data subcases illustrates LINE MODEL FREQUENCY SCAN (LMFS) for +Comment card. KOMPAR = 1. |C an untransposed double-circuit line generated by JMARTI SETUP. + < < < Etc. (section removed) > > > +Blank card ending node names for voltage output. |BLANK CARD ENDING NODE VOLTAGE OUTPUTS ==================================== + 2) Freq [Hz] = 7.5535525E+00 Total network loss = 2.186843544415E+00 + 3) Freq [Hz] = 9.5093592E+00 Total network loss = 2.201132634968E+00 + < < < Etc. (section removed) > > > + 40) Freq [Hz] = 4.7659694E+04 Total network loss = 5.301174275213E+01 + 41) Freq [Hz] = 6.0000000E+04 Total network loss = 7.652463362163E+01 +Compute overhead line constants. Limit = 100 | + < < < Etc. (section removed) > > > +Line conductor card. 4.138E-01 4.970E-02 4 | 1.4138 .0497 4 1.603 -15. 52.0 A1-1 +Line conductor card. 4.138E-01 4.970E-02 4 | 1.4138 .0497 4 1.603 -16.06 53.06 A1-2 + < < < Etc. (section removed) > > > +Blank card terminating frequency cards. |BLANK card ending frequency cards of "LINE CONSTANTS" data + 1) Freq [Hz] = 6.0000000E+00 Total network loss = 2.644053558159E+00 + 2) Freq [Hz] = 7.5535525E+00 Total network loss = 2.646292442603E+00 + < < < Etc. (section removed) > > > + 40) Freq [Hz] = 4.7659694E+04 Total network loss = 6.165455521027E+01 + 41) Freq [Hz] = 6.0000000E+04 Total network loss = 9.153350121473E+01 + +******************************************************************************** +* * +* LINE MODEL FREQUENCY SCAN COMPARISON TABLE 30-Jul-93 * +* POSITIVE-SEQUENCE IMPEDANCE TEST * +* * +******************************************************************************** + + LINE MODEL BEING TESTED EXACT-PI MODEL % ERROR + + + FREQUENCY NODE MAG ANG REAL IMAG MAG ANG REAL IMAG PCTMAG PCTANG + + 6.000E+00 GENIA 2.626E+00 7.474E+01 6.912E-01 2.534E+00 2.604E+00 6.958E+01 9.085E-01 2.440E+00 .8639 7.416 + GENIB 2.711E+00 -4.640E+01 1.869E+00 -1.963E+00 2.813E+00 -4.956E+01 1.825E+00 -2.141E+00 -3.65 -6.39 + GENIC 2.663E+00 -1.655E+02 -2.578E+00 -6.683E-01 2.664E+00 -1.671E+02 -2.596E+00 -5.939E-01 -.008 -.987 + GENID 2.608E+00 7.375E+01 7.299E-01 2.503E+00 2.625E+00 6.918E+01 9.329E-01 2.453E+00 -.653 6.599 + GENIE 2.746E+00 -4.615E+01 1.902E+00 -1.980E+00 2.808E+00 -4.910E+01 1.839E+00 -2.123E+00 -2.21 -6. + GENIF 2.626E+00 -1.651E+02 -2.538E+00 -6.750E-01 2.644E+00 -1.677E+02 -2.583E+00 -5.654E-01 -.693 -1.52 + + 7.554E+00 GENIA 3.268E+00 7.756E+01 7.038E-01 3.191E+00 3.218E+00 7.334E+01 9.228E-01 3.083E+00 1.542 5.761 + GENIB 3.368E+00 -4.312E+01 2.458E+00 -2.302E+00 3.467E+00 -4.578E+01 2.418E+00 -2.485E+00 -2.87 -5.8 + GENIC 3.291E+00 -1.625E+02 -3.139E+00 -9.906E-01 3.285E+00 -1.635E+02 -3.150E+00 -9.335E-01 .1779 -.618 + GENID 3.246E+00 7.675E+01 7.439E-01 3.160E+00 3.249E+00 7.288E+01 9.567E-01 3.105E+00 -.094 5.321 + GENIE 3.405E+00 -4.296E+01 2.492E+00 -2.321E+00 3.463E+00 -4.529E+01 2.437E+00 -2.461E+00 -1.69 -5.13 + GENIF 3.255E+00 -1.622E+02 -3.098E+00 -9.965E-01 3.251E+00 -1.641E+02 -3.126E+00 -8.919E-01 .1212 -1.16 + + < < < Etc. (section removed) > > > + + 6.000E+04 GENIA 1.758E+02 5.490E+01 1.011E+02 1.438E+02 2.043E+02 5.199E+01 1.258E+02 1.610E+02 -14. 5.593 + GENIB 2.032E+02 -1.852E+01 1.927E+02 -6.454E+01 2.288E+02 -1.702E+01 2.188E+02 -6.699E+01 -11.2 8.777 + GENIC 8.011E+01 -1.524E+02 -7.101E+01 -3.709E+01 7.719E+01 -1.493E+02 -6.634E+01 -3.947E+01 3.787 2.124 + GENID 1.186E+02 9.365E+01 -7.560E+00 1.184E+02 1.343E+02 8.904E+01 2.259E+00 1.343E+02 -11.7 5.186 + GENIE 1.089E+02 -6.696E+01 4.262E+01 -1.002E+02 1.143E+02 -6.770E+01 4.338E+01 -1.058E+02 -4.72 -1.08 + GENIF 1.970E+02 -1.591E+02 -1.841E+02 -7.034E+01 2.168E+02 -1.600E+02 -2.036E+02 -7.428E+01 -9.1 -.548 + +Request for character (line printer) plotting. | PRINTER PLOT +>> Plot card. 5.000E-01 0.000E+00 5.000E+00 | 186 .5 0.0 5.0 GENIA MAG MARTI SECTION Z IN OHMS + +30-Jul-93 09.58.00 1 +Plot type 8 +Node names GENIA MAG +Time-axis legend : Frequency f in Hertz + + Z IN OHMS ( x 10**( 3) ) + 0.000 0.123 0.246 0.370 0.493 0.616 0.739 0.862 0.985 1.109 1.232 1.355 1.478 1.601 ++---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ + + < < < Etc. (section removed) > > > + +Blank card terminating all plot cards. |BLANK card ending batch-mode (CalComp) plot cards +Actual List Sizes for the preceding solution follow. 30-Jul-93 09.53.11 + Size 1-10: 19 24 39 6 -9999 0 -9999 -9999 0 0 + Size 11-20: -9999 60 82 -9999 -9999 0 0 0 23 1073 + Size 21-29: 72 -9999 90 -9999 -9999 -9999 -9999 -9999 -9999 +Seconds for overlays 1-5 : 1.539 0.000 1.539 --- (CP: I/O; tot) +Seconds for overlays 6-11 : 8.406 0.000 8.406 +Seconds for overlays 12-15 : 0.000 0.000 0.000 +Seconds for time-step loop : 0.934 0.000 0.934 +Seconds after DELTAT-loop : 0.879 0.000 0.879 + --------------------------- + Totals : 11.758 0.000 11.758 + +EMTP begins. Send (SPY, file_name, DISK, HELP, GO, KEY, STOP, BOTH, DIR) : + --- 44 cards of disk file read into card cache cells 1 onward. + --- Pass 1. Card = 10. Ready to open $INCLUDE = dc51fs6.dat + --- Pass 1. Card = 194. Ready to open $INCLUDE = dc51fs6m.dat +Alternative Transients Program (ATP), Salford 80386 translation. All rights reserved by Can/Am user group of Portland, Oregon, USA. + Date (dd-mth-yy) and time of day (hh.mm.ss) = 30-Jul-93 09.59.12 Name of disk plot file, if any, is D:37300959.pl4 +Consult the 800-page ATP Rule Book of the Can/Am EMTP User Group in Portland, Oregon, USA. Program is no older than July, 1992. +Total size of LABCOM tables = 227363 INTEGER words. VARDIM List Sizes follow : 752 900 1500 150 7500 120 + 2100 5250 225 480 150 150 15000 60 10800 120 12 15 4800 1980 300 450 12000 9 1200 252 4 9600 +--------------------------------------------------+-------------------------------------------------------------------------------- +Descriptive interpretation of input data cards. | Input data card images are shown below, all 80 columns, character by character + 0 1 2 3 4 5 6 7 8 + 012345678901234567890123456789012345678901234567890123456789012345678901234567890 +--------------------------------------------------+-------------------------------------------------------------------------------- +Comment card. KOMPAR = 1. |C data:GO +Marker card preceding new EMTP data case. |BEGIN NEW DATA CASE +Comment card. KOMPAR = 1. |C 3rd of 3 data subcases illustrates LINE MODEL FREQUENCY SCAN (LMFS) for +Comment card. KOMPAR = 1. |C an untransposed double-circuit line generated by JMARTI SETUP. + < < < Etc. (section removed) > > > +Blank card ending node names for voltage output. |BLANK CARD ENDING NODE VOLTAGE OUTPUTS ==================================== + 2) Freq [Hz] = 7.5535525E+00 Total network loss = 4.247788777322E+00 + 3) Freq [Hz] = 9.5093592E+00 Total network loss = 4.950100153259E+00 + < < < Etc. (section removed) > > > + 40) Freq [Hz] = 4.7659694E+04 Total network loss = 6.576631373437E+02 + 41) Freq [Hz] = 6.0000000E+04 Total network loss = 7.406315999451E+02 +Compute overhead line constants. Limit = 100 | + < < < Etc. (section removed) > > > +Blank card terminating frequency cards. |BLANK card ending frequency cards of "LINE CONSTANTS" data + 1) Freq [Hz] = 6.0000000E+00 Total network loss = 3.573399585181E+00 + 2) Freq [Hz] = 7.5535525E+00 Total network loss = 4.146632333116E+00 + < < < Etc. (section removed) > > > + 40) Freq [Hz] = 4.7659694E+04 Total network loss = 6.610984397030E+02 + 41) Freq [Hz] = 6.0000000E+04 Total network loss = 7.522122408557E+02 + +******************************************************************************** +* * +* LINE MODEL FREQUENCY SCAN COMPARISON TABLE 30-Jul-93 * +* MUTUAL IMPEDANCE TEST * +* * +******************************************************************************** + + LINE MODEL BEING TESTED EXACT-PI MODEL % ERROR + + FREQUENCY NODE MAG ANG REAL IMAG MAG ANG REAL IMAG PCTMAG PCTANG + + 6.000E+00 GENIA 1.335E+01 7.964E+01 2.401E+00 1.313E+01 1.327E+01 7.985E+01 2.339E+00 1.306E+01 .6346 -.259 + GENIB 1.364E+01 7.935E+01 2.521E+00 1.341E+01 1.370E+01 7.978E+01 2.431E+00 1.348E+01 -.399 -.531 + GENIC 1.326E+01 7.939E+01 2.442E+00 1.304E+01 1.330E+01 7.971E+01 2.377E+00 1.309E+01 -.261 -.395 + GENID 1.021E+01 8.070E+01 1.650E+00 1.007E+01 1.023E+01 8.164E+01 1.487E+00 1.012E+01 -.187 -1.15 + GENIE 1.004E+01 8.050E+01 1.656E+00 9.898E+00 1.011E+01 8.120E+01 1.547E+00 9.993E+00 -.765 -.855 + GENIF 1.031E+01 8.062E+01 1.681E+00 1.017E+01 1.024E+01 8.181E+01 1.458E+00 1.014E+01 .6897 -1.46 + + 7.554E+00 GENIA 1.647E+01 8.025E+01 2.790E+00 1.623E+01 1.639E+01 8.042E+01 2.729E+00 1.617E+01 .4408 -.215 + GENIB 1.684E+01 8.011E+01 2.892E+00 1.659E+01 1.693E+01 8.045E+01 2.810E+00 1.670E+01 -.545 -.42 + GENIC 1.637E+01 8.010E+01 2.813E+00 1.612E+01 1.644E+01 8.035E+01 2.755E+00 1.621E+01 -.454 -.314 + GENID 1.256E+01 8.075E+01 2.018E+00 1.239E+01 1.260E+01 8.151E+01 1.861E+00 1.246E+01 -.356 -.924 + GENIE 1.234E+01 8.056E+01 2.023E+00 1.217E+01 1.246E+01 8.111E+01 1.924E+00 1.231E+01 -.979 -.685 + GENIF 1.267E+01 8.061E+01 2.067E+00 1.250E+01 1.262E+01 8.158E+01 1.848E+00 1.249E+01 .4114 -1.19 + + < < < Etc. (section removed) > > > + + 6.000E+04 GENIA 5.510E+02 1.845E+01 5.227E+02 1.744E+02 5.618E+02 2.101E+01 5.244E+02 2.015E+02 -1.91 -12.2 + GENIB 5.619E+02 2.300E+01 5.173E+02 2.195E+02 5.683E+02 2.425E+01 5.182E+02 2.334E+02 -1.12 -5.17 + GENIC 4.576E+02 1.536E+01 4.413E+02 1.212E+02 4.744E+02 1.321E+01 4.618E+02 1.084E+02 -3.53 16.24 + GENID 3.301E+02 -2.650E+01 2.954E+02 -1.473E+02 3.577E+02 -2.794E+01 3.161E+02 -1.676E+02 -7.72 -5.15 + GENIE 3.136E+02 -4.859E+01 2.075E+02 -2.352E+02 3.067E+02 -5.080E+01 1.939E+02 -2.377E+02 2.241 -4.36 + GENIF 3.308E+02 -4.872E+01 2.182E+02 -2.486E+02 3.142E+02 -5.291E+01 1.895E+02 -2.506E+02 5.275 -7.93 + + +Request for character (line printer) plotting. | PRINTER PLOT +>> Plot card. 5.000E-01 0.000E+00 5.000E+00 | 186 .5 0.0 5.0 GENIA MAG MARTI SECTION Z IN OHMS + +30-Jul-93 09.59.12 1 +Plot type 8 +Node names GENIA MAG +Time-axis legend : Frequency f in Hertz + + Z IN OHMS ( x 10**( 3) ) + 0.000 0.254 0.507 0.761 1.015 1.268 1.522 1.776 2.029 2.283 2.537 2.790 3.044 3.298 ++---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ + < < < Etc. (section removed) > > > +Blank card terminating all plot cards. |BLANK card ending batch-mode (CalComp) plot cards +Actual List Sizes for the preceding solution follow. 30-Jul-93 09.53.22 + Size 1-10: 19 24 39 3 -9999 0 -9999 -9999 0 0 + Size 11-20: -9999 60 82 -9999 -9999 0 0 0 23 1073 + Size 21-29: 72 -9999 90 -9999 -9999 -9999 -9999 -9999 -9999 +Seconds for overlays 1-5 : 1.703 0.000 1.703 --- (CP: I/O; tot) +Seconds for overlays 6-11 : 8.133 0.000 8.133 +Seconds for overlays 12-15 : 0.000 0.000 0.000 +Seconds for time-step loop : 0.055 0.000 0.055 +Seconds after DELTAT-loop : 0.879 0.000 0.879 + --------------------------- + Totals : 10.770 0.000 10.770 + diff --git a/benchmarks/dc51fs3.dat b/benchmarks/dc51fs3.dat new file mode 100644 index 0000000..cd84e0f --- /dev/null +++ b/benchmarks/dc51fs3.dat @@ -0,0 +1,100 @@ +C <++++++> Cards punched by support routine on 18-SEP-91 07:44:12 <++++++> +C JMARTI SETUP, 1.0, { Note use of PDT0 = 1 to allow reduction of ord +C $ERASE +C BRANCH JDA LMA JDB LMB JDC LMC +C LINE CONSTANTS +C C LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE. +C TRANSPOSED +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C BLANK CARD ENDING CONDUCTOR CARDS OF &LINE CONSTANTS& CASE +C 100. 5000.0 1 138. 1 1 +C 100. 60.00 1 138. 1 1 +C 100. .01 1 138. 1 9 10 1 +C BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +C BLANK CARD ENDING "LINE CONSTANTS" CASES +C C 3456789012345678901234567890123456789012345678901234567890123456789012345678 +C C SELECT +3 -3 +C 1 +C .30 30 0 1 1 1 0 +-1JDA LMA 2. 1.00 -2 + 18 0.47451831101101520716E+03 + -0.120081062968756280E+01 -0.316405763313299632E+01 0.256932200009645957E+02 + -0.602598085082801518E+02 -0.118714770735006967E+03 0.128352319683379002E+04 + 0.591638248494403535E+04 0.294305250873326868E+05 0.116318975618842309E+06 + 0.459249722758438496E+06 0.154677011972793328E+07 0.686025868803029985E+07 + 0.156353274865705122E+08 0.237895960081606861E+08 0.117959279089827936E+08 + 0.266824936920365375E+08 0.262710020538645065E+08 0.449665457754528895E+08 + 0.327706249087525478E+00 0.897216954243087700E+00 0.165554332918055769E+01 + 0.166586165459549870E+01 0.252939897370842093E+01 0.200105259629226495E+02 + 0.124539630041500239E+03 0.659787753798185037E+03 0.279916904843576089E+04 + 0.117767336727509653E+05 0.429820526044313583E+05 0.203664181161562348E+06 + 0.973703332893284969E+06 0.304009234079002426E+07 0.611597333586299303E+07 + 0.144324529645394124E+08 0.130708232833027234E+08 0.238306479572872124E+08 + 14 0.86815077124698057372E-03 + 0.559961665585920650E-01 0.275859097915883665E+00 0.366926548945632078E+00 + 0.774887474980490445E+00 0.425201985771015500E+01 0.106499171813195073E+02 + 0.593306574121119858E+02 0.420006316132136313E+03 0.116114239885902256E+04 + 0.988217929186759875E+03 0.636655891176612408E+04 0.597536233496734858E+05 + 0.181410761048913384E+08 -0.182098413600606746E+08 + 0.220025857179597386E+02 0.104858693772257157E+03 0.142080244883049186E+03 + 0.269881655369213689E+03 0.367818194911227330E+03 0.489749997951272086E+03 + 0.117877893449694832E+04 0.282757087592563670E+04 0.432673390803872292E+04 + 0.620251900121745700E+04 0.119248844933559833E+05 0.263190433404159467E+05 + 0.203957306090427796E+05 0.204161263396518216E+05 +-2JDB LMB 2. 1.00 -2 + 10 0.27918412198151782633E+03 + 0.223477735420733927E+04 -0.114637808644082020E+04 0.562713463449037420E+03 + 0.131558796963641711E+03 0.809731119998908557E+02 0.136543470872678377E+03 + 0.638104438343413491E+02 0.134037028238825748E+03 0.550787007998715876E+04 + 0.769156786393917573E+06 + 0.339528899377900173E+01 0.372152580849274106E+01 0.742888229124818422E+01 + 0.105057373139075598E+02 0.136164452778176321E+02 0.237989900635378331E+02 + 0.384148838286085814E+02 0.733458103230969716E+02 0.265431564756950860E+04 + 0.372575386817332641E+06 + 20 0.74599392983292179768E-03 + 0.180586864035276293E-01 0.319699506044472048E+01 0.313587709150663380E+01 + 0.593232492400139511E+01 0.743853040279221212E+01 0.122443219959108647E+02 + 0.182863037304053475E+02 0.523917784508005866E+02 0.367819898778271337E+03 + 0.201527604162885450E+04 0.267044905126571362E+05 0.269463815651987079E+05 + 0.180992629991478585E+06 -0.725032339277287792E+05 0.188139771569328430E+06 + 0.730538307899732856E+06 0.433720089868115492E+09 -0.427070911861493215E+09 + 0.269954519836530104E+09 -0.277687001930893905E+09 + 0.743017923297392346E+01 0.125469958041855037E+04 0.133552980129450327E+04 + 0.239867436518041035E+04 0.306582540434474976E+04 0.495594413211201390E+04 + 0.740487156717725475E+04 0.217329459321606737E+05 0.176792957118680411E+05 + 0.466108042744677241E+05 0.174043620363312366E+06 0.229769370467299781E+06 + 0.351791281275438560E+06 0.367292903450297163E+06 0.614171445952830632E+06 + 0.920861499455243247E+06 0.210947591534427053E+07 0.211158539125961496E+07 + 0.180499533588652458E+07 0.180680033122241122E+07 +-3JDC LMC 2. 1.00 -2 + 10 0.27918412198151782633E+03 + 0.223477735420733927E+04 -0.114637808644082020E+04 0.562713463449037420E+03 + 0.131558796963641711E+03 0.809731119998908557E+02 0.136543470872678377E+03 + 0.638104438343413491E+02 0.134037028238825748E+03 0.550787007998715876E+04 + 0.769156786393917573E+06 + 0.339528899377900173E+01 0.372152580849274106E+01 0.742888229124818422E+01 + 0.105057373139075598E+02 0.136164452778176321E+02 0.237989900635378331E+02 + 0.384148838286085814E+02 0.733458103230969716E+02 0.265431564756950860E+04 + 0.372575386817332641E+06 + 20 0.74599392983292179768E-03 + 0.180586864035276293E-01 0.319699506044472048E+01 0.313587709150663380E+01 + 0.593232492400139511E+01 0.743853040279221212E+01 0.122443219959108647E+02 + 0.182863037304053475E+02 0.523917784508005866E+02 0.367819898778271337E+03 + 0.201527604162885450E+04 0.267044905126571362E+05 0.269463815651987079E+05 + 0.180992629991478585E+06 -0.725032339277287792E+05 0.188139771569328430E+06 + 0.730538307899732856E+06 0.433720089868115492E+09 -0.427070911861493215E+09 + 0.269954519836530104E+09 -0.277687001930893905E+09 + 0.743017923297392346E+01 0.125469958041855037E+04 0.133552980129450327E+04 + 0.239867436518041035E+04 0.306582540434474976E+04 0.495594413211201390E+04 + 0.740487156717725475E+04 0.217329459321606737E+05 0.176792957118680411E+05 + 0.466108042744677241E+05 0.174043620363312366E+06 0.229769370467299781E+06 + 0.351791281275438560E+06 0.367292903450297163E+06 0.614171445952830632E+06 + 0.920861499455243247E+06 0.210947591534427053E+07 0.211158539125961496E+07 + 0.180499533588652458E+07 0.180680033122241122E+07 diff --git a/benchmarks/dc51fs3p.dat b/benchmarks/dc51fs3p.dat new file mode 100644 index 0000000..2da1c7e --- /dev/null +++ b/benchmarks/dc51fs3p.dat @@ -0,0 +1,34 @@ +KARD 1 2 3 4 5 6 +KARG 1 3 5 2 4 6 +KBEG 9 9 9 3 3 3 +KEND 14 14 14 8 8 8 +KTEX 1 1 1 1 1 1 +C ** JUMPERS TO LINE MODEL SEGMENT FOR current injection + GENIA SEND_A .001 0 + GENIB SEND_B .001 0 + GENIC SEND_C .001 0 +C +C ** JUMPERS TO SHORT CIRCUIT OTHER END OF LINE MODEL segment + RECV_A .001 0 + RECV_B .001 0 + RECV_C .001 0 +C +C ** SHUNT RESISTANCE TO LIMIT RESONANT impedance to 100K ohms + GENIA 100.E3 0 + GENIB 100.E3 0 + GENIC 100.E3 0 +C +C +BLANK card ending branch cards +BLANK card ending switch and valve cards +C +C +C ** Current sources FOR IMPEDANCE MEASUREMENT +14GENIA -1 1.00 60.0 0. -1.0 +14GENIB -1 1.00 60.0 -120. -1.0 +14GENIC -1 1.00 60.0 +120. -1.0 +BLANK card ending source cards +C +C ** OUTPUTS FOR impedance test + GENIA GENIB GENIC +BLANK card ending names of nodes for node voltage output diff --git a/benchmarks/dc51fs3z.dat b/benchmarks/dc51fs3z.dat new file mode 100644 index 0000000..c837ceb --- /dev/null +++ b/benchmarks/dc51fs3z.dat @@ -0,0 +1,34 @@ +KARD 1 2 3 4 5 6 +KARG 1 3 5 2 4 6 +KBEG 9 9 9 3 3 3 +KEND 14 14 14 8 8 8 +KTEX 1 1 1 1 1 1 +C ** Jumpers to LINE MODEL SEGMENT FOR CURRENT INJECTION + GENIA SEND_A .001 0 + GENIB SEND_B .001 0 + GENIC SEND_C .001 0 +C +C ** JUMPERS TO short circuit OTHER END OF LINE MODEL SEGMENT + RECV_A .001 0 + RECV_B .001 0 + RECV_C .001 0 +C +C ** Shunt resistance TO LIMIT RESONANT IMPEDANCE TO 100K OHMS + GENIA 100.E3 0 + GENIB 100.E3 0 + GENIC 100.E3 0 +C +C +BLANK card ending branch cards +BLANK card ending switch and valve cards +C +C +C ** CURRENT SOURCES FOR IMPEDANCE measurement +14GENIA -1 1.00 60.0 0. -1.0 +14GENIB -1 1.00 60.0 - 0. -1.0 +14GENIC -1 1.00 60.0 0. -1.0 +BLANK card ending sources +C +C ** Outputs for IMPEDANCE TEST + GENIA GENIB GENIC +BLANK card ending node names for voltage output diff --git a/benchmarks/dc51fs6.dat b/benchmarks/dc51fs6.dat new file mode 100644 index 0000000..bba4112 --- /dev/null +++ b/benchmarks/dc51fs6.dat @@ -0,0 +1,182 @@ +C <++++++> Cards punched by support routine on 24-Oct-89 11:44:12 <++++++> +C JMARTI SETUP +C BRANCH MR02A MR04A MR02B MR04B MR02C MR04C MR02D MR04D MR02E MR04E MR02F MR04 +C C +C LINE CONSTANTS +C C +C C **** KEY WORDS SPECIFYING TYPE OF MODEL TO BE BUILT **** +C C +C C UNTRANSPOSED LINE MODEL +C C TRANSPOSED +C C SPECIAL DOUBLE CIRCUIT TRANSPOSED LINE +C C +C C **** CONDUCTOR CARDS **** +C C +C C 100" DBL CCT (TOWER 19M) WITH "SEAHAWK" CONDUCTOR - 3/16/81 +C C ========= 4-OHGW (.495" EHS STEEL) FOR COLSTRIP +C C +C 1.4138 .0497 4 1.603 -15. 52.0 A1-1 +C 1.4138 .0497 4 1.603 -16.06 53.06 A1-2 +C 1.4138 .0497 4 1.603 -13.94 53.06 A1-3 +C 2.4138 .0497 4 1.603 -25. 83.0 B1-1 +C 2.4138 .0497 4 1.603 -26.06 84.06 B1-2 +C 2.4138 .0497 4 1.603 -23.94 84.06 B1-3 +C 3.4138 .0497 4 1.603 -15. 114.0 C1-1 +C 3.4138 .0497 4 1.603 -16.06 115.06 C1-2 +C 3.4138 .0497 4 1.603 -13.94 115.06 C1-3 +C 4.4138 .0497 4 1.603 15. 114.0 A2-1 +C 4.4138 .0497 4 1.603 13.94 115.06 A2-2 +C 4.4138 .0497 4 1.603 16.06 115.06 A2-3 +C 5.4138 .0497 4 1.603 25. 83.0 B2-1 +C 5.4138 .0497 4 1.603 23.94 84.06 B2-2 +C 5.4138 .0497 4 1.603 26.06 84.06 B2-3 +C 6.4138 .0497 4 1.603 15. 52.0 C2-1 +C 6.4138 .0497 4 1.603 13.94 53.06 C2-2 +C 6.4138 .0497 4 1.603 16.06 53.06 C2-3 +C 0.5 3.56 4 .495 -7.0 150.7 OHGW-L +C 0.5 3.56 4 .495 7.0 150.7 OHGW-R +C BLANK CARD ENDING CONDUCTOR CARDS OF "LINE CONSTANTS" CASE +C C RHO FREQ LENGTH SEGMENT G.W. +C 100. 1000. 1 53.00 1 1 +C 100. 60. 1 53.00 1 1 +C 100. .001 1 53.00 1 9 10 1 1 +C BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +C BLANK CARD ENDING "LINE CONSTANTS" CASES +C C 3456789012345678901234567890123456789012345678901234567890123456789012345678 +C C SELECT +6 -6 +C 1 +C .30 30 0 1 1 0 0 +-1MR02A MR04A 2. 0.00 -2 6 + 20 0.67840828076250306822E+03 + -0.117812664091835884E+00 -0.168043678611424857E+00 -0.203146040168673353E+00 + -0.334242936664796986E+00 -0.197393231219099108E+01 -0.576868599864933795E+01 + -0.161431573634744439E+02 0.834024102882779061E+01 -0.243750335903307347E+01 + -0.664881394846277203E+03 -0.144070761757396031E+04 0.541589389352484432E+04 + 0.228540922852072945E+05 0.797969708865229186E+05 0.249308588066404016E+06 + 0.801893928867314244E+06 0.220840489698645240E+07 0.793683557833937369E+07 + 0.132048313146078978E+08 0.400967804211615175E+08 + 0.781288038250473049E-01 0.112576988883163032E+00 0.138937791152754342E+00 + 0.227905802773770899E+00 0.370340602072765757E+00 0.581720608423274776E+00 + 0.955416473305550462E+00 0.200406099747607858E+01 0.183435092858568538E+01 + 0.237102436595163768E+01 0.473101516191457261E+01 0.452787512200884166E+02 + 0.314641130780188575E+03 0.118906085227354833E+04 0.400948151171619884E+04 + 0.137578825084006476E+05 0.414155022900920521E+05 0.158835209634385974E+06 + 0.558778901453847415E+06 0.176746691609545867E+07 + 21 0.32528145560576266241E-03 + 0.112244883719644032E-01 0.135373578335516692E+00 0.177925146558561981E+00 + 0.230398529819115877E+00 0.249987115960627559E+00 0.319452276270058011E+00 + 0.244906540155881786E+00 0.541423348659036630E+00 0.346065244249793622E+02 + 0.500149283943064216E+01 0.102793098418375394E+03 0.102373018169361046E+04 + 0.114978235630152517E+04 -0.515338428883736015E+03 0.346516537690874884E+04 + 0.114151226654371840E+05 0.225232458360224991E+05 0.985342178336232156E+07 + -0.973414561458559707E+07 0.205291972485551611E+07 -0.221140191342626791E+07 + 0.862775595076194968E+01 0.101787577667939658E+03 0.134596355134424186E+03 + 0.169579611996866589E+03 0.189307409588613439E+03 0.245132052712709850E+03 + 0.199993762485085739E+03 0.367641916548446773E+03 0.111313827696035173E+04 + 0.112748361174320235E+04 0.214700172920126215E+04 0.629519624158694387E+04 + 0.848449172073151021E+04 0.132923636232770841E+05 0.117400337357244061E+05 + 0.251890819220483754E+05 0.350589159771538398E+05 0.853143117855563178E+05 + 0.853996260973418975E+05 0.692167397636138921E+05 0.692859565033774415E+05 +-2MR02B MR04B 2. 0.00 -2 6 + 9 0.31739254317920625681E+03 + 0.711271346739046521E+03 0.833620089307804903E+02 0.116586402591923758E+03 + 0.729116090030184836E+02 0.795984302425380292E+02 0.386917167495732386E+02 + 0.335463781352845581E+04 0.113241950044376877E+06 0.180732715960772941E+07 + 0.324312776117683743E+01 0.477839404130792555E+01 0.747684632844308972E+01 + 0.100926845114510275E+02 0.169825980050532088E+02 0.296585259103894110E+02 + 0.221320339738000985E+04 0.751594022908114421E+05 0.120592002913540485E+07 + 15 0.29141800376881397657E-03 + 0.325509778135708583E+01 0.334144604511724168E+02 0.457456806958786686E+02 + 0.972923749843056527E+02 0.531594777341716167E+03 0.119174351528594525E+04 + 0.885073157256288141E+04 -0.367788816759688547E+06 0.504123151554275479E+06 + 0.246435477332644892E+06 0.507579868876181252E+06 0.545380489540555954E+10 + -0.529763196542000580E+10 0.735701234673355579E+10 -0.751408638017744350E+10 + 0.126813497317398651E+04 0.124909735786517758E+05 0.170785650690660295E+05 + 0.332881235243052361E+05 0.439553195621231207E+05 0.546257281207353371E+05 + 0.155276861202685424E+06 0.380997279283379554E+06 0.373198363507686474E+06 + 0.680842474867501296E+06 0.129128712683760794E+07 0.391866911164038302E+07 + 0.392258778075201996E+07 0.360856708131543314E+07 0.361217564839674579E+07 +-3MR02C MR04C 2. 0.00 -2 6 + 9 0.27975855822857977273E+03 + 0.728217154872103265E+03 0.177284350482270497E+03 0.107856811216481248E+03 + 0.754224530635076746E+02 0.841059269248198689E+02 0.393316476361086487E+02 + 0.843802508791947048E+03 0.228130712260747132E+05 0.128514586438683327E+07 + 0.300892875415816441E+01 0.523535408305552785E+01 0.774435772254874166E+01 + 0.106494933711386839E+02 0.176597915063327981E+02 0.296244154209850983E+02 + 0.534472447911307995E+03 0.143775931127991553E+05 0.813891973058237229E+06 + 15 0.28466038443210746030E-03 + 0.278725830464495550E+01 0.224788696312001193E+02 0.471659013522844859E+02 + 0.115734864306706342E+03 0.469166480506025948E+03 0.153992730770376147E+04 + 0.214769635561878640E+05 0.294472093347256341E+05 0.829781094458501611E+05 + 0.542287519435049966E+06 0.366607933235995646E+06 0.170248257605579590E+12 + -0.194852279275838257E+12 0.184614018886443573E+12 -0.160011042211179901E+12 + 0.102742344925430825E+04 0.812743010937231975E+04 0.170059821972149111E+05 + 0.354092325640940544E+05 0.399963719461087458E+05 0.648630334310437538E+05 + 0.244627706109525374E+06 0.463311029621299123E+06 0.333876513786867785E+06 + 0.956570314106663573E+06 0.155345918131547025E+07 0.443225943773162551E+07 + 0.443669169716935419E+07 0.449664666354590561E+07 0.450114331020944845E+07 +-4MR02D MR04D 2. 0.00 -2 6 + 11 0.21770730904168729580E+03 + 0.585150432759042701E+03 0.159878806021764376E+03 0.309272175354816795E+03 + 0.878036799819706886E+02 0.489519477555247704E+02 0.874628944931351384E+02 + 0.753059636093292255E+02 0.354733812975455436E+02 0.515084090356296656E+03 + 0.177758170144382098E+04 0.178330344753210265E+05 + 0.239638079669073756E+01 0.338958338339593768E+01 0.582715122966184484E+01 + 0.838648749101285595E+01 0.108302229449360592E+02 0.187561378902552107E+02 + 0.295629283150317370E+02 0.501599904801235468E+02 0.633241540916842155E+03 + 0.217639363527052365E+04 0.218529365301557591E+05 + 7 0.28438033912206705503E-03 + 0.160717455172157315E+02 0.282215783039457904E+03 0.471023484226911307E+03 + 0.247581339781508063E+03 0.121236538551047106E+05 0.426175007648550891E+05 + 0.103399824527313467E+08 + 0.238656099109075012E+04 0.430866120315540102E+05 0.715483066032631468E+05 + 0.354490661070754795E+05 0.427449792107251531E+06 0.821137319462440792E+06 + 0.115998209678911362E+08 +-5MR02E MR04E 2. 0.00 -2 6 + 11 0.23418167245320603342E+03 + 0.262207646062115100E+04 -0.191817948057271360E+04 0.368709578445900036E+03 + 0.324891275674754780E+02 0.622602971946848243E+02 0.872590245579732482E+02 + 0.769034813772095589E+02 0.350448729477154828E+02 0.817588989211319927E+03 + 0.179408951415353317E+04 0.281949074819745365E+05 + 0.289517558933643171E+01 0.302077245323474441E+01 0.593858227292413954E+01 + 0.775957581662187668E+01 0.107499126862981651E+02 0.182831960305742101E+02 + 0.293708395615783395E+02 0.490795271752576454E+02 0.994064087445715018E+03 + 0.219480890054710017E+04 0.345133378974609586E+05 + 12 0.28442730378187673504E-03 + 0.282457082678804561E+01 0.381437770302374091E+02 0.434203601384115743E+02 + 0.140059535215428866E+03 0.196911908089354426E+03 0.172973253402516121E+03 + 0.355800092118562588E+03 0.121267362188434799E+05 0.443400598183743132E+05 + 0.152433361376588495E+06 0.751811603841369622E+06 0.654187460803645570E+07 + 0.870973067622408621E+03 0.115194566313334471E+05 0.136592879590469402E+05 + 0.469279010999509628E+05 0.647987383672631404E+05 0.456932617200210079E+05 + 0.557010050710267678E+05 0.420973193761421600E+06 0.782215236320389551E+06 + 0.150731426928871544E+07 0.508357280883339699E+07 0.102526661885657161E+08 +-6MR02F MR04F 2. 0.00 -2 6 + 11 0.23545952269312201111E+03 + 0.267440707435991908E+04 -0.197170894616481633E+04 0.368609009784013551E+03 + 0.318516562066519384E+02 0.617178984845618217E+02 0.861092101395885123E+02 + 0.754182083019392167E+02 0.336823783511190342E+02 0.640110784543780824E+03 + 0.181641658988565632E+04 0.217718336650894125E+05 + 0.290248050686051817E+01 0.302442910418949307E+01 0.593571785316302414E+01 + 0.773839554482049952E+01 0.106963063086643864E+02 0.181103272044255981E+02 + 0.287381810583185135E+02 0.474178659439232746E+02 0.781025205335852434E+03 + 0.221720744797730549E+04 0.266656757763615715E+05 + 8 0.28443631035803977657E-03 + 0.889261211573285060E+01 0.108754021585327621E+03 0.851836755259116813E+02 + 0.216479141045935762E+03 0.115183318155717134E+05 0.126970641146333928E+05 + 0.135964090146558912E+06 0.789521040168800764E+07 + 0.184594222816107390E+04 0.229232234016356306E+05 0.175134538293066071E+05 + 0.450578916565838517E+05 0.601242755588978645E+06 0.318510552726866677E+06 + 0.166340306088024029E+07 0.941568751981083676E+07 + 0.48938461 -0.48033004 -0.51882079 0.27336379 -0.29659589 -0.44576770 + 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 + 0.33445189 -0.01475809 -0.44009594 -0.47179484 0.58200813 0.22079324 + 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 + 0.38554460 0.51871500 -0.19271884 0.45020203 -0.27073494 0.50253507 + 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 + 0.38554460 0.51871500 0.19271884 -0.45020203 -0.27073494 -0.50253507 + 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 + 0.33445189 -0.01475809 0.44009594 0.47179484 0.58200813 -0.22079324 + 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 + 0.48938461 -0.48033004 0.51882079 -0.27336379 -0.29659589 0.44576770 + 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 diff --git a/benchmarks/dc51fs6m.dat b/benchmarks/dc51fs6m.dat new file mode 100644 index 0000000..9a880c8 --- /dev/null +++ b/benchmarks/dc51fs6m.dat @@ -0,0 +1,62 @@ +KARD 1 2 3 4 5 6 10 11 12 13 14 15 +KARG 1 3 5 2 4 6 7 9 11 8 10 12 +KBEG 9 9 9 3 3 3 9 9 9 3 3 3 +KEND 14 14 14 8 8 8 14 14 14 8 8 8 +KTEX 1 1 1 1 1 1 1 1 1 1 1 1 +C ----- CCT 1 -------------- Impedance MEASUREMENT ------------------------ +C ** Jumpers TO LINE MODEL SEGMENT FOR CURRENT INJECTION + GENIA SEND_A .001 0 + GENIB SEND_B .001 0 + GENIC SEND_C .001 0 +C +C ** Jumpers TO SHORT CIRCUIT OTHER END OF LINE MODEL SEGMENT + RECV_A .001 0 + RECV_B .001 0 + RECV_C .001 0 +C +C ** Shunt RESISTANCE TO LIMIT RESONANT IMPEDANCE TO 100K OHMS + GENIA 100.E3 0 + GENIB 100.E3 0 + GENIC 100.E3 0 +C +C +C ----- CCT 2 -------------- Impedance MEASUREMENT ------------------------ +C ** Jumpers TO LINE MODEL SEGMENT FOR CURRENT INJECTION + GENID SEND_D .001 0 + GENIE SEND_E .001 0 + GENIF SEND_F .001 0 +C +C ** Jumpers TO SHORT CIRCUIT OTHER END OF LINE MODEL SEGMENT + RECV_D .001 0 + RECV_E .001 0 + RECV_F .001 0 +C +C ** Shunt RESISTANCE TO LIMIT RESONANT IMPEDANCE TO 100K OHMS + GENID 100.E3 0 + GENIE 100.E3 0 + GENIF 100.E3 0 +C ------------------------------------------------------------------------- +C +BLANK card ending branch cards (within dc51fs6m.dat) +BLANK card ending switch and value cards (within dc51fs6m.dat) +C +C +C ** Current sources FOR IMPEDANCE MEASUREMENT +14GENIA -1 1.00 60.0 0. -1.0 +14GENIB -1 1.00 60.0 - 0. -1.0 +14GENIC -1 1.00 60.0 0. -1.0 +C +$DISABLE +14GENID -1 1.00 60.0 0. -1.0 +14GENIE -1 1.00 60.0 - 0. -1.0 +14GENIF -1 1.00 60.0 0. -1.0 +$ENABLE +C +C +BLANK card ending source cards (within dc51fs6m.dat +C +C ** Outputs for IMPEDANCE TEST + GENIA GENIB GENIC + GENID GENIE GENIF +C +BLANK card ending node voltage output (within dc51fs6m.dat) diff --git a/benchmarks/dc51fs6p.dat b/benchmarks/dc51fs6p.dat new file mode 100644 index 0000000..bc5a059 --- /dev/null +++ b/benchmarks/dc51fs6p.dat @@ -0,0 +1,60 @@ +KARD 1 2 3 4 5 6 10 11 12 13 14 15 +KARG 1 3 5 2 4 6 7 9 11 8 10 12 +KBEG 9 9 9 3 3 3 9 9 9 3 3 3 +KEND 14 14 14 8 8 8 14 14 14 8 8 8 +KTEX 1 1 1 1 1 1 1 1 1 1 1 1 +C ----- CCT 1 -------------- IMPEDANCE measurement ------------------------ +C ** JUMPERS TO LINE MODEL SEGMENT for current injection + GENIA SEND_A .001 0 + GENIB SEND_B .001 0 + GENIC SEND_C .001 0 +C +C ** JUMPERS TO short circuit OTHER END OF LINE MODEL SEGMENT + RECV_A .001 0 + RECV_B .001 0 + RECV_C .001 0 +C +C ** SHUNT RESISTANCE to limit RESONANT IMPEDANCE TO 100K OHMS + GENIA 100.E3 0 + GENIB 100.E3 0 + GENIC 100.E3 0 +C +C +C ----- CCT 2 -------------- Impedance MEASUREMENT ------------------------ +C ** JUMPERS TO LINE MODEL segment for CURRENT INJECTION + GENID SEND_D .001 0 + GENIE SEND_E .001 0 + GENIF SEND_F .001 0 +C +C ** JUMPERS TO SHORT CIRCUIT other end OF LINE MODEL SEGMENT + RECV_D .001 0 + RECV_E .001 0 + RECV_F .001 0 +C +C ** SHUNT RESISTANCE TO LIMIT resonant impedance TO 100K OHMS + GENID 100.E3 0 + GENIE 100.E3 0 + GENIF 100.E3 0 +C ------------------------------------------------------------------------- +C +BLANK card ending branch cards +BLANK card ending switch and valve cards +C +C +C ** Current sources FOR IMPEDANCE MEASUREMENT +14GENIA -1 1.00 60.0 0. -1.0 +14GENIB -1 1.00 60.0 -120. -1.0 +14GENIC -1 1.00 60.0 120. -1.0 +C +14GENID -1 1.00 60.0 0. -1.0 +14GENIE -1 1.00 60.0 -120. -1.0 +14GENIF -1 1.00 60.0 120. -1.0 +C +C +BLANK card ending sources +C +C ** Outputs FOR IMPEDANCE TEST + GENIA GENIB GENIC + GENID GENIE GENIF +C +BLANK card ending node voltage outputs diff --git a/benchmarks/dc51fs6z.dat b/benchmarks/dc51fs6z.dat new file mode 100644 index 0000000..b87e749 --- /dev/null +++ b/benchmarks/dc51fs6z.dat @@ -0,0 +1,60 @@ +KARD 1 2 3 4 5 6 10 11 12 13 14 15 +KARG 1 3 5 2 4 6 7 9 11 8 10 12 +KBEG 9 9 9 3 3 3 9 9 9 3 3 3 +KEND 14 14 14 8 8 8 14 14 14 8 8 8 +KTEX 1 1 1 1 1 1 1 1 1 1 1 1 +C ----- CCT 1 -------------- IMPEDANCE MEASUREMENT ------------------------ +C ** JUMPERS TO LINE MODEL SEGMENT FOR CURRENT INJECTION + GENIA SEND_A .001 0 + GENIB SEND_B .001 0 + GENIC SEND_C .001 0 +C +C ** JUMPERS TO SHORT CIRCUIT OTHER END OF LINE MODEL SEGMENT + RECV_A .001 0 + RECV_B .001 0 + RECV_C .001 0 +C +C ** SHUNT RESISTANCE TO LIMIT RESONANT IMPEDANCE TO 100K OHMS + GENIA 100.E3 0 + GENIB 100.E3 0 + GENIC 100.E3 0 +C +C +C ----- CCT 2 -------------- IMPEDANCE MEASUREMENT ------------------------ +C ** JUMPERS TO LINE MODEL SEGMENT FOR CURRENT INJECTION + GENID SEND_D .001 0 + GENIE SEND_E .001 0 + GENIF SEND_F .001 0 +C +C ** JUMPERS TO SHORT CIRCUIT OTHER END OF LINE MODEL SEGMENT + RECV_D .001 0 + RECV_E .001 0 + RECV_F .001 0 +C +C ** SHUNT RESISTANCE TO LIMIT RESONANT IMPEDANCE TO 100K OHMS + GENID 100.E3 0 + GENIE 100.E3 0 + GENIF 100.E3 0 +C ------------------------------------------------------------------------- +C +BLANK CARD ENDING BRANCH CARDS ============================================ +BLANK CARD ENDING SWITCH AND VALVE CARDS ================================== +C +C +C ** CURRENT SOURCES FOR IMPEDANCE MEASUREMENT +14GENIA -1 1.00 60.0 0. -1.0 +14GENIB -1 1.00 60.0 - 0. -1.0 +14GENIC -1 1.00 60.0 0. -1.0 +C +14GENID -1 1.00 60.0 0. -1.0 +14GENIE -1 1.00 60.0 - 0. -1.0 +14GENIF -1 1.00 60.0 0. -1.0 +C +C +BLANK CARD ENDING SOURCES ================================================= +C +C ** OUTPUTS FOR IMPEDANCE TEST + GENIA GENIB GENIC + GENID GENIE GENIF +C +BLANK CARD ENDING NODE VOLTAGE OUTPUTS ==================================== diff --git a/benchmarks/dc52.dat b/benchmarks/dc52.dat new file mode 100644 index 0000000..c8e187a --- /dev/null +++ b/benchmarks/dc52.dat @@ -0,0 +1,172 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-52 +C "FREQUENCY SCAN" use, with subsequent plotting of phasors vs. frequency +C Unlike DC-51, this case uses geometric spacing: f-min, max = 1.0, 15 Hz; +C two points/decade. Also, there is full phasor solution output, & CalComp +PRINTED NUMBER WIDTH, 9, 2, +FREQUENCY SCAN, 1.0, 0.0, 15., 2, + 1.0 0.0 + 1 1 1 1 { Note request for phasor branch flows + SWIT LOAD 10. + LOAD 1000. +-1SWIT OPEN .3055 5.82 .012 138. +BLANK card ending all branches + GEN SWIT -1. +BLANK card ending all switch cards + BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag +14GEN 1.0 0.5 -1. +BLANK card ending source cards +C Column headings for the 2 output variables follow. These are divided among the 3 possible FS variable classes as follows .... +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C For each variable, magnitude is 1st, angle is 2nd, real part is 3rd, and imaginary is 4th. All 4 are labeled identically, note. +C Step F [Hz] GEN GEN GEN GEN LOAD LOAD LOAD LOAD +C 1 1.0 1.0 0.0 1.0 0.0 .532018 57.8581 .283043 .450477 +C 2 3.1622777 1.0 0.0 1.0 0.0 .893248 26.7158 .797892 .401573 +C 3 10. 1.0 0.0 1.0 0.0 .98757 9.04306 .975295 .155223 +C 4 31.622777 1.0 0.0 1.0 0.0 .998736 2.88122 .997473 .050202 +C Preceding was new output. Following comments are left from pre-1998 output: +C Total network loss P-loss by summing injections = 3.584784087208E-02 +C Inject: SWIT 1.0 1.0 .07169568174416 .08466776778383 .03584784087208 +C Inject: 0.0 0.0 -.0450373192002 -32.1359449 .02251865960008 +C ----- Output vector for step number 1. Frequency = 1.00000000E+00 Hz. +C 1.0000000E+00 0.0000000E+00 5.3201804E-01 5.7858092E+01 +C 1.0000000E+00 0.0000000E+00 2.8304320E-01 4.5047724E-01 + GEN LOAD +BLANK card ends output requests (just node voltages, for FREQUENCY SCAN) +C Total network loss P-loss by summing injections = 1.272220336009E-04 +C ----- Output vector for step number 4. Frequency = 3.16227766E+01 Hz. +C 1.0000000E+00 0.0000000E+00 9.9873589E-01 2.8812203E+00 +C 1.0000000E+00 0.0000000E+00 9.9747337E-01 5.0202049E-02 + F-SCAN COMPONENTS ANGLE { Access a single "angle" next +C 197 .2 0.0 1.6 -20. 60.LOAD angle + 147 .2 0.0 1.6 -20. 60.LOAD + PRINTER PLOT +C 197 .4 0.0 1.6 LOAD angle { Axis limits: (0.000, 5.786) + 147 .4 0.0 1.6 LOAD { Axis limits: (0.000, 5.786) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 3 subcases illustrates LINE MODEL FREQUENCY SCAN (LMFS) for +C a cable (CORE ONLY, 3 PHASE). Branch cards generated by JMARTI SETUP. +C DISK PLOT DATA { Has no effect as explained in Can/Am EMTP News of April, 1992 +C DIAGNOSTIC 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 +LINE MODEL FREQUENCY SCAN, 6, , 60000, 10, , , { f-begin, f-end, points/decade +C LINE MODEL FREQUENCY SCAN, 6, , 599.9, 1, , , { f-begin, f-end, points/decade + 40.E-9 -.0600 60. 1.E-15 + 1 1 0 0 0 0 0 2 +C IOUT KSSOUT ICAT +$INCLUDE, []dc52fs3.dat { 1st of 2 $INCLUDE contains line section to be tested +$INCLUDE, []dc51fs3z.dat, JDA###, LMA###, JDB###, LMB###, JDC###, LMC###, +C []dc51fs3p.dat +C Unused! ----- 2nd of 2 file names is not used for this single-circuit case +CABLE CONSTANTS +C Dimensioning of CABLE PARAMETERS (CP) is under manual control as the +C following declaration illustrates. Normally, the user will omit such +C information of columns 33-48, and the program will use available working +C space to provide for the most burdensome possible case. While consistent, +C this is wasteful. The resulting limit LV on phases will be smaller than +C necessary. For data that is in danger of overflowing, an intelligent user +C should consider the following manual allocation. In the following, LVPLUS +C is the number of extra phases for use within SUBROUTINE CYMTRX. A value in +C excess of 2 * LV, or non-positive, will result in the default 2 * LV. +C But most data requires nothing like (3*LV,3*LV) for storage. In the +C following, use of (39,39) is illustrated. No matter what is used, the +C program should be protected. If inadequate, an error message should halt +C execution within CYMTRX. Of course, the present data requires nothing +C like (33,33) and (39,39). Rather, these numbers come from CABLE32.DAT +C as used for testing by BPA's Dr. Tsu-huei Liu on 9 May 2000. The following +C declaration is adequate to handle that 33-conductor data: +C 345678901234567890123456789012<---- LV LVPLUS +CABLE PARAMETERS 33 6 + 2 -1 3 0 1 1 1 + 1 1 1 + 25.4E-3 45.6E-3 + 6.8912E-8 1. 1. 3.52 + 25.4E-3 45.6E-3 + 6.8912E-8 1. 1. 3.52 + 25.4E-3 45.6E-3 + 6.8912E-8 1. 1. 3.52 + 0.75 0.0 0.75 0.3 0.75 0.15 +C EARTH RESISTIVITY AND FREQUENCY CARDS + 20. 50. 90.1 { 1st of 3 is Xform matrix [T] +BLANK card ending frequency cards of "CABLE CONSTANTS" data + PRINTER PLOT + 186 .5 0.0 5.0 GENIA MAG Marti Section Z in Ohms + 196 .5 0.0 5.0 GENIA MAG Equivalent Pi Z in Ohms + 196 .5 0.0 5.0 GENIB % MAG Error Percent +BLANK card ending batch-mode (CalComp) plot cards +BEGIN NEW DATA CASE +C 3rd of 3 subcases illustrates the use of MODELS with FREQUENCY SCAN. +C Uses same circuit as first subcase. From Laurent Dube, 15 December 1997 +C For practical usage, there would be many more frequency points, and the +C printout of phasor branch flows would be suppressed (1 --> 0 in column 32). +FREQUENCY SCAN, 1.0, 0.0, 15., 2, + 1.0 0.0 + 1 1 1 1 { Note request for phasor branch flows +C ============================================================================== +MODELS +INPUT v_Re_swit {v(swit)} -- real part of voltage at node SWIT + v_Im_swit {imssv(swit)} -- imag part of voltage at node SWIT + v_Re_load {v(load)} -- real part of voltage at node LOAD + v_Im_load {imssv(load)} -- imag part of voltage at node LOAD + i_Re_swit {i(swit)} -- real part of current at switch SWIT + i_Im_swit {imssi(swit)} -- imag part of current at switch SWIT + state_swit {switch(swit)} -- state of switch SWIT (0=open, 1=closed) +MODEL m1 ----------------------------------------------------------------------- + VAR pass -- to verify that its value is kept between passes + INPUT v_Re_1 {dflt: 0} -- to verify that all types of inputs are + v_Im_1 {dflt: 0} -- accessed correctly + v_Re_2 {dflt: 0} -- (machine quantities are not tested here) + v_Im_2 {dflt: 0} + i_Re_1 {dflt: 0} + i_Im_1 {dflt: 0} + state_1 {dflt: 0} + INIT pass:=0 ENDINIT + EXEC + pass:=pass+1 + write('************** In models, pass= ', pass) + write(' freq= ', t) -- <<=== <<==== + write(' Re{v1}, Im{v1} = ', v_Re_1, ', ', v_Im_1 ) + write(' Re{v2}, Im{v2} = ', v_Re_2, ', ', v_Im_2 ) + write(' Re{i1}, Im{i1} = ', i_Re_1, ', ', i_Im_1 ) + write(' state_1 = ', state_1 ) + ENDEXEC +ENDMODEL +USE m1 as m1 + INPUT v_Re_1 := v_Re_swit + v_Im_1 := v_Im_swit + v_Re_2 := v_Re_load + v_Im_2 := v_Im_load + i_Re_1 := i_Re_swit + i_Im_1 := i_Im_swit + state_1 := state_swit +ENDUSE +RECORD v_Re_swit AS vre1 + v_Im_swit AS vim1 + v_Re_load AS vre2 + v_Im_load AS vim2 + i_Re_swit AS ire1 + i_Im_swit AS iim1 + m1.state_1 AS state1 +ENDMODELS +C Begin branches =============================================================== + SWIT LOAD 10. + LOAD 1000. +-1SWIT OPEN .3055 5.82 .012 138. +BLANK card ending all branches + GEN SWIT -1. +BLANK card ending all switch cards +14GEN 1.0 0.5 -1. +BLANK card ending source cards + GEN LOAD +BLANK card ends output requests (just node voltages, for FREQUENCY SCAN) + PRINTER PLOT +C 197 .5 0.0 1.6 0. 1.LOAD mag + 147 .5 0.0 1.6 0. 1.LOAD +C C 197 .2 0.0 1.6 -20. 60.LOAD angle +C C 197 .2 0.0 1.6 0. 1.LOAD real +C C 197 .2 0.0 1.6 0. 1.VRE2 MODELS +C C 197 .2 0.0 1.6 0. 1.LOAD imag +C C 197 .2 0.0 1.6 0. 1.VIM2 MODELS +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc52fs3.dat b/benchmarks/dc52fs3.dat new file mode 100644 index 0000000..336f9f9 --- /dev/null +++ b/benchmarks/dc52fs3.dat @@ -0,0 +1,89 @@ +C <++++++> Cards punched by support routine on 11-Nov-18 11.00.00 <++++++> +C ***** UNTRANSPOSED JMARTI line segment ****** +C JMARTI SETUP, 1.0 , +C BRANCH JDA LMA JDB LMB JDC LMC +C CABLE CONSTANTS +C CABLE PARAMETERS +C 2 -1 3 0 1 0 1 +C 1 1 1 +C 25.4E-3 45.6E-3 +C 6.8912E-8 1. 1. 3.52 +C 25.4E-3 45.6E-3 +C 6.8912E-8 1. 1. 3.52 +C 25.4E-3 45.6E-3 +C 6.8912E-8 1. 1. 3.52 +C 0.75 0.0 0.75 0.3 0.75 0.15 +C 20. 50. 90.1 { 1st of 3 is Xform matrix [ +C 20. 50. 90.1 { 2nd of 3 is not actually us +C 20. 10. 6 10 90.1 { 3rd of 3 is frequency sc +C BLANK card ending frequency cards +C BLANK card ending "CABLE CONSTANTS" data cases +C 1 .48D-7 +C .30 30 0 1 3 0 0 +-1JDA LMA 2. 1.00 -2 3 + 7 0.25376356636937167400E+02 + 0.665173005452765438E+03 0.640977028593130217E+04 0.535392097955731734E+05 + 0.340428404820669792E+06 0.199897152215706977E+07 0.963989653872452677E+07 + 0.910565125994938464E+08 + 0.214313715832364239E+03 0.223090885422440443E+04 0.199783014907408579E+05 + 0.136635082202814869E+06 0.859069361441494898E+06 0.442669865497044009E+07 + 0.239415119140150734E+08 + 15 0.19956659465770515100E-05 + 0.296692996328928800E+02 0.117012707854763207E+03 0.134932521881456666E+03 + 0.164827383595067318E+03 0.108449787993165024E+04 0.144615726359184792E+05 + -0.184975894953051175E+05 0.122393263865140311E+06 0.101383685755951726E+07 + 0.105717348739152793E+08 -0.269475820912093688E+10 0.265917395161774588E+10 + 0.175425614768954029E+13 -0.352539502024596876E+13 0.177116275135400733E+13 + 0.106515217554389220E+05 0.400684884402156386E+05 0.529360982724906353E+05 + 0.513323811910192963E+05 0.923287805692157126E+05 0.405141538866742689E+06 + 0.638409461071253755E+06 0.601459759832641692E+06 0.193334251754668635E+07 + 0.379964082808650286E+07 0.995120094614566491E+07 0.996115214709180594E+07 + 0.670372192481749971E+07 0.671042564674232808E+07 0.671713607238906529E+07 +-2JDB LMB 2. 1.00 -2 3 + 24 0.19029401168533993900E+02 + 0.481305583234702863E+04 -0.440465284207029618E+04 0.206832065195357063E+01 + 0.212224892836004500E+03 0.397758399733874399E+03 0.107515650574549824E+03 + 0.920230245129994558E+02 0.108087309682753557E+03 0.138125714918347939E+03 + 0.157734402475561695E+03 0.190673864309385124E+03 0.235697606630499906E+03 + 0.346215936184767430E+03 0.588206201439361167E+03 0.833743111151763288E+03 + 0.129240070978618337E+04 0.277568508895989954E+04 0.792954431970450879E+04 + 0.922628839243799012E+05 0.105602881488039834E+07 0.121721836396085891E+07 + 0.973640239616211271E+06 0.166443629525233689E+07 0.148363569288007916E+07 + 0.107920129123169815E+03 0.108314147241057626E+03 0.124222350982364660E+03 + 0.143084074332770161E+04 0.283250134525180693E+04 0.159615927515942986E+04 + 0.249113506745993846E+04 0.330361145519590446E+04 0.396125168097683991E+04 + 0.460791237369117062E+04 0.556542333438755759E+04 0.691358418964702742E+04 + 0.986955202404015654E+04 0.172189011760689573E+05 0.241063592758864398E+05 + 0.374632156504402665E+05 0.803774719294023671E+05 0.231881439079030708E+06 + 0.269648836296814262E+07 0.306185325695082583E+08 0.355031745195446164E+08 + 0.273482948476902880E+08 0.498499066738180817E+08 0.429144169966093079E+08 + 4 0.10871226858509815600E-05 + -0.463243767213427306E+09 0.563693750487494844E+14 -0.112893091946672313E+15 + 0.565241801416899219E+14 + 0.679669768024900705E+08 0.466423496494563818E+08 0.466889919991059155E+08 + 0.467356809911049679E+08 +-3JDC LMC 2. 1.00 -2 3 + 21 0.18783899872332909800E+02 + 0.135068370994146717E+05 -0.126484644455951093E+05 0.229483933350752569E+04 + 0.902504335723442182E+03 0.262826027682691177E+03 0.236518202121024752E+04 + 0.236335169230288876E+04 0.176836777187349299E+04 0.291395061999702648E+04 + 0.730169947434901952E+04 0.112447098545351783E+05 0.209910130366073463E+05 + 0.487057916955583642E+05 0.822228921897988330E+05 0.136609019074693003E+06 + 0.197385605453893223E+06 0.438737737345854519E+06 0.113463444105051458E+07 + 0.164738979919076758E+07 0.156300569709676109E+07 0.691224672029683739E+07 + 0.115927731776600794E+03 0.116522361765402792E+03 0.372465430732917003E+04 + 0.418933979313853252E+04 0.479195498125073300E+04 0.342415957165117798E+05 + 0.369034978245207386E+05 0.261279633609572230E+05 0.452125223258925981E+05 + 0.110262209079531677E+06 0.171198700391694584E+06 0.320884148031892954E+06 + 0.741436587557828171E+06 0.125750858491814836E+07 0.209310376066883863E+07 + 0.305858954503354338E+07 0.678452026391960867E+07 0.170145742368892655E+08 + 0.231370141073123180E+08 0.243243101128682979E+08 0.283727951786970906E+08 + 1 0.90046899865879086700E-06 + 0.668796980766214133E+08 + 0.668823489407480211E+08 + 0.33644368 0.50000000 -0.33644326 + -0.00033458 0.00000000 -0.00063149 + 0.33644368 -0.50000000 -0.33644326 + -0.00033458 0.00000000 -0.00063149 + 0.34633623 0.00000000 0.65366657 + 0.00065006 0.00000000 -0.00065006 diff --git a/benchmarks/dc53.dat b/benchmarks/dc53.dat new file mode 100644 index 0000000..3bebfe6 --- /dev/null +++ b/benchmarks/dc53.dat @@ -0,0 +1,499 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-53 +C 1976 IEEE PES SSR test of Type-59 S.M. modeling with a six-mass rotor. +C The 1st of 2 subproblems uses S.M. saturation, while the 2nd ignores it. +C Modified under the direction of Prof. Juan Martinez in Barcelona, Spain. +C At end of November, 1992, answer changes. Original data case is at end. +PRINTED NUMBER WIDTH, 13, 2, { Full precision on each of 8 columns of printout +ALTERNATE DIAGNOSTIC PRINTOUT, 9, 9, 9, 9, + .000100 .150 60.0 60.0 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 500 500 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 8285. + MCC1 BMCC2 B 8285. + MCC1 CMCC2 C 8285. + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 + SWT AMCC2 A 4830. + SWT BMCC2 B 4830. + SWT CMCC2 C 4830. + MCC2 ASWT A 13.01 + MCC2 BSWT B 13.01 + MCC2 CSWT C 13.01 +BLANK card terminating branch cards + SWT A .01661667 .09161667 + SWT B .01661667 .09161667 + SWT C .01661667 .09161667 +BLANK card terminating switch cards +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +59NAVL A 21229. 60. -44.896562 + NAVL B + NAVL C +TOLERANCES { Only change columns 51-60: NIOMAX = 20 } 20 +PARAMETER FITTING 1. + 6 5 6 2 1. 1. 892.4 26. -1800. 1907. 3050. + -1. + .13 1.79 1.71 .169 .228 .13504 .20029 + 4.3 .85 .032 .05 .13 + 1 .3 .027691 33.68813 { 1st rotor mass card + 2 .26 .046379 60.9591 + 3 .22 .255958 90.81823 + 4 .22 .263573 123.6634 + 5 .258887 4.925036 + 6 .0101995 { 6th and final mass +BLANK + 51 + 11 + 21 + 31 +BLANK + FINISH +BLANK card terminating source cards +C Total network loss P-loss by summing injections = 1.775782562050E+07 +C 1st gen: NAVL A 15038.245551065 21229. 9214.6926498239 27946.788742442 +C 1st gen: -14984.04523972 -44.8965620 -26383.94285136 -70.7480503 +C Id Iq Io +C -3.09160628944E+04 1.46878029885E+04 -5.25097010895E-12 +C Field current of the generator: 4.5653502353E+03 4.5653502353E+03 +C Electromechanical torque of the gen ... 2.1243643866E+00 2.1243643866E+00 +C Exciter electromechanical torque ... 7.7723230262E-03 7.7723230262E-03 +C Critical level of total air-gap MMF ... 1.71429881387E+03 1.63168200357E+03 +C All rotor masses have angular velocity OMEGA = 3.76991118E+02 [radians/sec] +C 86.9716299 86.1695376 85.3421110 84.5685376 83.8401898 83.7735234 +C Shaft torques T(i,i+1) between rotor masses "i" and "i+1", for i=1, 2, +C 0.6396410129E+00 0.1193996557E+01 0.1663066633E+01 0.2132136710E+01 + NAVH ANAVH BNAVH C +C Step Time NAVH A NAVH B NAVH C MACH 1 MACH 1 +C ID IQ +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IG IKQ IA IB IC +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C TQ GEN TQ EXC ANG 1 ANG 2 ANG 3 +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C VEL 1 VEL 2 VEL 3 VEL 4 VEL 5 +C 0 0.0 54291.79404 -385072.51 330780.7161 -30916.0629 14687.80299 +C -.75273E-13 .292655E-12 9214.69265 -27456.5111 18241.81844 +C 2.124364387 .007772323 86.97162992 86.16953762 85.34211102 +C .568434E-13 -.56843E-13 .568434E-13 0.0 -.56843E-13 +C 1 .1E-3 69839.72736 -390821.193 320981.4652 -30916.1137 14687.72194 +C .0014080836 .0048684281 10202.46318 -27633.4201 17430.95695 +C 2.124360609 .0077723236 86.97162992 86.16953762 85.34211102 +C .568434E-13 -.56843E-13 .113687E-12 .625278E-12 .1731394E-7 +BLANK card terminating output specifications (node voltages only, here) +C *** Open switch "SWT C" to " " after 1.00100000E-01 sec. +C ------ Type-59 S.M. number 1 at time 1.12000000E-01 sec .. 1 and 2. +C ------ Type-59 S.M. number 1 at time 1.13700000E-01 sec .. 2 and 2. +C ------ Type-59 S.M. number 1 at time 1.30100000E-01 sec .. 1 and 2. +C ------ Type-59 S.M. number 1 at time 1.37400000E-01 sec .. 1 and 1. +C 1500 .15 104309.3802 -348086.573 298677.2363 -21759.7047 -10943.295 +C 417.8108108 1357.808512 -9044.48114 -10806.1382 19850.61938 +C -.070295796 .0089410716 97.59730399 95.86730666 93.82046444 +C -.941992921 .2045176672 1.339725985 1.915083108 1.384124131 +C Variable max : 585313.3059 520085.4417 539525.0876 17835.73667 63381.56051 +C 988.5212215 3033.444336 72725.64358 62059.23923 72170.40257 +C 6.107369721 .0111718463 97.63617496 95.86730666 93.82046444 +C 9.612649456 6.486026888 3.485964779 3.136429198 3.837403559 +C Times of max : .1205 .1088 .115 .1131 .1253 +C .0431 .0428 .0386 .0766 .0323 +C .1269 .0898 .1486 .15 .15 +C .1324 .1339 .1383 .1117 .1064 +C Variable min : -531698.11 -567217.32 -539152.057 -90845.4903 -37996.1401 +C -878.277652 -3160.31004 -72191.0953 -67636.3644 -70191.1596 +C -1.13766495 .0074527254 85.34786543 85.03403222 84.47962018 +C -6.54365807 -2.66345876 -.92720609 -.946755214 -1.05667573 +C Times of min : .1116 .1177 .1235 .0308 .043 +C .1254 .1252 .0296 .0355 .0413 +C .1016 .1153 .0709 .0664 .0604 +C .109 .1084 .0511 .1383 .1367 + CALCOMP PLOT + 19415. 150. MACH 1TQ GEN + PRINTER PLOT + 19415. 150. MACH 1TQ GEN { Axis limits: (-1.138, 6.107) + 19415. 150. MACH 1VEL 6 { Axis limits: (-1.311, 1.221) +BLANK card terminating plot cards +BEGIN NEW DATA CASE +C 2nd of 2 subcases ignores saturation of S.M. Note "-1800." becomes plus. +C Modified with Guido's and Juan Martinez's approval during Oct., 1990. +C Answers have changed. The original data case is unexecuted at end. + .000100 .150 60. 60. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 500 500 2000 2000 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 8285. + MCC1 BMCC2 B 8285. + MCC1 CMCC2 C 8285. + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 + SWT AMCC2 A 4830. + SWT BMCC2 B 4830. + SWT CMCC2 C 4830. + MCC2 ASWT A 13.01 + MCC2 BSWT B 13.01 + MCC2 CSWT C 13.01 +BLANK card terminating branch cards + SWT A .01661667 .09161667 + SWT B .01661667 .09161667 + SWT C .01661667 .09161667 +BLANK card terminating switch cards +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +59NAVL A 21229. 60. -44.896562 + NAVL B + NAVL C +PARAMETER FITTING 1. { +1800 below ignores saturation + 6 5 6 2 1. 1. 892.4 26. +1800. 1907. 3050. + +1. + .13 1.79 1.71 .169 .228 .13504 .20029 + 4.3 .85 .032 .05 .13 + 1 .3 .027691 33.68813 + 2 .26 .046379 60.9591 + 3 .22 .255958 90.81823 + 4 .22 .263573 123.6634 + 5 .258887 4.925036 + 6 .0101995 +BLANK + 51 + 11 + 21 + 31 +BLANK + FINISH +BLANK card terminating source cards +C Total network loss P-loss by summing injections = 1.775782562050E+07 +C last gen: EQV C 349966.92087687 389997. -1273.1121012 1348.5241961806 +C last gen: 172106.98504408 26.1870700 -444.6381511542 -160.7480946 +C Id Iq Io +C -3.15542117823E+04 1.32614561915E+04 2.52046565230E-11 +C Field current of the generator: 4.3132669924E+03 4.3132669924E+03 +C Electromechanical torque of the generator: 2.1243643866E+00 2.1243643866E+00 +C Exciter electromechanical torque: 6.9376969460E-03 6.9376969460E-03 +C Critical level of total air-gap MMF ... 1.71429884454E+03 1.60523487584E+03 +C Shaft torques T(i,i+1) between rotor masses "i" and "i+1", for i=1, 2, +C 0.6393906251E+00 0.1193529167E+01 0.1662415625E+01 0.2131302084E+01 + NAVH ANAVH BNAVH C +C Step Time NAVH A NAVH B NAVH C MACH 1 MACH 1 +C ID IQ +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IG IKQ IA IB IC +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C TQ GEN TQ EXC ANG 1 ANG 2 ANG 3 +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C VEL 1 VEL 2 VEL 3 VEL 4 VEL 5 +C 0 0.0 54291.79404 -385072.51 330780.7161 -31554.2118 13261.45619 +C .266898E-12 .40723E-12 9214.69265 -27456.5111 18241.81844 +C 2.124364387 .0069376969 89.58635083 88.7845725 87.9574698 +C .568434E-13 -.56843E-13 .568434E-13 0.0 .568434E-13 +C 1 .1E-3 69839.72934 -390821.194 320981.465 -31554.2581 13261.37561 +C .001503732 .0051991311 10202.46318 -27633.4201 17430.95695 +C 2.124361136 .0069376975 89.58635083 88.7845725 87.9574698 +C .113687E-12 -.17053E-12 .568434E-13 .568434E-12 .1489752E-7 +BLANK card terminating output specifications (node voltages only, here) +C *** Open switch "SWT C" to " " after 1.00100000E-01 sec. +C 1500 .15 159611.2311 -295637.509 244451.986 -34560.0561 -28574.9636 +C 778.2659242 2549.495792 -22170.7519 -14139.568 36310.31987 +C -.573968078 .0088136672 102.0794654 99.88637088 97.31608451 +C 1.687650055 1.529396844 1.342594518 1.09484855 1.070643911 +C Variable max : 574220.0885 537207.0909 542581.4443 31490.93919 79432.90719 +C 1213.937639 3705.575724 76494.23421 59041.06889 77325.42412 +C 7.303244374 .010097191 102.0794654 99.88637088 97.31608451 +C 10.48984183 7.560864439 4.098092589 3.872103502 4.699362391 +C Times of max : .1203 .1264 .1146 .1135 .126 +C .0435 .0432 .1369 .0444 .1299 +C .1276 .0912 .15 .15 .15 +C .1357 .1366 .1377 .1157 .1122 +C Variable min : -496670.505 -585630.102 -581107.506 -95534.9427 -46519.8766 +C -1216.11132 -4455.25617 -78560.484 -67985.0772 -73775.13 +C -1.79621128 .0061658656 87.8638354 87.57123441 87.03732385 +C -6.75309545 -2.98526171 -.970772973 -1.6937898 -1.92537841 +C Times of min : .1292 .1177 .1233 .1385 .0433 +C .1261 .1259 .127 .0355 .1396 +C .1024 .1226 .0714 .0671 .061 +C .1108 .1104 .0516 .1399 .1379 + PRINTER PLOT + 19415. 150. MACH 1TQ GEN { Axis limits: (-1.796, 7.303) + 19415. 150. MACH 1VEL 6 { Axis limits: (-1.617, 1.401) +BLANK card terminating plot cards +BEGIN NEW DATA CASE +C 3rd of 3 subcases is a scaled version of the 2nd. The network is in kV +C rather than volts, as described in the July, 1995, newsletter. A single +C step is taken --- enough for the user to compare with the 2nd subcase. +PRINTED NUMBER WIDTH, 13, 2, { Full precision on each of 8 columns of printout + .000100 .0001 60.0 60.0 + 1 -1 0 0 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 8285. + MCC1 BMCC2 B 8285. + MCC1 CMCC2 C 8285. + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 + SWT AMCC2 A 4830. + SWT BMCC2 B 4830. + SWT CMCC2 C 4830. + MCC2 ASWT A 13.01 + MCC2 BSWT B 13.01 + MCC2 CSWT C 13.01 +BLANK card terminating branch cards + SWT A .01661667 .09161667 + SWT B .01661667 .09161667 + SWT C .01661667 .09161667 +BLANK card terminating switch cards +14EQV A 389.997 60. -93.81293 -1. +14EQV B 389.997 60. -213.81293 -1. +14EQV C 389.997 60. 26.18707 -1. +59KILOVI +59NAVL A 21229. 60. -44.896562 + NAVL B + NAVL C +PARAMETER FITTING 1. + 6 5 6 2 1. 1. 892.4 26. 1800. +BLANK + .13 1.79 1.71 .169 .228 .13504 .20029 + 4.3 .85 .032 .05 .13 +C <====EXTRS<=====HICO<======DSR<======DSM<======HSP<======DSD + 1 .3 .027691 33.68813 { 1st rotor mass card + 2 .26 .046379 60.9591 + 3 .22 .255958 90.81823 + 4 .22 .263573 123.6634 + 5 .258887 4.925036 + 6 .0101995 { 6th and final mass +BLANK + 51 + 11 + 21 + 31 +BLANK + FINISH +BLANK card terminating source cards +C Phase "a" injection Phase "b" injection +C Magnitude Degrees Magnitude Degrees +C Actual: 2.7946789E+01 -70.7480503 2.7946789E+01 169.2519497 +C Pos. seq.: 2.7946789E+01 -70.7480503 2.7946789E+01 169.2519497 +C Id Iq Io +C -3.15542117823E+01 1.32614561915E+01 -4.10232039762E-14 +C Field current of the generator in units of [amperes]. Total dc component +C 4.3132669924E-03 4.3132669924E-03 +C Electromechanical torque of the generator .... total dc component +C 2.1243643866E-06 2.1243643866E-06 +C Exciter electromechanical torque in units .... Total dc component +C 6.9376969460E-09 6.9376969460E-09 +C Critical level of total air-gap MMF .... 1.71429881387E+03 1.63168200357E+03 +C All rotor masses have angular velocity OMEGA = 3.76991118E+02 [radians/sec] +C .... units of [Degrees] : 89.5863508 88.7845725 87.9574698 87.1841991 +C Shaft torques T(i,i+1) between rotor masses "i" and "i+1", for i=1, 2, +C 0.6393906251E-06 0.1193529167E-05 0.1662415625E-05 0.2131302084E-05 0.693 + NAVH ANAVH BNAVH C +BLANK card terminating output specifications (node voltages only, here) +C Step Time NAVH A NAVH B NAVH C MACH 1 MACH 1 +C ID IQ +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IG IKQ IA IB IC +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C TQ GEN TQ EXC ANG 1 ANG 2 ANG 3 +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C VEL 1 VEL 2 VEL 3 VEL 4 VEL 5 +C 0 0.0 54.29179404 -385.07251 330.7807161 -31.5542118 13.26145619 +C -.12113E-18 -.49636E-18 9.21469265 -27.4565111 18.24181844 +C .2124364E-5 .6937697E-8 89.58635083 88.7845725 87.9574698 +C 0.0 -.56843E-13 -.56843E-13 -.56843E-13 0.0 +C 1 .1E-3 69.83972934 -390.821194 320.981465 -31.5542581 13.26137561 +C .1503732E-8 .5199131E-8 10.20246318 -27.6334201 17.43095695 +C .2124361E-5 .6937697E-8 89.58635083 88.7845725 87.9574698 +C 0.0 -.56843E-13 -.56843E-13 .511591E-12 .1489752E-7 +BLANK card terminating plot cards +BEGIN NEW DATA CASE +BLANK + + + +BEGIN NEW DATA CASE +C BENCHMARK DC-53 +C 1976 IEEE PES SSR test of Type-59 S.M. modeling with a six-mass rotor. +C The 1st of 2 subproblems uses S.M. saturation, while the 2nd ignores it. +C This is old data case, as it existed prior to December, 1992 changes. +C Only the 1st of 2 subcases, having saturation, was affected. +PRINTED NUMBER WIDTH, 13, 2, { Full precision on each of 8 columns of printout +ALTERNATE DIAGNOSTIC PRINTOUT, 9, 9, 9, 9, + .000100 .150 60.0 60.0 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 500 500 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 8285. + MCC1 BMCC2 B 8285. + MCC1 CMCC2 C 8285. + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 + SWT AMCC2 A 4830. + SWT BMCC2 B 4830. + SWT CMCC2 C 4830. + MCC2 ASWT A 13.01 + MCC2 BSWT B 13.01 + MCC2 CSWT C 13.01 +BLANK card terminating branch cards + SWT A .01661667 .09161667 + SWT B .01661667 .09161667 + SWT C .01661667 .09161667 +BLANK card terminating switch cards +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +59NAVL A 21229. 60. -44.896562 + NAVL B + NAVL C +TOLERANCES { Only change columns 51-60: NIOMAX = 20 } 20 +PARAMETER FITTING 1. + 6 5 6 2 1. 1. 892.4 26. -1800. 1907. 3050. + -1. + .13 1.79 1.71 .169 .228 .13504 .20029 + 4.3 .85 .032 .05 .13 + 1 .3 .027691 33.68813 { 1st rotor mass card + 2 .26 .046379 60.9591 + 3 .22 .255958 90.81823 + 4 .22 .263573 123.6634 + 5 .258887 4.925036 + 6 .0101995 { 6th and final mass +BLANK + 51 + 11 + 21 + 31 +BLANK + FINISH +BLANK card terminating source cards +C Total network loss P-loss by summing injections = 1.775782562050E+07 +C 1st gen: NAVL A 15038.245551065 21229. 9214.6926498239 27946.788742442 +C 1st gen: -14984.04523972 -44.8965620 -26383.94285136 -70.7480503 +C Id Iq Io +C -3.09506921061E+04 1.46146898591E+04 1.05019402179E-12 +C Field current of the generator 4.7988284553E+03 4.7988284553E+03 +C Electromechanical torque of the generator 2.1243643866E+00 2.1243643866E+00 +C Exciter electromechanical torque 8.5876254010E-03 8.5876254010E-03 +C Critical level of total air-gap MMF .. 1.71429884454E+03 1.60523487584E+03 + NAVH ANAVH BNAVH C +C Step Time NAVH A NAVH B NAVH C MACH 1 MACH 1 +C ID IQ +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IG IKQ IA IB IC +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C TQ GEN TQ EXC ANG 1 ANG 2 ANG 3 +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C VEL 1 VEL 2 VEL 3 VEL 4 VEL 5 +C 0 0.0 54291.79404 -385072.51 330780.7161 -30950.6921 14614.68986 +C .101141E-12 .353051E-13 9214.69265 -27456.5111 18241.81844 +C 2.124364387 .0085876254 87.10824973 86.30585072 85.47810772 +C -.56843E-13 0.0 .568434E-13 0.0 .568434E-13 +C 1 .1E-3 69851.88571 -390828.958 320977.072 -30950.731 14614.61128 +C .0013420986 .0046402859 10202.48781 -27633.4243 17430.93649 +C 2.124359795 .0085876259 87.10824973 86.30585072 85.47810772 +C .568434E-13 -.11369E-12 .568434E-13 .738964E-12 .2104355E-7 +BLANK card terminating output specifications (node voltages only, here) +C ------ Type-59 S.M. number 1 at time 1.43500000E-01 sec .. 1 and 2. +C ------ Type-59 S.M. number 1 at time 1.49100000E-01 sec .. 2 and 2. +C 1500 .15 187116.742 -351444.492 130386.7404 -34997.4012 -2947.38066 +C 256.1673115 903.3100964 -2650.23838 -23402.7126 26052.95098 +C .8154064733 .0102479971 97.85801029 96.12500809 94.06169459 +C 2.131750238 1.898831743 1.583223454 .8996070354 .7581091459 +C Variable max : 599880.6502 490291.3628 529146.3385 15467.52417 61160.92185 +C 857.3479933 2578.07728 65109.53928 62005.88698 69266.69128 +C 6.04393663 .0118541764 97.85801029 96.12500809 94.06169459 +C 8.188834317 6.194209412 3.79960882 3.258297661 4.003948697 +C Times of max : .1204 .1263 .1319 .1145 .1277 +C .0459 .0455 .0879 .044 .0323 +C .1295 .0942 .15 .15 .15 +C .1353 .1368 .1386 .1168 .1124 +C Variable min : -524383.824 -498349.107 -581864.736 -84826.9292 -31261.6262 +C -838.566123 -2978.23206 -63004.8711 -66097.6721 -65643.9187 +C -.932290856 .008199039 85.6754021 85.30248399 84.71598666 +C -5.4368191 -2.31786936 -.816272039 -1.0322752 -1.34433634 +C Times of min : .1115 .1176 .1232 .0324 .0457 +C .1279 .1276 .0295 .0352 .0413 +C .1018 .1243 .071 .0665 .0605 +C .1102 .1101 .0512 .1403 .1391 + CALCOMP PLOT + 19415. 150. MACH 1TQ GEN + PRINTER PLOT + 19415. 150. MACH 1TQ GEN { Axis limits: (-0.932, 6.044) + 19415. 150. MACH 1VEL 6 { Axis limits: (-1.289, 1.165) +BLANK card terminating plot cards + + + diff --git a/benchmarks/dc53pl4.dat b/benchmarks/dc53pl4.dat new file mode 100644 index 0000000..ddbe1dc --- /dev/null +++ b/benchmarks/dc53pl4.dat @@ -0,0 +1,74 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-53 +C Omit 2nd subcase, add .PL4 output to 1st (here), and delete comments +PRINTED NUMBER WIDTH, 13, 2, { Full precision on each of 8 columns of printout +ALTERNATE DIAGNOSTIC PRINTOUT, 9, 9, 9, 9, + .000100 .150 60.0 60.0 + 1 1 1 1 1 -1 1 + 5 5 20 20 100 100 500 500 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 8285. + MCC1 BMCC2 B 8285. + MCC1 CMCC2 C 8285. + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 + SWT AMCC2 A 4830. + SWT BMCC2 B 4830. + SWT CMCC2 C 4830. + MCC2 ASWT A 13.01 + MCC2 BSWT B 13.01 + MCC2 CSWT C 13.01 +BLANK card terminating branch cards + SWT A .01661667 .09161667 + SWT B .01661667 .09161667 + SWT C .01661667 .09161667 +BLANK card terminating switch cards +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +59NAVL A 21229. 60. -44.896562 + NAVL B + NAVL C +TOLERANCES { Only change columns 51-60: NIOMAX = 20 } 20 +PARAMETER FITTING 1. + 6 5 6 2 1. 1. 892.4 26. -1800. 1907. 3050. + -1. + .13 1.79 1.71 .169 .228 .13504 .20029 + 4.3 .85 .032 .05 .13 + 1 .3 .027691 33.68813 { 1st rotor mass card + 2 .26 .046379 60.9591 + 3 .22 .255958 90.81823 + 4 .22 .263573 123.6634 + 5 .258887 4.925036 + 6 .0101995 { 6th and final mass +BLANK + 51 + 11 + 21 + 31 +BLANK + FINISH +BLANK card terminating source cards + NAVH ANAVH BNAVH C +BLANK card terminating output specifications (node voltages only, here) + PRINTER PLOT +BLANK card terminating plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc54.dat b/benchmarks/dc54.dat new file mode 100644 index 0000000..65d16ef --- /dev/null +++ b/benchmarks/dc54.dat @@ -0,0 +1,54 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-54 +C Delayed plotting of DC-3 plot file via "REPLOT" usage. Format of the +C connection ($OPEN,) may depend on computer due to different file names. +C There are 3 subcases, with the first providing a character plot and the +C remaining 2 providing vector plots (maybe not supported on all machines). +DISK PLOT DATA { Toggle Apollo default of LUNIT4 = -4 to +4 for disk storage +CUSTOM PLOT FILE { Request for REAL*8 .PL4 file (see July, 1995, newsletter) +$CLOSE, UNIT=LUNIT4 STATUS=DELETE { Disconnect now-empty file connected by SYSDEP +$OPEN, UNIT=LUNIT4 FILE=dc3.pl4 STATUS=OLD ! Connect C-like plot file from DC-3 +REPLOT { Request for connection to batch-mode plotting of EMTP + PRINTER PLOT { Switch from vector (the default mode) plotting to character + 144 1. 0.0 20. 18-A 18-B 18-C { Axis limits: (-1.276, 0.880) +$CLOSE, UNIT=LUNIT4 STATUS=KEEP { Disconnect data file protects against damage +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 3 subcases. This sends two vector plots only to the screen. +C DISK PLOT DATA { Toggle Apollo default of LUNIT4 = -4 to +4 for disk storage +C CUSTOM PLOT FILE { Request for REAL*8 .PL4 file (see July, 1995, newsletter) +$CLOSE, UNIT=LUNIT4 STATUS=DELETE { Disconnect now-empty file connected by SYSDEP +$OPEN, UNIT=LUNIT4 FILE=dc3.pl4 STATUS=OLD ! Connect C-like plot file from DC-3 +REPLOT { Request for connection to batch-mode plotting of EMTP +C Following CalComp declaration is required only because of preceding subcase: + CALCOMP PLOT { Switch from former "PRINTER PLOT" mode to this CalComp mode + SCREEN PLOT { Send "CALCOMP PLOT" output to the screen rather than plotter + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + 144 1. 0.0 10. 18-A 18-B 18-C Graph heading---Vertical axis la +C Note that no titles are redefined for the following plot. Hence there will +C be no multi-line sub-title, although the single-line title at top repeats. + 144 1. 0.0 10. 18-B +$CLOSE, UNIT=LUNIT4 STATUS=KEEP { Disconnect data file protects against damage +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 3 subcases. This sends two vector plots only to the plotter. +C DISK PLOT DATA { Toggle Apollo default of LUNIT4 = -4 to +4 for disk storage +C CUSTOM PLOT FILE { Request for REAL*8 .PL4 file (see July, 1995, newsletter) +$CLOSE, UNIT=LUNIT4 STATUS=DELETE { Disconnect now-empty file connected by SYSDEP +$OPEN, UNIT=LUNIT4 FILE=dc3.pl4 STATUS=OLD ! Connect C-like plot file from DC-3 +REPLOT { Request for connection to batch-mode plotting of EMTP +C Following "PEN PLOT" declaration is disabled for Apollo only because the +C average owner has no real CalComp (which was coded for Bernd Stein of FGH). +C For GEOGRAF of MS-DOS version, this card should be enabled (it is needed): + PEN PLOT { Send "CALCOMP PLOT" output to the plotter rather than the screen + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + 144 1. 0.0 10. 18-A 18-B 18-C Graph heading---Vertical axis la + 144 1. 0.0 10. 18-A { Note this 2nd pen plot will have no labels +$CLOSE, UNIT=LUNIT4 STATUS=KEEP { Disconnect data file protects against damage +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc55.dat b/benchmarks/dc55.dat new file mode 100644 index 0000000..0bda0d2 --- /dev/null +++ b/benchmarks/dc55.dat @@ -0,0 +1,298 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-55 +C Illustration of "AVERAGE OUTPUT" usage, as applied to Hermann's example +C "Remarks on opening action" that is to be found in the Rule Book section +C on switches (page 28a for June, 1984 version). Because of averaging, the +C "hash" that Hermann's photograph documents can no longer be detected. +C Later (2nd and 3rd) subcases are unrelated: simple Type-18 source usage. +C 4th subcase shows an alternative to the first, using damping resistors. +C The 5th of 6 subcases has IDEAL TRANSFORMER (internally, this uses +C the Type-18 source). Solution was wrong prior to correction on 25 Feb 01. +C Finally, the 6th subcase illustrates the RECLOSE feature of switches. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +CHANGE PRINTOUT FREQUENCY + 5 5 10 10 90 1 100 10 +AVERAGE OUTPUT + .000100 .020 + 1 1 1 1 1 + BUS1 BUS2 .18 0.8 1 + BUS3 22100. +BLANK card ending branch cards + BUS2 BUS3 -1.0 0.0 { Will open on current zero at T = 9.4 msec +BLANK card ending switch cards +14BUS1 1.0 60. -90. +BLANK card ending source cards +C Step Time BUS3 BUS2 BUS1 BUS1 +C BUS2 +C *** Switch "BUS2 " to "BUS3 " closed before 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 +C 1 .1E-3 .2634734E-5 .2634734E-5 .0188450913 .0011645523 +C 2 .2E-3 .183793E-4 .183793E-4 .0565084941 .0057945482 +C +C 93 .0093 .6380267563 .6380267563 -.338677744 .1867579604 +C *** Open switch "BUS2 " to "BUS3 " after 9.40000000E-03 sec. +C 94 .0094 .6385842673 .6385842673 -.373892773 .0596618907 +C 95 .0095 .638714397 -.442503423 -.408576479 -.00214456 + 1 +C Final step: 200 .02 .6387095451 .944895187 .944895187 .693889E-17 +C Variable maxima : .638714397 .944895187 .9998026167 2.665085529 +C Times of maxima : .0095 .02 .0042 .0058 +C Variable minima : 0.0 -.999644736 -.999644736 -.00214456 +C Times of minima : 0.0 .0126 .0126 .0095 + PRINTER PLOT + 144 3. 0.0 20. BUS1 BUS2 { Axis limits: (-9.996, 9.998) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C Second of 5 subcases is unrelated to the preceding first data subcase. +C Test of Type-18 source (ideal transformer plus ungrounded source). There +C are 3 disconnected subnetworks, each of which contains a single, trivial +C Type-18 source usage. In order of use: 1) Ideal transformer alone (near +C zero source); 2) Ideal transformer with a voltage source shifted by 90 +C degrees (so when added to external generator, the total phasor is 1.414 +C at an angle of -45 degrees; 3) Ungrounded voltage source alone. There +C is no phasor solution for initial conditions in this 2nd subcase of DC-55 +PRINTED NUMBER WIDTH, 12, 2, { Tailor width so easy documentation within 80 cols +CHANGE PRINTOUT FREQUENCY + 5 5 20 20 + .000100 .024 1.E-12 + 1 1 1 1 1 + PRIM1 GEN 1.E-8 { Create node PRIM1 of unknown voltage } + PRIM2 GEN 1.E-8 { Create node PRIM2 of unknown voltage } + SEC1 0.5 { 1-ohm resistive load on primary trans. 1 } + SEC2 .25 { 1-ohm resistive load on primary trans. 2 } + PRIBOT 1.0 { 1/2 of resistor for ungrounded source } + PRITOPGEN 1.0 { other 1/2 of R for ungrounded source } +BLANK card ending branch cards +BLANK card ending switch cards +14GEN 1.0 60. -90. { Network's real source is sine wave +C Type-18 ideal transformer has both windings grounded. Primary goes to the +C generator "GEN", while the secondary "SEC" drives a 1-ohm resistive load +11PRIM1 1.E-12 { 1st primary terminal of ideal transformer; near-0 source +18 00 1.414SEC1 { Ratio**2 = 2: step down, primary to secondary +C End 1st transformer. Begin 2nd by adding 1-volt sinusoidal voltage source: +14PRIM2 1.0 60. 0.0 { Add vectors: 1.414 /_-45 degrees +18 00 2.0SEC2 { Ratio=2: step down, primary to secondary +C End 2nd transformer. Begin 3rd device: effectively no transformer (since +C both secondary nodes are grounded); ungrounded voltage source is a battery +C that becomes nonzero only after TSTART = 6.0 msec --- in series with GEN +11PRITOP 1.0 .006 +18PRIBOT 1.0 { Ratio is arbitrary since secondary nodes shorted to earth +BLANK card ending source cards +C Step Time 18TYP1 18TYP2 18TYP3 GEN SEC1 SEC2 +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .1E-3 .037701568 -.96159928 .018845091 .037690183 .026655009 -.48079964 +C 2 .2E-3 .07534956 -.92183209 .037663403 .075326806 .053272139 -.46091604 +C 3 .3E-3 .112890477 -.88075492 .056428192 .112856385 .079813567 -.44037746 + 18TYP118TYP218TYP3GEN SEC1 SEC2 PRIBOTPRITOP +BLANK card ending selective node voltage output requests +C 240 .024 .368235756 1.29790103 -.31593772 .368124553 .26034268 .648950513 +C maxima : 1.0002231 1.41418563 .499960522 .999921044 .707157733 .707092816 +C Times max : .0042 .0229 .0042 .0042 .0042 .0229 +C minima : -1.0003021 -1.4141856 -1. -1. -.70721357 -.70709282 +C Times min : .0125 .0146 .0125 .0125 .0125 .0146 + PRINTER PLOT +C Both of the following curves are sinusoids. Curve "A" is pure SIN ( 377t ) +C whereas curve "B" is 1.414 * SIN ( 377t - 45 degrees ) for time t > 0. + 144 3. 0.0 18. 18TYP118TYP2 { Axis limits: (-1.414, 1.414) +C The following plot drops vertically by 0.5 at 6 msec. Before the drop, it +C is y = 0.5 * SIN ( 377t ); after 6 msec, y = 0.5 * ( SIN ( 377t ) - 1.0 ) + 144 3. 0.0 24. 18TYP3 { Axis limits: (-1.000, 0.500) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 6 subcases repeats preceding 2nd case only with phasor solution. +C Since transients are identical to preceding subcase (since no dynamics, +C no energy storage), stop after the phasor solution in this subcase. It +C will be noted that the only sinusoidal internal source of Type-18 usage +C (the "14PRIM2" card) has TSTART = -1.0 so present for steady state. + .000100 -1.0 1.E-12 { TMAX < 0 ===> no transients + 1 1 1 1 1 + PRIM1 GEN 1.E-8 { Create node PRIM1 of unknown voltage } + PRIM2 GEN 1.E-8 { Create node PRIM2 of unknown voltage } + SEC1 0.5 { 1-ohm resistive load on primary trans. 1 } + SEC2 .25 { 1-ohm resistive load on primary trans. 2 } + PRIBOT 1.0 { 1/2 of resistor for ungrounded source } + PRITOPGEN 1.0 { other 1/2 of R for ungrounded source } +BLANK card ending branch cards +BLANK card ending switch cards +14GEN 1.0 60. -90. { Tstart = -1.0 ---> } -1.0 +C Type-18 ideal transformer has both windings grounded. Primary goes to the +C generator "GEN", while the secondary "SEC" drives a 1-ohm resistive load +11PRIM1 1.E-12 { 1st primary terminal of ideal transformer; near-0 source +18 00 1.414SEC1 { Ratio**2 = 2: step down, primary to secondary +C End 1st transformer. Begin 2nd by adding 1-volt sinusoidal voltage source +C that is present in steady state, and which leads GEN by 90 degrees. Adding +C these around the loop (KVL) gives 1.414 at an angle of -135 degrees, note: +14PRIM2 1.0 60. 0.0 -1.0 +18 00 2.0SEC2 { Ratio=2: step down, primary to secondary +C End 2nd transformer. Begin 3rd device: effectively no transformer (since +C both secondary nodes are grounded); ungrounded voltage source is a battery +C that becomes nonzero only after TSTART = 6.0 msec --- in series with GEN +11PRITOP 1.0 .006 +18PRIBOT 1.0 { Ratio is arbitrary since secondary nodes shorted to earth +C +C Node-K Node-M Vk-magnitude Vm-magnitude Ikm-magnitude Pk (watts) +C name name Vk-degrees Vm-degrees Ikm-degrees Qk (vars) +C +C PRIM1 .99999998999698 1.0 1.0003020856075 -.5001510378007 +C GEN -90.0000000 -90.0000000 90.0000000 .2879679111E-24 +C +C PRIM2 .99999999 1.0 1.4142135431541 -.4999999814101 +C GEN -89.9999994 -90.0000000 44.9999998 -.499999995 +C +$WIDTH, 79, { Request narrow output for phasor branch flows: easy to document +BLANK card ending source cards +C PRITOP 0.5 0.0 0.5 .125 +C TERRA -90.0000000 0.0 -90.0000000 0.0 +C Total network loss P-loss by summing injections = 7.501510357193E-01 +C +C node Vk-magnitude Ik-magnitude Pk (watts) MVA (watts) +C name Vk-degrees Ik-degrees Qk (vars) Power factor +C +C GEN 1.0 2.692862873031 1.2501510381699 1.3464314365155 +C -90.0000000 -111.7990223 .499999995 0.9284922 +C +BLANK card ending selective node voltage output requests + PRINTER PLOT +BLANK card ending plot cards +BEGIN NEW DATA CASE +$WIDTH, 132, { Back to wide output after injections but before outputs read +C 4th of 6 subcases is modification of first. Rather than "AVERAGE OUTPUT" +C to dampen oscillations of the series inductor, a parallel damping resistor +C is used. The resistance value is automatically a function of the time- +C step size thanks to use of the "DELTAT" request (BUS4 field of columns +C 21-26). A theoretical formula for determining nominal damping resistance +C is R = 16 * L [Henry] / dt, and here 16*L = 16 * .8 [mH] = .0128 [Henry]. +C The "DIVIDEDELTAT" request of columns 15-26 provides just such scaling. +C Enter the value 16 * L [Henry] in the R-field of columns 27-32. +C Only to produce a nicer (denser) character plot, the time step is halved. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +CHANGE PRINTOUT FREQUENCY + 5 5 20 20 185 1 205 5 220 20 + .000050 .020 + 1 1 1 1 1 + BUS1 BUS2 .18 0.8 { Series R-L oscillates when opened} 1 + BUS3 22100. { Capacitor disconnected by switch +C Damping resistor is extra, placed in parallel with hanging R-L branch: + BUS1 BUS2 DIVIDEDELTAT .0128 { Nominal parallel R-damping is R = 16 * L / dt +C BUS1 BUS4 128. { Equivalent branch would have R = .0128/1.E-4 +BLANK card ending branch cards + BUS2 BUS3 -1.0 0.0 { Will open on current zero at T = 9.4 msec +BLANK card ending switch cards +14BUS1 1.0 60. -90. +BLANK card ending source cards +C Step Time BUS3 BUS2 BUS1 BUS1 +C BUS2 +C *** Switch "BUS2 " to "BUS3 " closed before 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 .7458368E-6 .7458368E-6 .0188484397 .5856959E-3 +C 2 .1E-3 .4300663E-5 .4300663E-5 .0376901827 .002335936 +C 3 .15E-3 .1328333E-4 .1328333E-4 .0565185345 .0052368122 +C +C 186 .0093 .6386376275 .6386376275 -.356411879 .1216511334 +C 187 .00935 .638831863 .638831863 -.373959206 .0578961619 +C *** Open switch "BUS2 " to "BUS3 " after 9.40000000E-03 sec. +C 188 .0094 .6388812702 .6388812702 -.391373667 -.006239594 +C 189 .00945 .6388696593 -1.50023245 -.408649075 -.004263998 +C 190 .0095 .6388696593 .4233815153 -.425779292 .0033170344 +C 191 .00955 .6388696593 -1.1033345 -.442758231 -.002580376 +C 192 .0096 .6388696593 .0542933726 -.459579861 .0020073173 +C 193 .00965 .6388696593 -.875988712 -.476238204 -.001561525 +C 194 .0097 .6388696593 -.181754793 -.492727342 .0012147365 + 1 +C 400 .02 .6388696593 .9510565163 .9510565163 .208083E-17 +C Variable maxima : .6388812702 .9510565163 .9999802609 2.66459913 +C Times of maxima : .0094 .02 .00415 .00575 +C Variable minima : 0.0 -1.50023245 -1. -.006239594 +C Times of minima : 0.0 .00945 .0125 .0094 + PRINTER PLOT { Following plot is of region of oscillation following 9.4 msec + 144 .4 9.0 11. BUS1 BUS2 { Axis limits: (-1.500, 0.639) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 6 subcases demonstrates a simple Type-18 source that required +C correction on 25 February 2001. The key structure is this: one or more +C (in this case, two) terminal nodes of the Type-18 source that is used to +C represent IDEAL TRANSFORMER has known voltage. + .0001 .0001 { One dT is all it takes to verify voltages now are continuous + 1 1 1 1 + GENA 1.E7 { High resist. to ground provides connectivity + GENB GENA { 2nd of 3 is the same. Avoid KILL code + LOAD GENA { 3rd of 3 satisfies need for connectivity + IDEAL TRANSFORMER { Internally, ideal transformer is represented as Type-18 + 1GENA GENB 1.0 { Winding 1 has rated voltage = 1. + 2LOAD 1.0 { Winding 2 has same rated voltage +BLANK card ending branches +BLANK card ending switches +14GENA 10. 1.0 0.0 -1.0 10.0 +14GENB 10. 1.0 -120.0 -1.0 10.0 +BLANK card ending sources + GENA GENB LOAD +C Step Time GENA GENB LOAD +C 0 0.0 10. -5. 15. +C 1 .1E-3 9.999998026 -4.99455762 14.99455564 +BLANK card ending node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 6 subcases illustrates the RECLOSE feature of time-controlled +C switches, which became available 24 December 2001 as should be +C described in some future newsletter story (July, 2002 or later). Data +C comes from the 4th subcase, which provides half of the network. Time +C is extended (doubled, in fact) to allow reclosing of the switch. Using +C old modeling, this is done by means of a second time-controlled switch +C in parallel with the first. Of course, only one switch or the other is +C closed at any one time --- a requirement of switch logic. The same +C solution is obtained using new modeling by a RECLOSE switch. Although +C only two pairs of (T-close and T-open) are illustrated, in fact an +C arbitrary number are allowed. When ATP is done with one (upon opening), +C the next pair will replace the preceding pair. Storage is in List 10, so +C is variably-dimensioned. Time-step size DELTAT has been doubled simply +C to speed simulation. Finally, the source has been rotated 90 degrees to +C speed the action (no need to waste time waiting for the first opening). +PRINTED NUMBER WIDTH, 11, 2, { Request maximum precision (for 8 output columns) +CHANGE PRINTOUT FREQUENCY + 5 5 55 1 155 5 + .000100 .020 + 1 1 1 1 1 +C Naming is as follows. Keep the original "BUS" names for the original +C data. For the new alternative, replace BUS by GUS. This is for nodes +C numbered 2 and 3. For Node 1 (the voltage source), no copy is required: + BUS1 BUS2 .18 0.8 { Series R-L oscillates when opened} 1 + BUS1 GUS2 .18 0.8 { Series R-L oscillates when opened} 1 + BUS3 22100. { Capacitor disconnected by switch + GUS3 22100. { Capacitor disconnected by switch +C Damping resistor is extra, placed in parallel with hanging R-L branch: + BUS1 BUS2 DIVIDEDELTAT .0128 { Nominal parallel R-damping is R = 16 * L / dt + BUS1 GUS2 DIVIDEDELTAT .0128 { Nominal parallel R-damping is R = 16 * L / dt +BLANK card ending branch cards +C Switches: < T-close>< T-open > < Request> I +C ______------__________---------- __________ _ + BUS2 BUS3 -1.0 0.0 { Will open on current 0 at T = 5.8 msec } 1 + BUS2 BUS3 .011 0.0 { Will open on current 0 at T = 14.9 msec } + GUS2 GUS3 -1.0 0.0 RECLOSE 3 + .011 0.0 { 2nd pair of T-close and T-open follow 1st + 9999. { Bound to terminate last pair of switch T +BLANK card ending switch cards +14BUS1 1.0 60. 0.0 +BLANK card ending source cards + BUS1 BUS2 GUS2 { Request for the output of node voltages at these nodes +C First 4 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 4 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time GUS2 BUS1 BUS2 GUS2 BUS2 GUS2 BUS1 BUS1 +C GUS3 BUS3 GUS3 BUS2 GUS2 +C *** Switch "BUS2 " to "BUS3 " closed before 0.00000000E+00 sec. +C *** Switch "GUS2 " to "GUS3 " closed before 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .1E-3 0.0 .99928947 .15737E-3 .15737E-3 .06955678 .06955678 .06175106 .06175106 +C 2 .2E-3 0.0 .9971589 .74798E-3 .74798E-3 .19149551 .19149551 .18371105 .18371105 +C 3 .3E-3 0.0 .99361131 .00188315 .00188315 .31024774 .31024774 .30249987 .30249987 +BLANK card ending node voltage outputs +C 200 .02 .08475006 .30901699 .30902085 .30902085 0.0 0.0 .30129E-7 .30129E-7 +C Variable maxima : 1.6703679 .99992104 1.8946387 1.8946387 1.8705409 1.8705409 1.8678888 1.8678888 +C Times of maxima : .015 .0167 .015 .015 .0028 .0028 .0028 .0028 +C Variable minima : -2.667432 -.999921 -2.354268 -2.354268 0.0 -.8127145 -.8114678 -.8114678 +C Times of minima : .0059 .0083 .0059 .0059 0.0 .0128 .0128 .0128 + CALCOMP PLOT + 144 2. 0.0 20. BUS2 GUS2 { These 2 node voltages should coincide +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc56.dat b/benchmarks/dc56.dat new file mode 100644 index 0000000..ce6b697 --- /dev/null +++ b/benchmarks/dc56.dat @@ -0,0 +1,148 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-56 (former DC-71 of "M39.") +C First of a pair of cases providing batch-mode documentation of interactive +C (SPY) capability. The basic data is from DC-4, to which $SPY cards +C have been added. Included is all-enclusive SPY "HELP" output. Note +C that SPY commands are preceded by "$SPY", and are followed by "$SPYEND" +C (in this case, only one such group of SPY commands exists, although up to +C 9 are allowed). The reserved disk file name "SPYFILE1.DAT" is created +C by "MAIN00", and is connected to unit MUNIT6 of SPY by "CIMAGE", as +C the "$SPY, SPYFILE1.DAT" command is processed. If run as a batch-mode +C simulation, it will terminate at the nominal end-time TMAX = 8. But if +C interactive execution (SPY) is used, remember that the case will terminate +C only at the user's request (e.g., usage of the SPY command "STOP"). For +C SPY use, other changes may also be desired, such as the conversion from +C universal character plotting to computer-dependent vector-graphic plotting +C (usually in a separate, third window). Applicable to Apollo for such a +C change are the comment cards beginning with "C ---." (see 3 locations). +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .020 8.0 + 1 1 1 0 1 -1 + 5 5 20 20 160 10 + GEN TRAN 5.0 5.E4 3 + TRAN 1.E4 +93TRAN .005 30. 3 + -5.0 -100. + -.1 -50. + -.02 -45. + -.01 -40. + -.005 -30. + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 + TRAN LOADG 255. 5.E4 3 + LOADG 1.E-6 +BLANK card ending branch cards +BLANK card ending switch cards +14GEN 70. .1591549 -1. +$SPY { Request of "CIMAGE" ($-card) to begin batch-mode SPY connection +$DEBUG, 0, { 1st SPY command is trivial, ineffective change of DIAGNOSTIC +ExamINE { Next SPY command is this involved and powerful memory display command +CUT 0 { Begin with initialization (so far, EXAMINE SPY table has no rows) +ADD { Desired EXAMINE symbols are added to zero-length table +ISTEP { 1st of an arbitrarily long list of memory locations to be defined +TMAX { 2nd of an arbitrarily long list of memory locations to be defined +MEMSAV { 3rd of an arbitrarily long list of memory locations to be defined +T { 4th of an arbitrarily long list of memory locations to be defined +NCHAIN { Last of an arbitrarily long list of memory locations to be defined +END { Exit the symbol-input loop; all EXAMINE symbols have been defined +TABLE { Display all EXAMINE symbols and pointers defined so far +FORM { Enter EXAMINE loop that allows the changing of output spacing +1 6 { Symbol number 1, ISTEP, is to be allowed six columns of width +2 8 { Symbol number 2, TMAX, is to be allowed 8 columns of width +3 7 -5 { Symbols 3 onward (the next 5) are to be allowed 7 columns each +SHOW { Display EXAMINE symbols and pointers defined so far (confirm changes) +END { Exit the "FORM" loop, moving back to basic "EXAMINE" prompt +SPY { Exit "EXAMINE" and return to the "SPY:" prompt +names { Display the "EXAMINE" headings and output (just one line for this case) +BRANCH { SPY request for display of the program branch table (a simple example) +ALL { Display all rows of the branch table +2,3 { Display a range of rows (just 2 and 3, here) of the branch table +TOP { Display the first row (number 1) of the branch table +BOT { Display the last row (number 4) of the branch table +SPY { Exit the loop of the branch table display; back to "SPY:" prompt +MENU { Show command menu (after 11 July 96, this no longer is in HELP) +C 27 September 2010, add service for DICE where something nonblank follows +C the familiar old request word. This is an extension to verify ATP's random +C number generator independent of switches (e.g., STATISTICS use). ATP data +C is not even needed, and in no way affects the result. The dice simply are +C to be rolled a user-specified number of times and the result will be ploted +C in the SPY window as a mini printer plot. The random number generator can +C be either: 1) uniformly distributed over [0, 1] or 2) normally distributed +C with mean zero and standard deviation of unity. Here we go, 2 trial runs : +DICE BARS=51 { The width of printer plot will be this many columns (bars) +DICE Uniform { Switch from Gaussian (normal) distribution to uniform distrib. +DICE 5000 { Roll the dice 5K times and show the bell-shaped distribution +C More about the preceding. Numbers can end with letter K, so DICE 5000 is +C the same as DICE 5K (useful for much larger numbers such as 200K ). The +C initial request for uniform distribution was necessary because the default +C is Gaussian. The request for BARS=51 corresponds to a zero bar on the +C left followed by 50 positive values as the the variable steps to unity on +C the right. I.e., each bar represents 1/50 which is a nice round number. +DICE BARS=81 { The width of printer plot will be this many columns (bars) +DICE Gauss 5K { Switch back to the default normal distribution for 5K more rolls +C More about the preceding. The 81 is one to many for an 80-column display +C of the SPY window, so the first (value -4.0) will be omitted. +HELP { Enter loop that provides information about any SPY command +GO { First, request information about this single names SPY command +TOP { Next, request information about the first SPY command (which is "NAMES") + { is key word number 28 --- the request for another "EXAMINE" output +BOT { Next, request information about the last SPY command ("OVERVIEW") +C ALL { Remove "C " before "ALL" to see all "HELP" text of the program +SPY { Exit the "HELP" command; back to basic "SPY:" prompt +BREAK { Request a pause in the simulation that will soon resume (after "GO") +16, -101 { Illustration of interactive plotting will begin on time step 101 +GO { Begin EMTP execution; no "@" read until break point is reached +PLOT { Having just broken at step 101, enter SPY plotting +C ---. For 3-window SPY usage and vector plotting, comment out the MODE card +C ---. that follows (assuming LTEK=1 for vector plots is set by STARTUP file) +MODE { Toggle from vector (Apollo default) to character mode of plotting +CHOICE { Request a list of the output variables, available for plotting +NAME { Plot command to begin inputting the variable names +TRAN { The first and only variable to be plotted will be this node voltage +LAST { Exit the loop over plot input variables; back to basic plot command +TIME { Request for actual plotting (in this case, a character plot) +0, 2.0 { Time span of the character plot that is to begin immediately +SPY { Exit plotting; back to "SPY:" command +NAMES { Display the "EXAMINE" headings and output (just one line for this case) +C Note: the preceding "NAMES" line is added 27 April 2010 to show 48-bit ISTEP +C The previous display of step 0 is inadequate to verify use because a +C zero REAL*8 corresponds to a zero INTEGER*4. The DC56.LIS file was +C perfect even though MODELS DCN28.LIS showed ISTEP = 0 for all steps. +C With this addition, if the address/type of ISTEP is bad, DC56.LIS will +C confirm the situation along with DCN28.LIS It should be safer to +C have such confirmation of 48-bit counting outside of MODELS as well as +C within MODELS. If memory addresses of extended integer counting are +C bad, the problem really is not due to MODELS. +BREAK { Request a pause in the simulation that will soon resume (after "GO") +16, -162 { Next SPY activity will recommence at time step number 162 +GO { Begin EMTP execution; no "@" read until break point is reached +PLOT { Having just broken at step 162, enter SPY plotting +FRONT 1.0 { The time scale will be chosen to provide only the latest 1.0 sec +C ---. For 3-window SPY usage and vector plotting, change ROLLC to ROLLV: +ROLLC { Toggle flag for rolling printer plot; rolling is now to begin. +SPY { Exit plotting; back to "SPY:" command +BREAK { Request a pause in the simulation that will soon resume (after "GO") +16, -251 { Next SPY activity will recommence at time step number 251 +GO { Begin EMTP execution; no "@" read until break point is reached +TIME { Trivial SPY command just to demonstrate that we have "SPY:" prompt +NOROLL { End the rolling character plot as last SPY command before exit +$SPYEND { Bound on in-line SPY commands; back to batch-mode program data +BLANK card ending all electric sources +C Total network loss P-loss by summing injections = 8.286714400785E+00 +C ---- Initial flux of coil "TRAN " to " " = -1.13295190E+01 +C 60 1.2 18.29171134 7.073352669 7.073352556 25.36506401 7.073352669 +C 80 1.6 -2.34791112 .3039748672 .303974844 -2.04393625 .3039748672 +C 100 2.0 -24.493162 -4.63708207 -4.63708206 -29.1302441 -4.63708207 +C // Service "BREAK". T = 0.20200E+01 16 = NCHAIN + GEN TRAN +BLANK card ending requests for program output (here, just node voltages) +C ---. All following cards will only be read for single-window execution: + PRINTER PLOT + 193 .5 0.0 5.0 TRAN LOADG GEN TRAN { Axis limits: (-3.493, 3.288) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc57.dat b/benchmarks/dc57.dat new file mode 100644 index 0000000..d962ea9 --- /dev/null +++ b/benchmarks/dc57.dat @@ -0,0 +1,232 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-57 (former DC-71 of "M39." vintage) +C The basic DC-30 problem has been augmented by batch-mode SPY commands as +C an illustration of $SPY usage. See DC-56 (this is 2nd of 2 examples). +C Unlike DC-56, this present case uses two sets of in-line $SPY data, so +C it is more general. For SPY use, the user may desire conversion from +C universal character plotting to computer-dependent vector-graphic plotting +C (usually in a separate, third window). Applicable to Apollo for such a +C change are the comment cards beginning with "C ---." (see two locations). +C 1st of 2 subcases is the original for Salford EMTP. It involves one +C vector plot, and no ROLL. For ROLL, see the 2nd subcase. Execution +C with DISK will result in screen output that is limited to the vector +C plots (1 from 1st subcase and 4 from 2nd). Execution using BOTH will +C differ in that text will be outputted to the screen until the 1st vector +C plot. Then, in effect, ATP switches from BOTH to DISK. March, 2002. +$DEPOSIT, D4FACT=2.0 { Use SPY DEPOSIT to change CALCOMP PLOT time from STARTUP +$DEPOSIT, NOCALC=-1 { We want screen graphics during DISK in spite of STARTUP +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 1.0E-6 1.2E-3 + 1 1 1 0 1 -1 + 5 5 20 20 100 100 +TACS HYBRID + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW BUS2 - BUS3 +99DRIVE ABS VSW +99BREAK 1.5E+8* TIMEX + 1.0E+5 +98GRID 51+UNITY BREAK DRIVE +33DUMMY TIMEX UNITY BUS2 BUS3 VSW DRIVE BREAK GRID +BLANK card ending the last TACS data + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card ending electric network branch cards + BUS2 BUS3 -1. 1.E9 2 +11BUS2R BUS3R 20. GRID 13 +$SPY { Request for batch-mode SPY connection: in-line SPY commands begin +BRANCH { SPY request for a display of the program branch table (List 2) +ALL { Display all rows of the branch table +SPY { Exit the loop of the branch table display; back to "SPY:" prompt +SOURCE +TACS +ALL +SPY { Exit the loop of the TACS source table display; back to "SPY:" prompt +time { Extra, do-nothing command makes the last something other than spy +$SPYEND { Bound on in-line SPY commands; back to batch-mode program data +BLANK card ending switch cards +14GEN 66500. 50. -2.0508 -1. +$SPY { Request for batch-mode SPY connection: in-line SPY commands begin +SOURCE +ELEC +ALL +SPY { Exit the loop of the electric source table display; back to "SPY:" prompt +SWITCH { Show ATP storage related to switches +ALL { Display all rows of switch table +SPY { Exit the loop of the switch table display; back to "SPY:" prompt +BREAK { Initiate a request for a later SPY break +16, -750 { Next SPY break will be at .75E-3 seconds, which is step number 750 +GO { Begin EMTP execution; no "@" read until break point is reached +PLOT { Having just broken at step 750, enter SPY plotting +C ---. For 3-window SPY usage and vector plotting, comment out the MODE card +C ---. that follows (assuming LTEK=1 for vector plots is set by STARTUP file) +C MODE { Toggle from vector (Apollo default) to character mode of plotting +SET COLUMN { Request a change in the output plotting width +131 { The default width of 79 is now being changed to 131 for maximum accuracy +CHOICE { Request a list of the output variables, available for plotting +NAME { Plot command to begin inputting the variable names +END { Step over node voltage input, and begin branch voltage input +BUS2 BUS3 { The 1st and only variable to be plotted will be this branch voltage +LAST { Exit the loop over plot input variables; back to basic plot command +LABEL { Define labeling for plots, beginning with super title (next): +Super Title Line +Vertical axis +1st of two lines of case title +2nd and final line of case title +end +TIMEUNITS { Default time units of seconds are not convenient, so change to: +4 { 4 ==> msec (scale by 1000 in labeling the time axis) +ALL TIME { Perform the plot using all available time points +SPY { Exit plotting; back to "SPY:" command +BREAK { Request a pause in the simulation that will soon resume (after "GO") +16, -1001 { Next SPY activity will recommence at time step number 1001 +GO { Begin EMTP execution; no "@" read until break point is reached +TIME { Trivial SPY command before program stop, just to prove SPY activity +$SPYEND { Bound on in-line SPY commands; back to batch-mode program data +BLANK card ending all electric sources +C Total network loss P-loss by summing injections = -1.885346136987E-07 +C Step Time BUS2 BUS2R BUS3R BUS2R BUS3 +C BUS3 BUS3R +C +C TACS TACS TACS TACS TACS +C DUMMY TIMEX UNITY BUS2 BUS3 +C *** Phasor I(0) = -1.5049840E+01 Switch "BUS2 " to "BUS3 " closed +C 0 0.0 0.0 0.0 64751.3498 64751.3498 64751.3498 +C 0.0 0.0 1.0 0.0 0.0 +C *** Open switch "BUS2 " to "BUS3 " after 1.00000000E-06 sec. +C 1 .1E-5 0.0 0.0 64752.0751 64752.0751 64752.0751 +C .001998002 .1E-5 1.0 64752.0751 64752.0751 +C $OPEN, UNIT=42 STATUS=UNKNOWN FILE=DEBUG.LIS + 1 { Request for the output of all network node voltages +C ---. All following cards will only be read for single-window execution: +C Last step: 1200 .0012 105797.943 105797.943 -37370.689 68427.2546 -37370.689 +C Last step: .909282119 .0012 1.0 68427.2546 -37370.689 +C maxima : 177392.698 177392.698 102764.956 84422.9848 102764.956 84422.9848 +C maxima : .909282119 .0012 1.0 84422.9848 102764.956 177392.698 +C times max : .497E-3 .497E-3 .83E-4 .478E-3 .83E-4 .478E-3 +C times max : .0012 .0012 0.0 .478E-3 .83E-4 .497E-3 + PRINTER PLOT + 184 .1 0.0 1.2 BUS2 BUS3 { Axis limits: (-0.386, 1.774) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 2 subcases is appended 18 March 2002. This is modification of +C the first. A big change was made for Salford, as Salford VECPLT in +C the UTPF was reformed. Previously, SPY PLOT worked, but it was not +C a ROLL-ing vector plot as Mingw32 ATP demonstrated in its separate plot +C window for DISLIN graphics. Now, Salford EMTP, too, can have a ROLLing +C vector SPY PLOT just as Mingw32 ATP did. There is a price, however: +C Execution must be using DISK rather than BOTH (text output to the +C screen is not possible). Also, NOCALC = -1 is required to enable +C CALCOMP PLOT graphics (screen graphics) during DISK. Then, during +C all plotting, the screen is held in graphic mode. Previously, TSTALL +C was made positive to slow text output. Since text and graphics are +C mixed for the ROLL-ing SPY PLOT in the dT loop, this still works. The +C graphics continue to be slowed, even though text can not be seen on +C the screen. Using default 50% overlap of plots, the first begins at +C 1/4 msec, and extends through 1.0 msec. The 2nd then is (0.5, 1.5), +C and the 3rd covers (1.0, 2.0), of which the simulation covers 80% when +C T-max is reached. Finally, real CALCOMP PLOT produces a 4th plot. +C All 4 should be in the .PS (PostScript) output, and will be found in +C the ATPHPGL.* for HP-GL (one disk file per plot). +$DEPOSIT, KSLOWR=5 { Use SPY DEPOSIT to change ROLL buffer from STARTUP value +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 1.0E-6 1.8E-3 + 1 1 1 0 1 -1 + 5 5 20 20 100 100 +TACS HYBRID + 1DUMMY +UNITY + 1.0 + 1.0 0.5E-3 +90BUS2 +90BUS3 +99VSW BUS2 - BUS3 +99DRIVE ABS VSW +99BREAK 1.5E+8* TIMEX + 1.0E+5 +98GRID 51+UNITY BREAK DRIVE +33DUMMY TIMEX UNITY BUS2 BUS3 VSW DRIVE BREAK GRID +BLANK card ending the last TACS data + GEN BUS1 15. + BUS1 2.9 + BUS1 BUS2 0.1 + BUS2 0.1 + BUS3 .017 + BUS3 490. + BUS2 BUS2R 24.34 + BUS3 BUS3R BUS2 BUS2R +BLANK card ending electric network branch cards + BUS2 BUS3 -1. 1.E9 2 +11BUS2R BUS3R 20. GRID 13 +$SPY { Request for batch-mode SPY connection: in-line SPY commands begin +BRANCH { SPY request for a display of the program branch table (List 2) +ALL { Display all rows of the branch table +SPY { Exit the loop of the branch table display; back to "SPY:" prompt +SOURCE +TACS +ALL +SPY { Exit the loop of the TACS source table display; back to "SPY:" prompt +time { Extra, do-nothing command makes the last something other than spy +$SPYEND { Bound on in-line SPY commands; back to batch-mode program data +BLANK card ending switch cards +14GEN 66500. 50. -2.0508 -1. +$SPY { Request for batch-mode SPY connection: in-line SPY commands begin +SOURCE +ELEC +ALL +SPY { Exit the loop of the electric source table display; back to "SPY:" prompt +SWITCH +ALL +SPY { Exit the loop of the switch table display; back to "SPY:" prompt +BREAK { Initiate a request for a later SPY break +16, -250 { Next SPY break will be at .25E-3 seconds, which is step number 250 +GO { Begin EMTP execution; no "@" read until break point is reached +PLOT { Having just broken at step 750, enter SPY plotting +C ---. For 3-window SPY usage and vector plotting, comment out the MODE card +C ---. that follows (assuming LTEK=1 for vector plots is set by STARTUP file) +C MODE { Toggle from vector (Apollo default) to character mode of plotting +SET COLUMN { Request a change in the output plotting width +131 { The default width of 79 is now being changed to 131 for maximum accuracy +CHOICE { Request a list of the output variables, available for plotting +NAME { Plot command to begin inputting the variable names +END { Step over node voltage input, and begin branch voltage input +BUS2 BUS3 { The 1st and only variable to be plotted will be this branch voltage +LAST { Exit the loop over plot input variables; back to basic plot command +LABEL { Define labeling for plots, beginning with super title (next): +Super Title Line +Vertical label +FLUSH { Erase any multi-line case title now being stored (preceding subcase) +1st of two lines of case title +2nd and final line of case title +END { Terminate this multi-line case title +TIMEUNITS { Default time units of seconds are not convenient, so change to: +4 { 4 ==> msec (scale by 1000 in labeling the time axis) +TIME 0.0 1.0 { Plot 4 times as far as points now exist (0, 1/4 msec) +ROLLV { Switch to ROLL-ing plot, Vector mode (not C ==> character) +SPY { Exit plotting; back to "SPY:" command +BREAK { Request a pause in the simulation that will soon resume (after "GO") +16, -1001 { Next SPY activity will recommence at time step number 1001 +GO { Begin EMTP execution; no "@" read until break point is reached +TIME { Trivial SPY command before program stop, just to prove SPY activity +$SPYEND { Bound on in-line SPY commands; back to batch-mode program data +BLANK card ending all electric sources +C The following slows output just prior to entry into dT loop (and plotting). +C This serves to hold the 1st plot on the screen for several seconds, & also +C to slow following ROLL-ing SPY PLOTs of this subcase enough so the user is +C able to study structure. Without TSTALL, the average PC is too fast, so: +$DEPOSIT, TSTALL=0.1 { 1/10 second delay will occur after each printed line + 1 { Request for the output of all network node voltages + CALCOMP PLOT { Switch to vector plotting (preceding subcase had PRINTER PLOT) + 2Arbitrary 78-character case title text of which this is an example, I hope. + First of two lines of 78-byte graph subheading text. + Second and final such line of graph subheading text. + 184 .2 0.0 2.0 BUS2 BUS3 Graph heading---Vertical axis la +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc58.dat b/benchmarks/dc58.dat new file mode 100644 index 0000000..b69f33b --- /dev/null +++ b/benchmarks/dc58.dat @@ -0,0 +1,137 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-58 (DC-70 of "M39.") +C 1st of 3 subcases illustrates DO KNT loop that entered the UTPF on +C February 6, 1999. As initially implemented, only one loop is allowed, +C and it creates an output data file having the fixed name DOFILE.DAT +C (to be used with $INCLUDE as will be built internally; see .LIS). +C Second important restruction: use must be in 1st subcase only, if two +C or more subcases are to be stacked in 1 file for sequential execution. +C That is why this addition to an old data file is made at the top rather +C than at the bottom (common practice). As should be explained in the +C April, 1999, newsletter, DO loops in data were inspired by Prof. Juan +C A. Martinez Velasco of the University of Catalunya in Barcelona, Spain. +C New 1st subcase of DC-8 is added 25 September 2001. Ideally, it +C would be a new 2nd subcase here, but since each DO KNT loop must +C be in the 1st subcase, placement here was impossible. Data is the +C same, although part has been offloaded to a $INCLUDE file. This +C proves that DO KNT loop can involve a $INCLUDE statement. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .020 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 +C The /OUTPUT on the right of the following DO loop is optional. It will +C result in output that documents progress of the loop. For small numbers of +C passes (e.g., this illustration), such extra output is recommended. If no +C such request is present, output will be suppressed during the DO loop. +DO KNT=1, 5 /OUTPUT { Loop twice using PCVP index KNT (seen inside $PARAMETER) +$PARAMETER { This will be serviced by CIMAGE just as any other $-card would be +_BUS1_ = KNT SERIALIZE 'NODE00' +_BUS2_ = KNT + 1. SERIALIZE 'NODE00' +C Note about SERIALIZE on the preceding 2 lines. This is optional. If +C not present, there will be floating-point encoding of the right hand side. +C What the SERIALIZE request does is request integer truncation of the +C floating-point result followed by right-adjusted encoding of the following +C root word using the integer value. The character string following the +C key word is enclosed in apostrophes, and should have the same width as +C the symbol on the left hand side. +BLANK card ends $PARAMETER definitions that are processed just b4 branch cards +-1_BUS1__BUS2_ .306 5.82 .012 100. { Half the length of original +92_BUS2_ { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +ENDDO KNT +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14NODE01 408000. 60. +BLANK card ending source data + 1 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 3 subcases was 1st before 6 February 99, and was DC-70 of "M39." +C Illustration of nested $INCLUDE (2 levels, in this example), using data of +C DC-4 as an example. The first $INCLUDE file contains the characteristic +C (must be established as disk file "dc58inc1.dat", note) of the Type-93 +C saturable reactor, while files 2 and 3 in fact just add comment cards, so +C they do not actually affect the solution. But to execute, these must have +C disk file names "dc58inc2.dat" and "dc58inc3.dat", respectively. The +C contents of these files follow, as documentation: +C < < < < < < dc58incl1.dat : +C -5.0 -100. +C -.1 -50. +C -.02 -45. +C -.01 -40. +C -.005 -30. +C .005 30. +C .01 40. +C .02 45. +C .10 50. +C 5.0 100. +C 9999 +C < < < < < < dc58incl2.dat : +C Comment card is 1st of 2 cards in dc58inc2.dat. The second is $INCLUDE: +C $INCLUDE, dc58inc3.dat, +C < < < < < < dc58inc3.dat : +C Contents of dc58inc3.dat are just 2 comment cards, with this being 1st +C and this is the second and last +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .020 4.0 + 1 1 1 0 1 -1 + 5 5 20 20 + GEN TRAN 5.0 5.E4 3 + TRAN 1.E4 +93TRAN .005 30. 3 +$INCLUDE, dc58inc1.dat, + TRAN LOADG 255. 5.E4 3 + LOADG 1.E-6 +BLANK card ending branches +BLANK card ending switch cards (none, for this example) +14GEN 70. .1591549 -1. +$INCLUDE, dc58inc2.dat, { This 2nd INCLUDE has a 3rd one nested inside of it +BLANK card ending source cards +C Total network loss P-loss by summing injections = 8.286714400785E+00 +C Initial flux in coil "TRAN " to " " = -1.13295190E+01 + GEN TRAN +C Step Time GEN TRAN TRAN GEN TRAN +C TRAN TERRA LOADG +C 0 0.0 6.270257621 63.72974238 63.72974215 70. 63.72974238 +C 1 .02 6.042435541 63.94356493 63.9435647 69.98600047 63.94356493 +C 2 .04 5.812195789 64.13181171 64.13181147 69.9440075 64.13181171 +BLANK card ending output variables (only node voltages, for this example) +C Final step begins: 200 4.0 2.441169053 -48.1962799 -48.1962797 +C cont. .. -45.7551108 -48.1962799 -.013963808 -.234726349 -.215942913 +C Variable maxima : 20.01585083 64.72838406 64.72838381 70. 64.72838406 +C Times of maxima : 1.16 .18 .18 0.0 .18 + PRINTER PLOT + 1931.0 0.0 7.0 TRAN { Axis limits: (-0.140, 3.031) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 3 subcases is the same as the second except that $PREFIX is not +C being used. Instead, the [] are being buried in the $INCLUDE lines +C themselves to demonstrate that this form, also, is accepted. The ending +C time T-max is shortened, and plotting has been removed. Also remove +C the request for extrema, which no longer are significant. 29 January 2004 +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .020 0.1 { Shorten T-max to 1/40 of preceding to speed the simulation + 1 1 1 0 0 -1 + 5 5 20 20 + GEN TRAN 5.0 5.E4 3 + TRAN 1.E4 +93TRAN .005 30. 3 +$INCLUDE, []dc58inc1.dat, + TRAN LOADG 255. 5.E4 3 + LOADG 1.E-6 +BLANK card ending branches +BLANK card ending switch cards (none, for this example) +14GEN 70. .1591549 -1. +$INCLUDE, []dc58inc4.dat, { This 4th INCLUDE is combination of previous 2 and 3 +BLANK card ending source cards + GEN TRAN +BLANK card ending output variables (only node voltages, for this example) +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc58inc1.dat b/benchmarks/dc58inc1.dat new file mode 100644 index 0000000..a1753ef --- /dev/null +++ b/benchmarks/dc58inc1.dat @@ -0,0 +1,11 @@ + -5.0 -100. + -.1 -50. + -.02 -45. + -.01 -40. + -.005 -30. + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 diff --git a/benchmarks/dc58inc2.dat b/benchmarks/dc58inc2.dat new file mode 100644 index 0000000..f1f7155 --- /dev/null +++ b/benchmarks/dc58inc2.dat @@ -0,0 +1,2 @@ +C Comment card is 1st of 2 cards in DC58INCL2.DAT. The second is $INCLUDE: +$INCLUDE, dc58inc3.dat, diff --git a/benchmarks/dc58inc3.dat b/benchmarks/dc58inc3.dat new file mode 100644 index 0000000..2d26b48 --- /dev/null +++ b/benchmarks/dc58inc3.dat @@ -0,0 +1,2 @@ +C Contents of DC58INC3.DAT are just 2 comment cards, with this being 1st +C and this is the second and last diff --git a/benchmarks/dc58inc4.dat b/benchmarks/dc58inc4.dat new file mode 100644 index 0000000..915cbe1 --- /dev/null +++ b/benchmarks/dc58inc4.dat @@ -0,0 +1,4 @@ +C Comment card is 1st of 2 cards in DC58INCL2.DAT. The second is $INCLUDE: +C Destroy the 2nd level of $INCLUDE. Insert 3rd file content here: +C Contents of DC58INC3.DAT are just 2 comment cards, with this being 1st +C and this is the second and last diff --git a/benchmarks/dc59.dat b/benchmarks/dc59.dat new file mode 100644 index 0000000..a426875 --- /dev/null +++ b/benchmarks/dc59.dat @@ -0,0 +1,557 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-59 (DC-69 of "M39." vintage) +C Use "LINE CONSTANTS" to punch on LUNIT7 the K.C. Lee EMTP branch cards +C that represent a double-circuit BPA line. This 500-kV line is seventy +C miles long, and it connects BPA substations "Raver" and "Chief Joseph" +C 1st of 14 subcases illustrating different LINE CONSTANTS computations. +C The 1st 7 are stacked to maintain control within LINE CONSTANTS whereas +C later subcases are separated by BNDC (the more modern concept). +C DIAGNOSTIC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 +LINE CONSTANTS +$ERASE { Flush the punched card buffer (in case 2nd or later subcase of usage) +ENGLISH { Redundant request is unnecessary: English units are default choice +BRANCH X2A X16A X2B X16B X2C X16C Y2A Y16A Y2B Y16B Y2C Y16C + 1 .375 .0776 4 .0 1.302 -21.17 51.04 + 1 .375 .0776 4 .0 1.302 -22.00 50.00 + 1 .375 .0776 4 .0 1.302 -22.83 51.04 + 2 .375 .0776 4 .0 1.302 .83 79.14 + 2 .375 .0776 4 .0 1.302 0.00 78.10 + 2 .375 .0776 4 .0 1.302 -.83 79.14 + 3 .375 .0776 4 .0 1.302 22.83 51.04 + 3 .375 .0776 4 .0 1.302 22.00 50.00 + 3 .375 .0776 4 .0 1.302 21.17 51.04 + 4 .375 .0776 4 .0 1.302 103.83 51.04 + 4 .375 .0776 4 .0 1.302 103.00 50.00 + 4 .375 .0776 4 .0 1.302 102.17 51.04 + 5 .375 .0776 4 .0 1.302 125.83 79.14 + 5 .375 .0776 4 .0 1.302 125.00 78.10 + 5 .375 .0776 4 .0 1.302 124.17 79.14 + 6 .375 .0776 4 .0 1.302 147.83 51.04 + 6 .375 .0776 4 .0 1.302 147.00 50.00 + 6 .375 .0776 4 .0 1.302 146.17 51.04 + 0 .500 2.6100 4 .0 .386 12.90 101.40 + 0 .500 2.6100 4 .0 .386 -12.90 101.40 + 0 .500 2.6100 4 .0 .386 137.90 101.40 + 0 .500 2.6100 4 .0 .386 112.10 101.40 +BLANK card concludes conductor cards +C Following is old format with "1" in column 28. Newer blank is equivalent: + 100.0 60.0 1 1 70. 1 +C 100.0 60.0 1 70. 1 +C 34567890123456789012345678 +BLANK card ends the one and only frequency card +C [Z] begins: 1 1.894681E-01 +C [Z] begins: 8.966087E-01 +C [Z] begins: 2 1.784947E-01 2.253729E-01 +C [Z] begins: 3.444996E-01 8.518222E-01 +C Row 4 of [Z]: 4 1.585986E-01 1.711108E-01 1.643664E-01 1.958309E-01 +C Row 4 of [Z]: 2.109824E-01 2.106541E-01 2.563596E-01 8.847836E-01 +C Last modal row: 6 2.993735E-02 5.200153E-01 8.194303E-06 2.520181E+02 +C Last modal row: -7.248357E+00 2.519139E+02 1.825523E+05 5.939524E-05 +C Eigenvector matrix [Ti] for current transformation: I-phase = [Ti]*I-mode. +C Row 1: 4.252163704717307E-01 -5.177320964654548E-01 -3.352440256724861E-01 +C Row 2: 3.825268921039306E-01 -3.979585318772536E-01 -4.744214714424082E-02 +C Last Z-surge row: 3.332489880161737E1 3.738497001800407E1 4.323487789067054E+1 +C Last Z-surge row: 9.030558505299203E1 1.029930778488600E2 3.620689931272090E+2 +C $VINTAGE, 1 --- Beginning of punched cards +C -1X2A X16A 1.03897E+00 6.87061E+02 1.16853E+05-7.00000E+01 1 6 +C -2X2B X16B 6.04380E-02 4.22507E+02 1.67695E+05-7.00000E+01 1 6 +C -3X2C X16C 2.69166E-02 2.64252E+02 1.84104E+05-7.00000E+01 1 6 +C -4Y2A Y16A 2.72285E-02 2.73315E+02 1.82849E+05-7.00000E+01 1 6 +C -5Y2B Y16B 3.17288E-02 2.53688E+02 1.81665E+05-7.00000E+01 1 6 +C -6Y2C Y16C 2.99374E-02 2.51914E+02 1.82552E+05-7.00000E+01 1 6 +C $VINTAGE, 0 +C 0.42521637 -0.51773210 -0.33524403 -0.51955526 -0.26282070 0.37241506 +C 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 +C 0.38252689 -0.39795853 -0.04744215 0.02064266 0.58206662 -0.57594225 +C 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 +C 0.41576943 -0.27126091 0.62077426 0.47920372 -0.30351891 0.17203938 +C 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 +C 0.41576943 0.27126091 -0.62077426 0.47920372 -0.30351891 -0.17203938 +C 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 +C 0.38252689 0.39795853 0.04744215 0.02064266 0.58206662 0.57594225 +C 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 +C 0.42521637 0.51773210 0.33524403 -0.51955526 -0.26282070 -0.37241506 +C 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 +$PUNCH +C 2nd of 9 data subcases within "LINE CONSTANTS" serves to demonstrate +C the modeling of a continuously transposed 3-phase overhead line (col. 70 +C on the freq. card is left blank), output branch cards will be punched. +C Solution of this and the following 3 subcases are taken from Sun 3/140 +C in August, 1991. +BRANCH JDA LMA JDB LMB JDC LMC +C LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE. + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK CARD ENDING CONDUCTOR CARDS OF "LINE CONSTANTS" CASE +100. 60.00 1 11 1 138. 1 +BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +C [Z] begins: 1 1.197867E-01 +C [Z] begins: 1.118869E+00 +C [Z] begins: 2 9.087789E-02 1.180123E-01 +C [Z] begins: 5.395449E-01 1.120899E+00 +C [Z] begins: 3 9.175069E-02 9.087789E-02 1.197867E-01 +C [Z] begins: 5.189221E-01 5.395449E-01 1.118869E+00 +C $VINTAGE, 1 --- Beginning of punched cards +C -1JDA LMA 0.30153E+00 0.69182E+03 0.11937E+06 0.13800E+03 1 +C -2JDB LMB 0.28026E-01 0.28360E+03 0.18218E+06 0.13800E+03 1 +C -3JDC LMC +C $VINTAGE, 0 +$PUNCH, dc59b.pch ! +C 3rd of 9 subcases: continuously-transposed, constant-parameter, +C double-circuit line. This is unrealistic, physically. See the +C following 4-th subcase for a better approximation of common use. +BRANCH SENDA RECA SENDB RECB SENDC RECC SENDD RECD SENDE RECE SENDF RECF + 1.3636 .0561 4 0.0 1.602 -20.75 48.9 48.9 + 1.3636 .0561 4 0.0 1.602 -19.25 48.9 48.9 + 2.3636 .0561 4 0.0 1.602 - 0.75 76.4 76.4 + 2.3636 .0561 4 0.0 1.602 0.75 76.4 76.4 + 3.3636 .0561 4 0.0 1.602 19.25 48.9 48.9 + 3.3636 .0561 4 0.0 1.602 20.75 48.9 48.9 + 4.3636 .0561 4 0.0 1.602 129.25 48.9 48.9 + 4.3636 .0561 4 0.0 1.602 130.75 48.9 48.9 + 5.3636 .0561 4 0.0 1.602 149.25 76.4 76.4 + 5.3636 .0561 4 0.0 1.602 150.75 76.4 76.4 + 6.3636 .0561 4 0.0 1.602 169.25 48.9 48.9 + 6.3636 .0561 4 0.0 1.602 170.75 48.9 48.9 + 0.5 2.61 4 0.0 .386 -12.9 113.3 113.3 + 0.5 2.61 4 0.0 .386 12.9 113.3 113.3 + 0.5 2.61 4 0.0 .386 137.1 113.3 113.3 + 0.5 2.61 4 0.0 .386 162.9 113.3 113.3 +BLANK card ending conductors +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + 100. 60. 1 1 1 0 1.00 1 +BLANK card ending frequency cards +C [Z] begins: 1 1.217123E-01 +C [Z] begins: 1.118839E+00 +C [Z] begins: 2 9.094958E-02 1.199341E-01 +C [Z] begins: 5.394596E-01 1.120869E+00 +C Row 4 of [Z]: 4 9.147597E-02 9.069011E-02 9.164961E-02 1.217127E-01 +C Row 4 of [Z]: 3.585129E-01 3.741915E-01 3.960704E-01 1.118836E+00 +C $VINTAGE, 1 --- Beginning of punched cards +C -1SENDA RECA 0.57627E+00 0.87897E+03 0.10152E+06 0.10000E+01 1 +C -2SENDB RECB 0.30089E-01 0.31999E+03 0.17467E+06 0.10000E+01 1 +C -3SENDC RECC +C -4SENDD RECD +C -5SENDE RECE +C -6SENDF RECF +C $VINTAGE, 0 +$PUNCH, dc59c.pch ! +C 4th of 9 subcases will illustrate usage of the special request word +C SPECIAL DOUBLE CIRCUIT TRANSPOSED. This is to represent a double- +C circuit line in which each circuit is itself transposed, and which has +C only zero-sequence coupling between the two circuits. There are two +C idential 3-phase circuits. +C Columns 69-70 on the frequency cards are left blank or integer zero. +SPECIAL DOUBLE CIRCUIT TRANSPOSED +BRANCH SENDA RECA SENDB RECB SENDC RECC SENDD RECD SENDE RECE SENDF RECF +C Special transposed double circuit, constant parameter modeling + 1.3636 .0561 4 0.0 1.602 -20.75 48.9 48.9 + 1.3636 .0561 4 0.0 1.602 -19.25 48.9 48.9 + 2.3636 .0561 4 0.0 1.602 - 0.75 76.4 76.4 + 2.3636 .0561 4 0.0 1.602 0.75 76.4 76.4 + 3.3636 .0561 4 0.0 1.602 19.25 48.9 48.9 + 3.3636 .0561 4 0.0 1.602 20.75 48.9 48.9 + 4.3636 .0561 4 0.0 1.602 129.25 48.9 48.9 + 4.3636 .0561 4 0.0 1.602 130.75 48.9 48.9 + 5.3636 .0561 4 0.0 1.602 149.25 76.4 76.4 + 5.3636 .0561 4 0.0 1.602 150.75 76.4 76.4 + 6.3636 .0561 4 0.0 1.602 169.25 48.9 48.9 + 6.3636 .0561 4 0.0 1.602 170.75 48.9 48.9 + 0.5 2.61 4 0.0 .386 -12.9 113.3 113.3 + 0.5 2.61 4 0.0 .386 12.9 113.3 113.3 + 0.5 2.61 4 0.0 .386 137.1 113.3 113.3 + 0.5 2.61 4 0.0 .386 162.9 113.3 113.3 +BLANK card ending conductors +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + 100. 60. 1 1 1 0 1.00 1 +BLANK card ending frequency cards +C [Z] begins: 1 1.217123E-01 +C [Z] begins: 1.118839E+00 +C [Z] begins: 2 9.094958E-02 1.199341E-01 +C [Z] begins: 5.394596E-01 1.120869E+00 +C Row 4 of [Z]: 4 9.147597E-02 9.069011E-02 9.164961E-02 1.217127E-01 +C Row 4 of [Z]: 3.585129E-01 3.741915E-01 3.960704E-01 1.118836E+00 +C $VINTAGE, 1 --- Beginning of punched cards +C -1SENDA RECA 0.57627E+00 0.87897E+03 0.10152E+06 0.10000E+01 1 +C -2SENDB RECB 0.29879E-01 0.28421E+03 0.18255E+06 0.10000E+01 1 +C -3SENDC RECC 0.30932E-01 0.48704E+03 0.16609E+06 0.10000E+01 1 +C -4SENDD RECD +C -5SENDE RECE +C -6SENDF RECF +C $VINTAGE, 0 +$PUNCH, dc59d.pch ! +C 5th of 9 subcases: Another case of "SPECIAL DOUBLE CIRCUIT TRANSPOSED", +C the two single circuits here are not identical. +SPECIAL DOUBLE CIRCUIT TRANSPOSED +BRANCH SENDA RECA SENDB RECB SENDC RECC SENDD RECD SENDE RECE SENDF RECF + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 4.3636 .0561 4 0.0 1.602 129.25 48.9 48.9 + 4.3636 .0561 4 0.0 1.602 130.75 48.9 48.9 + 5.3636 .0561 4 0.0 1.602 149.25 76.4 76.4 + 5.3636 .0561 4 0.0 1.602 150.75 76.4 76.4 + 6.3636 .0561 4 0.0 1.602 169.25 48.9 48.9 + 6.3636 .0561 4 0.0 1.602 170.75 48.9 48.9 + 0.5 2.61 4 0.0 .386 -12.9 113.3 113.3 + 0.5 2.61 4 0.0 .386 12.9 113.3 113.3 + 0.5 2.61 4 0.0 .386 137.1 113.3 113.3 + 0.5 2.61 4 0.0 .386 162.9 113.3 113.3 +BLANK card ending conductors +C 1 2 3 4 5 6 7 8 +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 +100. 60.00 1 1 1 1.00 1 +BLANK card ending frequency cards of LINE CONSTANTS data subcase +C [Z] begins: 1 1.197873E-01 +C [Z] begins: 1.118865E+00 +C [Z] begins: 2 9.087852E-02 1.180131E-01 +C [Z] begins: 5.395402E-01 1.120893E+00 +C Row 4 of [Z]: 4 9.144082E-02 9.065542E-02 9.161373E-02 1.217127E-01 +C Row 4 of [Z]: 3.585503E-01 3.740201E-01 3.961049E-01 1.118836E+00 +C $VINTAGE, 1 --- Beginning of punched cards +C -1SENDA RECA 0.57513E+00 0.87993E+03 0.10163E+06 0.10000E+01 1 +C -2SENDB RECB 0.28952E-01 0.28422E+03 0.18257E+06 0.10000E+01 1 +C -3SENDC RECC 0.30003E-01 0.48732E+03 0.16618E+06 0.10000E+01 1 +C -4SENDD RECD +C -5SENDE RECE +C -6SENDF RECF +C $VINTAGE, 0 +$PUNCH, dc59e.pch ! +C 6th of 9 data subcases within "LINE CONSTANTS" demonstrates that a +C single conductor can be handled properly. Prior to 26 June 1992, there +C were no punched branch cards for this case. Now, there are! +BRANCH JDA LMA +C LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE. + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. +BLANK card ending conductor cards of "LINE CONSTANTS" case +C 34567890123456789012345678901234567890123456789012345678901234567890 +100. 60.00 1 1 1 138. 1 +C 100. 60.00 1 138. 1 1 +$PUNCH, dc59f.pch ! +C $VINTAGE, 1 +C -1JDA LMA 0.11978E+00 0.56250E+01 0.18952E+04 0.13800E+03 1 +C $VINTAGE, 0 +BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +C 7th of 9 data subcases within "LINE CONSTANTS" demonstrates that +C metric data for constant parameter distributed transposed line can be +C handled properly. Prior to October 1, 1993, punched branch cards for +C this case were correct but were in English units. +METRIC +BRANCH AM-28 AM-29 BM-28 BM-29 CM-28 CM-29 +C +C ********** 2-CHUKAR, TOWER TYPE M1 ************ +C + 1.3636 .0324 4 4.069 -6.936 15.245 + 1.3636 .0324 4 4.069 -6.479 15.245 + 2.3636 .0324 4 4.069 -.2287 23.63 + 2.3636 .0324 4 4.069 .2287 23.63 + 3.3636 .0324 4 4.069 6.479 15.245 + 3.3636 .0324 4 4.069 6.936 15.245 + 0.5 1.621 4 .980 -4.574 36.314 + 0.5 1.621 4 .980 +4.574 36.314 +BLANK + 100. 60. 11 11 1 32.195 1 44 +$PUNCH, dc59g.pch ! +BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +BLANK card ends this 7th of 7 "LINE CONSTANTS" data subcases +C $VINTAGE, 1 +C $UNITS, 60., 0.0, +C 1AM-28 AM-29 2.39624092E+00 2.23836748E+01 3.33648686E-01 +C 2BM-28 BM-29 1.81795847E+00 1.07078886E+01 -5.56044928E-02 +C 2.36074723E+00 2.24231290E+01 3.28969259E-01 +C 3CM-28 CM-29 1.83533629E+00 1.01489328E+01 -3.60285322E-02 +C 1.81795847E+00 1.07078886E+01 -5.56044928E-02 +C 2.39624092E+00 2.23836748E+01 3.33648686E-01 +C $VINTAGE, -1, +C $UNITS, -1., -1., { Restore values that existed b4 preceding $UNITS +C Note about preceding output. Both XOPT and COPT (the parameters of +C the $UNITS card are under user control. XOPT = 60 means reactance in +C ohms. This was produced by the "44" in columns 67-68 of the frequency +C card. This is variable IPUN. Precede this by a minus sign to produce +C alternative L in millihenries. Capacitance is similarly controlled by +C variable ICAP in column 44. Value "1" as used above results in +C microfarads whereas "0" would have produced the alternate micromhos. +C This came from Michelis of KEMA as documented on comment cards in SUBR25. +BEGIN NEW DATA CASE +C 8th of 14 subcases using "LINE CONSTANTS" is the same as the +C preceding except it punches distributed (K.C. Lee) branch cards rather +C than a Pi-circuit. See explanation in April, 1998, newsletter. This +C subcase is added 24 December 1997 as former 8th is shoved downward. +LINE CONSTANTS +METRIC +BRANCH AM-28 AM-29 BM-28 BM-29 CM-28 CM-29 + 1.3636 .0324 4 4.069 -6.936 15.245 + 1.3636 .0324 4 4.069 -6.479 15.245 + 2.3636 .0324 4 4.069 -.2287 23.63 + 2.3636 .0324 4 4.069 .2287 23.63 + 3.3636 .0324 4 4.069 6.479 15.245 + 3.3636 .0324 4 4.069 6.936 15.245 + 0.5 1.621 4 .980 -4.574 36.314 + 0.5 1.621 4 .980 +4.574 36.314 +BLANK card ending conductor cards + 100. 60. 11 11 1 32.195 1 1 +$PUNCH, dc59h.pch ! +BLANK card ending frequency cards of "LINE CONSTANTS" case +BLANK card ends stacked "LINE CONSTANTS" data subcases +BEGIN NEW DATA CASE +C 9-th subcase illustrates NODA SETUP with LINE rather than CABLE CONSTANTS +C (see DC-27). The frequency scan deliberately has been reduced to make +C the output small and execution quick. See January, 1995, newsletter. +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's ARMA model fitter. No printout of F-scan + { Output file name (blank requests use of default TAKUNODA.CCC) +2nd of 2 such lines (any number are allowed). +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +LINE CONSTANTS +C LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE. + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK card ending conductor cards of imbedded "LINE CONSTANTS" data +C 100. .01 138. 1 9 10 1 +100. 10. 138. 1 3 2 1 +100. 1.E6 138. 1 1 +BLANK card ending frequency cards of inbedded "LINE CONSTANTS" data +BLANK card ending "LINE CONSTANTS" cases +BNDC { Illustrate use of the abbreviated form of BEGIN NEW DATA CASE +C 10-th subcase illustrates parameter variation by means of PCVP. Here a +C supporting program (LINE CONSTANTS) is involved rather than simulation +C (see DCNEW-25) or frequency scan of some form (see DCNEW-26). The +C height of the transmission line will be raised during each of 3 passes. +C This is a batch-mode variation of the old interactive SPY @5 demonstration. +C For clarity, there is full printout (IOPCVP = 0). But for practical use, +C the production user probably would toggle this switch to IOPCVP = 1 which +C will have the effect of eliminating printout preceding LINE CONSTANTS for +C the 2nd and later pass of the PCVP loop. See January, 1999, newsletter. +C Controls of following request card: MAXKNT IOPCVP NOSTAT { Loop 3 times with +POCKET CALCULATOR VARIES PARAMETERS 3 0 0 { full printout +$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b +_HEIGHT1 = 22. + KNT * 10.0 { Conductor height h1 = 32, 42, 52 feet +_HEIGHT2 = 35. + KNT * 10.0 { Conductor height h2 = 45, 55, 65 feet +BLANK card ends $PARAMETER definitions that are processed just b4 branch card +$ERASE { Flush the punched card buffer (in case 2nd or later subcase of usage) +LINE CONSTANTS +BRANCH JDA LMA JDB LMB JDC LMC +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + 1 .375 .0776 4 1.302 -15.3_HEIGHT1 { <1st of 3> + 2 .375 .0776 4 1.302 0.0_HEIGHT2 + 3 .375 .0776 4 1.302 +15.3_HEIGHT1 +BLANK card ending conductor cards + 100. 60.00 1 2 1 +BLANK card ending frequency cards +$PUNCH, dc59j.pch ! +BLANK card ending LINE CONSTANTS data cases +BEGIN NEW DATA CASE +C 11-th subcase illustrates 2-dimensional parameter variation. The pocket +C calculator (PCVP) provides the outer loop whereas F-scan provides the inner +C loop. The same basic LINE CONSTANTS as preceding subcase is involved. +C Printout is minimized by IOPCVP = 1 (no printout outside of LINE CONSTANTS +C for the 2nd & later pass of the PCVP loop). See January, 1999, newsletter. +C Change 24 February 1999: Make the number of decades of the F-scan loop +C a variable to illustrate INTEGER encoding. The use is artificial, but +C useful. Before the introduction of data symbol DCD (the # of decades), +C constant value 1 was used. So, originally F=60, 129, 278, and 600. +C That was 1 decade and 3 points/decade. Following the change, note that +C DCD = 1. + 1.0001 / KNT has values 2.0001 and 1.5 for KNT = 1 & 2. +C Integer truncation then gives 2 and 1, respectively. So, the first +C pass steps through 2 decades: F=60, 129, 278, 600, 1292, 2784, and 6000. +C The second pass steps through just one decade. Acknowledgement: As noted +C in the newsletter, it was Prof. Juan Martinez in Barcelona, Spain, who +C first requested integer encoding of data symbols as illustrated here. He +C was not dealing with LINE CONSTANTS, but the need was comparable. +C Controls of following request card: MAXKNT IOPCVP NOSTAT { Loop 2 times with +POCKET CALCULATOR VARIES PARAMETERS 2 1 0 { minimum printout +$PARAMETER { This will be serviced by CIMAGE just as any other $-card would be +_HEIGHT1 = 22. + KNT * 10.0 { Conductor height h1 = 32, 42, 52 feet +_HEIGHT2 = 35. + KNT * 10.0 { Conductor height h2 = 45, 55, 65 feet +DCD = 1. + 1.0001 / KNT INTEGER { # of decades of F-scan is an integer +BLANK card ends $PARAMETER definitions that are processed just b4 branch cards +$ERASE { Flush the punched card buffer (in case 2nd or later subcase of usage) +LINE CONSTANTS +BRANCH JDA LMA JDB LMB JDC LMC +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + 1 .375 .0776 4 1.302 -15.3_HEIGHT1 { <1st of 3> + 2 .375 .0776 4 1.302 0.0_HEIGHT2 + 3 .375 .0776 4 1.302 +15.3_HEIGHT1 +BLANK card ending conductor cards +C Number of decades is I3 integer in columns 60 thru 62: XXX + 100. 60.00 0 0 0 138. 1 DCD 3 1 +BLANK card ending frequency cards +$PUNCH, dc59k.pch ! +C Preceding output is a function of the file name, peculiarly. Here in a later +C subcase, a distinct file name must be used to separate this output from that +C of preceding subcases. Unfortunately, this results in preservation of just +C the 2nd of 2 passes (KNT=2). If the data is copied to a separate disk file, +C and if the name (dc59l.pch) is erased, output of the 1st pass, KNT=1, also +C will be seen. That is the peculiarity of Salford EMTP operation. The .LIS +C file is unaffected, however. It should always be complete. And, of course, +C the listing of punched cards within this always will be complete. +BLANK card ending LINE CONSTANTS data cases +BEGIN NEW DATA CASE +C 12th of 14 subcases illustrates correction to METRIC for X at 1 meter +C spacing. Also, within the the same subcase, illustrate the new option +C of metric with X at 1 foot spacing. Data added 28 May 1999. +LINE CONSTANTS +METRIC { 1st of 2 uses is for real metric, meaning X at 1 meter separation +C X at 1 m ---- Number below is ohm/km at 1 meter separation + 1 0.0 0.0727 1 .337507 2.8143 0.00 0.500 0.50 1 +BLANK END of conductor data ... start of frequency data + 100.0 60.0 0 11 11 0 160.934 1 1 1 +BLANK END of frequency data +METRIC WITH X AT 1 FOOT SPACING { Bastardized metric uses X at 1 foot separation +C X @ 1 ft ---- Number below is ohm/km at 1 foot separation + 1 0.0 0.0727 1 .2479 2.8143 0.00 0.500 0.50 1 +BLANK END of conductor data ... start of frequency data + 100.0 60.0 0 11 11 0 160.934 1 1 1 +BLANK card ending frequency cards +BLANK card ending LINE CONSTANTS data cases +BEGIN NEW DATA CASE +C 13th of 14 subcases illustrates modal speed in excess of the speed of +C light. Data was sent by Orlando Hevia to Tsu-huei Liu, and then by the +C latter to W. Scott Meyer around 15 December 2007. The excess speed was +C traced to lack of skin effect --- modeling that makes no sense in this +C day and age. So, while the skin effect remains discretionary, a warning +C message will note any such lack : "*** Warning. Not all conductors +C involve the skin effect. This is dangerous if frequency is not low." +C A 2nd warning message will warn of impossible speed, should the speed of +C light be exceeded: "**** Warning. The following velocity of propagation +C for the positive sequence exceeds the speed of light. Does the user`s data +C possibly ignore the skin effect (dangerous if frequency is not low)?" +C Original data involved 4-conductor bundles, but the "4" on the right +C was erased from column 80 of the conductor cards to speed execution and +C simplify the illustration at the same time. 10 KHz is the frequency used, +C and it is indeed too high to ignore the skin effect. +LINE CONSTANTS +METRIC + 1 0.0 0.0565 0 0.238 3.34 -15. 22. 7. 45. 45. + 2 0.0 0.0565 0 0.238 3.34 0.0 22. 7. 45. 45. + 3 0.0 0.0565 0 0.238 3.34 15. 22. 7. 45. 45. +BLANK card ending conductor cards + 1.E3 10000. 000001 000000 0 0.0702 44 +C Sequence Surge impedance Attenuation velocity ... +C magnitude(ohm) angle(degr.) db/km km/sec ... +C Zero : 5.93085E+02 -5.10741E+00 1.93681E-01 2.51847E+05 ... +C Positive: 3.16873E+02 -7.68631E-02 1.91130E-03 3.83055E+05 ... +C This 383055 km/sec > 3 * 10**8 meters/sec = speed of light +BLANK card ending frequency cards +BLANK card ending LINE CONSTANTS data cases +BEGIN NEW DATA CASE +C 14th of 14 subcases illustrates punched cards for 10 or more phases. +C This case of 12 phases comes from Prof. Michael Igel in Germany. It +C originally was named IGELT.DAT with the T indicating transposed. +C As received early during January of 2008, punched cards were wrong. +C For phases 10 and later, -9 of the 9th phase was repeated rather +C than being replaced by 10, 11, etc. (through 99 maximum). Of +C course, Dr. Tsu-huei Liu rapidly corrected such output, as this +C data subcase demonstrates. For the record, Prof. Igel is with: +C Power Engineering Saar +C Institute of Electrical Power Engineering +C HTW - Hochschule für Technik und Wirtschaft +C University of Applied Science, Saarbrücken, Germany +C www.powerengs.de +C Data was created using Prof. Igel's ATP Designer? It began: +C ATPDesigner - Design and Simulation of Power Networks +C Version 1.12.21 - 04.01.2008 +C Numeous comment cards (boiler plate of ATP Designer?) have been removed for +C brevity, and the "4" in column 80 of each conductor card has been erased. +C This has the effect of reducing each phase from a 4-conductor bundle to 1. +C Most output has been suppressed by changing 1-flags to 0-flags on the +C frequency card (the original has been preserved as a comment, note). About +C geometry, Prof. Igel warns: "you should consider that the geometric data +C of the lines 7, ... 12 are not taken from a existing tower. These data are +C only grown in my head." This subcase was added by WSM 13 January 2008. +LINE CONSTANTS +METRIC +$ERASE +BRANCH A00025A00024B00025B00024C00025C00024A00002A00013B00002B00013C00002C00013 +BRANCH A00026A00027B00026B00027C00026C00027A00028A00029B00028B00029C00028C00029 +C I Resis___ React___ Horiz___ Vmid____ Alpha_ NB +C Skin_ IX Diam____ Vtower__ Separ___ Name__ + 15.E-18.509E-2 4 5.0000001.9000E13.4299E1 4.0000E14.50E1 + 25.E-18.509E-2 4 5.0000001.6500E12.3800E1 4.0000E14.50E1 + 35.E-18.509E-2 4 5.0000001.0000E12.3800E1 4.0000E14.50E1 + 45.E-18.509E-2 4 5.000000-1.000E12.3800E1 4.0000E14.50E1 + 55.E-18.509E-2 4 5.000000-1.650E12.3800E1 4.0000E14.50E1 + 65.E-18.509E-2 4 5.000000-1.900E13.4299E1 4.0000E14.50E1 + 75.E-18.509E-2 4 5.0000001.9000E15.000000 4.0000E14.50E1 + 85.E-18.509E-2 4 5.0000001.6500E15.000000 4.0000E14.50E1 + 95.E-18.509E-2 4 5.0000001.0000E15.000000 4.0000E14.50E1 + 105.E-18.509E-2 4 5.000000-1.000E15.000000 4.0000E14.50E1 + 115.E-18.509E-2 4 5.000000-1.650E15.000000 4.0000E14.50E1 + 125.E-18.509E-2 4 5.000000-1.900E15.000000 4.0000E14.50E1 +BLANK card ending conductor cards +C Rho___ Fcar______# #IZPR__# Dist____# S DEC PUN IT +C Freq______ ICPR__ I IPIP M PNT MO +C Original frequency card: 1 000001 011000 02.0000E1 11110 00 +1.0000E25.000000E1 1 000000 000000 02.0000E1 00000 00 +BLANK card ending frequency cards +$PUNCH +BLANK card ending LINE CONSTANTS data cases +BEGIN NEW DATA CASE +BLANK +EOF + + + + +BEGIN NEW DATA CASE +C old. This was what existed for 11th subcase prior to 25 Feb 99. +C 11-th subcase illustrates 2-dimensional parameter variation. The pocket +C calculator (PCVP) provides the outer loop whereas F-scan provides the inner +C loop. The same basic LINE CONSTANTS as preceding subcase is involved. +C Printout is minimized by IOPCVP = 1 (no printout outside of LINE CONSTANTS +C for the 2nd and later pass of the PCVP loop). See January, 1999, newsletter. +C Controls of following request card: MAXKNT IOPCVP NOSTAT { Loop 2 times with +POCKET CALCULATOR VARIES PARAMETERS 2 1 0 { reduced printout +$PARAMETER { This will be serviced by CIMAGE just as any other $-card would b +_HEIGHT1 = 22. + KNT * 10.0 { Conductor height h1 = 32, 42, 52 feet +_HEIGHT2 = 35. + KNT * 10.0 { Conductor height h2 = 45, 55, 65 feet +BLANK card ends $PARAMETER definitions that are processed just b4 branch card +$ERASE { Flush the punched card buffer (in case 2nd or later subcase of usage) +LINE CONSTANTS +BRANCH JDA LMA JDB LMB JDC LMC +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 + 1 .375 .0776 4 1.302 -15.3_HEIGHT1 { <1st of 3> + 2 .375 .0776 4 1.302 0.0_HEIGHT2 + 3 .375 .0776 4 1.302 +15.3_HEIGHT1 +BLANK card ending conductor cards + 100. 60.00 0 0 0 138. 1 1 3 1 +BLANK card ending frequency cards +$PUNCH, dc59k.pch ! +BLANK card ending LINE CONSTANTS data cases + + + + +C 7th of 7 data subcases within "LINE CONSTANTS" serves only to test +C special features of the program. First, this second subcase is itself +C unusual (more commonly, each will be solved as a separate data case). +C Second, for illustration of the Rule Book, we include three remaining +C special-request cards that were not illustrated by the first subcase. +METRIC { This switch to metric units will illustrate cm/meter/kilometer units +FREQUENCY { Request for + 1 .375 .0776 4 .0 1.302 -21.17 51.04 + 2 .375 .0776 4 .0 1.302 .83 79.14 + 3 .375 .0776 4 .0 1.302 22.83 51.04 +BLANK card concludes conductor cards +C 345678901234567890123456789012345678901234567890123456789012345678901234567890 +100.0 .600 70. 2 3 1 +BLANK card ends the one and only frequency card +BLANK card ends this 6th of 6 "LINE CONSTANTS" data subcases +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc59g.dat b/benchmarks/dc59g.dat new file mode 100644 index 0000000..0901ba8 --- /dev/null +++ b/benchmarks/dc59g.dat @@ -0,0 +1,25 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-59 (DC-69 of "M39." vintage) +C 7th of 7 data subcases within "LINE CONSTANTS" demonstrates that +C metric data for constant parameter distributed transposed line can be +C handled properly. Prior to October1, 1993, punched branch cards for +C this case were correct but were in English units. +LINE CONSTANTS +METRIC +BRANCH AM-28 AM-29 BM-28 BM-29 CM-28 CM-29 + 1.3636 .0324 4 4.069 -6.936 15.245 + 1.3636 .0324 4 4.069 -6.479 15.245 + 2.3636 .0324 4 4.069 -.2287 23.63 + 2.3636 .0324 4 4.069 .2287 23.63 + 3.3636 .0324 4 4.069 6.479 15.245 + 3.3636 .0324 4 4.069 6.936 15.245 + 0.5 1.621 4 .980 -4.574 36.314 + 0.5 1.621 4 .980 +4.574 36.314 +BLANK +C 100. 60. 11 11 1 32.195 1 44 + 100. 60. 11 11 1 32.195 1 1 +$PUNCH +BLANK CARD ENDING FREQUENCY CARDS OF "LINE CONSTANTS" CASE +BLANK card ends this 7th of 7 "LINE CONSTANTS" data subcases +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc6.dat b/benchmarks/dc6.dat new file mode 100644 index 0000000..aa364dd --- /dev/null +++ b/benchmarks/dc6.dat @@ -0,0 +1,96 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-6 +C Test degenerate SUBROUTINE ANALYT of UTPF: "ANALYTIC SOURCES USAGE" +C Also, two disconnected subnetworks have been added to illustrate the +C use of trapped charge. Node "TRAP" has nothing but a capacitor to +C ground and excitation by a trapped-charge source. This node does hold +C its charge. The 2nd subnetwork once was required (but no longer is) +C because of the need to have at least one regular phasor source (with +C TCLOSE < 0.0), so this regular phasor source "EXTRA" excites an R-C +C circuit. First there is the continuation of the phasor solution, then +C relaxation as the source is shorted (TSTOP=.45 sec), finally transient +C charging when the Type-12 ramp begins (TSTART = 1.55 sec). If the +C user wants to demonstrate that no regular phasor source is required, +C after 8 May 1987, erase TSTART (columns 61-70) of source "EXTRA". +C PRINTED NUMBER WIDTH, 14, 2, --- Replace by following 2 lines on 23 Aug 95 +$DEPOSIT, KOLWID=14 { Use SPY DEPOSIT to change column width from STARTUP value +$DEPOSIT, KOLSEP=2 { Use SPY DEPOSIT to change col separation from STARTUP value +$BLANK COMMENT { Set switch so any truly blank line will be ignored +ANALYTIC SOURCES USAGE + 0.1 2.0 + 1 1 1 1 1 + NODE1 NODE2 1.0 1 + NODE3 NODE4 NODE1 NODE2 + NODE2 1.0E6 + NODE4 NODE2 +C 1 November 2001, add the following extraneous $UNITS request. It has no +C effect since there is no preceding $UNITS to undo. There will be a new +C warning message about the irrelevance of the declaration, however: +$UNITS, -1, -1 { Restore whatever XOPT and COPT existed before preceding $UNITS + TRAP 0.0 0.0 3.0E6 { Capacitor to hold trapped charge + CAP 2.8E6 { Capacitor of R-C subnetwork + EXTRA CAP 0.4 { Resistor of R-C connects source and capacitor +BLANK card ending branch cards +BLANK card ending non-existent switch cards +13NODE3 100. .25 50. .75 .75 + 2NODE1 { Type-1 source. In fact, any number 1-9 can be used, as this proves +14TRAP -1 1.0 1.E-4 { Trapped charge source } 5432. +C =========================================================================== +C Following "-1.0" of columns 61-70 is no longer required after 8 May 1987: +C =========================================================================== +C --TSTART-- +14EXTRA 1.2 0.5 { Need 1 regular phasor } -1.0 .45 +12EXTRA 1.0 1.0 1.55 +BLANK card ending all electric source cards +C Total network loss P-loss by summing injections = 1.665475193014E+00 +C TRAP 1.0 1.0 0.0 .00188495559215 0.0 .94247779608E-3 +C 0.0 0.0 .00188495559215 90.000 -.9424777961E-3 0.0 +C +C EXTRA 1.2 1.2 2.7757919883568 2.8857193150184 1.6654751930141 +C 0.0 0.0 .78889467132476 15.8654284 -.4733368027949 + 2NODE2 -50. + 2NODE4 -50. + 3NODE2 -50. + 3NODE4 -50. +C Step Time TRAP CAP NODE4 NODE2 +C +C 0 0.0 1.0 .08968320466 -50. -50. +C More Type-1 sources, numbers 1 onward. | 40. { Type-1 source c +C 1 0.1 1.0 .18207215381 -45.71428571 -45.71428571 +C More Type-1 sources, numbers 1 onward. | 80. { Type-1 source c +C 2 0.2 1.0 .2567706113 -35.6462585 -35.6462585 +C End last input card for Type-1 sources. | 9999 +C 3 0.3 1.0 .30645528965 -23.91804341 -23.91804341 + 1 { Request the output of all network node voltages + 40. { Type-1 source card for 1st time step (formerly cols. 9-16 for "2") + 80. { Type-1 source card for 2nd time step (formerly cols. 9-16 for "2") + 9999 { Terminate such Type 1-10 source input +C Last step: 20 2.0 1.0 .1622276802 3.0486553363 3.0486553363 +C Last step cont ... : 0.0 0.0 .45 -3.048655336 +C maxima: 1.0 .32625238865 10.132034354 10.132034354 95. 95. 1.2 118.918043 +C Times of max. : 0.1 0.4 0.8 0.8 0.3 0.3 0.0 0.0 +C Variable min. : 1.0 .08968320466 -50. -50. 0.0 0.0 0.0 -10.132034 +C Times of min. : 0.6 0.0 0.0 0.0 0.0 0.0 0.5 0 +C Addition of 31 March 2011 follows. $DEPOSIT is illustrated in many test +C cases, but only for numeric parameters. Upon the discovery that there was +C no illustration for A6 character variables, the following was added. Note +C that CHVBAR is the "CHaracter Vertical BAR" of STARTUP which normally +C will be the vertical bar of a standard keyboard. Change it to "1" for the +C initial print plot only. I.e., restore the "|" after the 1st plot. WSM. +$DEPOSIT, CHVBAR=1 { Use SPY DEPOSIT to change separator character from | to 1 + PRINTER PLOT +C The following plot card illustrates automatic plotting from zero through +C the end time TMAX of the study. Columns 5-7 give the t-axis length in +C inches, and columns 12-15 being negative is the flag to plot all time. +C With a 5-inch axis and a time span of 0 through 2, result is 0.4 sec/in. +C For vector-graphic use and units of [msec], see first subcase of DC-37. + 193 5. -1. NODE1 NODE2 { Axis limits: (-0.101, 1.189) +$DEPOSIT, CHVBAR=| { Use SPY DEPOSIT to restore separator character of STARTUP + 143 .4 0.0 2.0 CAP { Axis limits: (0.000, 3.263) +C The following truly blank line is added 20 February 1999 to illustrate use +C of $BLANK COMMENT near the top. The next line is extraneous: + +BLANK card terminating plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc60.dat b/benchmarks/dc60.dat new file mode 100644 index 0000000..073580e --- /dev/null +++ b/benchmarks/dc60.dat @@ -0,0 +1,207 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-60 (DC-63 of "M39." vintage) +C Generate Semlyen frequency-dependent branch cards for DC-61 simulation. +C This is for an overhead transmission line of 4 phases from South Africa. +C There are 2 ground wires that are not eliminated, followed by two phase +C wire bundles of 4 individual conductors each (automatic bundling option) +C Solution changes beginning 15 Oct 1988 due to Mustafa Kizilcay changes +C Solution changed on 23 Oct 1990 due to Mustafa Kizilcay's modifications +C (preceding commented data has been copied to bottom for preservation). +SEMLYEN SETUP +$ERASE +BRANCH BUSA-1BUSB-1BUSA-2BUSB-2BUSA-3BUSB-3BUSA-4BUSB-4 +C 345678901234567890123456 +C 50 100 2 31 0 1 ???? WSMWSM. SPY PLOT dies in TDFIT. See TODO + 50 100 2 1 0 1 { 27 Sept 1987 abandon SPY PLOT try +C 150 150 2 1 0 1 { Modify preceding for Oct, 1990 (Mustafa) +LINE CONSTANTS +METRIC + 1 .2 .273 4 1.7653 0. 39. 20. + 2 .2 .273 4 1.7653 30. 39. 20. + 3 .392 .0585 4 3.1750 2.3 27.5 8.5 50.8 45. 4 + 4 .392 .0585 4 3.1750 32.3 27.5 8.5 50.8 45. 4 +BLANK card ending all conductor cards of embedded "LINE CONSTANTS" data case + 100. 5000. { Transient frequency } 375. + 100. 50. { Power frequency } 375. + 100. 5. { Logarithmic looping } 375. 6 13 +BLANK card ending frequency cards of embedded "LINE CONSTANTS" data case +BLANK card ending "LINE CONSTANTS" data cases +$PUNCH, dc60a.pch ! { Create file of branch cards that is used by DC-61 +C -1BUSA-1BUSB-1 4.66135E-03 1.51343E-03 1 1 2 2 4 +C 1.24062832E+01 1.36478386E+02 2.69566232E-04 2.96542998E-03 5.00000000E+01 +C 0.00000E+00 2.78943E+03 8.96815E-01 0.00000E+00 2.82127E+02 1.03185E-01 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C -1BUSA-2BUSB-2 7.53874E-03 1.28352E-03 2 2 2 2 4 +C 5.24979345E-01 5.57653032E+01 2.98359630E-05 3.16928949E-03 5.00000000E+01 +C 0.00000E+00 4.32886E+04 9.70952E-01 0.00000E+00 7.80994E+02 2.90477E-02 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C -1BUSA-3BUSB-3 3.02741E-03 1.25731E-03 3 3 2 2 4 +C 1.32033703E-01 1.34020415E+02 1.21011536E-06 1.22832398E-03 5.00000000E+01 +C 0.00000E+00 1.55166E+05 8.17954E-01 0.00000E+00 6.28350E+03 1.82046E-01 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C -1BUSA-4BUSB-4 2.78022E-03 1.25695E-03 4 4 2 2 4 +C 1.32366981E-01 1.45869410E+02 1.02314498E-06 1.12751348E-03 5.00000000E+01 +C 0.00000E+00 1.68593E+05 8.00343E-01 0.00000E+00 6.82607E+03 1.99657E-01 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C 8.71196E-01 0.00000E+00-6.82907E-01 0.00000E+00 1.00000E+00 0.00000E+00 +C -4.17499E-01 0.00000E+00 +C 8.83886E-01 0.00000E+00 5.54912E-01 0.00000E+00 4.08289E-01 0.00000E+00 +C 1.00000E+00 0.00000E+00 +C 1.00000E+00 0.00000E+00-9.54437E-01 0.00000E+00-3.66121E-01 0.00000E+00 +C 8.12296E-02 0.00000E+00 +C 9.95383E-01 0.00000E+00 1.00000E+00 0.00000E+00-1.44179E-01 0.00000E+00 +C -2.87785E-01 0.00000E+00 +C 1.37541E-01 0.00000E+00-1.35060E-01 0.00000E+00 6.63012E-01 0.00000E+00 +C -3.22845E-01 0.00000E+00 +C 1.37175E-01 0.00000E+00 1.05171E-01 0.00000E+00 2.58426E-01 0.00000E+00 +C 7.23501E-01 0.00000E+00 +C 3.80344E-01 0.00000E+00-4.21913E-01 0.00000E+00-5.68095E-01 0.00000E+00 +C 1.36871E-01 0.00000E+00 +C 3.80607E-01 0.00000E+00 4.48514E-01 0.00000E+00-2.39474E-01 0.00000E+00 +C -4.94318E-01 0.00000E+00 +C The preceding [Tv] and [Ti] became dated 27 November 2000 when wide +C format 3E26.18 replaced the preceding narrow 6E12.5 as follows: +C NO IMAGINARY PART { Read big paragraph about this in April, 2001, newsletter +C 8.7119547363418204E-01 -6.8290399916049649E-01 1.0000000000000000E+00 +C -4.1751471137169216E-01 +C 8.8388614757606232E-01 5.5490882086169024E-01 4.0830470329277252E-01 +C 1.0000000000000000E+00 +C 1.0000000000000000E+00 -9.5443745577162542E-01 -3.6612132519723661E-01 +C 8.1233987662551091E-02 +C 9.9538310340828784E-01 1.0000000000000000E+00 -1.4418465250059978E-01 +C -2.8778382559374205E-01 +C 1.3754116813200981E-01 -1.3505887318129409E-01 6.6300444003574899E-01 +C -3.2285375114835768E-01 +C 1.3717544529936490E-01 1.0517024919034780E-01 2.5843487930520492E-01 +C 7.2349433296321430E-01 +C 3.8034372781882003E-01 -4.2191352219870149E-01 -5.6808980138853893E-01 +C 1.3687783149931779E-01 +C 3.8060712761124860E-01 4.4851503525080577E-01 -2.3948114907845639E-01 +C -4.9431125919891056E-01 +BLANK card ending "SEMLYEN SETUP" data cases +BEGIN NEW DATA CASE +C 2nd of 3 SEMLYEN SETUP data cases illustrates use for cables. First, +C use the old, original CABLE CONSTANTS. The cable is 3-phase, so a total +C of 6 conductors. Added 27 January 2001 +SEMLYEN SETUP +$ERASE +BRANCH SEND1 REC1 SEND2 REC2 SEND3 REC3 SEND4 REC4 SEND5 REC5 SEND6 REC6 +TOLERANCES 10 5000. { Illustration only; value of FMED actually unchanged + 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous data +CABLE CONSTANTS + 2 -1 3 0 0 0 0 0 0 0 0 0 + 2 2 2 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 2.500 0.0 2.730 0.0 2.960 0.0 + 100. 50.E02 90.1 + 100. 60.000 90.1 + 100. 10. 6 10 90.1 +BLANK card ending frequency cards of "CABLE CONSTANTS" data +BLANK card ending CABLE CONSTANTS data cases +C $PUNCH { Display the Semlyen branch cards that have been created +C The preceding was bad because cards of this 2nd subcase ended up +C in the disk file of the 1st, which then caused trouble (KILL +C termination) during use of DC-61. Solve this problem by naming +C the output of this 2nd subcase, even though it is not used by +C subsequent data case +$PUNCH, dc60b.pch ! { Create file of branch cards separate from 1st subcase +BLANK card ending SEMLYEN SETUP data cases +BEGIN NEW DATA CASE +C 3rd of 3 SEMLYEN SETUP data cases illustrates use for cables. This is +C identical to the preceding subcase except CABLE CONSTANTS has been +C replaced by newer CABLE PARAMETERS. Added 27 January 2001 +SEMLYEN SETUP +$ERASE +BRANCH SEND1 REC1 SEND2 REC2 SEND3 REC3 SEND4 REC4 SEND5 REC5 SEND6 REC6 +TOLERANCES 10 5000. { Illustration only; value of FMED actually unchanged + 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous data +CABLE PARAMETERS { This 1 line is the only difference from preceding data case + 2 -1 3 0 0 0 0 0 0 0 0 0 + 2 2 2 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 0.0 23.30E-3 49.80E-3 51.00E-3 56.00E-3 + 1.724E-8 1.0 1.4 2.7 1.724E-8 1.0 1.0 2.5 + 2.500 0.0 2.730 0.0 2.960 0.0 + 100. 50.E02 90.1 + 100. 60.000 90.1 + 100. 10. 6 10 90.1 +BLANK card ending frequency cards of CABLE PARAMETERS data +BLANK card ending "CABLE PARAMETERS" data cases +$PUNCH { Display the Semlyen branch cards that have been created +BLANK card ending SEMLYEN SETUP data cases +BEGIN NEW DATA CASE +BLANK +EOF + + +BEGIN NEW DATA CASE +C BENCHMARK DC-60 (DC-63 of "M39." vintage) +C Generate Semlyen frequency-dependent branch cards for DC-61 simulation. +C This is for an overhead transmission line of 4 phases from South Africa. +C There are 2 ground wires that are not eliminated, followed by two phase +C wire bundles of 4 individual conductors each (automatic bundling option) +C Solution changes beginning 15 Oct 1988 due to Mustafa Kizilcay changes +C This is file prior to 23 Oct 1990 when Mustafa changed answers again. +SEMLYEN SETUP +$ERASE +BRANCH BUSA-1BUSB-1BUSA-2BUSB-2BUSA-3BUSB-3BUSA-4BUSB-4 +C 345678901234567890123456 +C 50 100 2 31 0 1 ???? WSMWSM. SPY PLOT dies in TDFIT. See TODO + 50 100 2 1 0 1 { 27 Sept 1987 abandon SPY PLOT try +C 150 150 2 1 0 1 { Modify preceding for Oct, 1990 (Mustafa) +LINE CONSTANTS +METRIC + 1 .2 .273 4 1.7653 0. 39. 20. + 2 .2 .273 4 1.7653 30. 39. 20. + 3 .392 .0585 4 3.1750 2.3 27.5 8.5 50.8 45. 4 + 4 .392 .0585 4 3.1750 32.3 27.5 8.5 50.8 45. 4 +BLANK card ending all conductor cards of embedded "LINE CONSTANTS" data case + 100. 5000. { Transient frequency } 375. + 100. 50. { Power frequency } 375. + 100. 5. { Logarithmic looping } 375. 6 13 +BLANK card ending frequency cards of embedded "LINE CONSTANTS" data case +BLANK card ending "LINE CONSTANTS" data cases +$PUNCH +C -1BUSA-1BUSB-1 4.66135E-03 1.51343E-03 1 1 2 2 4 +C 2.48913100E+01 1.34761598E+02 0.00000000E+00 2.97765695E-03 5.00000000E+01 +C 0.00000E+00 2.78943E+03 8.96815E-01 0.00000E+00 2.82127E+02 1.03185E-01 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C -1BUSA-2BUSB-2 7.53874E-03 1.28352E-03 2 2 2 2 4 +C 5.22828256E+00 5.55221551E+01 0.00000000E+00 3.16942993E-03 5.00000000E+01 +C 0.00000E+00 4.32886E+04 9.70952E-01 0.00000E+00 7.80994E+02 2.90477E-02 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C -1BUSA-3BUSB-3 3.02741E-03 1.25731E-03 3 3 2 2 4 +C 5.31735791E+01 1.23020566E+02 0.00000000E+00 1.22832457E-03 5.00000000E+01 +C 0.00000E+00 1.55166E+05 8.17954E-01 0.00000E+00 6.28350E+03 1.82046E-01 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C -1BUSA-4BUSB-4 2.78022E-03 1.25695E-03 4 4 2 2 4 +C 6.42684771E+01 1.30948331E+02 0.00000000E+00 1.12751395E-03 5.00000000E+01 +C 0.00000E+00 1.68593E+05 8.00343E-01 0.00000E+00 6.82607E+03 1.99657E-01 +C 0.00000E+00 1.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 +C 8.71196E-01 0.00000E+00-6.82907E-01 0.00000E+00 1.00000E+00 0.00000E+00 +C -4.17499E-01 0.00000E+00 +C 8.83886E-01 0.00000E+00 5.54912E-01 0.00000E+00 4.08289E-01 0.00000E+00 +C 1.00000E+00 0.00000E+00 +C 1.00000E+00 0.00000E+00-9.54437E-01 0.00000E+00-3.66121E-01 0.00000E+00 +C 8.12296E-02 0.00000E+00 +C 9.95383E-01 0.00000E+00 1.00000E+00 0.00000E+00-1.44179E-01 0.00000E+00 +C -2.87785E-01 0.00000E+00 +C 1.37541E-01 0.00000E+00-1.35060E-01 0.00000E+00 6.63012E-01 0.00000E+00 +C -3.22845E-01 0.00000E+00 +C 1.37175E-01 0.00000E+00 1.05171E-01 0.00000E+00 2.58426E-01 0.00000E+00 +C 7.23501E-01 0.00000E+00 +C 3.80344E-01 0.00000E+00-4.21913E-01 0.00000E+00-5.68095E-01 0.00000E+00 +C 1.36871E-01 0.00000E+00 +C 3.80607E-01 0.00000E+00 4.48514E-01 0.00000E+00-2.39474E-01 0.00000E+00 +C -4.94318E-01 0.00000E+00 +BLANK card ending "SEMLYEN SETUP" data cases +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc61.dat b/benchmarks/dc61.dat new file mode 100644 index 0000000..981de3e --- /dev/null +++ b/benchmarks/dc61.dat @@ -0,0 +1,203 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-61 (DC-64 of "M39." vintage) +C South African simulation uses Semlyen line representation punched by DC-60 +C Compare this 2-exponential simulation with high-order Hauer one of DC-62. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) +POWER FREQUENCY, 50., +C PEAK VOLTAGE MONITOR { Original request is replaced by following 10 lines: +C Columns 41-48 is taken to be a limit on node voltage. If this is exceeded, +C ATP will halt. Note that keying "1" for MAXVLT in columns 33-40 is the same +C as leaving the field blank. The default is "1", meaning a request for peak +C node voltage. The alternate value "2" would be a request for peak branch +C voltage. For HALTNV use, peak node voltage is required. As for the value +C 1.E+300, this is close to the 32-bit Intel limit for floating-point math. +C The limit is about 1.E+308. For more, see the 4th subcase of DC-37. WSM. +C 3456789012345678901234567890123456789012345678 +C Ruler for following card: MAXVLT HALTNV { Format is: ( 32X, I8, E8.0 ) +PEAK VOLTAGE MONITOR 1 1.E300 { HALTNV use begins 9 Jan 2011 + .000010 .020 50. 50. + 1 5 1 1 1 -1 + 5 5 20 20 100 100 1000 1000 + SA-3 BUSA-3 .1260.75 + SA-4 BUSA-4 .1260.75 + BUSA-1 2. .03 + BUSA-2 2. .03 + BUSA-3 FIL1 .1 47.12 + FIL1 .1 90.76 + FIL1 3. 74.24 + FIL1 6.166.94 94.25 + FIL1 12.314.16 11.06 + FIL1 12.314.16 5.87 + FIL2 .01 1021. + FIL2 .1 14.14 + BUSA-4 FIL3 .1 47.12 + FIL3 FIL4 .1 90.76 + FIL3 FIL4 3. 74.24 + FIL3 FIL4 6.166.94 94.25 + FIL3 FIL4 12.314.16 11.06 + FIL3 FIL4 12.314.16 5.87 + FIL4 .01 1021. + FIL4 .01 14.14 +C &&&&&&&&&&&&&&&&& BEGIN LUNIT7 CARDS PUNCHED BY DC-63 (AUG. 1983) &&&& +C L= 233.0MILES, RHO= 100.0, SS FREQ= 50.00, NSS=0, KFIT= 2, KPS=0, KYC= 1 +C METRIC +C 1 .2 .273 4 1.7653 0. 39. 20. +C 2 .2 .273 4 1.7653 30. 39. 20. +C 3 .392 .0585 4 3.1750 2.3 27.5 8.5 50.8 45. +C 4 .392 .0585 4 3.1750 32.3 27.5 8.5 50.8 45. +C +C 100. 5000. 1 375. +C 100. 50. 1 375. +C 100. 5. 1 375. 6 13 +C +C -1BUSA-1BUSB-1 0.46613E-02 0.15134E-02 1 1 2 2 4 +C 0.12406072E+02 0.13647619E+03 0.26956084E-03 0.29653736E-02 0.50000000E+02 +C 0.00000E+00 0.27895E+04 0.89682E+00 0.00000E+00 0.28213E+03 0.10318E+00 +C 0.00000E+00 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 +C -1BUSA-2BUSB-2 0.75387E-02 0.12835E-02 2 2 2 2 4 +C 0.52771188E+00 0.55766835E+02 0.29991264E-04 0.31693770E-02 0.50000000E+02 +C 0.00000E+00 0.43289E+05 0.97097E+00 0.00000E+00 0.77845E+03 0.29034E-01 +C 0.00000E+00 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 +C -1BUSA-3BUSB-3 0.30274E-02 0.12573E-02 3 3 2 2 4 +C 0.13205030E+00 0.13401800E+03 0.12102672E-05 0.12283015E-02 0.50000000E+02 +C 0.00000E+00 0.15517E+06 0.81796E+00 0.00000E+00 0.62830E+04 0.18204E+00 +C 0.00000E+00 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 +C -1BUSA-4BUSB-4 0.27802E-02 0.12569E-02 4 4 2 2 4 +C 0.13237081E+00 0.14586679E+03 0.10231724E-05 0.11274909E-02 0.50000000E+02 +C 0.00000E+00 0.16860E+06 0.80035E+00 0.00000E+00 0.68259E+04 0.19965E+00 +C 0.00000E+00 0.10000E+01 0.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 +C 0.87120E+00 0.00000E+00-0.68291E+00 0.00000E+00 0.10000E+01 0.00000E+00 +C -0.41750E+00 0.00000E+00 +C 0.88389E+00 0.00000E+00 0.55491E+00 0.00000E+00 0.40829E+00 0.00000E+00 +C 0.10000E+01 0.00000E+00 +C 0.10000E+01 0.00000E+00-0.95444E+00 0.00000E+00-0.36612E+00 0.00000E+00 +C 0.81230E-01 0.00000E+00 +C 0.99538E+00 0.00000E+00 0.10000E+01 0.00000E+00-0.14418E+00 0.00000E+00 +C -0.28779E+00 0.00000E+00 +C 0.13754E+00 0.00000E+00-0.13506E+00 0.00000E+00 0.66301E+00 0.00000E+00 +C -0.32285E+00 0.00000E+00 +C 0.13718E+00 0.00000E+00 0.10517E+00 0.00000E+00 0.25843E+00 0.00000E+00 +C 0.72350E+00 0.00000E+00 +C 0.38034E+00 0.00000E+00-0.42191E+00 0.00000E+00-0.56809E+00 0.00000E+00 +C 0.13687E+00 0.00000E+00 +C 0.38061E+00 0.00000E+00 0.44851E+00 0.00000E+00-0.23947E+00 0.00000E+00 +C -0.49432E+00 0.00000E+00 +C &&&&&&&&&&&&&&&&& END LUNIT7 CARDS PUNCHED BY DC-63 &&&&&&&& +C Preceding branch cards exist as non-comment data until 27 November 2000 +C when they are being replaced by more modern $INCLUDE use that makes +C reference to cards punched by preceding DC-60: +$INCLUDE, dc60a.pch, ! { Exclamation point to hold lower case is tolerated +C In fact, it does nothing beginning 28 January 2001 +C At the same time, output of SEMLYEN SETUP is changing so [Tv] and [Ti] +C use wide rather than preceding narrow format. But that newer data is +C documented by output of DC-60, so need not be documented here. + TOWER 2. + BUSB-1 2. .03 + BUSB-2 2. .03 +BLANK card ends all branch cards + BUSB-3TOWER .000995 1. 3 +BLANK cards ends all switch cards (here, just one, representing the fault) +14SA-3 533000. 50. 0.0 -1. +14SA-4 533000. 50. 180. -1. +BLANK card ends source cards +C Total network loss P-loss by summing injections = 1.227475331932E+07 +C 1st inject: SA-3 533000. 533000. 22.124947951506 1512.2473010922 +C 1st inject: 0.0 0.0 1512.0854428037 89.1617037 +C Last inject: SA-4 -533000. 533000. -23.93416394087 1518.1059386521 +C Last inject: .6527332453E-10 180.00000 -1517.917256232 -90.9033516 +C +C Step Time BUSB-3 FIL2 TOWER FIL4 FIL3 +C TOWER +C +C BUSB-1 BUSA-2 BUSA-1 BUSA-4 BUSA-3 +C +C 0 0.0 .101427E7 0.0 0.0 630.561229 3942.45992 +C -4.6091835 1.25763103 -3.3035273 -928794.53 927274.067 +C 1 .1E-4 .1014316E7 0.0 0.0 630.452909 3941.48093 +C -5.7370041 5.05435474 -4.8499099 -928814.11 927285.865 + 1 +C Last step begins: 2000 .02 0.0 0.0 -4129.0322 3721.27842 -19338.153 +C Last step begins: 1060.61608 -481.80296 -509.22959 -915751.91 163602.568 +C Variable maxima : .1014355E7 0.0 5946.09635 40005.6129 123962.984 +C Variable maxima : 9268.51692 4258.29012 14305.2037 .1049562E7 927287.754 +C Times of maxima : .4E-4 0.0 .00723 .00952 .00505 +C Times of maxima : .00102 .00227 .00227 .01071 .2E-4 + PRINTER PLOT + 2One section of 375 km. + 144 .6 0.0 7.0 BUSA-2 { Plot limits: (-0.647, 2.660) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 2nd of two subcases is the same as the preceding subcase except for one +C change: the addition of "Derive [Ti] from [Tv]" immediately following +C the Semlyen branch cards. The answers change a little. Even the limits +C on the PRINTER PLOT are different. Date of addition: 11 December 2000. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) +POWER FREQUENCY, 50., +PEAK VOLTAGE MONITOR + .000010 .020 50. 50. + 1 5 1 1 1 -1 + 5 5 20 20 100 100 1000 1000 + SA-3 BUSA-3 .1260.75 + SA-4 BUSA-4 .1260.75 + BUSA-1 2. .03 + BUSA-2 2. .03 + BUSA-3 FIL1 .1 47.12 + FIL1 .1 90.76 + FIL1 3. 74.24 + FIL1 6.166.94 94.25 + FIL1 12.314.16 11.06 + FIL1 12.314.16 5.87 + FIL2 .01 1021. + FIL2 .1 14.14 + BUSA-4 FIL3 .1 47.12 + FIL3 FIL4 .1 90.76 + FIL3 FIL4 3. 74.24 + FIL3 FIL4 6.166.94 94.25 + FIL3 FIL4 12.314.16 11.06 + FIL3 FIL4 12.314.16 5.87 + FIL4 .01 1021. + FIL4 .01 14.14 +$INCLUDE, dc60a.pch, { This is normal use, without any "!" (see subcase 2) +Derive [Ti] from [Tv] + TOWER 2. + BUSB-1 2. .03 + BUSB-2 2. .03 +BLANK card ends all branch cards + BUSB-3TOWER .000995 1. 3 +BLANK cards ends all switch cards (here, just one, representing the fault) +14SA-3 533000. 50. 0.0 -1. +14SA-4 533000. 50. 180. -1. +BLANK card ends source cards +C First 16 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 1 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time BUSB-3 FIL2 TOWER FIL4 FIL3 FIL1 BUSB-3 BUSB-4 BUSB-2 +C TOWER +C +C BUSB-1 BUSA-2 BUSA-1 BUSA-4 BUSA-3 SA-3 SA-4 BUSB-3 +C TOWER +C 0 0.0 .1009903E7 0.0 0.0 625.729384 3912.27257 -3290.8384 .1009903E7 -.100856E7 4.71090545 +C -4.7315816 1.50363292 -3.019058 -921677.25 923494.094 533000. -533000. 0.0 +C 1 .1E-4 .1009922E7 0.0 0.0 625.744428 3912.80237 -3291.3514 .1009922E7 -.100858E7 4.60636774 +C -4.6168248 2.20907585 -3.8531833 -921692.03 923507.81 532997.37 -532997.37 0.0 +C 2 .2E-4 .1009931E7 0.0 0.0 625.757165 3913.34087 -3291.8771 .1009931E7 -.100859E7 4.53586824 +C -4.5389958 2.951526 -4.73104 -921697.57 923512.279 532989.479 -532989.48 0.0 + 1 +C 2000 .02 0.0 0.0 -4082.6074 3506.39056 -19843.969 33487.4084 -4082.6074 -994315.82 667.210123 +C 1019.1604 -477.59394 -495.04968 -910823.4 166982.83 533000. -533000. -2041.3037 +C +C Overall simulation peak node voltage = 1.27438708E+06 occurred at bus "BUSB-4" at time [sec] = 9.42000000E-03 +C Extrema of output variables follow. Order and column positioning are the same as for the preceding time-step loop output. +C Variable maxima : .1009931E7 0.0 5887.54564 39979.7091 122521.51 252007.816 .1009931E7 .1274387E7 5514.37962 +C 8875.03104 4249.33 13984.8846 .1041678E7 923512.279 533000. 533000. 2943.77282 +C Times of maxima : .2E-4 0.0 .00723 .00952 .00505 .00848 .2E-4 .00942 .00102 +C .00102 .00227 .00227 .01071 .2E-4 0.0 .01 .00723 +C Variable minima : 0.0 0.0 -7105.8822 -35654.766 -134500.78 -375615.01 -7105.8822 -.113035E7 -7267.3484 +C -11822.652 -1785.594 -1816.5115 -921697.57 -997977.99 -533000. -533000. -3552.9411 +C Times of minima : .00101 0.0 .01463 .01069 .00608 .00575 .01463 .00101 .00101 +C .00101 .01494 .0147 .2E-4 .0087 .01 0.0 .01463 + PRINTER PLOT + 2One section of 375 km. + 144 .6 0.0 7.0 BUSA-2 { Plot limits: (-0.650, 2.600) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc62.dat b/benchmarks/dc62.dat new file mode 100644 index 0000000..d271db8 --- /dev/null +++ b/benchmarks/dc62.dat @@ -0,0 +1,321 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-62 (DC-66 of "M39." vintage) +C Same four-phase South African line simulation as in DC-61, only here a +C high-order Hauer model ("HAUER SETUP", no longer in program) is used. +C 25 November 2000, WSM converts [Tv] and [Ti] from original use of +C free-format for complex elements to wide format for real parts only. +C This involves use of NO IMAGINARY PART as described in a newsletter +C (April 2001 or later). +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) +PEAK VOLTAGE MONITOR +POWER FREQUENCY, 50., + .000010 .020 50. 50. + 1 5 1 1 1 -1 + 5 5 20 20 100 100 1000 200 + SA-3 BUSA-3 .1260.75 + SA-4 BUSA-4 .1260.75 + BUSA-1 2. .03 + BUSA-2 2. .03 + BUSA-3 FIL1 .1 47.12 + FIL1 .1 90.76 + FIL1 3. 74.24 + FIL1 6.166.94 94.25 + FIL1 12.314.16 11.06 + FIL1 12.314.16 5.87 + FIL2 .01 1021. + FIL2 .1 14.14 + BUSA-4 FIL3 .1 47.12 + FIL3 FIL4 .1 90.76 + FIL3 FIL4 3. 74.24 + FIL3 FIL4 6.166.94 94.25 + FIL3 FIL4 12.314.16 11.06 + FIL3 FIL4 12.314.16 5.87 + FIL4 .01 1021. + FIL4 .01 14.14 +C &&&&&&&&&&&&&&&&&&&&&& BEGIN UNIT-13 CARDS PUNCHED BY DC-65 . +C #DATA FOR LINE SECTION 1: LENGTH = 0.2330096E+03 +C METRIC +C 1 .2 .273 4 1.7653 0. 39. 20. +C 2 .2 .273 4 1.7653 30. 39. 20. +C 3 .392 .0585 4 3.1750 2.3 27.5 8.5 50.8 45. +C 4 .392 .0585 4 3.1750 32.3 27.5 8.5 50.8 45. +C +C 100. 5000. 1 375. +C 100. 50. 1 375. +C 100. 5. 1 375. 9 21 +C +-1BUSA-1BUSB-1 0.74300E-02 0.13695E-02 1 1 14 6 4 + 0.24524677E+02 0.13280541E+03 0.00000000E+00 0.29592165E-02 0.50000000E+02 0 + 0., 0.301017131E+03, 0.240474368E-01, 0., 0.911921587E+04, 0.866135515E+01 + 0., 0.142378188E+03, 0.467439158E-01, 0., 0.597875358E+05, 0.157341296E+05 + 0., 0.129882539E+04, 0.158087056E+00, 0., 0.602061446E+05, 0.350951915E+05 + 0., 0.108960413E+05,-0.108480154E+02, 0., 0.600607627E+05,-0.503745837E+05 + 1., 0.289467030E+05, 0.211443554E+00, -1.,-0.537514515E+04,-0.421452862E+01 + 0., 0.178074955E+04, 0.254168820E+00, 0., 0.315149545E+04, 0.732001459E+00 + 0., 0.239325862E+04,-0.862687875E-01, 0., 0.618967874E+05,-0.453102444E+03 + 0., 0.619168960E+01,-0.420104801E-02, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.157926984E+03,-0.556405973E-03, 0., 0.179349724E+04,-0.616894886E-03 + 0., 0.154682388E+05,-0.740819400E-03, 0., 0.298676381E+06,-0.131478773E-02 +-1BUSA-2BUSB-2 0.77523E-02 0.12698E-02 2 2 14 6 4 + 0.51203735E+01 0.54502236E+02 0.00000000E+00 0.31183848E-02 0.50000000E+02 0 + 0., 0.313224674E+02,-0.663044870E-02, 0., 0.210626498E+06, 0.432723088E+01 + 0., 0.182100421E+02, 0.260951895E-01, 0., 0.849632630E+06, 0.182628050E-02 + 0., 0.227829005E+05, 0.478630198E+00, 0., 0.102901020E+07,-0.212641132E-02 + 0., 0.124533203E+06, 0.211022159E+02, 0., 0.157231418E+07, 0.281738783E-03 + 0., 0.142701493E+06,-0.267953188E+02, 0., 0.181740797E+07,-0.719862890E-04 + 1., 0.398474670E+05, 0.418428806E+00, -1.,-0.214066736E+05, 0.125874270E+00 + 1., 0.151593680E+06, 0.515504958E+00, -1.,-0.147087464E+06, 0.267749108E+00 + 0., 0.365121200E+01,-0.350144906E-02, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.249321282E+04,-0.431759968E-04, 0., 0.182369337E+06,-0.242606205E-04 + 0., 0.239163482E+02,-0.406028697E-02, 0., 0.207918724E+06,-0.123123552E-03 +-1BUSA-3BUSB-3 0.32619E-02 0.12582E-02 3 3 14 6 4 + 0.53536833E+02 0.12389964E+03 0.00000000E+00 0.12908552E-02 0.50000000E+02 0 + 0., 0.134598777E+06,-0.150159946E-01, 0., 0.140301928E+07,-0.753366163E-01 + 0., 0.284966044E+02, 0.819451304E-01, 0., 0.666744070E+07, 0.157059296E+04 + 0., 0.272105388E+05, 0.213806667E+00, 0., 0.782363486E+07, 0.971629566E+04 + 0., 0.272559469E+06,-0.223283773E+00, 0., 0.799352013E+07,-0.800863365E+06 + 0., 0.361659615E+06, 0.100462472E+01, 0., 0.799483818E+07, 0.792080675E+06 + 0., 0.491172730E+05,-0.165633449E+00, 0., 0.599908733E+07,-0.177051614E+03 + 0., 0.792280597E+05, 0.366175685E+00, 0., 0.698913494E+07,-0.232733391E+04 + 0., 0.115763918E+02,-0.117805658E-02, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.197441131E+04,-0.373045199E-04, 0., 0.181295123E+06, 0.445567784E-04 + 0., 0.976839246E+02,-0.202948282E-02, 0., 0.208740876E+06,-0.616217575E-04 +-1BUSA-4BUSB-4 0.30402E-02 0.12587E-02 4 4 6 6 4 + 0.64988120E+02 0.13246385E+03 0.00000000E+00 0.12025589E-02 0.50000000E+02 0 + 0., 0.169333103E+03, 0.332803226E-01, 0., 0.566559087E+06, 0.730448580E+00 + 0., 0.680693506E+02, 0.708523592E-01, 0., 0.490942013E+07,-0.111902264E+01 + 0., 0.602799468E+05, 0.326699789E+00, 0., 0.528347745E+07, 0.957741589E+00 + 0., 0.646378180E+01,-0.792079833E-03, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.142573596E+03,-0.117927457E-02, 0., 0.182764058E+06, 0.449937719E-04 + 0., 0.578852181E+02,-0.104480206E-02, 0., 0.209333115E+06,-0.690541063E-04 +C ** TX MATRICES: FTX= 0.50000E+04 +C For historical reasons, let's document data that existed prior to 25 Nov +C 2000. This former use of free-format is being replaced by the following +C use of fixed format that was copied from newer JMarti [T] : 3E26.0 +C 0.87142042642E+00, 0.,-0.68364313402E+00, 0., 0.99967944506E+00, 0. +C -0.42048418843E+00, 0., +C 0.88407538153E+00, 0., 0.55548365361E+00, 0., 0.41119257618E+00, 0. +C 0.99968059968E+00, 0., +C 0.99996548754E+00, 0.,-0.95428680565E+00, 0.,-0.36537856597E+00, 0. +C 0.81709827065E-01, 0., +C 0.99535953259E+00, 0., 0.99993400837E+00, 0.,-0.14508479886E+00, 0. +C -0.28684188937E+00, 0., +C 0.13749143884E+00, 0.,-0.13487437424E+00, 0., 0.66382281216E+00, 0. +C -0.32097010954E+00, 0., +C 0.13713603525E+00, 0., 0.10502753896E+00, 0., 0.25667806258E+00, 0. +C 0.72423739519E+00, 0., +C 0.38040412741E+00, 0.,-0.42207400039E+00, 0.,-0.56925331264E+00, 0. +C 0.13593347464E+00, 0., +C 0.38065940953E+00, 0., 0.44863255553E+00, 0.,-0.23815031667E+00, 0. +C -0.49588955641E+00, 0., +NO IMAGINARY PART: { This allows us to omit the imaginary part, which is zero: + 0.87142042642E+00 -0.68364313402E+00 0.99967944506E+00 + -0.42048418843E+00 + 0.88407538153E+00 0.55548365361E+00 0.41119257618E+00 + 0.99968059968E+00 + 0.99996548754E+00 -0.95428680565E+00 -0.36537856597E+00 + 0.81709827065E-01 + 0.99535953259E+00 0.99993400837E+00 -0.14508479886E+00 + -0.28684188937E+00 + 0.13749143884E+00 -0.13487437424E+00 0.66382281216E+00 + -0.32097010954E+00 + 0.13713603525E+00 0.10502753896E+00 0.25667806258E+00 + 0.72423739519E+00 + 0.38040412741E+00 -0.42207400039E+00 -0.56925331264E+00 + 0.13593347464E+00 + 0.38065940953E+00 0.44863255553E+00 -0.23815031667E+00 + -0.49588955641E+00 +C &&&&&&&&&&&&&&&&&&&&&& END UNIT-13 CARDS PUNCHED BY DC-65 . + TOWER 2. + BUSB-1 2. .03 + BUSB-2 2. .03 +BLANK card ends all branch cards + BUSB-3TOWER .000995 1. 3 +BLANK cards ends all switch cards (here, just one, representing the fault) +14SA-3 533000. 50. 0.0 -1. +14SA-4 533000. 50. 180. -1. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C SA-3 |BUSA-3* +C BUSA-3 |SA-3 * FIL1*BUSB-3* +C SA-4 |BUSA-4* +C BUSA-4 |SA-4 * FIL3*BUSB-4* +C BUSA-1 |TERRA *BUSB-1* +C BUSA-2 |TERRA *BUSB-2* +C FIL1 |TERRA *TERRA *TERRA *TERRA *TERRA *BUSA-3* +C FIL2 |TERRA *TERRA * +C FIL3 |BUSA-4* FIL4* FIL4* FIL4* FIL4* FIL4* +C FIL4 |TERRA *TERRA * FIL3* FIL3* FIL3* FIL3* FIL3* +C BUSB-1 |TERRA *BUSA-1* +C BUSB-2 |TERRA *BUSA-2* +C BUSB-3 |BUSA-3*TOWER * +C BUSB-4 |BUSA-4* +C TOWER |TERRA *BUSB-3* +C TERRA |BUSA-1*BUSA-2* FIL1* FIL1* FIL1* FIL1* FIL1* FIL2* FIL2* +C --------------+------------------------------ +BLANK card ends source cards +C Total network loss P-loss by summing injections = 1.427244164239E+07 +C 1st inject: SA-3 533000. 533000. 27.206416840329 1511.633587503 +C 1st inject: 0.0 0.0 1511.3887368079 88.9687335 +C Last inject: SA-4 -533000. 533000. -26.3487112737 1515.8296473689 +C Last inject: 6527332453E-10 180.0000 -1515.600628549 -90.9959866 +C +C Step Time BUSB-3 FIL2 TOWER FIL4 FIL3 +C TOWER +C +C BUSB-1 BUSA-2 BUSA-1 BUSA-4 BUSA-3 +C +C 0 0.0 .1012112E7 0.0 0.0 630.150593 3939.80139 +C 161.608804 147.910277 -155.53173 -928190.23 927091.892 +C 1 .1E-4 .1011754E7 0.0 0.0 638.819613 4046.20822 +C 186.778615 22.6361792 -114.24647 -927914.88 927042.528 + 1 +C Last step begins: 2000 .02 0.0 0.0 -3274.1701 1954.38677 -19609.364 +C Last step begins: 250.022661 -61.141145 257.948281 -951899.68 138624.063 +C Overall simulation peak node voltage = 1.31694423E+06 occurred at bus "BUSB-4" +C Variable maxima : .1012112E7 0.0 6501.36843 40746.7902 124200.262 +C Variable maxima : 8139.84047 3396.88809 18096.1397 .1056252E7 927119.833 +C Times of maxima : 0.0 0.0 .00101 .00951 .0024 +C Times of maxima : .00102 .0023 .00227 .01074 .9E-4 +C Final 5 maxima : .1056252E7 927119.833 533000. 533000. 3250.68422 +C Associated times : .01074 .9E-4 0.0 .01 .00101 + PRINTER PLOT + 2One section of 375 km. + 144 .6 0.0 7.0 BUSB-3BUSB-4 { Axis limits: (-1.087, 1.012) + CALCOMP PLOT + 144 .7 0.0 7.0 BUSB-3BUSB-4 +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 2nd of 2 subcases halts immediately following the illustration of 5-phase +C Semlyen branch card input. To the data of the preceding real case we add +C an artificial 5th phase that is a copy of the 4th. But both terminal +C nodes are grounded, to illustrate that such use should be possible. As +C for [Tv] and [Ti], they were artificially constructed by making column 5 +C a copy of column 4 and row 5 a copy of row 4. It is the interpretation of +C these matrices that are being illustrated (it looks OK). WSM, 25 Nov 2000 +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) +PEAK VOLTAGE MONITOR +POWER FREQUENCY, 50., + .000010 .020 50. 50. + 1 5 1 1 1 -1 + 5 5 20 20 100 100 1000 200 + SA-3 BUSA-3 .1260.75 + SA-4 BUSA-4 .1260.75 + BUSA-1 2. .03 + BUSA-2 2. .03 + BUSA-3 FIL1 .1 47.12 + FIL1 .1 90.76 + FIL1 3. 74.24 + FIL1 6.166.94 94.25 + FIL1 12.314.16 11.06 + FIL1 12.314.16 5.87 + FIL2 .01 1021. + FIL2 .1 14.14 + BUSA-4 FIL3 .1 47.12 + FIL3 FIL4 .1 90.76 + FIL3 FIL4 3. 74.24 + FIL3 FIL4 6.166.94 94.25 + FIL3 FIL4 12.314.16 11.06 + FIL3 FIL4 12.314.16 5.87 + FIL4 .01 1021. + FIL4 .01 14.14 +C &&&&&&&&&&&&&&&&&&&&&& BEGIN UNIT-13 CARDS PUNCHED BY DC-65 . +C #DATA FOR LINE SECTION 1: LENGTH = 0.2330096E+03 +C METRIC +C 1 .2 .273 4 1.7653 0. 39. 20. +C 2 .2 .273 4 1.7653 30. 39. 20. +C 3 .392 .0585 4 3.1750 2.3 27.5 8.5 50.8 45. +C 4 .392 .0585 4 3.1750 32.3 27.5 8.5 50.8 45. +C +C 100. 5000. 1 375. +C 100. 50. 1 375. +C 100. 5. 1 375. 9 21 +C +-1BUSA-1BUSB-1 0.74300E-02 0.13695E-02 1 1 14 6 5 + 0.24524677E+02 0.13280541E+03 0.00000000E+00 0.29592165E-02 0.50000000E+02 0 + 0., 0.301017131E+03, 0.240474368E-01, 0., 0.911921587E+04, 0.866135515E+01 + 0., 0.142378188E+03, 0.467439158E-01, 0., 0.597875358E+05, 0.157341296E+05 + 0., 0.129882539E+04, 0.158087056E+00, 0., 0.602061446E+05, 0.350951915E+05 + 0., 0.108960413E+05,-0.108480154E+02, 0., 0.600607627E+05,-0.503745837E+05 + 1., 0.289467030E+05, 0.211443554E+00, -1.,-0.537514515E+04,-0.421452862E+01 + 0., 0.178074955E+04, 0.254168820E+00, 0., 0.315149545E+04, 0.732001459E+00 + 0., 0.239325862E+04,-0.862687875E-01, 0., 0.618967874E+05,-0.453102444E+03 + 0., 0.619168960E+01,-0.420104801E-02, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.157926984E+03,-0.556405973E-03, 0., 0.179349724E+04,-0.616894886E-03 + 0., 0.154682388E+05,-0.740819400E-03, 0., 0.298676381E+06,-0.131478773E-02 +-1BUSA-2BUSB-2 0.77523E-02 0.12698E-02 2 2 14 6 5 + 0.51203735E+01 0.54502236E+02 0.00000000E+00 0.31183848E-02 0.50000000E+02 0 + 0., 0.313224674E+02,-0.663044870E-02, 0., 0.210626498E+06, 0.432723088E+01 + 0., 0.182100421E+02, 0.260951895E-01, 0., 0.849632630E+06, 0.182628050E-02 + 0., 0.227829005E+05, 0.478630198E+00, 0., 0.102901020E+07,-0.212641132E-02 + 0., 0.124533203E+06, 0.211022159E+02, 0., 0.157231418E+07, 0.281738783E-03 + 0., 0.142701493E+06,-0.267953188E+02, 0., 0.181740797E+07,-0.719862890E-04 + 1., 0.398474670E+05, 0.418428806E+00, -1.,-0.214066736E+05, 0.125874270E+00 + 1., 0.151593680E+06, 0.515504958E+00, -1.,-0.147087464E+06, 0.267749108E+00 + 0., 0.365121200E+01,-0.350144906E-02, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.249321282E+04,-0.431759968E-04, 0., 0.182369337E+06,-0.242606205E-04 + 0., 0.239163482E+02,-0.406028697E-02, 0., 0.207918724E+06,-0.123123552E-03 +-1BUSA-3BUSB-3 0.32619E-02 0.12582E-02 3 3 14 6 5 + 0.53536833E+02 0.12389964E+03 0.00000000E+00 0.12908552E-02 0.50000000E+02 0 + 0., 0.134598777E+06,-0.150159946E-01, 0., 0.140301928E+07,-0.753366163E-01 + 0., 0.284966044E+02, 0.819451304E-01, 0., 0.666744070E+07, 0.157059296E+04 + 0., 0.272105388E+05, 0.213806667E+00, 0., 0.782363486E+07, 0.971629566E+04 + 0., 0.272559469E+06,-0.223283773E+00, 0., 0.799352013E+07,-0.800863365E+06 + 0., 0.361659615E+06, 0.100462472E+01, 0., 0.799483818E+07, 0.792080675E+06 + 0., 0.491172730E+05,-0.165633449E+00, 0., 0.599908733E+07,-0.177051614E+03 + 0., 0.792280597E+05, 0.366175685E+00, 0., 0.698913494E+07,-0.232733391E+04 + 0., 0.115763918E+02,-0.117805658E-02, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.197441131E+04,-0.373045199E-04, 0., 0.181295123E+06, 0.445567784E-04 + 0., 0.976839246E+02,-0.202948282E-02, 0., 0.208740876E+06,-0.616217575E-04 +-1BUSA-4BUSB-4 0.30402E-02 0.12587E-02 4 4 6 6 5 + 0.64988120E+02 0.13246385E+03 0.00000000E+00 0.12025589E-02 0.50000000E+02 0 + 0., 0.169333103E+03, 0.332803226E-01, 0., 0.566559087E+06, 0.730448580E+00 + 0., 0.680693506E+02, 0.708523592E-01, 0., 0.490942013E+07,-0.111902264E+01 + 0., 0.602799468E+05, 0.326699789E+00, 0., 0.528347745E+07, 0.957741589E+00 + 0., 0.646378180E+01,-0.792079833E-03, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.142573596E+03,-0.117927457E-02, 0., 0.182764058E+06, 0.449937719E-04 + 0., 0.578852181E+02,-0.104480206E-02, 0., 0.209333115E+06,-0.690541063E-04 +C -1FIVEA FIVEB 0.30402E-02 0.12587E-02 5 5 6 6 5 +-1 0.30402E-02 0.12587E-02 5 5 6 6 5 + 0.64988120E+02 0.13246385E+03 0.00000000E+00 0.12025589E-02 0.50000000E+02 0 + 0., 0.169333103E+03, 0.332803226E-01, 0., 0.566559087E+06, 0.730448580E+00 + 0., 0.680693506E+02, 0.708523592E-01, 0., 0.490942013E+07,-0.111902264E+01 + 0., 0.602799468E+05, 0.326699789E+00, 0., 0.528347745E+07, 0.957741589E+00 + 0., 0.646378180E+01,-0.792079833E-03, 0., 0.100000000E+01, 0.000000000E+00 + 0., 0.142573596E+03,-0.117927457E-02, 0., 0.182764058E+06, 0.449937719E-04 + 0., 0.578852181E+02,-0.104480206E-02, 0., 0.209333115E+06,-0.690541063E-04 +C NO IMAGINARY PART: { This allows us to omit the imaginary part, which is zero: +C The preceding declaration is not needed because the one in the 1st subcase +C remains in effect. This is like a PRINTER PLOT declaration that way. +C First of two transformation matrices is 5x5 [Tv]: + 0.87142042642E+00 -0.68364313402E+00 0.99967944506E+00 + -0.42048418843E+00 -0.42048418843E+00 + 0.88407538153E+00 0.55548365361E+00 0.41119257618E+00 + 0.99968059968E+00 0.99968059968E+00 + 0.99996548754E+00 -0.95428680565E+00 -0.36537856597E+00 + 0.81709827065E-01 0.81709827065E-01 + 0.99535953259E+00 0.99993400837E+00 -0.14508479886E+00 + -0.28684188937E+00 -0.28684188937E+00 + 0.99535953259E+00 0.99993400837E+00 -0.14508479886E+00 + -0.28684188937E+00 -0.28684188937E+00 { End 5th row of [Tv] +C 2nd of two transformation matrices is 5x5 [Ti]: + 0.13749143884E+00 -0.13487437424E+00 0.66382281216E+00 + -0.32097010954E+00 -0.32097010954E+00 + 0.13713603525E+00 0.10502753896E+00 0.25667806258E+00 + 0.72423739519E+00 0.72423739519E+00 + 0.38040412741E+00 -0.42207400039E+00 -0.56925331264E+00 + 0.13593347464E+00 0.13593347464E+00 + 0.38065940953E+00 0.44863255553E+00 -0.23815031667E+00 + -0.49588955641E+00 -0.49588955641E+00 + 0.38065940953E+00 0.44863255553E+00 -0.23815031667E+00 + -0.49588955641E+00 -0.49588955641E+00 { End 5th row of [Ti] +YES, IMAGINARY PART: { Illustrate optional return to default use of imaginary +C The preceding has no effect for this data. But if the user wants to +C cancel the NO IMAGINARY PART declaration of the first subcase, this +C is the way to do it. Note such use would be required if old Semlyen +C branch cards followed these newer ones having implied zeros. + TOWER 2. +$STOP { Having illustrated 5-phase Semlyen data input (particularly [T]), halt +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc63.dat b/benchmarks/dc63.dat new file mode 100644 index 0000000..63b3cb5 --- /dev/null +++ b/benchmarks/dc63.dat @@ -0,0 +1,1135 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-63 +C Third of 4 hvdc simulations follows DC-1 and DC-2, only is much smaller. +C The 2-pole representation of dc-2 is here reduced to one end only. It was +C produced from DC-2 by using two batteries to represent the California end. +C To compare with BPA's EMTP, this would be the 3rd of 4 subcases within DC-1. +C Answers agree with BPA EMTP exactly until there is one time-step difference +C on value closings between step 700 and 800. These should be equally valid: +C Valve "II-2 " to "IICC " closing after 3.82000000E-02 sec. +C Valve "III-2 " to "IIICC " closing after 3.82000000E-02 sec. +C The original BPA VAX EMTP closing times for these were one time step later. +C Appended as a subcase is the 4th hvdc simulation ---- a single-pole version. +USE TPPLOT BEGIN { The first such declaration precedes the data for TPPLOT +SET JULES=0 { Request no lines of labeling from .PL4 file comments (none) +SET MWINDO=0 { Disable automatic windows (here, we define them manually) +SET JULOFF=0 { Zero the Y-pixel offset to allow space for case title (none) +SET NCHSUP=0 { Zero the bytes of super title labeling (no such line wanted) +SET NUMTIT=0 { Zero the # of lines of case title (none wanted) +PL4 { Access to plot of ongoing simulation is via this basic command +RAM { Special new (September, 1994) option to apply TPPLOT to EMTP +# 1 2 3 4 6 8 12 13 14 { Name 9 curves to be plotted, by # +WINDOW { The gateway to window plotting is the window command +W1 { Begin the specification of window number 1 (top of 3 windows) +Voltages somewhere +kV +-200 200 { is the same as a pair of zeros for Y-min and Y-max: auto scale +2 .5 { Window height and separation in inches, respectively +8 8 { Color numbers of outer and inner grids for window, respectively +2 3 { Number of units on Y-axis and number of Y-axis numbers, respectively +3 { Number of curves to be plotted in this window +1 2 3 { Numbers of curves to be plotted (in order of selection by # command) +W2 { Begin the definition of window number 2 (the middle of 3 windows) +Voltages somewhere else +kV +-500 500 { Non-blank means these are manually-specified Y-axis limits +2 .5 { Window height and separation in inches, respectively +0 0 { Zero grid colors will suppress outer and inner grids, respectively +4 2 { Number of units on Y-axis and number of Y-axis numbers, respectively +3 { Number of curves to be plotted in this window +4 5 6 { Numbers of the curves to be plotted (in order of selection by # command) +W4 { Begin the specification of window number 4 (bottom of 3 windows) +Currents in thyristors +amps +-1 1 { Non-blank means these are manually-specified Y-axis limits +2 0.2 { Window height and separation in inches, respectively +2 0 { Color numbers of outer and inner grids for window, respectively +2 1 { Number of units on Y-axis and number of Y-axis numbers, respectively +3 { Number of curves to be plotted in this window number 3 +7 8 9 { Numbers of curves to be plotted (in order of selection by # command) +SHOW W { Display parameters associated with the 3 windows just defined +END { Exit the WINDOW command; return to the basic plot prompt +COLOR { Request to change pen colors to avoid weak ones for pens 7, 8, 9 +1 9 { Beginning index and length of color vector to be redefined +14 10 15 12 13 11 14 10 15 { Vector of color numbers (1st 6 are default) + { bypasses radii of marking disks (use default values of zero) + { bypasses pixel widths of curves (use default values of unity) +ROLL { After next plot is complete, curves will be extended automatically +TIME 0 .020 { Define the page size to cover just over 1 cycle of time +USE TPPLOT END { The 2nd such declaration ends the data for TPPLOT +C For good demo of preceding ROLLing plot, Tmax really should be increased. +C For a second use of ROLLing (real-time) plotting, see windowless DC-1. + .000050 .050 { Note Tmax here is only 2-1/2 pages of the ROLLing plot. + 1 1 1 3 1 -1 + 5 5 20 20 100 100 +C DC LINE WITH 12-PULSE RECTIFIER/INVERTER OPERATION USING TACS ------------ +TACS HYBRID CASE FOR DC TERMINAL SIMULATION +C * * * * * * * GRID TIMING VOLTAGES * * * * * * * * * * * * * * + PHA-BS +GENAS -GENBS + PHB-AS +GENBS -GENAS + PHB-CS +GENBS -GENCS + PHC-BS +GENCS -GENBS + PHC-AS +GENCS -GENAS + PHA-CS +GENAS -GENCS + 4 +NOT13 + 9 +NOT18 + 14 +NOT23 + 19 +NOT28 + 24 +NOT3 + 29 +NOT8 +C ********* ZERO-ORDER BLOCK ON "TIMEX" FOR LIMIT OF 2 CYCLES ******* +C + TIMER +TIMEX 0.0 33.3-3 +90GENAS +90GENBS +90GENCS +C $$$$$$ DECREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +88ALPHAR -.1045045 * TIMER + 4.17-3 +C +C -------------- RECTIFIER CONTROL LOGIC FOLLOWS -------------------- +88SA-B 52 +UNITY 0.0 PHA-BS +88F1S 54 +SA-B 0.0 ALPHAR +88F1SII 4 .AND. F1S +88NOT3 .NOT. F1SII +88F1SI 54 +F1SII 1.4E-3 +88SB-A 52 +UNITY 0.0 PHB-AS +88F4S 54 +SB-A 0.0 ALPHAR +88F4SII 9 .AND. F4S +88NOT8 .NOT. F4SII +88F4SI 54 +F4SII 1.4E-3 +88SB-C 52 +UNITY 0.0 PHB-CS +88F3S 54 +SB-C 0.0 ALPHAR +88F3SII 14 .AND. F3S +88NOT13 .NOT. F3SII +88F3SI 54 +F3SII 1.4E-3 +88SC-B 52 +UNITY 0.0 PHC-BS +88F6S 54 +SC-B 0.0 ALPHAR +88F6SII 19 .AND. F6S +88NOT18 .NOT. F6SII +88F6SI 54 +F6SII 1.4E-3 +88SC-A 52 +UNITY 0.0 PHC-AS +88F5S 54 +SC-A 0.0 ALPHAR +88F5SII 24 .AND. F5S +88NOT23 .NOT. F5SII +88F5SI 54 +F5SII 1.4E-3 +88SA-C 52 +UNITY 0.0 PHA-CS +88F2S 54 +SA-C 0.0 ALPHAR +88F2SII 29 .AND. F2S +88NOT28 .NOT. F2SII +88F2SI 54 +F2SII 1.4E-3 +C $$$$$$ INCREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +C +88ALPHAI +.076276 * TIMER + 4.17-3 +C +C DELAY FIRING FOR BYPASS VALVES +C +88FIRE - UNITY +77PHA-BS +166.1710 +77PHB-AS -166.1710 +77PHB-CS -332.3420 +77PHC-BS +332.3420 +77PHC-AS +166.1710 +77PHA-CS -166.1710 +77FIRE -1.0 +C AC CIRCUIT OF POLE 4, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +BLANK card ending TACS initial conditions (and also all TACS data) + 0GENAS BIGEA4 .01 + 0GENBS BIGEB4GENAS BIGEA4 + 0GENCS BIGEC4GENAS BIGEA4 + 0BIGEA4 .86 114. 2.46 + 0BIGEB4 BIGEA4 + 0BIGEC4 BIGEA4 + 0 BIGEA4 1.18 114. 1.28 + 0 BIGEB4 BIGEA4 + 0 BIGEC4 BIGEA4 + 0BIGEA413AC4 .02 1.56 + 0BIGEB413BC4 BIGEA413AC4 + 0BIGEC413CC4 BIGEA413AC4 + 013AC4 HPAC4 40. + 0HPAC4 13AC4 5.5 + 013BC4 HPBC4 13AC4 HPAC4 + 0HPBC4 13BC4 HPAC4 13AC4 + 013CC4 HPCC4 13AC4 HPAC4 + 0HPCC4 13CC4 HPAC4 13AC4 + 0HPAC4 3.9 + 0HPBC4 HPAC4 + 0HPCC4 HPAC4 + 0 13AC4 .93 44. .95 + 0 13BC4 13AC4 + 0 13CC4 13AC4 + 013AC4 11AC4 GENAS BIGEA4 + 013BC4 11BC4 GENAS BIGEA4 + 013CC4 11CC4 GENAS BIGEA4 + 011AC4 .82 44. 1.33 + 011BC4 11AC4 + 011CC4 11AC4 + 011AC4 AC6 GENAS BIGEA4 + 011BC4 BC6 GENAS BIGEA4 + 011CC4 CC6 GENAS BIGEA4 + 011AC4 AC2 GENAS BIGEA4 + 011BC4 BC2 GENAS BIGEA4 + 011CC4 CC2 GENAS BIGEA4 +C +C -------------------------------- GROUP 6, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0VI-1 VICA 3000. + 0VICA VI-1 1.0 + 0VI-3 VICB VI-1 VICA + 0VICB VI-3 VICA VI-1 + 0VI-5 VICC VI-1 VICA + 0VICC VI-5 VICA VI-1 + 0VI-4 AN6C VI-1 VICA + 0AN6C VI-4 VICA VI-1 + 0VI-6 AN6C VI-1 VICA + 0AN6C VI-6 VICA VI-1 + 0VI-2 AN6C VI-1 VICA + 0AN6C VI-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0CEL4 VDA6 1200. .1 + 0CEL4 VDB6 CEL4 VDA6 + 0CEL4 VDC6 CEL4 VDA6 + 0AN6C VDA6 CEL4 VDA6 + 0AN6C VDB6 CEL4 VDA6 + 0AN6C VDC6 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA6 VICA 1000. + 0VICA VDA6 .25 + 0VDB6 VICB VDA6 VICA + 0VICB VDB6 VICA VDA6 + 0VDC6 VICC VDA6 VICA + 0VICC VDC6 VICA VDA6 + 0CEL4 CTH6C VDA6 VICA + 0CTH6C CEL4 VICA VDA6 +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC6Y TXA6 .203 .7 + 0BC6Y TXB6 AC6Y TXA6 + 0CC6Y TXC6 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA6C VDA6 .202 .717 + 0TXB6C VDB6 TXA6C VDA6 + 0TXC6C VDC6 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA6 99300. +52TXA6C TXB6C 82715. 68946. +51TXB6 TXA6 +52TXB6C TXC6C +51TXC6 TXA6 +52TXC6C TXA6C +C +C ------------------------------------------------------------------------- +C -------------------------------- GROUP 2, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0II-1 IICA VI-1 VICA + 0IICA II-1 VICA VI-1 + 0II-3 IICB VI-1 VICA + 0IICB II-3 VICA VI-1 + 0II-5 IICC VI-1 VICA + 0IICC II-5 VICA VI-1 + 0II-4 AN2C VI-1 VICA + 0AN2C II-4 VICA VI-1 + 0II-6 AN2C VI-1 VICA + 0AN2C II-6 VICA VI-1 + 0II-2 AN2C VI-1 VICA + 0AN2C II-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN6C VDA2 CEL4 VDA6 + 0AN6C VDB2 CEL4 VDA6 + 0AN6C VDC2 CEL4 VDA6 + 0AN2C VDA2 CEL4 VDA6 + 0AN2C VDB2 CEL4 VDA6 + 0AN2C VDC2 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA2 IICA VDA6 VICA + 0IICA VDA2 VICA VDA6 + 0VDB2 IICB VDA6 VICA + 0IICB VDB2 VICA VDA6 + 0VDC2 IICC VDA6 VICA + 0IICC VDC2 VICA VDA6 + 0AN6C CTH2C VDA6 VICA + 0CTH2C AN6C VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC2Y TXA2 .22 2.07 + 0BC2Y TXB2 AC2Y TXA2 + 0CC2Y TXC2 AC2Y TXA2 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA2C VDA2 .07 .8343 + 0TXB2C VDB2 TXA2C VDA2 + 0TXC2C VDC2 TXA2C VDA2 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA2 99300. +52TXA2C NS2 47951. 23174. +51TXB2 TXA2 +52TXB2C NS2 +51TXC2 TXA2 +52TXC2C NS2 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS2 1.E+10 +C +C ------------------------------------------------------------------------- +C GROUND ELECTRODE CIRCUIT, CELILO + 0AN2C GR1C 1.0 + 0GR1C ELEC1 AN2C GR1C + 0GR1C .06 + 0ELEC1 GR2C AN2C GR1C + 0GR2C CELGR AN2C GR1C + 0GR2C GR1C + 0ELEC1 .43 22. +C ------------------------------------------------------------------------- +C AC CIRCUIT OF POLE 3, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +C + 0GENAS BIGEA3GENAS BIGEA4 + 0GENBS BIGEB3GENAS BIGEA4 + 0GENCS BIGEC3GENAS BIGEA4 + 0BIGEA3 BIGEA4 + 0BIGEB3 BIGEA4 + 0BIGEC3 BIGEA4 + 0 BIGEA3 BIGEA4 + 0 BIGEB3 BIGEA4 + 0 BIGEC3 BIGEA4 + 0BIGEA313AC3 BIGEA413AC4 + 0BIGEB313BC3 BIGEA413AC4 + 0BIGEC313CC3 BIGEA413AC4 + 013AC3 HPAC3 13AC4 HPAC4 + 0HPAC3 13AC3 HPAC4 13AC4 + 013BC3 HPBC3 13AC4 HPAC4 + 0HPBC3 13BC3 HPAC4 13AC4 + 013CC3 HPCC3 13AC4 HPAC4 + 0HPCC3 13CC3 HPAC4 13AC4 + 0HPAC3 HPAC4 + 0HPBC3 HPAC4 + 0HPCC3 HPAC4 + 0 13AC3 13AC4 + 0 13BC3 13AC4 + 0 13CC3 13AC4 + 013AC3 11AC3 GENAS BIGEA4 + 013BC3 11BC3 GENAS BIGEA4 + 013CC3 11CC3 GENAS BIGEA4 + 011AC3 11AC4 + 011BC3 11AC4 + 011CC3 11AC4 + 011AC3 AC3 GENAS BIGEA4 + 011BC3 BC3 GENAS BIGEA4 + 011CC3 CC3 GENAS BIGEA4 + 011AC3 AC5 GENAS BIGEA4 + 011BC3 BC5 GENAS BIGEA4 + 011CC3 CC5 GENAS BIGEA4 +C +C -------------------------------- GROUP 1, CELILO ---------------------- +C !!!!!!!!!!!!!!!!!!!!! SYMMETRY !!!!!!!!!!!!!!!! + 0AN5C CEL3 .01 +C !!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!! +C -------------------------------- GROUP 3, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0III-1 IIICA VI-1 VICA + 0IIICA III-1 VICA VI-1 + 0III-3 IIICB VI-1 VICA + 0IIICB III-3 VICA VI-1 + 0III-5 IIICC VI-1 VICA + 0IIICC III-5 VICA VI-1 + 0III-4 AN3C VI-1 VICA + 0AN3C III-4 VICA VI-1 + 0III-6 AN3C VI-1 VICA + 0AN3C III-6 VICA VI-1 + 0III-2 AN3C VI-1 VICA + 0AN3C III-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0CELGR VDA3 CEL4 VDA6 + 0CELGR VDB3 CEL4 VDA6 + 0CELGR VDC3 CEL4 VDA6 + 0AN3C VDA3 CEL4 VDA6 + 0AN3C VDB3 CEL4 VDA6 + 0AN3C VDC3 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA3 IIICA VDA6 VICA + 0IIICA VDA3 VICA VDA6 + 0VDB3 IIICB VDA6 VICA + 0IIICB VDB3 VICA VDA6 + 0VDC3 IIICC VDA6 VICA + 0IIICC VDC3 VICA VDA6 + 0CELGR CTH3C VDA6 VICA + 0CTH3C CELGR VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC3Y TXA3 AC2Y TXA2 + 0BC3Y TXB3 AC2Y TXA2 + 0CC3Y TXC3 AC2Y TXA2 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA3C VDA3 TXA2C VDA2 + 0TXB3C VDB3 TXA2C VDA2 + 0TXC3C VDC3 TXA2C VDA2 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA3 TXA2 +52TXA3C NS3 +51TXB3 TXA2 +52TXB3C NS3 +51TXC3 TXA2 +52TXC3C NS3 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS3 NS2 +C ------------------------------------------------------------------------- +C -------------------------------- GROUP 5, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0V-1 VCA VI-1 VICA + 0VCA V-1 VICA VI-1 + 0V-3 VCB VI-1 VICA + 0VCB V-3 VICA VI-1 + 0V-5 VCC VI-1 VICA + 0VCC V-5 VICA VI-1 + 0V-4 AN5C VI-1 VICA + 0AN5C V-4 VICA VI-1 + 0V-6 AN5C VI-1 VICA + 0AN5C V-6 VICA VI-1 + 0V-2 AN5C VI-1 VICA + 0AN5C V-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN3C VDA5 CEL4 VDA6 + 0AN3C VDB5 CEL4 VDA6 + 0AN3C VDC5 CEL4 VDA6 + 0AN5C VDA5 CEL4 VDA6 + 0AN5C VDB5 CEL4 VDA6 + 0AN5C VDC5 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA5 VCA VDA6 VICA + 0VCA VDA5 VICA VDA6 + 0VDB5 VCB VDA6 VICA + 0VCB VDB5 VICA VDA6 + 0VDC5 VCC VDA6 VICA + 0VCC VDC5 VICA VDA6 + 0AN3C CTH5C VDA6 VICA + 0CTH5C AN3C VICA VDA6 +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC5Y TXA5 AC6Y TXA6 + 0BC5Y TXB5 AC6Y TXA6 + 0CC5Y TXC5 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA5C VDA5 TXA6C VDA6 + 0TXB5C VDB5 TXA6C VDA6 + 0TXC5C VDC5 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA5 TXA6 +52TXA5C TXB5C +51TXB5 TXA6 +52TXB5C TXC5C +51TXC5 TXA6 +52TXC5C TXA5C +C +C +C SMOOTHING REACTOR, CELILO, POLE 4 =================== + 0CEL4 S4- 500. 1 +C ============================ +C DC FILTERS, CELILO, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0S4- ELEC1 6.3 280. .7 + 0S4- HP4C 2.5 + 0HP4C ELEC1 100. + 0ELEC1 HP4C 7.0 +C =========================================== +C SURGE CAPACITOR, CELILO, POLE 4 + 0S4- SURC4 .7 + 0SURC4 5. + 0SURC4 ELEC1 GENAS BIGEA4 +C ============================================================ +C SMOOTHING REACTOR, CELILO, POLE 3 =================== + 0CEL3 A3+ CEL4 S4- +C ============================ +C DC FILTERS, CELILO, POLE 3 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS + 0A3+ ELEC1 S4- ELEC1 + 0A3+ HP3C S4- HP4C + 0HP3C ELEC1 HP4C ELEC1 + 0ELEC1 HP3C ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, CELILO, POLE 3 + 0A3+ SURC3 S4- SURC4 + 0SURC3 SURC4 + 0SURC3 ELEC1 GENAS BIGEA4 +C ============================================================ +C +C ************************************************************************* +C CELILO - SYLMAR LINE, 846 MILES (1362 KM) +C ************************************************************************* +C +-1S4- 4-282 .02 6.56 .0142 282. +-2A3+ 3-282 .02 1.56 .0192 282. +-14-282 4-564 S4- 4-282 +-23-282 3-564 +-14-564 R4- S4- 4-282 +-23-564 R3+ +C +C +C SMOOTHING REACTOR, SYLMAR, POLE 4 =================== + 0AN6S SYL4 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R4- ELEC2 S4- ELEC1 + 0R4- HP4 S4- HP4C + 0HP4 ELEC2 HP4C ELEC1 + 0ELEC2 HP4 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 4 + 0R4- SURS4 S4- SURC4 + 0SURS4 SURC4 + 0SURS4 ELEC2 GENAS BIGEA4 +C ============================================================ +C SMOOTHING REACTOR, SYLMAR, POLE 3 =================== + 0CTH5S SYL3 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 3 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R3+ ELEC2 S4- ELEC1 + 0R3+ HP3 S4- HP4C + 0HP3 ELEC2 HP4C ELEC1 + 0ELEC2 HP3 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 3 + 0R3+ SURS3 S4- SURC4 + 0SURS3 SURC4 + 0SURS3 ELEC2 GENAS BIGEA4 +C ============================================================ +C +C LC CIRCUIT NEAR SMOOTHING REACTOR ON LINE AT SYLMAR ONLY .......... +C + 0R4- CAP4 GENAS BIGEA4 + 0CAP4 .06 + 0CAP4 SYL4 1.0 + 0R3+ CAP3 GENAS BIGEA4 + 0CAP3 CAP4 + 0CAP3 SYL3 CAP4 SYL4 +C AC CIRCUIT OF POLE 4, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. + 0ELEC2 ELEC1 +C ------------------------------------------------------------------------- +C +C AC CIRCUIT OF POLE 3, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. +C $$$$$$$$$$$$$$$$$$$$$$$$$ LEAKAGE CAPACITANCE ACROSS VALVES +C + 0VICA CTH6C .001 + 0VICB CTH6C VICA CTH6C + 0VICC CTH6C VICA CTH6C + 0AN6C VICA VICA CTH6C + 0AN6C VICB VICA CTH6C + 0AN6C VICC VICA CTH6C + 0IICA CTH2C VICA CTH6C + 0IICB CTH2C VICA CTH6C + 0IICC CTH2C VICA CTH6C + 0AN2C IICA VICA CTH6C + 0AN2C IICB VICA CTH6C + 0AN2C IICC VICA CTH6C + 0IIICA CTH3C VICA CTH6C + 0IIICB CTH3C VICA CTH6C + 0IIICC CTH3C VICA CTH6C + 0AN3C IIICA VICA CTH6C + 0AN3C IIICB VICA CTH6C + 0AN3C IIICC VICA CTH6C + 0VCA CTH5C VICA CTH6C + 0VCB CTH5C VICA CTH6C + 0VCC CTH5C VICA CTH6C + 0AN5C VCA VICA CTH6C + 0AN5C VCB VICA CTH6C + 0AN5C VCC VICA CTH6C +BLANK card ending electric network branch cards +C ((((((((((( BRIDGE CIRCUIT BREAKERS, CELILO )))))))))))))))))))) + AC6 AC6Y -10.E-3 10.E+3 + BC6 BC6Y -10.E-3 10.E+3 + CC6 CC6Y -10.E-3 10.E+3 + AC2 AC2Y -10.E-3 10.E+3 + BC2 BC2Y -10.E-3 10.E+3 + CC2 CC2Y -10.E-3 10.E+3 + AC3 AC3Y -10.E-3 10.E+3 + BC3 BC3Y -10.E-3 10.E+3 + CC3 CC3Y -10.E-3 10.E+3 + AC5 AC5Y -10.E-3 10.E+3 + BC5 BC5Y -10.E-3 10.E+3 + CC5 CC5Y -10.E-3 10.E+3 +C +C VALVES AT CELILO +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +11VI-1 CTH6C F2SI 1 +11VI-3 CTH6C F4SI 1 +11VI-5 CTH6C F6SI 13 +11VI-4 VICA F5SI 1 +11VI-6 VICB F1SI 1 +11VI-2 VICC F3SI 1 +11II-1 CTH2C F2SII 1 +11II-3 CTH2C F4SII 13 +11II-5 CTH2C F6SII 1 +11II-4 IICA F5SII 1 +11II-6 IICB F1SII 1 +11II-2 IICC F3SII 1 +11III-1 CTH3C F2SII 1 +11III-3 CTH3C F4SII 1 +11III-5 CTH3C F6SII 1 +11III-4 IIICA F5SII 1 +11III-6 IIICB F1SII 1 +11III-2 IIICC F3SII 1 +11V-1 CTH5C F2SI 13 +11V-3 CTH5C F4SI 1 +11V-5 CTH5C F6SI 1 +11V-4 VCA F5SI 1 +11V-6 VCB F1SI 1 +11V-2 VCC F3SI 1 +BLANK card ending switch and valve cards +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +14GENAS 191.88 60. - 90. -1. +14GENBS 191.88 60. 150. -1. +14GENCS 191.88 60. 30. -1. +11R4- 260.00 +11R3+ -260.00 +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C GENAS | BIGEA4*BIGEA3* +C BIGEA4 | TERRA *TERRA *GENAS *13AC4 * +C GENBS | BIGEB4*BIGEB3* +C BIGEB4 | TERRA *TERRA *GENBS *13BC4 * +C GENCS | BIGEC4*BIGEC3* +BLANK card ending electric network source cards + S4- 4-282 4-564 R4- A3+ 3-282 3-564 R3+ +C Total network loss P-loss by summing injections = 3.860395580278E-01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C AC6 AC6Y -0.17537829E-02 -0.15130661E-03 0.17602977E-02 +C BC6 BC6Y 0.74585609E-03 0.15944738E-02 0.17602977E-02 +C CC6 CC6Y 0.10079268E-02 -0.14431672E-02 0.17602977E-02 +C < < Etc. for many more switches > > +C Step Time VI-5 II-3 V-1 S4- 4-282 4-564 +C CTH6C CTH2C CTH5C +C +C R3+ VI-5 II-3 V-1 CEL4 +C CTH6C CTH2C CTH5C S4- +C *** Phasor I(0) = -1.7537829E-03 Switch "AC6 " to "AC6Y " closed +C *** Phasor I(0) = 7.4585609E-04 Switch "BC6 " to "BC6Y " closed +C *** Phasor I(0) = 1.0079268E-03 Switch "CC6 " to "CC6Y " closed +C *** Phasor I(0) = -1.7256922E-03 Switch "AC2 " to "AC2Y " closed +C *** Phasor I(0) = 7.3073497E-04 Switch "BC2 " to "BC2Y " closed +C *** Phasor I(0) = 9.9495722E-04 Switch "CC2 " to "CC2Y " closed +C *** Phasor I(0) = -1.7256922E-03 Switch "AC3 " to "AC3Y " closed +C *** Phasor I(0) = 7.3073497E-04 Switch "BC3 " to "BC3Y " closed +C *** Phasor I(0) = 9.9495722E-04 Switch "CC3 " to "CC3Y " closed +C *** Phasor I(0) = -1.7537829E-03 Switch "AC5 " to "AC5Y " closed +C *** Phasor I(0) = 7.4585609E-04 Switch "BC5 " to "BC5Y " closed +C *** Phasor I(0) = 1.0079268E-03 Switch "CC5 " to "CC5Y " closed +C 0 0.0 92.4476735 -80.392419 -46.233822 -.6059E-12 -.5031E-12 .87008E-13 +C .12071E-13 0.0 0.0 0.0 -.7846E-15 +C 1 .5E-4 92.4314685 -81.253201 -44.71671 -.6103E-12 -.5175E-12 .87672E-13 +C -260. 0.0 0.0 0.0 -.7135E-15 +C 60 .003 39.3727405 -76.238222 52.7516794 -.7005E-12 -.8214E-12 257.446725 +C -260. 0.0 0.0 0.0 .53435E-17 +C Valve "II-6 " to "IICB " closing after 3.85000000E-03 sec. +C Valve "III-6 " to "IIICB " closing after 3.85000000E-03 sec. +C 80 .004 10.9218031 -49.021132 82.2441262 .351391677 254.918524 257.4592 +C -260. 0.0 0.0 0.0 .008847337 +C Valve "II-6 " to "IICB " opening after 4.40000000E-03 sec. +C Valve "III-6 " to "IIICB " opening after 4.40000000E-03 sec. +C 100 .005 -45.494471 -36.386851 73.4856334 135.946744 254.943229 257.471553 +C -260. 0.0 0.0 0.0 -.03160187 +BLANK card ending output variable requests (just node voltages, here) +C Valve "V-5 " to "CTH5C " closing after 4.79500000E-02 sec. +C Valve "VI-3 " to "CTH6C " opening after 4.83000000E-02 sec. +C Valve "V-3 " to "CTH5C " opening after 4.83000000E-02 sec. +C Valve "II-6 " to "IICB " closing after 4.93500000E-02 sec. +C Valve "III-6 " to "IIICB " closing after 4.93500000E-02 sec. +C Valve "II-4 " to "IICA " opening after 4.98000000E-02 sec. +C Valve "III-4 " to "IIICA " opening after 4.98000000E-02 sec. +C 1000 .05 0.0 -167.46575 -134.7388 251.510661 139.93783 117.983336 +C -260. .526265477 0.0 0.0 .527808483 +C Variable max:92.4476735 92.1922669 116.425574 579.298066 663.305228 663.489503 +C .12071E-13 .554084524 .929282825 .867170568 .872209101 +C Times of max : 0.0 .0252 .0216 .01455 .01245 .0109 +C 0.0 .04835 .02565 .0404 .02635 +C Variable min: -198.8722 -193.07964 -223.00837 -.9678E-12 -.1033E-11 .87008E-13 +C -260. -.10328566 -.02134205 -.07594113 -.0319449 +C Times of min : .00785 .0148 .01455 .002 .0025 0.0 +C .5E-4 .0218 .0468 .02695 .00505 + PRINTER PLOT + 194 5. 0.0 50. VI-5 CTH6C { Axis limits : (-1.033, 5.541) + 144 5. 0.0 50. S4- { Axis limits : (0.000, 5.793) +BLANK card terminating batch-mode plot cards +BEGIN NEW DATA CASE +C 2nd of 2 subcases is for a 1-terminal, 1-pole simplified representation +C with only two bridges total. It was produced from the preceding data case +C by omitting the negative pole (reduction from two poles to a single pole). +C To compare with BPA's EMTP, this would be the 4th of 4 subcases within DC-1. +C Answers agree with BPA EMTP exactly until there is one time-step difference +C on a value closing between step 700 and 800. This should be equally valid: +C Valve "II-2 " to "IICC " closing after 3.82000000E-02 sec. +C 4 September 2011, we illustrate new logic of SUBR14 which will use all of +C available space of NBHDSW if declared space (LISTSIZE.DAT) is inadequate. +C Rather than a real case, it is easier to force this use artificially. To +C do this, we input a special set of LISTSIZE.DAT data with the optional +C NDHDSW declaration having an empty factor of zero. This is the multiple +C of List 6 for sizing NBHDSW, so ATP thinks NBHDSW has no space. This +C will trigger the "try harder" logic of SUBR14 which will go get the real +C limits as declared in LISTSIZE.BPA : List 6 is 1200 and the factor is 15, +C so in fact the vector NBHDSW is dimensioned 18K. This will be documented +C by two exceptional lines of output to the .LIS file: +C === SUBR14. Switch connectivity of NBHDSW needs more space. From LISTSIZE.DAT, List 56 = 0 +C Expand this to use all of NBHDSW. J, KSWTCH, LSWTCH, List 56 = 7 18 40 18000 +C The 1st line documents the artificial List 56 (real data will not have 0). +C 2nd line: valu 40 for LSWTCH is simply the default (not real) List-6 limit +C as ordered immediately below. All list sizes can be default sizes except +C for List 19 of TACS, which requires a little more space (we use 5K). The +C data involves 18 switches (that is KSWTCH), and need for more space was +C first detected on switch 7. Why not switch 1? Because the 1st 6 switches +C are simple circuit breakers which touch no other switches. Switch 7 is a +C valve connecting VI-1 with CTH6C, and this touches the 8th switch which +C connects VI-3 to the same CTH6C. That triggered the new, better logic. +NEW LIST SIZES +NBHDSW 0.0 { Vector NBHDSW of LABCOM has size List 6 * this factor FNBHD + 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 5000 0 + 0 0 0 + 240000 742 + .000050 .060 + 1 1 1 3 1 -1 + 5 5 20 20 100 100 +TACS HYBRID CASE FOR DC TERMINAL SIMULATION +C * * * * * * * GRID TIMING VOLTAGES * * * * * * * * * * * * * * + PHA-BS +GENAS -GENBS + PHB-AS +GENBS -GENAS + PHB-CS +GENBS -GENCS + PHC-BS +GENCS -GENBS + PHC-AS +GENCS -GENAS + PHA-CS +GENAS -GENCS + 4 +NOT13 + 9 +NOT18 + 14 +NOT23 + 19 +NOT28 + 24 +NOT3 + 29 +NOT8 +C ********* ZERO-ORDER BLOCK ON "TIMEX" FOR LIMIT OF 2 CYCLES ******* +C + TIMER +TIMEX 0.0 33.3-3 +90GENAS +90GENBS +90GENCS +C $$$$$$ DECREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +88ALPHAR -.1045045 * TIMER + 4.17-3 +C +C -------------- RECTIFIER CONTROL LOGIC FOLLOWS -------------------- +88SA-B 52 +UNITY 0.0 PHA-BS +88F1S 54 +SA-B 0.0 ALPHAR +88F1SII 4 .AND. F1S +88NOT3 .NOT. F1SII +88F1SI 54 +F1SII 1.4E-3 +88SB-A 52 +UNITY 0.0 PHB-AS +88F4S 54 +SB-A 0.0 ALPHAR +88F4SII 9 .AND. F4S +88NOT8 .NOT. F4SII +88F4SI 54 +F4SII 1.4E-3 +88SB-C 52 +UNITY 0.0 PHB-CS +88F3S 54 +SB-C 0.0 ALPHAR +88F3SII 14 .AND. F3S +88NOT13 .NOT. F3SII +88F3SI 54 +F3SII 1.4E-3 +88SC-B 52 +UNITY 0.0 PHC-BS +88F6S 54 +SC-B 0.0 ALPHAR +88F6SII 19 .AND. F6S +88NOT18 .NOT. F6SII +88F6SI 54 +F6SII 1.4E-3 +88SC-A 52 +UNITY 0.0 PHC-AS +88F5S 54 +SC-A 0.0 ALPHAR +88F5SII 24 .AND. F5S +88NOT23 .NOT. F5SII +88F5SI 54 +F5SII 1.4E-3 +88SA-C 52 +UNITY 0.0 PHA-CS +88F2S 54 +SA-C 0.0 ALPHAR +88F2SII 29 .AND. F2S +88NOT28 .NOT. F2SII +88F2SI 54 +F2SII 1.4E-3 +C $$$$$$ INCREASING RAMP FUNCTION FOR IGNITION ANGLE DELAY $$$$$$$$$$$$ +C +88ALPHAI +.076276 * TIMER + 4.17-3 +C +C DELAY FIRING FOR BYPASS VALVES +C +88FIRE - UNITY +77PHA-BS +166.1710 +77PHB-AS -166.1710 +77PHB-CS -332.3420 +77PHC-BS +332.3420 +77PHC-AS +166.1710 +77PHA-CS -166.1710 +77FIRE -1.0 +C AC CIRCUIT OF POLE 4, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +BLANK card ending TACS initial conditions (and also all TACS data) + 0GENAS BIGEA4 .01 + 0GENBS BIGEB4GENAS BIGEA4 + 0GENCS BIGEC4GENAS BIGEA4 + 0BIGEA4 .86 114. 2.46 + 0BIGEB4 BIGEA4 + 0BIGEC4 BIGEA4 + 0 BIGEA4 1.18 114. 1.28 + 0 BIGEB4 BIGEA4 + 0 BIGEC4 BIGEA4 + 0BIGEA413AC4 .02 1.56 + 0BIGEB413BC4 BIGEA413AC4 + 0BIGEC413CC4 BIGEA413AC4 + 013AC4 HPAC4 40. + 0HPAC4 13AC4 5.5 + 013BC4 HPBC4 13AC4 HPAC4 + 0HPBC4 13BC4 HPAC4 13AC4 + 013CC4 HPCC4 13AC4 HPAC4 + 0HPCC4 13CC4 HPAC4 13AC4 + 0HPAC4 3.9 + 0HPBC4 HPAC4 + 0HPCC4 HPAC4 + 0 13AC4 .93 44. .95 + 0 13BC4 13AC4 + 0 13CC4 13AC4 + 013AC4 11AC4 GENAS BIGEA4 + 013BC4 11BC4 GENAS BIGEA4 + 013CC4 11CC4 GENAS BIGEA4 + 011AC4 .82 44. 1.33 + 011BC4 11AC4 + 011CC4 11AC4 + 011AC4 AC6 GENAS BIGEA4 + 011BC4 BC6 GENAS BIGEA4 + 011CC4 CC6 GENAS BIGEA4 + 011AC4 AC2 GENAS BIGEA4 + 011BC4 BC2 GENAS BIGEA4 + 011CC4 CC2 GENAS BIGEA4 +C +C -------------------------------- GROUP 6, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0VI-1 VICA 3000. + 0VICA VI-1 1.0 + 0VI-3 VICB VI-1 VICA + 0VICB VI-3 VICA VI-1 + 0VI-5 VICC VI-1 VICA + 0VICC VI-5 VICA VI-1 + 0VI-4 AN6C VI-1 VICA + 0AN6C VI-4 VICA VI-1 + 0VI-6 AN6C VI-1 VICA + 0AN6C VI-6 VICA VI-1 + 0VI-2 AN6C VI-1 VICA + 0AN6C VI-2 VICA VI-1 +C //////////////////////// VALVE DAMPERS ///////////////////// + 0CEL4 VDA6 1200. .1 + 0CEL4 VDB6 CEL4 VDA6 + 0CEL4 VDC6 CEL4 VDA6 + 0AN6C VDA6 CEL4 VDA6 + 0AN6C VDB6 CEL4 VDA6 + 0AN6C VDC6 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA6 VICA 1000. + 0VICA VDA6 .25 + 0VDB6 VICB VDA6 VICA + 0VICB VDB6 VICA VDA6 + 0VDC6 VICC VDA6 VICA + 0VICC VDC6 VICA VDA6 + 0CEL4 CTH6C VDA6 VICA + 0CTH6C CEL4 VICA VDA6 +C +C * * * * * Y-DELTA XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC6Y TXA6 .203 .7 + 0BC6Y TXB6 AC6Y TXA6 + 0CC6Y TXC6 AC6Y TXA6 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA6C VDA6 .202 .717 + 0TXB6C VDB6 TXA6C VDA6 + 0TXC6C VDC6 TXA6C VDA6 +C +C <<<<<<<<<<<<<<< Y-DELTA TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA6 99300. +52TXA6C TXB6C 82715. 68946. +51TXB6 TXA6 +52TXB6C TXC6C +51TXC6 TXA6 +52TXC6C TXA6C +C +C ------------------------------------------------------------------------- +C -------------------------------- GROUP 2, CELILO ---------------------- +C ####### ANODE REACTORS ############### + 0II-1 IICA VI-1 VICA + 0IICA II-1 VICA VI-1 + 0II-3 IICB VI-1 VICA + 0IICB II-3 VICA VI-1 + 0II-5 IICC VI-1 VICA + 0IICC II-5 VICA VI-1 + 0II-4 AN2C VI-1 VICA + 0AN2C II-4 VICA VI-1 + 0II-6 AN2C VI-1 VICA + 0AN2C II-6 VICA VI-1 + 0II-2 AN2C VI-1 VICA + 0AN2C II-2 VICA VI-1 +C ###################### BYPASS ANODE REACTOR ############## +C //////////////////////// VALVE DAMPERS ///////////////////// + 0AN6C VDA2 CEL4 VDA6 + 0AN6C VDB2 CEL4 VDA6 + 0AN6C VDC2 CEL4 VDA6 + 0AN2C VDA2 CEL4 VDA6 + 0AN2C VDB2 CEL4 VDA6 + 0AN2C VDC2 CEL4 VDA6 +C $$$$$$$$$ BUSHING REACTORS $$$$$$$$$$$$$$$ + 0VDA2 IICA VDA6 VICA + 0IICA VDA2 VICA VDA6 + 0VDB2 IICB VDA6 VICA + 0IICB VDB2 VICA VDA6 + 0VDC2 IICC VDA6 VICA + 0IICC VDC2 VICA VDA6 + 0AN6C CTH2C VDA6 VICA + 0CTH2C AN6C VICA VDA6 +C +C * * * * * Y-Y XFMR LEAKAGE IMPEDANCE * * * * * * * * +C +++++++++++ A.C. SOURCE SIDE +++++++++++ + 0AC2Y TXA2 .22 2.07 + 0BC2Y TXB2 AC2Y TXA2 + 0CC2Y TXC2 AC2Y TXA2 +C +++++++++++ D.C. CONVERTER SIDE +++++++++ + 0TXA2C VDA2 .07 .8343 + 0TXB2C VDB2 TXA2C VDA2 + 0TXC2C VDC2 TXA2C VDA2 +C +C <<<<<<<<<<<<<<< Y-Y TRANSFORMER >>>>>>>>>>>>>>>>>>>>> +51TXA2 99300. +52TXA2C NS2 47951. 23174. +51TXB2 TXA2 +52TXB2C NS2 +51TXC2 TXA2 +52TXC2C NS2 +C ------------------------- ISOLATING Y-Y XFMR FROM GROUND ----------- + 0NS2 1.E+10 +C +C ------------------------------------------------------------------------- +C GROUND ELECTRODE CIRCUIT, CELILO + 0AN2C GR1C 1.0 + 0GR1C ELEC1 AN2C GR1C + 0GR1C .06 + 0ELEC1 .43 22. +C ------------------------------------------------------------------------- +C AC CIRCUIT OF POLE 3, CELILO +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS, +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE AND 1 MILE (1.6 KM) OF 230 KV LINE. +C SMOOTHING REACTOR, CELILO, POLE 4 =================== + 0CEL4 S4- 500. 1 +C ============================ +C DC FILTERS, CELILO, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0S4- ELEC1 6.3 280. .7 + 0S4- HP4C 2.5 + 0HP4C ELEC1 100. + 0ELEC1 HP4C 7.0 +C =========================================== +C SURGE CAPACITOR, CELILO, POLE 4 + 0S4- SURC4 .7 + 0SURC4 5. + 0SURC4 ELEC1 GENAS BIGEA4 +C ============================================================ +C ************************************************************************* +C CELILO - SYLMAR LINE, 846 MILES (1362 KM) +C ************************************************************************* +C +-1S4- 4-282 .02 6.56 .0142 282. +-2A3+ 3-282 .02 1.56 .0192 282. +-14-282 4-564 S4- 4-282 +-23-282 3-564 +-14-564 R4- S4- 4-282 +-23-564 R3+ +C +C +C SMOOTHING REACTOR, SYLMAR, POLE 4 =================== + 0AN6S SYL4 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 4 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R4- ELEC2 S4- ELEC1 + 0R4- HP4 S4- HP4C + 0HP4 ELEC2 HP4C ELEC1 + 0ELEC2 HP4 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 4 + 0R4- SURS4 S4- SURC4 + 0SURS4 SURC4 + 0SURS4 ELEC2 GENAS BIGEA4 +C ============================================================ +C SMOOTHING REACTOR, SYLMAR, POLE 3 =================== + 0CTH5S SYL3 CEL4 S4- +C ============================ +C DC FILTERS, SYLMAR, POLE 3 +C CONSISTING OF 6TH AND HIGH-PASS FILTERS +C + 0R3+ ELEC2 S4- ELEC1 + 0R3+ HP3 S4- HP4C + 0HP3 ELEC2 HP4C ELEC1 + 0ELEC2 HP3 ELEC1 HP4C +C =========================================== +C SURGE CAPACITOR, SYLMAR, POLE 3 + 0R3+ SURS3 S4- SURC4 + 0SURS3 SURC4 + 0SURS3 ELEC2 GENAS BIGEA4 +C ============================================================ +C +C LC CIRCUIT NEAR SMOOTHING REACTOR ON LINE AT SYLMAR ONLY .......... +C + 0R4- CAP4 GENAS BIGEA4 + 0CAP4 .06 + 0CAP4 SYL4 1.0 + 0R3+ CAP3 GENAS BIGEA4 + 0CAP3 CAP4 + 0CAP3 SYL3 CAP4 SYL4 +C AC CIRCUIT OF POLE 4, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. + 0ELEC2 ELEC1 +C ------------------------------------------------------------------------- +C +C AC CIRCUIT OF POLE 3, SYLMAR +C CONSISTS OF 5TH,7TH,11TH,13TH, AND HIGH-PASS FILTERS AND +C CCT BREAKERS FOR EACH 3-PHASE BRIDGE. +C $$$$$$$$$$$$$$$$$$$$$$$$$ LEAKAGE CAPACITANCE ACROSS VALVES +C + 0VICA CTH6C .001 + 0VICB CTH6C VICA CTH6C + 0VICC CTH6C VICA CTH6C + 0AN6C VICA VICA CTH6C + 0AN6C VICB VICA CTH6C + 0AN6C VICC VICA CTH6C + 0IICA CTH2C VICA CTH6C + 0IICB CTH2C VICA CTH6C + 0IICC CTH2C VICA CTH6C + 0AN2C IICA VICA CTH6C + 0AN2C IICB VICA CTH6C + 0AN2C IICC VICA CTH6C +BLANK card ending electric network branch cards +C ((((((((((( BRIDGE CIRCUIT BREAKERS, CELILO )))))))))))))))))))) + AC6 AC6Y -10.E-3 10.E+3 + BC6 BC6Y -10.E-3 10.E+3 + CC6 CC6Y -10.E-3 10.E+3 + AC2 AC2Y -10.E-3 10.E+3 + BC2 BC2Y -10.E-3 10.E+3 + CC2 CC2Y -10.E-3 10.E+3 +C +C VALVES AT CELILO +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +11VI-1 CTH6C F2SI 1 +11VI-3 CTH6C F4SI 1 +11VI-5 CTH6C F6SI 13 +11VI-4 VICA F5SI 1 +11VI-6 VICB F1SI 1 +11VI-2 VICC F3SI 1 +11II-1 CTH2C F2SII 1 +11II-3 CTH2C F4SII 13 +11II-5 CTH2C F6SII 1 +11II-4 IICA F5SII 1 +11II-6 IICB F1SII 1 +11II-2 IICC F3SII 1 +BLANK card ending switch and valve cards +C [[[[[[[[[[[[[ ]]]]]]]]]]]]]]]]]]]]]]]]]] +14GENAS 191.88 60. - 90. -1. +14GENBS 191.88 60. 150. -1. +14GENCS 191.88 60. 30. -1. +11R4- 260.00 +11R3+ -260.00 +BLANK card ending electric network source cards +C Total network loss P-loss by summing injections = 1.930197805538E-01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C AC6 AC6Y -0.17537829E-02 -0.15130661E-03 0.17602977E-02 +C BC6 BC6Y 0.74585608E-03 0.15944738E-02 0.17602977E-02 +C CC6 CC6Y 0.10079268E-02 -0.14431672E-02 0.17602977E-02 +C AC2 AC2Y -0.17256922E-02 -0.15254879E-03 0.17324216E-02 +C BC2 BC2Y 0.73073496E-03 0.15707677E-02 0.17324216E-02 +C CC2 CC2Y 0.99495722E-03 -0.14182189E-02 0.17324216E-02 +C VI-1 CTH6C Open Open Open +C +C GENCS 166.17295447816 191.88 -.3624911331317 .72614413549163 +C 95.94 30.0000000 .62919431331648 119.9470848 + S4- 4-282 4-564 R4- A3+ 3-282 3-564 R3+ +C Step Time VI-5 II-3 S4- 4-282 4-564 R4- +C CTH6C CTH2C +C +C VI-5 II-3 CEL4 +C CTH6C CTH2C S4- +C *** Phasor I(0) = -1.7537829E-03 Switch "AC6 " to "AC6Y " closed +C *** Phasor I(0) = 7.4585609E-04 Switch "BC6 " to "BC6Y " closed +C *** Phasor I(0) = 1.0079268E-03 Switch "CC6 " to "CC6Y " closed +C *** Phasor I(0) = -1.7256922E-03 Switch "AC2 " to "AC2Y " closed +C *** Phasor I(0) = 7.3073497E-04 Switch "BC2 " to "BC2Y " closed +C *** Phasor I(0) = 9.9495722E-04 Switch "CC2 " to "CC2Y " closed +C 0 0.0 92.4476735 -80.392419 -.7733E-13 -.106E-12 -.4033E-13 .51245E-13 +C 0.0 0.0 -.1763E-14 +C 1 .5E-4 92.4314685 -81.253201 -.6891E-13 -.1173E-12 -.4559E-13 260. +C 0.0 0.0 -.1605E-14 +C +C 60 .003 39.3727405 -76.238222 .10266E-12 -.3965E-12 257.446725 260. +C 0.0 0.0 .25576E-16 +C Valve "II-6 " to "IICB " closing after 3.85000000E-03 sec. +C 80 .004 10.9210123 -49.022147 .363630979 254.918524 257.4592 260. +C 0.0 0.0 .008845798 +C Valve "II-6 " to "IICB " opening after 4.40000000E-03 sec. +C 100 .005 -33.737956 -24.630028 130.519221 254.943229 257.471553 260. +C 0.0 0.0 -.02057533 +C Valve "II-1 " to "CTH2C " closing after 5.05000000E-03 sec. +C Valve "VI-6 " to "VICB " closing after 5.30000000E-03 sec. +C Valve "VI-6 " to "VICB " opening after 5.75000000E-03 sec. +C Valve "II-1 " to "CTH2C " opening after 5.80000000E-03 sec. +C Valve "VI-1 " to "CTH6C " closing after 6.50000000E-03 sec. +C Valve "VI-1 " to "CTH6C " opening after 7.05000000E-03 sec. +C +C 700 .035 0.0 -123.32011 181.490229 155.439416 268.34801 260. +C .250964556 0.0 .256905072 +C Valve "II-1 " to "CTH2C " closing after 3.54500000E-02 sec. +C Valve "II-5 " to "CTH2C " opening after 3.57500000E-02 sec. +C Valve "VI-1 " to "CTH6C " closing after 3.68500000E-02 sec. +C Valve "VI-5 " to "CTH6C " opening after 3.72000000E-02 sec. +C Valve "II-2 " to "IICC " closing after 3.82000000E-02 sec. +C Valve "II-6 " to "IICB " opening after 3.87000000E-02 sec. +C Valve "VI-2 " to "VICC " closing after 3.96000000E-02 sec. +C 800 .04 -120.72051 -12.665015 138.181338 238.820605 227.470808 260. +C 0.0 0.0 .822537008 +BLANK card ending output variable requests (just node voltages, here) +C Valve "II-6 " to "IICB " opening after 5.54000000E-02 sec. +C Valve "VI-2 " to "VICC " closing after 5.63000000E-02 sec. +C Valve "VI-6 " to "VICB " opening after 5.68500000E-02 sec. +C Valve "II-3 " to "CTH2C " closing after 5.76500000E-02 sec. +C Valve "II-1 " to "CTH2C " opening after 5.83500000E-02 sec. +C Valve "VI-3 " to "CTH6C " closing after 5.90500000E-02 sec. +C Valve "VI-1 " to "CTH6C " opening after 5.96000000E-02 sec. +C 1200 .06 -160.8791 0.0 282.172623 256.182494 395.98766 260. +C 0.0 .840036806 .840753821 +C Variable max:92.4476735 46.4552844 544.762078 580.755428 541.946569 260. +C .44972865 1.16857933 1.10230727 +C Times of max : 0.0 .041 .0444 .044 .02855 .5E-4 +C .03685 .04185 .0416 +C Variable min:-211.70165 -165.79475 -.1027E-12 -35.63939 -.1839E-12 .51245E-13 +C -.03932269 -.00819858 -.0265962 +C Times of min : .02335 .0508 .00385 .05325 .0015 0.0 +C .0372 .04575 .0231 + PRINTER PLOT + 194 5. 0.0 60. VI-5 CTH6C { Axis limits : (-0.393, 4.497) + 144 5. 0.0 60. S4- { Axis limits : (0.000, 5.448) +BLANK card terminating batch-mode plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc64.dat b/benchmarks/dc64.dat new file mode 100644 index 0000000..adbd4d3 --- /dev/null +++ b/benchmarks/dc64.dat @@ -0,0 +1,57 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-64 +C Example drawn from the dynamite EMTP Newsletter article by W. Scott Meyer, +C "EMTP Data Modularization and Sorting ...," Volume 4, No. 2, Sec. V, +C November, 1983. $PREFIX and $SUFFIX may be installation-dependent. +C Miscellaneous data cards and TACS have been added to allow execution +C to continue through the reading of switch cards, thereby documenting +C the $INCLUDE evaluation and subsequent sorting. The $INCLUDE file +C DC64INCL.DAT was created by 2nd subcase of companion data case DC-36. +C For nearly identical case (except no use of dummy internal nodes, which +C makes it less general), see DC-8 (associated with first subcase of DC-36). +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +$SUFFIX, .dat { File name of $INCLUDE will be followed by this file type +$DUMMY, DUM000 { Offset for name of dummy nodes explicitely reaffirms defaults + .005 4.0 { DELTAT and TMAX are in fact arbitrary, since no simulation + 1 -1 1 1 1 { Arbitrary values, since no simulate +TACS HYBRID +99 FIRE1 = TIMEX +99 FIRE2 = TIMEX +99 FIRE3 = TIMEX +13FAKE +98 FIRE452+UNITY 1. 0. 0. TIMEX +98 FIRE552+UNITY 1. 0. 0. TIMEX +98 FIRE652+UNITY 1. 0. 0. TIMEX +BLANK card ends all TACS data +$INCLUDE, LIMARG = 20 { Reduce max # of arguments from default value of 1200 +$INCLUDE, dc64incl, ACNOD, #MINUS, ##PLUS, #FIRE { Note "##MID" of DC-8 missing +BLANK card ending BRANCH cards +BLANK card ending SWITCH cards +$ABORT { Abort this simulation; restart ATP using next data set +aaaaa bbbbb ccccc --- any data card such as this before BNDC should be ignored +BEGIN NEW DATA CASE +C 2nd of 2 subcases will illustrate use of dependent variables within an +C INCLUDE file. The 5th subcase of DC36 involved 3, and it created the +C punch file DC36E.PCH that now will be used. Note the 2nd argument is +C the line-to-line RMS voltage, which will be assumed to be 500 kV. This +C is converted to line-to-neutral peak by dividing by the square root of 3 +C and multiplying by the square root of 2: 500000 * root (2/3) = 408248 + .005 4.0 { DELTAT and TMAX are in fact arbitrary, since no simulation + 1 -1 0 { Arbitrary values, since no simulation will occur + JDAYA 1.0 { 1st of 3 nodes used to connect 3-phase source + JDAYB 1.0 { 2nd of 3 ... + JDAYC 1.0 { 3rd of 3 ... +BLANK card ending BRANCH cards +BLANK card ending SWITCH cards +C $PREFIX, [] { $INCLUDE files are located in same place as this main data file +$SUFFIX, .pch { File name of $INCLUDE will be followed by this file type +C File Node Amplitude Hertz Degrees T-start +$INCLUDE, dc36e, JDAY, 500.E+3, 50.0, -10.0, 0.0, { Subcase 5 of DC-36 +C Source. 4.08E+05 5.00E+01 -1.00E+01 0.00E+00 |14JDAYA 408248.29 50.0 -10.0 0.0 +C Source. 4.08E+05 5.00E+01 -1.30E+02 0.00E+00 |14JDAYB 408248.29 50.0 -130. 0.0 +C Source. 4.08E+05 5.00E+01 -2.50E+02 0.00E+00 |14JDAYC 408248.29 50.0 -250. 0.0 +BLANK card ending SOURCE cards +$STOP { Input data interpretation is all we want to see, so halt execution +BEGIN NEW DATA CASE +BLANK +EOF ---- Needed so "OVER1" or "SPYING" ("DATA") ends input here during reading diff --git a/benchmarks/dc64incl.dat b/benchmarks/dc64incl.dat new file mode 100644 index 0000000..d295126 --- /dev/null +++ b/benchmarks/dc64incl.dat @@ -0,0 +1,47 @@ +KARD 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 + 14 15 15 16 16 17 17 18 18 19 19 21 21 21 22 22 22 23 23 23 24 24 24 25 25 + 25 26 26 26 +KARG 1 -1 1 -1 1 -3 1 -3 1 -5 1 -5 3 -4 3 -4 3 -6 3 -6 3 -2 3 -2 1 + 2 1 2 1 2 1 3 1 3 1 3 2 4 -1 2 4 -3 2 4 -5 1 4 -4 1 4 + -6 1 4 -2 +KBEG 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 + 9 3 9 3 9 3 9 3 9 3 9 9 65 3 9 65 3 9 65 3 9 65 3 9 65 + 3 9 65 3 +KEND 7 14 7 14 7 14 7 14 7 14 7 14 8 14 8 14 8 14 8 14 8 14 8 14 7 + 14 7 14 7 14 7 14 7 14 7 14 14 69 8 14 69 8 14 69 8 13 69 8 13 69 + 8 13 69 8 +KTEX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + 1 1 1 1 +/BRANCH +C3 BEGIN WITH ANODE REACTORS AND PARALLEL RESISTORS (6 PAIRS): + _NODEA__MID1 3000. + _NODEA__MID1 1.0 + _NODEB__MID3 3000. + _NODEB__MID3 1.0 + _NODEC__MID5 3000. + _NODEC__MID5 1.0 + __PLUS__MID4 3000. + __PLUS__MID4 1.0 + __PLUS__MID6 3000. + __PLUS__MID6 1.0 + __PLUS__MID2 3000. + __PLUS__MID2 1.0 +C3 NEXT COME THE SNUBBER CIRCUITS, ACROSS VALVES AND ANODE REACTORS: + _NODEA_MINUS 1200. 0.1 + _NODEB_MINUS 1200. 0.1 + _NODEC_MINUS 1200. 0.1 + _NODEA__PLUS 1200. 0.1 + _NODEB__PLUS 1200. 0.1 + _NODEC__PLUS 1200. 0.1 +C3 NEXT COME THE VALVES: +/SWITCH +11__MID1_MINUS _FIRE2 +11__MID3_MINUS _FIRE4 +11__MID5_MINUS _FIRE6 +11__MID4_NODEA _FIRE5 +11__MID6_NODEB _FIRE1 +11__MID2_NODEC _FIRE3 +$EOF User-supplied header cards follow. 11-Sep-88 10.41.14 +ARG, _NODE, _MINUS, __PLUS, _FIRE +DUM, __MID1, __MID2, __MID3, __MID4, __MID5, __MID6 diff --git a/benchmarks/dc65.dat b/benchmarks/dc65.dat new file mode 100644 index 0000000..9deb563 --- /dev/null +++ b/benchmarks/dc65.dat @@ -0,0 +1,63 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-65 +C The beginning case-marker card and the present comment cards represent +C an exception that must be carefully remembered. They are an exception +C to the rule that nothing must precede the definitions of argum. vectors +C KARD, KARG, KBEG, KEND, and KTEX. Well, only here, in and around KARD +C lines is such exceptional input allowed. Beginning with the very first +C KARG card and ending with the last KTEX card, there must be nothing +C but numbers. Now, about the data case, which was produced (except for +C these exceptional cards at the top!) by the 3rd subcase of DC-36, which +C uses "DATA BASE MODULE". There is a single argument, which is TMAX, +C the end-time of the study. The basic problem is that of DC-4, which +C has been modified by the removal of connectivity and phasor printout. +C To see 42 steps, key "file_name" as follows: "dc65. , 0.42" (note +C 3 or more blanks preceding the comma are required for automatic "dat". +KARD 2 +KARG 1 +KBEG 13 +KEND 16 +KTEX 0 +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .010 TMAX + 1 1 0 3 1 -1 + 5 5 20 20 + BRANCH NAME:First { Even though name could go on next card, use this instead + GEN TRAN 5.0 5.E4 3 + TRAN NAME R-mag 1.E4 +93TRAN NAME Magnet .005 30. 3 + 0.0 0.0 { 1st point being origin is request to reflect + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 + TRAN LOADG 255. 5.E4 3 +C Note: original fixed-format card (next comment) converted to free-format: +C LOADG 1.E-6 +0,LOADG, , , , 1.E-6, 0.0, 0.0, , , , , , +BLANK card ending program branch cards. +BLANK card terminating program switch cards (none, for this case) +14GEN 70. .1591549 -1. +BLANK card terminating program source cards. +C Total network loss P-loss by summing injections = 8.286714400785E+00 +C Inject: GEN 70. 70. .23676326859385 .25769284993889 8.2867144007848 +C Inject: 0.0 0.0 -.1017288531066 -23.2514964 3.5605098587304 +C ---- Initial flux of coil "TRAN " to " " = -1.13295190E+01 +C Step Time GEN TRAN TRAN GEN TRAN +C TRAN TERRA LOADG +C 0 0.0 6.270257621 63.72974238 63.72974215 70. 63.72974238 +C 1 .01 6.156651781 63.83984825 63.83984802 69.99650003 63.83984825 + GEN TRAN +BLANK card ending program output-variable requests. +C 42 .42 1.105583309 62.81064576 62.81064551 63.91622907 62.81064576 +C Variable maxima : 6.270257621 64.72841365 64.7284134 70. 64.72841365 +C Times of maxima : 0.0 .18 .18 0.0 .18 +C Variable minima : 1.105583309 62.81064576 62.81064551 63.91622907 62.81064576 +C Times of minima : .42 .42 .42 .42 .42 + PRINTER PLOT +$WIDTH, 79, { Switch to narrow output to minimiz output (rest is of no interest) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc66.dat b/benchmarks/dc66.dat new file mode 100644 index 0000000..fab8e8c --- /dev/null +++ b/benchmarks/dc66.dat @@ -0,0 +1,210 @@ +BEGIN NEW DATA CASE shots:40 part:-1 +C BENCHMARK DC-66 +C Parallel Monte Carlo simulation is the only legitimate reason for the +C solution of this data case, which is derived from DC-24. See the +C article by Meyer and Liu in the December, 1988, issue of EMTP News. +C Note that the number of energizations has been set to NENERG = 999 +C whereas output is minimized: no connectivity, no phasor solution, and +C finally, no miniature printer plots of switch times. About special +C features, the central statistics file PARALLEL.LIS must exist before +C the simulation has begun. If it does not, it should be created using +C the INIT command of OPMC (OBSERVE PARALLEL MONTE CARLO). So as +C to identify the process independent of the STARTUP file, note the +C use of "USER IDENTIFICATION" to override USERID of STARTUP. The +C creation of full tables (including "LABCOM" storage) is illustrated +C (see MEMSAV = 1). This is why there is $OPEN usage on both units +C LUNIT2 = 2 and LUNIT9 = 9. One solution needs this. But all the +C remaining ones should have MEMSAV = 0, in which case the file OPEN +C and CLOSE on unit LUNIT2 can and should be deleted. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +USER IDENTIFICATION Paris FORMATTED ! { Overrides A6 USERID of STARTUP for plots +MINIMUM TABLE SIZES { Request creation of LISTSIZE.PMC during initialization +CENTRAL STATISTICS FILE { Request word that precedes the disk file name +c:\atp\parallel.lis { Leading percent sign avoids confusion of "/" in column 1 +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 0 0 1 -1 0 0 200 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards + ASW10 BSW10 CSW10 { Request for these node voltage outputs +BLANK card ending the specification of program outputs (node voltages, here) +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE shots:10 part:1 +C 2nd of 4 subcases will do 10 shots as the 1st of 4 parts (see preceding card) +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +USER IDENTIFICATION Paris FORMATTED ! { Overrides A6 USERID of STARTUP for plots +MINIMUM TABLE SIZES { Request creation of LISTSIZE.PMC during initialization +CENTRAL STATISTICS FILE { Request word that precedes the disk file name +c:\atp\parallel.lis { Leading percent sign avoids confusion of "/" in column 1 +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 0 0 1 -1 0 0 200 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards + ASW10 BSW10 CSW10 { Request for these node voltage outputs +BLANK card ending the specification of program outputs (node voltages, here) +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE shots:15 part:2 +C 3rd of 4 subcases will do 15 shots as the 2nd of 4 parts (see preceding card) +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +USER IDENTIFICATION Paris FORMATTED ! { Overrides A6 USERID of STARTUP for plots +MINIMUM TABLE SIZES { Request creation of LISTSIZE.PMC during initialization +CENTRAL STATISTICS FILE { Request word that precedes the disk file name +c:\atp\parallel.lis { Leading percent sign avoids confusion of "/" in column 1 +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 0 0 1 -1 0 0 200 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards + ASW10 BSW10 CSW10 { Request for these node voltage outputs +BLANK card ending the specification of program outputs (node voltages, here) +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE shots:12 part:4 +C 4th of 4 subcases will do 12 shots as the 4th of 4 parts (see preceding card) +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +USER IDENTIFICATION Paris FORMATTED ! { Overrides A6 USERID of STARTUP for plots +MINIMUM TABLE SIZES { Request creation of LISTSIZE.PMC during initialization +CENTRAL STATISTICS FILE { Request word that precedes the disk file name +c:\atp\parallel.lis { Leading percent sign avoids confusion of "/" in column 1 +OMIT BASE CASE { Comment out this card, if a base case solution is to be added + 100.E-6 20.E-3 60. + 1 1 0 0 1 -1 0 0 200 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 1 1 0 0 1 { KSTOUT is blank, not 0! } 1 + 2 2 10 10 { Printout frequency change only if base case + 0GENA A1 7. 2 + 0GENB B1 7. 1 + 0GENC C1 7. 2 + 0ENDA A10 7. 3 + 0ENDB B10 7. + 0ENDC C10 7. +-1ASW1 A5 .3 2.1146 0.645 50. 0 +-2BSW1 B5 .0268 .5397 0.021 50. 0 +-3CSW1 C5 + 0A5 A5F 1. + 0B5 B5F 1. + 0C5 C5F 1. +-1A5F ASW10 ASW1 A5 +-2B5F BSW10 +-3C5F CSW10 +BLANK card ending branch cards +76A1 ASW1 2.E-3 .1E-3 STATISTICS + B1 BSW1 4.E-3 0.5E-3 STATISTICS 4 + C1 CSW1 6.E-3 1.E-3 STATISTICS + A10 ASW10 7.95E-3 1.0 + B10 BSW10 9.95E-3 1.0 + C10 CSW10 11.95E-3 1.0 +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +14GENB 303. 60. -120.0 -1. +14GENC 303. 60. 120.0 -1. +14ENDA 303. 60. - 10.0 -1. +14ENDB 303. 60. -130.0 -1. +14ENDC 303. 60. 110.0 -1. +BLANK card ending source cards + ASW10 BSW10 CSW10 { Request for these node voltage outputs +BLANK card ending the specification of program outputs (node voltages, here) +BLANK card ending statistical tabulation requests --- NO SWITCH PLOTS --- +BEGIN NEW DATA CASE +C 5th of 4 subcases shows the results of the preceding 4 using OPMC (OBSERVE .. +CENTRAL STATISTICS FILE { Request word that precedes the disk file name +c:\atp\parallel.lis { Leading percent sign avoids confusion of "/" in column 1 +OBSERVE PARALLEL MONTE CARLO +SHOW ALL { Command of OPMC to show all parts active within central statistics file +SHOW TOP { Show extra header records (supporting material) +QUIT { Command of OPMC to quit this universal display routine +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc67.dat b/benchmarks/dc67.dat new file mode 100644 index 0000000..313b673 --- /dev/null +++ b/benchmarks/dc67.dat @@ -0,0 +1,78 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-67 +C Conversion of saturable TRANSFORMER component to equivalent (but linear) +C [R], [L]. Data comes from DC-5. Nonlinear characteristic is ignored +C (it is the phasor I-steady and PSI-steady that are used for matrix). +CHANGE TRANSFORMER { Special-request word transfers to special conversion code +$ERASE { Rewind (erase) buffer of punched cards as we prepare to punch more + TRANSFORMER .005 30.TRANFF 1.E4 3 + .005 30. { 1st point of (current, flux): characteristic + .01 40. { 2nd point of (current, flux): characteristic + .02 45. { 3rd point ... + 0.1 50. { 4th point ... + 5.0 100. { 5th and final point of (current, flux) char. + 9999 { Special terminator bounds characteristic (current = 9999) + 1GENT OPEN 5.0 5.E4 50. { 1st of 2 winding cards + 2LOADFF 20. 2.E5 100. { 2nd and final winding card +C The second of two subcases is very similar to the first. I-steady and +C PSI-steady are different, to change the matrix values. Also, the names +C of the nodes have been altered. + TRANSFORMER .100 50.TRANFF 1.E4 3 + .005 30. { 1st point of (current, flux): characteristic + .01 40. { 2nd point of (current, flux): characteristic + .02 45. { 3rd point ... + 0.1 50. { 4th point ... + 5.0 100. { 5th and final point of (current, flux) char. + 9999 { Special terminator bounds characteristic (current = 9999) + 1TOP1 BOT1 5.0 5.E4 50. { 1st of 2 winding cards + 2TOP2 BOT2 20. 2.E5 100. { 2nd and final winding card +BLANK card ends saturable TRANSFORMER components to be converted to [R], [L]. +C <++++++> Cards punched by support routine on 04-MAY-91 02:30:31 <++++++> +C 51GENT OPEN 5906.6393442623 .127950819672E7 +C 52LOADFF 11803.278688525 .245901639344E7 +C 23626.557377049 .511803278689E7 +C <++++++> Cards punched by support routine on 04-MAY-91 02:30:31 <++++++> +C 51TOP1 BOT1 104.0099009901 297524.75247525 +C 52TOP2 BOT2 198.0198019802 495049.5049505 +C 416.0396039604 .11900990099E7 +$PUNCH { Flush the punched-card output of just-created Type-51, 52, ... +BEGIN NEW DATA CASE +C Artificial illustration of the conversion of pre- "M39." TACS data +C to post-"M39." TACS data. Rather than being a coherent, consistent data +C case, this is simply the random collection of many old components. Note +C that all EMTP data cards preceding the TACS data itself is missing (there +C is no provision for processing it). Data cards after the blank card that +C ends TACS data have no effect, since they never will be processed. +OLD TO NEW TACS { Transfer to utility that converts old TACS data to new + 1OUT1 +GEN + 1.0 + 1.0 1.0 +99BREAK = 1.5E+8 * TIMEX + 1.0E+5 +98GRID 51+UNITY BREAK DRIVE +BLANK card ending TACS function blocks + 1DC 1.0 -1. + 2GEN 100. 1.0 -1. +BLANK card ending TACS source cards +C A comment card will be added to demonstrate that these are preserved +88DEV50I50+SOURCE 0.8 +88DEV51C51+UNITY 1.MIDDLESOURCE +88DEV54V54+DEV52O -0.2 0.3 QUART +88DEV55 55+SOURCE + -1.0 + -0.5 + 0.0 + 0.5 + 1.0 + 9999. +BLANK card ending TACS supplemental variables and devices + OUT1 GEN +BLANK card ending TACS output requests + EQUIVR 2775. { Initial condition matches R during phasor solution +BLANK card ending TACS initial conditions (and also all TACS data) +$PUNCH, dc67b.pch ! { Hold lower case + PRINTER PLOT { Beginning of data following TACS data --- will be ignored + 143 .2 0.0 1.0 OUT1 +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dc68.dat b/benchmarks/dc68.dat new file mode 100644 index 0000000..f90371b --- /dev/null +++ b/benchmarks/dc68.dat @@ -0,0 +1,1362 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-68 +C Illustration of MODELS using six of Laurent Dube's simple test cases +C 1st of 16 data subcases. This was taken from Laurent's file TC1.DAT. +C July of 1995, this is converted to the new MODELS STAND ALONE by +C adding STAND ALONE to the MODELS declaration. Also, all data +C between ENDMODELS & batch-mode plot cards (just BLANK) was deleted. + 0.1 1.00 + 1 1 1 1 1 +MODELS STAND ALONE +STORAGE integer pages:0 real pages:0 ENDSTORAGE +MODEL tc1 + VAR a + INPUT i + EXEC + a:=t + ENDEXEC +ENDMODEL +USE tc1 AS tc1a + INPUT i:=0 +ENDUSE +RECORD tc1a.a AS a +ENDMODELS +C Step Time MODELS +C A +C 0 0.0 0.0 +C 1 0.1 0.1 +C 2 0.2 0.2 +C 3 0.3 0.3 +C 4 0.4 0.4 +C 5 0.5 0.5 +C 6 0.6 0.6 +C 7 0.7 0.7 +C 8 0.8 0.8 +C 9 0.9 0.9 +C 10 1.0 1.0 +C Variable maxima : 1.0 +C Times of maxima : 1.0 +C Variable minima : 0.0 +C Times of minima : 0.0 +BLANK card terminating plotting +BEGIN NEW DATA CASE +C Illustration of MODELS using six of Laurent Dube's simple test cases +C 2nd of 16 data subcases. This was taken from Laurent's file TC2.DAT. + 0.001 0.01 + 1 1 1 1 1 +MODELS +INPUT elec90 {v(NOD1)} + elec91 {i(NOD2)} + elec93 {switch(NOD2)} + elec94 {imssv(NOD1)} + elec95 {imssi(NOD2)} +MODEL TC2 + INPUT i[90..95] + VAR a[90..95] + EXEC a[90..95]:=i[90..95] ENDEXEC +ENDMODEL +USE tc2 AS tc2 + INPUT i[90]:=elec90 + i[91]:=elec91 + i[92]:=0 + i[93]:=elec93 + i[94]:=elec94 + i[95]:=elec95 +ENDUSE +RECORD tc2.a[90] AS a90 + tc2.a[91] AS a91 + tc2.a[92] AS a92 + tc2.a[93] AS a93 + tc2.a[94] AS a94 + tc2.a[95] AS a95 +ENDMODELS + NOD1 NOD2 1.00 +BLANK card after last electric network branch + NOD2 MEASURING +BLANK card ends switches +14NOD1 100.0 50.0 -30. -1.0 +BLANK card after last electric network source + NOD1 +C Step Time NOD1 MODELS MODELS MODELS MODELS MODELS MODELS +C A90 A91 A92 A93 A94 A95 +C *** Phasor I(0) = 8.6602540E+01 Switch "NOD2 " to " " closed in the steady-state. +C 0 0.0 86.6025404 86.6025404 86.6025404 0.0 1.0 -50. -50. +C 1 .1E-2 97.8147601 97.8147601 97.8147601 0.0 1.0 0.0 0.0 +C 2 .002 99.4521895 99.4521895 99.4521895 0.0 1.0 0.0 0.0 +C 3 .003 91.3545458 91.3545458 91.3545458 0.0 1.0 0.0 0.0 +BLANK card ends selective node voltage outputs +C 8 .008 -40.673664 -40.673664 -40.673664 0.0 1.0 0.0 0.0 +C 9 .009 -66.913061 -66.913061 -66.913061 0.0 1.0 0.0 0.0 +C 10 .01 -86.60254 -86.60254 -86.60254 0.0 1.0 0.0 0.0 +C Variable maxima : 99.4521895 99.4521895 99.4521895 0.0 1.0 0.0 0.0 +C Times of maxima : .002 .002 .002 0.0 0.0 .1E-2 .1E-2 +C Variable minima : -86.60254 -86.60254 -86.60254 0.0 1.0 -50. -50. +C Times of minima : .01 .01 .01 0.0 0.0 0.0 0.0 +BLANK card terminating plotting +BEGIN NEW DATA CASE +PRINTED NUMBER WIDTH, 12, 2, { Keep dT loop precision the same, but 2 blank separators +C Illustration of MODELS using six of Laurent Dube's simple test cases +C 3rd of 16 data subcases. This was taken from Laurent's file TC9.DAT. + 0.001 0.01 + 1 1 1 1 0 +MODELS +OUTPUT tacs1, tacs2, arcsh, arcch, arcth +MODEL tc9 + INPUT i {dflt:0} + VAR tacs[1..2] + OUTPUT tacs[1..2] + EXEC + tacs[1]:=cos(2*pi*1000/6*t) + tacs[2]:=sin(2*pi*1000/6*(t+startstep)) + ENDEXEC +ENDMODEL +USE tc9 AS tc9 + OUTPUT tacs1:=tacs[1] + tacs2:=tacs[2] +ENDUSE +C 21 September 2002, add HYPER to demonstrate corrected hyperbolic functions. +C Previously, the inverse sinh, cosh, and tanh were missing. Dube did not halt +C execution, however. Instead, he returned impossible function valu 88888.88.. +C as first reported by Orlando Hevia of Santa Fe, Argentina. WSM corrects XPR2 +C Note the internal names such as arcsinhyperbolic are impractically long. +C This is done on purpose to demonstrate Dube's flexibility in this regard. +MODEL HYPER -- module that serves only to verify 3 inverse hyperbolic function + VAR arcsinhyperbolic, arccoshyperbolic, arctanhyperbolic, arg + OUTPUT arcsinhyperbolic, arccoshyperbolic, arctanhyperbolic +EXEC + arg := 200 * T -- argument of 3 function usages to follow + arcsinhyperbolic := ASINH( arg ) -- test hyperbolic arc sine over [0, 2] + IF arg >= 1.0 -- if arg of arc cosh is possible & arc tanh is impossible + THEN + arccoshyperbolic := ACOSH( arg ) -- test hyperbolic arc cosine over ... + arctanhyperbolic := -9999. + ELSE -- Alternate, if arg of arc cosh is impossible & arc tanh is possible: + arccoshyperbolic := -9999. + arctanhyperbolic := ATANH( arg ) -- test hyperbolic arc tangent over ... + ENDIF +ENDEXEC +ENDMODEL +USE HYPER AS HYPER + OUTPUT ARCSH:=arcsinhyperbolic -- ATP output name ARCSH is connected to internal model name + OUTPUT ARCCH:=arccoshyperbolic -- ATP output name ARCCH is connected ... + OUTPUT ARCTH:=arctanhyperbolic -- ATP output name ARCTH is connected ... +ENDUSE +RECORD tacs1 AS tacs1 + tacs2 AS tacs2 + arcsh AS arcsh + arcch AS arcch + arcth AS arcth +ENDMODELS + NOD1 NOD2 1.00 + TACS2 NOD2 1.00 + NOD2 NOD3 1.00 +BLANK card after last electric network branch + NOD2 MEASURING +13NOD3 TACS1 1 +BLANK card ends switches +17TACS2 +14NOD1 100.0 50.0 -1.0 +60TACS2 +BLANK card after last electric network source + TACS2 +C First 1 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 5 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time TACS2 MODELS MODELS MODELS MODELS MODELS +C TACS1 TACS2 ARCSH ARCCH ARCTH +C *** Phasor I(0) = 1.0000000E+02 Switch "NOD2 " to " " closed in the steady-state. +C 0 0.0 0.0 1.0 .866025404 0.0 -9999. 0.0 +C Switch "NOD3 " to " " closing after 1.00000000E-03 sec. +C 1 .1E-2 .866025404 0.5 .866025404 .19869011 -9999. .202732554 +C Switch "NOD3 " to " " opening after 2.00000000E-03 sec. +C 2 .002 .866025404 -.5 .56655E-15 .39003532 -9999. .42364893 +C 3 .003 .56655E-15 -1. -.8660254 .568824899 -9999. .693147181 +BLANK card ends selective node voltage outputs +C 4 .004 -.8660254 -.5 -.8660254 .732668256 -9999. 1.09861229 +C Switch "NOD3 " to " " closing after 5.00000000E-03 sec. +C 5 .005 -.8660254 0.5 -.1133E-14 .881373587 0.0 -9999. +C 6 .006 -.1133E-14 1.0 .866025404 1.01597313 .622362504 -9999. +C 7 .007 .866025404 0.5 .866025404 1.13798205 .867014726 -9999. +C Switch "NOD3 " to " " opening after 8.00000000E-03 sec. +C 8 .008 .866025404 -.5 .36738E-15 1.24898333 1.04696792 -9999. +C 9 .009 .36738E-15 -1. -.8660254 1.35044074 1.19291073 -9999. +C 10 .01 -.8660254 -.5 -.8660254 1.44363548 1.3169579 -9999. +BLANK card terminating plotting +BEGIN NEW DATA CASE +PRINTED NUMBER WIDTH, 11, 1, { Cancel preceding declaration (extra blank) +C Illustration of MODELS using six of Laurent Dube's simple test cases +C 4th of 16 data subcases. This was taken from Laurent's file TC10.DAT + 1.0 1.0 + 1 1 1 1 1 +MODELS +MODEL test +COMMENT + Provides a quick check on the use of nested pointlist functions + for the representation of parametric curves. + Here the parameter is the variable 'r', + and the main functin is used as y=f(x,r) + using a=mainfun(x) at various values of r. +ENDCOMMENT + FUNCTION fun1 POINTLIST (-inf,inf), (0,0), (inf,-inf) + FUNCTION fun2 POINTLIST (-inf,2*inf), (0,0), (inf,-2*inf) + FUNCTION fun3 POINTLIST (-inf,3*inf), (0,0), (inf,-3*inf) + FUNCTION fun4 POINTLIST (-inf,4*inf), (0,0), (inf,-4*inf) + FUNCTION mainfun POINTLIST + (0,0),(1,fun1(r)),(2,fun2(r)),(3,fun3(r)),(4,fun4(r)) + FUNCTION ref(x,r):=-r*x --Same function in its analytic form + INPUT i + VAR a,r + INIT + r:=-1 + WHILE r<5 DO + r:=r+1 + write(' ') + write('r:',r) + FOR k:=0 to 3.5 by 0.5 DO + a:=mainfun(k) + write(' ',k,': ',a, ' ', ref(r,k)) + ENDFOR + ENDWHILE + ENDINIT + EXEC + ENDEXEC +ENDMODEL +USE test AS test + INPUT i:=0 +ENDUSE +ENDMODELS + NOD1 1.00 +BLANK card after last electric network branch +BLANK card ends switches +14NOD1 100.0 50.0 -1.0 +BLANK card after last electric network source + NOD1 +BLANK card ends selective node voltage outputs +C Step Time NOD1 +C 0 0.0 100. +C 1 1.0 100. +C Variable maxima : 100. +C Times of maxima : 0.0 +C Variable minima : 100. +C Times of minima : 0.0 +BLANK card terminating plotting +BEGIN NEW DATA CASE +C Illustration of MODELS using six of Laurent Dube's simple test cases +C 5th of 16 data subcases. This was taken from Laurent's file TC11.DAT + 0.1 1.00 + 1 1 1 1 1 +MODELS +MODEL tc11 + VAR a + INPUT i + EXEC + a:=t + write ( 'Writing a line...' ) + ENDEXEC +ENDMODEL +USE tc11 AS tc11 + INPUT i:=0 +ENDUSE +RECORD tc11.a AS a +ENDMODELS + NOD1 1.00 +BLANK card after last electric network branch +BLANK card ends switches +14NOD1 100.0 50.0 -1.0 +BLANK card after last electric network source + NOD1 +C Step Time NOD1 TACS +C A +C 0 0.0 100. 0.0 +C 1 0.1 100. 0.1 +C 2 0.2 100. 0.2 +C 3 0.3 100. 0.3 +BLANK card ends selective node voltage outputs +C 9 0.9 100. 0.9 +C 10 1.0 100. 1.0 +C Variable maxima : 100. 1.0 +C Times of maxima : 0.0 1.0 +C Variable minima : 100. 0.0 +C Times of minima : 0.0 0.0 +BLANK card terminating plotting +BEGIN NEW DATA CASE +C Illustration of MODELS using six of Laurent Dube's simple test cases +C 6th of 16 data subcases. This was taken from Laurent's file TC13.DAT + 0.1 1.00 + 1 1 1 1 1 +MODELS +MODEL test + INPUT i + VAR a, b + HISTORY b + EXEC + a:=b {MAX:0.7} + b:=t + ENDEXEC +ENDMODEL +USE test AS test + INPUT i:=t + HISTORY b:=t +ENDUSE +RECORD test.a AS a +ENDMODELS + NOD1 1.00 +BLANK card after last electric network branch +BLANK card ends switches +14NOD1 100.0 50.0 0.0 +BLANK card after last electric network source + NOD1 +C Step Time NOD1 TACS +C A +C 0 0.0 0.0 -.1 +C 1 0.1 100. 0.0 +C 2 0.2 100. 0.1 +C 3 0.3 100. 0.2 +C 4 0.4 100. 0.3 +BLANK card ends selective node voltage outputs +C 9 0.9 100. 0.7 +C 10 1.0 100. 0.7 +C Variable maxima : 100. 0.7 +C Times of maxima : 0.1 0.9 +C Variable minima : 0.0 -.1 +C Times of minima : 0.0 0.0 +BLANK card terminating plotting +BEGIN NEW DATA CASE +C 7th of 16 subcases was added 22 August 1998 to illustrate a supplemental +C variable that extends through column 80. Furthermore, it is unusual in +C that it has no blank byte to the right of the equal sign in column 11. +C The result is easily checked since, by inspection, it has value 9 + T. +C For background text, see the July, 1998, newsletter. Dr. Yuan Bin called +C our attention to this problem. But that was not the end. It was about a +C year later that Carlos Mata pointed to the weakness of the correction: it +C failed if column 80 contained a closed parenthesis. The correction was +C fortified March 18, 1998, and new variable CARLOS confirms correct +C operation. Note that the values of I1FG50 and CARLOS are equal. +ABSOLUTE TACS DIMENSIONS + 10 90 100 20 30 400 350 60 + .02 .10 + 1 1 0 0 +TACS STAND ALONE +99I1FG00 = 1. +99I1FG02 = TIMEX +99I1FG04 = 1. +99I1FG06 = 1. +99I1FG08 = 1. +99I1FG10 = 1. +99I1FG12 = 1. +99I1FG14 = 1. +99I1FG16 = 1. +99I1FG18 = 1. +98YUAN =I1FG00+I1FG02+I1FG04+I1FG06+I1FG08+I1FG10+I1FG12+I1FG14+I1FG16+I1FG18 +98CARLOS =I1FG00+I1FG02+I1FG04+I1FG06+I1FG08+I1FG10+I1FG12+ 1.5*(I1FG14+I1FG16) +33YUAN CARLOS +BLANK card ending all TACS data cards +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 8th of 16 subcases was added 18 August 1998 to illustrate new request words +C that are related to repeatability of random numbers, or lack of it. Here +C we illustrate repeatability, but the non-repeatable case really is the more +C important. If the REPEATABLE card below is replaced by the comment card +C that immediately precedes it, the new initialization of OVER8 (see the +C October newsletter) is demonstrated. Previously, ATP GNU answers differed +C from Salford and Watcom answers. Also illustrated is no output variable, +C with MODELS doing all output. Of course, with only 2 energizations and +C a dummy electric network, this is just a demonstrative shadow of the real +C data case of interest (Gabor Furst's BACKFL.DAT). The dominant structural +C feature is use of MODELS for all output of a SYSTEMATIC data case. There +C _is_ a base case, although the engineering significance is not known. +TRULY RANDOM NUMBERS { Alternative to following card removes repeatability +REPEATABLE RANDOM NUMBERS { English-language override of NSEED 5 lines below +C Note about preceding: Since the TRULY declaration is overridden by the +C REPEATABLE declaration, in fact the TRULY declaration does nothing. But +C it does illustrate acceptance by ATP. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .060 .300 { Time step is artificially large (5 steps to completion) + 1 1 1 2 1 -1 -2 +C ISW ITEST IDIST IMAX IDICE KSTOUT NSEED + 0 1 0 0 1 1 + 5 5 20 20 { Printout frequency changes for base case +MODELS HYBRID +STORAGE integer pages:0 real pages:0 ENDSTORAGE +MODEL tc1 + VAR angle + INPUT i + INIT angle:=0 + ENDINIT + EXEC + angle:= random() +C write(' T =', t, ' MODELS random() yields =', angle ) +--- Only program output within dT loop is preceding output of variable ANGLE --- +C To preceding output, add the energization number KNT to demonstrate +C that a 4-byte integer is handled properly by XPR1 for WRITE(. GNU ATP +C uses different code of IEIGHT for this than for ISTEP. WSM, 28 Aug 2010 + write(' T =', t, 'KNT =', atp(knt), 'MODELS random() ==>', angle ) + ENDEXEC +ENDMODEL +USE tc1 AS tc1a + INPUT i:=0 +ENDUSE +C RECORD tc1a.angle AS angle { If activates, variable angle becomes ATP output +ENDMODELS + GENA A1 1. + A1 1. + ASW1 1. +BLANK card ending branch cards + A1 ASW1 4.E-3 .2E-3 2 SYSTEMATIC +BLANK card ending switch cards +14GENA 303. 60. 0.0 -1. +BLANK card ending source cards +BLANK card ending output variable requests (node voltages only, here) + PRINTER PLOT +BLANK card ending plot cards (for base case only) +BLANK card ending statistical tabulate (none possible, since no output variable) +BEGIN NEW DATA CASE +C 9th of 16 subcases is a meaningful case from Trainee Rod Price of BPA, who +C assembled and tested the data during the summer and fall of 1989. The +C study involves the 500-kV Coulee-Raver overhead line, and the model +C includes series capacitors at Columbia. These capacitors are protected +C by nonlinear resistors (ZnO modeling) that are monitored and bypassed +C using MODELS. To see more interesting simulation, the end-time TMAX +C should be increased to 100 msec. Reformulated by Laurent Dube 8 Aug 91 +C following his correction of a MODELS bug for Bob Wilson at Univ. of Idaho +C in Moscow. It was observed that the answer of this 7-th subcase changed, +C too (i.e., before it was wrong, although perhaps not by much)! +C 14 Sept 1993, WSM adds $BLANK DATA below to protect the user who has +C NOBLAN of STARTUP equal to unity (equivalent to $BLANK HALT to halt if +C a true blank card is found. This MODELS data does use blank lines as +C comments, and MODELS ignores the blanks. The important thing is to +C prevent EMTP data input from halting before MODELS receives the blanks! +C 14 October 2000, the addition of one IF-statement to OVER16 (see 8th +C subcase of DCNEW-16 and January, 2001, newsletter) changes the answers +C of this subcase slightly. To document this, output variables are have +C been made more relevant. Differences follow the fault to ground. From +C the .DBG file, the new logic is used 3 times: +C OVER16 bypasses compensation. J, T = 43 2.000000000000E-02 +C OVER16 bypasses compensation. J, T = 43 3.150000000000E-02 +C OVER16 bypasses compensation. J, T = 43 4.990000000000E-02 +C It is not surprising that the difference shows up after step 400, which +C corresponds to that switch closure at T = 20 msec (1st of 3 uses). +C The following comparison shows how extrema are affected only slightly: +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 5 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time CR25A CR20A CRZ1A MODELS MODELS MODELS MODELS MODELS +C CR30A TERRA CR20A VCAPA IZNA PZNA EZNA GAPA +C Old maxima : 27237.7816 15421.0962 .445513E-4 39549.6402 .445515E-4 .139454E10 .500879 E7 1.0 +C New maxima : 26931.1785 15312.52 .445513E-4 39549.6402 .445515E-4 .135464E10 .4929451E7 1.0 +C Times of both : .03175 .0375 .0125 .0125 .0125 .028 .05 .0315 +C Old minima : -7552.2441 -28033.65 -7291.149 -191594.73 -7291.149 .432745E-9 0.0 0.0 +C New minima : -7466.2202 -28099.511 -7350.3614 -184341.43 -7350.3614 .432745E-9 0.0 0.0 +C Times of old : .0378 .02865 .02815 .02815 .02815 0.0 0.0 0.0 +C Times of new : .0378 .02865 .02805 .02805 .02805 0.0 0.0 0.0 +C About switching times, both have: Gap "CR25A " to "CR30A " closing +C after 3.15000000E-02 sec. But openings differ by one time step: +C Old: Gap "CR25A " to "CR30A " opening after 4.98500000E-02 sec. +C New: Gap "CR25A " to "CR30A " opening after 4.99000000E-02 sec. +PRINTED NUMBER WIDTH, 12, 2, { Cancel wider output of preceding subcase +$BLANK DATA { Request old treatment of true blanks (not + .000050 .050 60. + 1 9 1 3 1 -1 + 5 5 20 20 100 100 +C +MODELS HYBRID + +INPUT -- declare names and function of all MODELS inputs from EMTP + + vc3a {v(CR30A)} -- vc3a = voltage at node CR30A + vc2a {v(CR20A)} -- vc2a = voltage at node CR20A + vc3b {v(CR30B)} -- vc3b = voltage at node CR30B + vc2b {v(CR20B)} -- vc2b = voltage at node CR20B + vc3c {v(CR30C)} -- vc3c = voltage at node CR30C + vc2c {v(CR20C)} -- vc2c = voltage at node CR20C + iznoa {i(CRZ2A)} -- iznoa = current through switch at node CRZ2A + iznob {i(CRZ2B)} -- iznob = current through switch at node CRZ2B + iznoc {i(CRZ2C)} -- iznoc = current through switch at node CRZ2C + +OUTPUT -- declare names of MODELS outputs to EMTP + + gapa, gapb, gapc -- switch control signals + +MODEL flash + +comment **************************************************************** +* * +* Function: set or cancel the gap firing control signal * +* Inputs : voltage and current across ZnO resistor * +* Output : the firing signal to the electrical ZnO component * +* * +************************************************************* endcomment + + INPUT vcap -- voltage difference across series caps [Volts] + iczn -- ZNO current [Amps] + + DATA Pset -- power setting [Megajoules/msec] + Eset -- energy setting [Megajoules] + fdel -- firing delay [msec] + fdur -- firing duration [msec] + + VAR power -- power into ZnO resistor [Watts] + trip -- gap firing control signal [0 or 1] + energy -- energy into ZnO resistor [Joules] + tfire -- time at which the gap was last fired [sec] + + OUTPUT trip + + HISTORY INTEGRAL(power) {DFLT:0} + + INIT trip:=0 + tfire:=0 + ENDINIT + + EXEC + ------------------------------------------------------------------ + power:=vcap*iczn + energy:=INTEGRAL(power) + ------------------------------------------------------------------ + IF trip>0 -- is already firing + AND t-tfire>fdur*1.e-3 -- has exceeded firing duration + THEN + trip:=0 -- cancel the firing signal + tfire:=0 -- null the firing time + ENDIF + ------------------------------------------------------------------ + IF trip=0 -- is not signaling to fire + AND tfire=0 -- firing condition not yet detected + AND ( power >= Pset * 1.e9 -- power setting exceeded + OR energy >= Eset * 1.e6 ) -- energy setting exceeded + THEN + tfire:=t -- set the firing detection time + ENDIF + ------------------------------------------------------------------ + IF trip=0 -- is not signaling to fire + AND tfire>0 -- firing condition has been detected + AND t-tfire>=fdel*1.e-3 -- firing delay exceeded + THEN + trip:=1 -- set the firing signal + ENDIF + ------------------------------------------------------------------ + ENDEXEC + +ENDMODEL + +USE flash AS flasha ----------------------------------- PHASE A ------ + + TIMESTEP MIN: 0.0005 + + INPUT vcap:=vc3a-vc2a -- voltage across caps + iczn:=iznoa -- current through ZnO resistor + + DATA Pset:= 1 -- power setting [MJ/mS] + Eset:= 9 -- energy setting [MJ] + fdel:= 4 -- firing delay [msec] + fdur:=20 -- firing duration [msec] + + OUTPUT gapa:=trip -- passes value of 'trip' to MODELS variable 'GAPA' + +ENDUSE ----------------------------------------------------------------- + +USE flash AS flashb ----------------------------------- PHASE B ------ + + TIMESTEP MIN: 0.0005 + + INPUT vcap:=vc3b-vc2b -- voltage across caps + iczn:=iznob -- current through ZnO resistor + + DATA Pset:= 1 -- power setting [MJ/mS] + Eset:= 9 -- energy setting [MJ] + fdel:= 4 -- firing delay [msec] + fdur:=20 -- firing duration [msec] + + OUTPUT gapb:=trip -- passes value of 'trip' to MODELS variable 'GAPB' + +ENDUSE ----------------------------------------------------------------- + +USE flash AS flashc ----------------------------------- PHASE C ------ + + TIMESTEP MIN: 0.0005 + + INPUT vcap:=vc3c-vc2c -- voltage across caps + iczn:=iznoc -- current through ZnO resistor + + DATA Pset:= 1 -- power setting [MJ/mS] + Eset:= 9 -- energy setting [MJ] + fdel:= 4 -- firing delay [msec] + fdur:=20 -- firing duration [msec] + + OUTPUT gapc:=trip -- passes value of 'trip' to MODELS variable 'GAPC' + +ENDUSE ----------------------------------------------------------------- + +RECORD flasha.vcap AS VCAPA + flasha.iczn AS IZNA + flasha.power AS PZNA + flasha.energy AS EZNA + flasha.trip AS GAPA + +ENDMODELS +C --------------------- End MODELS data, begin electric network: +C **** Series Capacitors, Xc = 28.4 ohms +C + CR20A CR30A 93.40 + CR20B CR30B 93.40 + CR20C CR30C 93.40 +C + CR20D CR30D 93.40 + CR20E CR30E 93.40 + CR20F CR30F 93.40 +C +C **** Jumpers to help EMTP convergence with ZNO +C + CRZ1A CRZ2A 0.01 + CRZ1B CRZ2B 0.01 + CRZ1C CRZ2C 0.01 +C + CRZ1D CRZ2D 0.01 + CRZ1E CRZ2E 0.01 + CRZ1F CRZ2F 0.01 +C +C **** ZNO protection for Caps, I=1.8KA, 2.2 PU, alpha = 40, Vref =147.5 +C +92CRZ1A CR20A 5555. 1 + 147500. -1. + 1.0 40. .80 + 9999. +92CRZ1B CR20B CRZ1A CR20A 5555. +92CRZ1C CR20C CRZ1A CR20A 5555. +C +92CRZ1D CR20D CRZ1A CR20A 5555. +92CRZ1E CR20E CRZ1A CR20A 5555. +92CRZ1F CR20F CRZ1A CR20A 5555. +C +C **** Source Impedances +C +51SRC1A RAVBA 0.1 20.0 +52SRC1B RAVBB 0.1 18.5 +53SRC1C RAVBC +C +51SRC1A RAVBA 300.0 +52SRC1B RAVBB 150.0 +53SRC1C RAVBC +C +C +51SRC2A GRCBA 0.1 7.00 +52SRC2B GRCBB 0.1 10.7 +53SRC2C GRCBC +C +51SRC2A GRCBA 350.0 +52SRC2B GRCBB 150.0 +53SRC2C GRCBC +C +C *** LINE IMPEDANCES Values have been 1/4 to get high fault MVA **** +C +51CR50A CR30A 0.5 14.0 +52CR50B CR30B 8. 52.0 +53CR50C CR30C +C +51CR50D CR30D 0.5 14.0 +52CR50E CR30E 8. 52.0 +53CR50F CR30F +C +51CR01A CR20A 0.4 9.0 +52CR01B CR20B 5. 36.0 +53CR01C CR20C +C +51CR01D CR20D 0.4 9.0 +52CR01E CR20E 5. 36. +53CR01F CR20F +C +C ***** BYPASS IMPEDANCE **** + CR20A CR25A 5. 0.23 + CR20B CR25B 5. 0.23 + CR20C CR25C 5. 0.23 + CR20D CR25D 5. 0.23 + CR20E CR25E 5. 0.23 + CR20F CR25F 5. 0.23 +C **** PARALLEL RESISTOR + CR20A CR25A 200. + CR20B CR25B 200. + CR20C CR25C 200. + CR20D CR25D 200. + CR20E CR25E 200. + CR20F CR25F 200. +BLANK card ending program branch cards. +C **** TACS CONTROLLED CAP BYPASS SWITCHES ******* +C ** SWITCH 1 +12CR25A CR30A GAPA 11 +12CR25B CR30B GAPB 1 +12CR25C CR30C GAPC 1 +C 12CR25D CR30D GAPD 1 +C 12CR25E CR30E GAPE +C 12CR25F CR30F GAPF + CR25D CR30D -1.0 10. + CR25E CR30E -1. 10. + CR25F CR30F -1. 10. +C +C **** Main Breaker Switches +C + RAVBA CR50A -1.0 10.0 + RAVBB CR50B -1.0 10.0 + RAVBC CR50C -1.0 10.0 +C + RAVBA CR50D -1.0 10.0 + RAVBB CR50E -1.0 10.0 + RAVBC CR50F -1.0 10.0 +C + GRCBA CR01A -.006 10.0 + GRCBB CR01B -.006 10.0 + GRCBC CR01C -.006 10.0 +C + GRCBA CR01D -1.0 10.0 + GRCBB CR01E -1.0 10.0 + GRCBC CR01F -1.0 10.0 +C +C *** ZNO current measuring switches *** +C + CR30A CRZ2A -1. 1. + CR30B CRZ2B -1. 1. + CR30C CRZ2C -1. 1. + CR30D CRZ2D -1. 1. + CR30E CRZ2E -1. 1. + CR30F CRZ2F -1. 1. + CR20A 0.01998 10. { Fault switch, phase "a" to ground } 1 +BLANK card terminating program switch cards +14SRC1A 440000. 60. -20.0 -1. 10. +14SRC1B 440000. 60. 100.0 -1. 10. +14SRC1C 440000. 60. 220.0 -1. 10. +14SRC2A 440000. 60. 0.0 -1. 10. +14SRC2B 440000. 60. 120.0 -1. 10. +14SRC2C 440000. 60. 240.0 -1. 10. +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C CR20A |TERRA *CR30A *CRZ1A *CR01A *CR25A *CR25A * +C CR30A |CR20A *CRZ2A *CR50A *CR25A * +C CR20B |CR30B *CRZ1B *CR01B *CR25B *CR25B * +C CR30B |CR20B *CRZ2B *CR50B *CR25B * +C CR20C |CR30C *CRZ1C *CR01C *CR25C *CR25C * +C CR30C |CR20C *CRZ2C *CR50C *CR25C * +C CR20D |CR30D *CRZ1D *CR01D *CR25D *CR25D * +C CR30D |CR20D *CRZ2D *CR50D *CR25D * +C Total network loss P-loss by summing injections = 8.848099600964E+07 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C CR25A CR30A Open Open Open +C CR25B CR30B Open Open Open +C CR25C CR30C Open Open Open +C CR25D CR30D 9.29172435E+02 -1.77481409E+02 9.45970963E+02 +C CR25E CR30E -3.10882808E+02 8.93427637E+02 9.45970963E+02 +C CR25F CR30F -6.18289626E+02 -7.15946228E+02 9.45970963E+02 +BLANK card terminating program source cards. +C End inject: SRC2C -220000. 440000. -1191.301327068 2345.3572211208 +C End inject: -381051.1776652 -120.0000000 -2020.272665456 -120.5267278 +C Step Time CR25A CR25A TACS TACS TACS TACS +C CR30A CR30A VCAPA IZNA PZNA EZNA +C *** Phasor I(0) = 9.2917243E+02 Switch "CR25D " to "CR30D " closed +C *** Phasor I(0) = -3.1088281E+02 Switch "CR25E " to "CR30E " closed +C *** Phasor I(0) = -6.1828963E+02 Switch "CR25F " to "CR30F " closed +C < < Etc. (many switch currents) > > +C 0 0.0 -143.44999 0.0 143.449993 .28697E-11 .411659E-9 0.0 +C 1 .5E-4 602.099261 0.0 -602.09926 -.68002E-6 .411659E-9 0.0 +C 2 .1E-3 1347.43459 0.0 -1347.4346 -.15198E-5 .411659E-9 0.0 +C 3 .15E-3 2092.2912 0.0 -2092.2912 -.23592E-5 .411659E-9 0.0 +BLANK card ending output variables requests (none here, since all column 80) +C 300 .015 -23363.319 0.0 23363.3193 .263161E-4 .614832009 .014309206 +C *** Close switch "CR20A " to " " after 2.00000000E-02 sec. +C 400 .02 37570.0647 0.0 -37570.065 -.42322E-4 1.59004745 .016928315 +C 500 .025 56444.8022 0.0 -56444.802 -.63583E-4 3.58891722 .022232887 +C 600 .03 183226.734 0.0 -183226.73 -5786.1028 .106017E10 .3650637E7 +C Gap "CR25A " to "CR30A " closing after 3.15000000E-02 sec. +C 700 .035 0.0 -4433.8226 22742.1728 .256182E-4 .582612436 .4929451E7 +C 800 .04 0.0 -5450.0316 25576.0355 .288104E-4 .736855415 .4929451E7 +C 900 .045 0.0 4627.82167 -23165.41 -.26095E-4 .604499203 .4929451E7 +C Gap "CR25A " to "CR30A " opening after 4.99000000E-02 sec. +C 1000 .05 -816.5929 0.0 3143.46664 .354099E-5 .011130982 .4929451E7 +C Variable max:184341.425 26931.1785 39549.6402 .445516E-4 .135464E10 .4929451E7 +C Times of max: .02805 .03175 .0125 .0125 .028 .05 +C Variable min: -39549.64 -7466.2202 -184341.43 -7350.3614 .411659E-9 0.0 +C Times of min: .0125 .0378 .02805 .02805 0.0 0.0 + PRINTER PLOT + 194 5. 0.0 40. CR25A CR30A { Axis limits: (-0.747, 2.220) +BLANK card ending plot cards +BEGIN NEW DATA CASE +PRINTED NUMBER WIDTH, 12, 2, { Keep dT loop precision the same, but 2 blank separators +C 10th of 16 subcases was added 10 April 2011 to illustrate very simple use +C of POINTLIST within MODELS. Data comes from Orlando Hevia of Santa Fe, +C Argentina. It establishes the standard of comparison for his alternative +C SEEK function (see 11th subcase, which produces the same answer). Here +C the (X,Y) points of POINTLIST number only 7. For much larger numbers of +C points (e.g., 20200 for Orlando's TFGNMOD.DAT), Dube's POINTLIST is much +C too slow. For much larger numbers of points, use Orlando's new SEEK as +C will be illustrated by the following subcase. WSM. + 1.0 10.00 { Take ten steps, from 1 second to 10 seconds. This is "T" + 1 -1 { Print every step; do not bother saving points for plotting +MODELS STAND ALONE +MODEL SAMPLE +VAR + X,Y,Z +FUNCTION R POINTLIST +(0, 69) +(2, 50) +(4, 142) +(5, 142) +(6, 188) +(8, 73) +(10, 100) +INIT + X:=0 +ENDINIT +EXEC +X:=R(T) +Y:=SQRT(X)*0.3 +Z:=R(SQRT(X)*0.3) +ENDEXEC +ENDMODEL +USE SAMPLE AS SAMPLE +ENDUSE +RECORD + SAMPLE.X AS X + SAMPLE.Y AS Y + SAMPLE.Z AS Z +ENDRECORD +ENDMODELS +C Column headings for the 3 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 3 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time MODELS MODELS MODELS +C X Y Z +C 0 0.0 69. 2.49198716 72.6314093 +C 1 1.0 59.5 2.31408729 64.4480155 +C 2 2.0 50. 2.12132034 55.5807358 +C 3 3.0 96. 2.93938769 93.2118338 +C 4 4.0 142. 3.57491259 122.445979 +C 5 5.0 142. 3.57491259 122.445979 +C 6 6.0 188. 4.11339276 144.608033 +C 7 7.0 130.5 3.4270979 115.646503 +C 8 8.0 73. 2.56320112 75.9072517 +C 9 9.0 86.5 2.79016129 86.3474191 +C 10 10. 100. 3.0 96. +BLANK CARD ENDING PLOT CARDS +BEGIN NEW DATA CASE +$DEPOSIT, JSEEDR=0 { Reinitialize random # generator as if no preceding use +C Note: the preceding $DEPOSIT is required because random # use here is +C not the 1st of data case. Preceding subcases roll dice. Memory +C of this is erased by setting JSEEDR to zero. WSM. 29 July 2011 +C This is for addition of GAUSS. Variable NORMAL below should be +C identical in value to what is produced by TACS within subcase 2 +C of BENCHMARK DC-18. This works well for this subcase, but later +C subcases then would have different random numbers. In order not +C to change the random numbers of following subcases, we want to +C restore at the end the JSEEDR value that exists at the beginning. +C New logic of DEPOSI makes this possible. See 2nd $DEPOSIT below. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +C Preceding line allows the SEEK file to be remote if this main data file is +PRINTED NUMBER WIDTH, 12, 2, { Keep dT loop precision the same, but 2 blank separators +C 11th of 16 subcases was added 10 April 2011 to illustrate that Orlando +C Hevia's new SEEK function of MODELS will produce the same answer as +C the preceding 10th subcase, which uses POINTLIST. Data is too small for +C there to be a reason to use SEEK instead of POINTLIST, of course. For +C a more realistic illustration of the advantage of SEEK, see explanation +C of the EEUG list server dated 11 June 2011. This includes the following +C paragraph: +C The inadequacy of MODELS POINTLIST for large data (many points of the +C piecewise-linear X-Y function) was documented in detail in a paper that +C was presented at the year-2006 EEUG conference. See "Determination of +C an optimized energy storage size for a wind farm based on wind forecasts" +C by Steve Völler, Christian Müller, and Johannes Verstege of the +C University of Wuppertal in Germany. In this case, POINTLIST functioned +C correctly, but was too slow to be practical. Those German users give new +C meaning to the term industrial-strength. Would a reader believe 105K +C pairs of (X, Y)? Yes, letter K as in one thousand. Mr. Dube obviously +C did not imagine such use when he programmed his original logic. But +C Orlando Hevia's new SEEK now provides an efficient alternative without +C the need for compilation and linking of user-supplied source code. +C This data too comes from Orlando Hevia of Santa Fe, Argentina. WSM. + 1.0 10.00 { Take ten steps, from 1 second to 10 seconds. This is "T" + 1 -1 { Print every step; do not bother saving points for plotting +MODELS STAND ALONE +C 3456789012345678901234567890123456789012345678 -- Ruler for following optional +C < File Name> IPRMDL KOMPAC miscellaneous data card : +MODELS MISC. DATA dc68seek. 0 0 +C Note about preceding. Special value KOMPAC = 8765 is required +C to bypass the check on (X,Y) points of the function. Logic will +C ensure that X never decreases (a fatal error). It also discards +C all but the end points of each string of three or more identical +C Y values. That is the 3rd of 3 params shown. As for the first, +C see the substantial note below. Finally, the middle parameter, +C IPRMDL, is just IPRSUP for the new MODELS code. I.e., it +C provides diagnostic printout control. All 3 values will remain +C in force unless redefined. So, for stacked subcases, there is +C no need for repeated definition unless values are to be changed. +MODEL SAMPLE +VAR X,Y,Z, NORMAL +FUNCTION seek FOREIGN seek {ixarg: 2} +FUNCTION gauss FOREIGN gauss {ixarg: 2} +EXEC +C Of the three following EXEC lines, the first and the third use Orlando's +C new SEEK function which is defined by the (X, Y) pairs of DC68SE37.DAT +C where the root name "DC68SEEK." was read from the MODELS misc. data card. +C The "37" that overwrites the "EK" of DC68SEEK corresponds to the second +C argument of SEEK. If another function were involved, it would correspond +C to a different subscript (any # < 100 million is legal). An arbitrary # of +C such functions is allowed, and each can involve an arbitrary # of (X, Y) +C as long as List 20 has adequate unused space. As for .DAT being the file +C type, this follows from DATTYP of STARTUP because the user's file name +C ended with a period. If there is no MODELS miscellaneous data, the default +C disk file name SEEKDATA.DAT will be assumed by ATP. WSM. +X:=SEEK(T, 37 ) +Y:=SQRT(X)*0.3 +Z:=SEEK(SQRT(X)*0.3, 37 ) +C In order that all data be seen, let's document the content of DC68SE37.DAT +C which contains just the following 7 formatted lines: +C 0, 69 +C 2, 50 +C 4, 142 +C 5, 142 +C 6, 188 +C 8, 73 +C 10, 100 +C This is just usual free-format data. Each line begins in column 1, and +C the final line is known as ATP encounters an end-of-file mark. Neither +C comment lines nor $-cards nor inline comments are allowed. This is not +C an oversight. Rather, it is a way to speed execution for large files. +C If the user wants to terminate his function prematurely, however, he +C is allowed to add a line such as "-9999., 0" where the -9999 is +C interpreted as a software EOF. For an illustration, see subcase # 15. +C For some reason, Dube does not accept an in-line comment on the +C following function. Perhaps not on any function? So, strip it off: +C NORMAL:=gauss( T ) { Argument "T" in fact is unused, so is arbitrary +NORMAL:=gauss( T ) +ENDEXEC +ENDMODEL +USE SAMPLE AS SAMPLE +ENDUSE +RECORD +SAMPLE.X AS X +SAMPLE.Y AS Y +SAMPLE.Z AS Z +SAMPLE.NORMAL AS NORMAL +ENDRECORD +ENDMODELS +C MODELS "SEEK" function # 37 involves 7 pairs of (X,Y). These are stored in List-20 SCONST cells 3 through 16. +C Column headings for the 4 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 4 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time MODELS MODELS MODELS MODELS +C X Y Z NORMAL +C 0 0.0 69. 2.49198716 72.6314093 .890624441 +C 1 1.0 59.5 2.31408729 64.4480155 -.26382016 +C 2 2.0 50. 2.12132034 55.5807358 -.41782888 +C 3 3.0 96. 2.93938769 93.2118338 .66418476 +C 4 4.0 142. 3.57491259 122.445979 .242122394 +C 5 5.0 142. 3.57491259 122.445979 -.38464212 +C 6 6.0 188. 4.11339276 142. -.9889959 +C 7 7.0 130.5 3.4270979 115.646503 -.26589058 +C 8 8.0 73. 2.56320112 75.9072517 -.73063403 +C 9 9.0 86.5 2.79016129 86.3474191 -.75107385 +C 10 10. 100. 3.0 96. .288485151 +C Size 11-20: 0 3 -9999 -9999 1744 0 0 0 23 15 +C The preceding line from 80-column case-summary statistics confirms that +C 15 cells of List 20 storage are being used by SEEK. There are 6 points +C for a total of 12 values. But for each function, there are two extra +C cells. Finally, the last function must be bounded by a blank, so the +C total is 2 * 6 + 2 + 1 = 15 as shown. +C That was before adding GAUSS use. After the addition, this becomes: +C Size 11-20: 0 4 -9999 -9999 1838 0 0 0 23 17 +$DEPOSIT, JSEEDR= -98789 { Flag for DEPOSI to restore value before previous use +C Note about preceding line: As this use begins on 31 July 2011, service is +C limited to a single variable (in this case, JSEEDR). For use here, JSEEDR +C is a random variable. The user wants to restore whatever value JSEEDR had +C at the instant it was zeroed by the preceding $DEPOSIT. The user can not do +C this manually (old logic) because he does not know what the value was. But +C ATP remembers the value within DEPOSI, and can do it. WSM. 31 July 2011 +BLANK CARD ENDING PLOT CARDS +BEGIN NEW DATA CASE +C 12th of 16 subcases was added 13 April 2011 to illustrate that Orlando +C Hevia's new EGAUSS function of MODELS will perform Gaussian elimination. +C This was the 1st of 4 stacked subcases within Orlando's file TFGNMOD.DAT +C Solve the following 3 linear equations in 3 unknowns: +C X1 + 4*X2 + X3 = 7 +C X1 + 6*X2 - X3 = 13 +C 2*X1 - X2 + 2*X3 = 5 +C THE INITIAL SOLUTION IS X1= 5, X2= 1, X3= -2, x4=18 +C THE ELEMENT N+1 OF SOLUTION IS THE DETERMINANT OF the coefficient matrix + 0.2 1.0 { Take 5 time steps, changing the matrix at each new step + 1 -1 { Suppress accumulation of plot points, which are unused +MODELS STAND ALONE +C 3456789012345678901234567890123456789012345678 -- Ruler for following optional +C < File Name> IPRMDL KOMPAC miscellaneous data card : +MODELS MISC. DATA dc68seek. 0 0 +C THE FUNCTION CAN BE USED AS FOLLOW: +C +C SOLUTION[1..N+1]:= EGAUSS(N,MATRIX[1..N*N+N]) +C +C EGAUSS FROM GAUSSIAN ELIMINATION +C +MODEL solve +FUNCTION egauss FOREIGN egauss {ixarg:100} + VAR arg[1..12] + VAR x[1..4] +EXEC +if t=0 then + arg[1]:=1.0 + arg[2]:=4.0 + arg[3]:=1.0 + arg[4]:=1.0 + arg[5]:=6.0 + arg[6]:=-1.0 + arg[7]:=2.0 + arg[8]:=-1.0 + arg[9]:=2.0 + arg[10]:=7.0 + arg[11]:=13.0 + arg[12]:=5.0 +endif +x[1..4]:=egauss(3,arg[1..12]) +write( 'Solution vector X =', x[1], x[2], x[3], ' Determinant =', x[4] ) +arg[1]:= arg[1]*2.0 +arg[12]:= arg[12]+1.0 +C Warning about the following use of RANDOM, which is the MODELS connection +C to ATP's random number generator. For KOMPAR = 0 or 1 (set in STARTUP), +C answers will be different every time the data is simulated, and different +C program versions can not be compared (e.g., GNU vs. Salford). For purposes +C of a test case, we want repeatability and comparability, so set KOMPAR = 3. +C Also, position within the data case (here, the 12th subcase) may be critical +C since future random numbers depend on past random numbers. +arg[2]:=random() +C arg[2]:= arg[1] * arg[12] --- a deterministic alternative to preceding line +write('arg(1,12,2) =', arg[1], arg[12], arg[2] ) +ENDEXEC +ENDMODEL +USE solve AS solve +ENDUSE +ENDMODELS +C Because there is no electric network, there is no usual output of the +C time-step loop. Once the dT loop begins, the only output is from MODELS: +C Blank card ends electric sources. KCONST = 1 |BLANK card ending dummy source that ATP added to TACS or MODELS STAND ALONE +C X vector = 5.0 1.0 -2. Determinant = 18. +C arg(1,12,2) = 2.0 6.0 .2328306E-9 +C Blank card ending requests for output variables. |BLANK card ending output requests (none) that ATP added to this STAND ALONE +C Column headings for the 0 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C X vector = 3.111111111 1.777777778 .7777777784 Determinant = 8.999999999 +C arg(1,12,2) = 4.0 7.0 .1608161E-4 +C X vector = .7096617728 2.741941174 4.161308814 Determinant = 30.99993567 +C arg(1,12,2) = 8.0 8.0 .1107408979 +C X vector = .1640999973 3.031236365 5.351518185 Determinant = 74.55703641 +C arg(1,12,2) = 16. 9.0 .763080108 +C X vector = -.104457932 3.219802884 6.214359374 Determinant = 159.9476796 +C arg(1,12,2) = 32. 10. .1799780347 +C X vector = -.007328865 3.275392315 6.645025023 Determinant = 338.2800879 +C arg(1,12,2) = 64. 11. .902878134 +BLANK card ending plot requests +BEGIN NEW DATA CASE +C 13th of 16 subcases has the same solution as the preceding. It was added +C 30 April 2011 to illustrate the LINSOL alternative to EGAUSS. The data +C is compatible except that no value for the determinant of the coefficient +C matrix is available. About history, SUBROUTINE LINSOL was provided by +C MODELS author Laurent Dube, paid by BPA, as part of the original user- +C supplied source code of MODELS. This dates to 1995 or 1996 (not part of +C the original MODELS). Comment cards document the source and use: +C Solves [a]*x=b using Crout's method with partial pivoting +C Reference: Numerical Recipes chapter 2. +C Modifies [a] and b, and returns b=x +C Returns ierr=1 if [a] is singular, else returns ierr=0 +C Uses divzro as the smallest possible divisor value + 0.2 1.0 { Take 5 time steps, changing the matrix at each new step + 1 -1 { Suppress accumulation of plot points, which are unused +MODELS STAND ALONE +MODEL solve +FUNCTION linsol FOREIGN linsol {ixarg:100} + VAR arg[1..12] + VAR x[1..4] +EXEC +if t=0 then +C As written, LINSOL has been connected using the interface of Orlando's +C EGAUSS. There is a complication, however. EGAUSS stored the matrix by +C rows whereas LINSOL assumes storage by columns. Note the difference: +C 1 2 3 4 5 6 7 8 9 -- Index of MODELS +C 1,1 1,2 1,3 2,1 2,2, 2,3 3,1 3,2 3,3 -- Content for EGAUSS +C 1,1 2,1 3,1 1,2 2,2, 3,2 1,3 2,3 3,3 -- Content for LINSOL +C I.e., one is the transpose of the other. Of the 9 elements that must +C be assigned, only the 3 diagonal elements are unchanged. One at a time: + arg[1]:=1.0 -- Element (1,1) of EGAUSS is a diagonal, so remains unchanged +C arg[2]:=4.0 { Element (1,2) of EGAUSS had index 2, so index 4 of LINSOL: + arg[4]:=4.0 +C arg[3]:=1.0 { Element (1,3) of EGAUSS had index 3, so index 7 of LINSOL + arg[7]:=1.0 +C arg[4]:=1.0 { Element (2,1) of EGAUSS had index 4, so index 2 of LINSOL + arg[2]:=1.0 + arg[5]:=6.0 -- Element (2,2) of EGAUSS is a diagonal, so remains unchanged +C arg[6]:=-1.0 { Element (2,3) of EGAUSS had index 6, so index 8 of LINSOL + arg[8]:=-1.0 +C arg[7]:=2.0 { Element (3,1) of EGAUSS had index 7, so index 3 of LINSOL + arg[3]:=2.0 +C arg[8]:=-1.0 { Element (2,3) of EGAUSS had index 8, so index 6 of LINSOL + arg[6]:=-1.0 + arg[9]:=2.0 -- Element (3,3) of EGAUSS is a diagonal, so remains unchanged +C That was for the 3x3 square matrix. The right-hand-side vector is unchanged: + arg[10]:=7.0 + arg[11]:=13.0 + arg[12]:=5.0 +endif +x[1..4]:=linsol(3,arg[1..12]) +write( 'Solution vector X =', x[1], x[2], x[3] ) +arg[1]:= arg[1]*2.0 +arg[12]:= arg[12]+1.0 +C arg[2]:=random() { Element (1,2) of EGAUSS had index 2, so index 4 of LINSOL + arg[4]:=random() +C write('arg(1,12,2) =', arg[1], arg[12], arg[2] ) +write( 'arg(1,12,4) =', arg[1], arg[12], arg[4] ) +ENDEXEC +ENDMODEL +USE solve AS solve +ENDUSE +ENDMODELS +C Because there is no electric network, there is no usual output of the +C time-step loop. Once the dT loop begins, the only output is from MODELS: +C Blank card ends electric sources. KCONST = 1 |BLANK card ending dummy source that ATP added to TACS or MODELS STAND ALONE +C X vector = 5.0 1.0 -2. +C arg(1,12,4) = 2.0 6.0 .2328306E-9 +C Blank card ending requests for output variables. |BLANK card ending output requests (none) that ATP added to this STAND ALONE +C Column headings for the 0 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C X vector = 3.111111111 1.777777778 .7777777784 +C arg(1,12,4) = 4.0 7.0 .1608161E-4 +C X vector = .7096617728 2.741941174 4.161308814 +C arg(1,12,4) = 8.0 8.0 .1107408979 +C X vector = .1640999973 3.031236365 5.351518185 +C arg(1,12,4) = 16. 9.0 .763080108 +C X vector = -.104457932 3.219802884 6.214359374 +C arg(1,12,4) = 32. 10. .1799780347 +C X vector = -.007328865 3.275392315 6.645025023 +C arg(1,12,4) = 64. 11. .902878134 +BLANK card ending plot requests +BEGIN NEW DATA CASE +C 14th of 16 subcases was added 17 April 2011 to illustrate that Orlando +C Hevia's new INVERT function of MODELS will indeed invert a matrix. +C Data comes from Orlando Hevia of Santa Fe, Argentina. + 1.0 5.0 { Take 5 time steps, changing the matrix at each new step + 1 -1 { Suppress accumulation of plot points, which are unused +MODELS STAND ALONE +C The input matrix is on the left, its inverse is on the right: +C ORIGINAL matrix INVERSE CALCULATED WITH QPRO +C 1 2 3 -0.33333 0.151515 0.121212 +C 4 2 5 0.666667 -0.48485 0.212121 +C 6 3 2 -2E-17 0.272727 -0.18182 +C +C DEFINE ALL THE VARIABLES TO BE PASSED TO INVERT AS OUTPUT +C Since the matrix to be inverted is 3x3, 9 scalar variables are used : +VAR a1, a2, a3, a4, a5, a6, a7, a8, a9 +C Next come 4 scalar dimensions of the call to inversion routine INVERT: +C IXDATA: NUMBER ELEMENTS IN AN ARRAY XDATA OR ARGUMENTS, FOR EXAMPLE, THE +C NUMBER OF EQUATIONS, A KEY TO INVERT OR TO CALCULATE DETERMINANT +C +C IXIN: NUMBER OF ELEMENTS IN THE INPUT ARRAY XIN. SQUARE OF NUMBER OF +C EQUATIONS IN THIS CASE +C +C IXOUT: NUMBER OF ELEMENTS IN THE OUTPUT ARRAY XOUT. SQUARE OF NUMBER OF +C EQUATIONS IN THIS CASE, 1 FOR DETERMINANT (NOt IMPLEMENTED) +C +C IXVAR: NUMBER OF ELEMENTS IN HISTORY ARRAY, NOt USED IN THIS CASE +C +C The following is the call to invert the matrix. IXIN is # of elements (9) +C of the input matrix, IXOUT is the # of elements (9) of the output matrix. +C The 1st and the 4th parameters (IXDATA and IXVAR, respectively) do not +C depend on the matrix order (3 in this case). +MODEL invert FOREIGN invert {ixdata:1, ixin:9, ixout:9, ixvar:0} +USE invert AS invert + DATA xdata[1]:=3 -- Order of the matrices involved (here, 3) +C The following defines the 9 cells of the input matrix XIN. Storage is by +C rows. Note the trailing "t" which adds simulation time to each element of +C the matrix at each time step : + INPUT xin[1..9] := [ 1.0, 2.0, 3.0, + 4.0, 2.0, 5.0, + 6.0, 3.0, 2.0 ] + t +C The following connects the 9 elements of the output matrix (the inverse) +C with variable names A1 through A9. This is done to interface with the +C ATP output vector (the preceding subcase had no such connection, note) : + OUTPUT a1:=xout[1],a2:=xout[2],a3:=xout[3], + a4:=xout[4],a5:=xout[5],a6:=xout[6], + a7:=xout[7],a8:=xout[8],a9:=xout[9] +ENDUSE +RECORD + a1 AS a11 + a2 AS a12 + a3 AS a13 + a4 AS a21 + a5 AS a22 + a6 AS a23 + a7 AS a31 + a8 AS a32 + a9 as a33 +ENDMODELS +C Column headings for the 9 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 9 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time MODELS MODELS MODELS MODELS MODELS MODELS MODELS MODELS MODELS +C A11 A12 A13 A21 A22 A23 A31 A32 A33 +C 0 0.0 -.33333333 .151515152 .121212121 .666666667 -.48484848 .212121212 0.0 .272727273 -.18181818 +C 1 1.0 -.31914894 .14893617 .127659574 .574468085 -.46808511 .170212766 -.0212766 .276595745 -.19148936 +C 2 2.0 -.31147541 .147540984 .131147541 .524590164 -.45901639 .147540984 -.03278689 .278688525 -.19672131 +C 3 3.0 -.30666667 .146666667 .133333333 .493333333 -.45333333 .133333333 -.04 .28 -.2 +C 4 4.0 -.30337079 .146067416 .134831461 .471910112 -.4494382 .123595506 -.04494382 .280898876 -.20224719 +C 5 5.0 -.30097087 .145631068 .13592233 .45631068 -.44660194 .116504854 -.04854369 .281553398 -.2038835 +BLANK card ending plot requests +BEGIN NEW DATA CASE +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +C Preceding line allows the SEEK file to be remote if this main data file is +PRINTED NUMBER WIDTH, 12, 2, { Keep dT loop precision the same, but 2 blank separators +C 15th of 16 subcases was added 21 April 2011 to illustrate extensions to +C Orlando Hevia's SEEK function that were not tested by the preceding 11th +C subcase. Data is similar. That is, function # 82 began as a copy of # 32 +C but is more general in that two redundant (X, Y) points have been added +C (to be omitted by ATP) and the software EOF is used, permitting arbitrary +C comment information at the bottom of DC68SE82.DAT Erasure of a no longer +C used SEEK function also is illustrated. + 1.0 10.00 { Take ten steps, from 1 second to 10 seconds. This is "T" + 1 -1 { Print every step; do not bother saving points for plotting +MODELS STAND ALONE +C 3456789012345678901234567890123456789012345678 -- Ruler for following optional +C < File Name> IPRMDL KOMPAC miscellaneous data card : +C MODELS MISC. DATA dc68seek. 9 0 +MODEL SAMPLE +C Of the 6 following variables, the last is a dummy variable that is used for +C SEEK function erasure only. The returned funct value must be put somewhere. +VAR X,Y,Z, X37, X49, XDUM +FUNCTION seek FOREIGN seek {ixarg: 2} +EXEC +C Before using function # 82, let's use a second function, the old # 37: + IF t<4.0 THEN -- Execute only at the first 3 time steps +C About the following WRITE( statement, note lack of indentation and +C use of apostrophes (not quotation marks) to delimit the text. These +C two details are required to maintain any lower case within the text : +write( ' Use SEEK model # 37 for T < 4 only.' ) + X37:=SEEK(T, 37 ) + ENDIF -- Terminate 4-line IF block + IF t=6.0 THEN -- execute only on the 6th time step +write( ' Erase SEEK function # 37 at T =6.' ) + XDUM:=SEEK(T, -37 ) + ENDIF -- Terminate 4-line IF block +C The following 3 lines use SEEK function # 82, which is the same as # 37: +X :=SEEK(T, 82 ) +Y:=SQRT(X)*0.3 +Z:=SEEK(SQRT(X)*0.3, 82 ) +C The following nested IF loop results in action only for steps 8 and 9: + IF t>7.0 THEN -- Execute only for time steps 8 or later + IF t<10.0 THEN -- Execute only for time steps 9 or earlier +write( ' Use SEEK model # 49 for T = 7 or 8 only.' ) + X49:=SEEK(T, 49 ) + ENDIF -- Terminate inner 4-line IF block + ENDIF -- Terminate outer 6-line IF block +C The following IF loop disconnects SEEK function # 49 on step 10: + IF t=10.0 THEN -- execute only on the 10th time step +write( ' Erase SEEK function # 49 at T =10.' ) + XDUM:=SEEK(T, -49 ) + ENDIF -- Terminate 4-line IF block +C In order that all data be seen, let's document the content of DC68SE82.DAT +C which contains the following formatted lines. Note the 4 consecutive +C Y values 142 (points 3 through 6 inclusive). Thus points 4 and 5 will be +C omitted. ATP will store only 7 (X,Y) pairs. Note also the software EOF +C (value X = -9999.) which allows arbitrary comment information to follow. +C 0, 69 +C 2, 50 +C 4, 142 +C 4.3, 142, +C 4.7, 142, +C 5, 142 +C 6, 188 +C 8, 73 +C 10, 100 +C -9999., 0, +ENDEXEC +ENDMODEL +USE SAMPLE AS SAMPLE +ENDUSE +RECORD +SAMPLE.X AS X +SAMPLE.Y AS Y +SAMPLE.Z AS Z +SAMPLE.X37 AS X37 +SAMPLE.X49 AS X49 +ENDRECORD +ENDMODELS +C Use SEEK model # 37 for T < 4 only. +C MODELS "SEEK" function # 37 involves 7 pairs of (X,Y). These are stored in List-20 SCONST cells 3 through 16. +C 3 or more consecutive, identical Y has allowed the omission of 2 incoming (X,Y) points. The next line reflects this fact. +C MODELS "SEEK" function # 82 involves 7 pairs of (X,Y). These are stored in List-20 SCONST cells 19 through 32. +C Blank card ending requests for output variables. |BLANK card ending output requests (none) that ATP added to this STAND ALONE +C Column headings for the 5 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 5 output variables belong to MODELS (with "MODELS" an internally-added upper name of pair). +C Step Time MODELS MODELS MODELS MODELS MODELS +C X Y Z X37 X49 +C 0 0.0 69. 2.49198716 72.6314093 69. 88888.8889 +C Use SEEK model # 37 for T < 4 only. +C 1 1.0 59.5 2.31408729 64.4480155 59.5 88888.8889 +C Use SEEK model # 37 for T < 4 only. +C 2 2.0 50. 2.12132034 55.5807358 50. 88888.8889 +C Use SEEK model # 37 for T < 4 only. +C 3 3.0 96. 2.93938769 93.2118338 96. 88888.8889 +C 4 4.0 142. 3.57491259 122.445979 96. 88888.8889 +C 5 5.0 142. 3.57491259 122.445979 96. 88888.8889 +C Erase SEEK function # 37 at T =6. +C MODELS erasure of SEEK function # 37 at time T = 6.00000E+00 sec has gained 16 cells of List 20. IFSEM = 16 +C 6 6.0 188. 4.11339276 142. 96. 88888.8889 +C 7 7.0 130.5 3.4270979 115.646503 96. 88888.8889 +C Use SEEK model # 49 for T = 7 or 8 only. +C MODELS "SEEK" function # 49 involves 4 pairs of (X,Y). These are stored in List-20 SCONST cells 19 through 26. +C 8 8.0 73. 2.56320112 75.9072517 96. 73. +C Use SEEK model # 49 for T = 7 or 8 only. +C 9 9.0 86.5 2.79016129 86.3474191 96. 86.5 +C Erase SEEK function # 49 at T =10. +C MODELS erasure of SEEK function # 49 at time T = 1.00000E+01 sec has gained 10 cells of List 20. IFSEM = 16 +C 10 10. 100. 3.0 96. 96. 86.5 +BLANK CARD ENDING PLOT CARDS +BEGIN NEW DATA CASE +C 16th of 16 subcases was added 29 April 2011 to illustrate high-order +C comparison between EGAUSS (see subcase 12) and LINSOL (see subcase 13). +C The testing is ordered by using EGAUSS for order two (two equations in two +C unknows). Normally the data would consist of 4 cells for the 2x2 matrix +C [A] followed by 2 cells for the right hand side. Instead, cell 1 of the +C 6 must be the special reserved key 23456. This is to be followed by five +C parameters that dedicated code uses to generate the equation set. Matrix +C order N is in cell 2. The matrix will be symmetrical, so transposition +C (a difference between data of EGAUSS and data of LINSOL) is not an issue. +C An offidiagonal in cell (I,J) will be given value -COEFF / SEPAR ** POWER +C where SEPAR = IABS ( I - J ) is the distance from the diagonal. Each of +C the diagonals A(I,I) will be the negative of the sum of all offidagonals +C plus constant DIAG. The right hand side B(I) will equal RHS. So this +C is the matrix of a set of resistors connecting each node with every other +C node. Ground is a node, with DIAG being the admittance to ground. RHS +C is the injected current at each node. +C NEW LIST SIZES +C 0 0 0 0 0 0 0 0 0 0 +C 0 0 0 0 0 0 0 0 0 100000 +C 0 0 0 0 0 10000 0 126000 0 0 +C 240000 742 +C About the preceding program dimensions, two are critical for high order use. +C These are List 20 and List 28. Both are set to the limits of LISTSIZE.BPA +C A third, List 26, must be twice the order of the equation set being solved. +C In order to simplify things, the limiting value for this too has been used. +C If order 31 below is changed to order 310 (this is arg[2]), uncomment the +C preceding five NEW LIST SIZES data cards by removing "C " from the left. +C Expect execution to take about 1000 times as long, of course. Note that 310 +C is close to the limit for List 20 equal to 100K since 3.1**2 is close to 10. + 0.2 1.0 { Take 5 time steps, changing the matrix at each new step + 1 -1 { Suppress accumulation of plot points, which are unused +MODELS STAND ALONE +MODEL solve +FUNCTION egauss FOREIGN egauss {ixarg:100} + VAR arg[1..6] + VAR x[1..3] +EXEC +if t=0 then + arg[1]:=23456.0 -- Reserved key to request test of LINSOL and EGAUSS +C arg[2]:=310.0 -- Matrix order of the equations being solved. This is N + arg[2]:= 31.0 -- Matrix order of the equations being solved. This is N + arg[3]:=2.0 -- Exponent to apply to separation. This is POWER + arg[4]:=1.0 -- Coefficient of matrix elements. This is COEFF + arg[5]:=1.0 -- Right hand side of each equation. This is RHS + arg[6]:=31.0 -- Constant term of each diagonal. This is DIAG +endif +x[1..2]:=egauss(2,arg[1..6]) -- The 1st arg, 2, is required for this test +ENDEXEC +ENDMODEL +USE solve AS solve +ENDUSE +ENDMODELS +BLANK card ending plot requests +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc68se37.dat b/benchmarks/dc68se37.dat new file mode 100644 index 0000000..d48dcc6 --- /dev/null +++ b/benchmarks/dc68se37.dat @@ -0,0 +1,7 @@ +0, 69 +2, 50 +4, 142 +5, 142, +6, 188 +8, 73 +10, 100 diff --git a/benchmarks/dc68se49.dat b/benchmarks/dc68se49.dat new file mode 100644 index 0000000..4e99017 --- /dev/null +++ b/benchmarks/dc68se49.dat @@ -0,0 +1,4 @@ +5, 142, +6, 188 +8, 73 +10, 100 diff --git a/benchmarks/dc68se82.dat b/benchmarks/dc68se82.dat new file mode 100644 index 0000000..95a28fe --- /dev/null +++ b/benchmarks/dc68se82.dat @@ -0,0 +1,15 @@ +0, 69 +2, 50 +4, 142 +4.3, 142, +4.7, 142, +5, 142, +6, 188 +8, 73 +10, 100 +-9999., 0, +The preceding software end-of-file requires only that X = -9999. +Nothing following this will be read by ATP, so comments can be +placed here without difficulty. About the (X,Y) characteristic, +note that points 4 and 5 have been added compared with subcase 11. +They are redundant, and will be discarded upon input. diff --git a/benchmarks/dc7.dat b/benchmarks/dc7.dat new file mode 100644 index 0000000..e3ccdf6 --- /dev/null +++ b/benchmarks/dc7.dat @@ -0,0 +1,300 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-7 +C Test of 200-km line energization example from proposed 1975 IEEE PES +C Winter Meeting paper by Tripathy et al. The far end of the line has +C an open-circuited transformer, which the Indians modeled as a parallel +C connection of a saturable reactor and a capacitor. For the reactor, a +C true nonlinearity (Type-93) has been placed in phase "a", and pseudo- +C nonlinear ones (Type-98 modeling) are used for phases "b" and "c". +C The reactor of phase "a" is actually driven onto the final segment +C above the point (i=55.572, PSI=624) on step number 185 at t= .004625 +C seconds, so this represents a real stress test for the Type-93 element +C 23 July 1983 ---- remove Type-98 modeling (replace with Type-93). +PEAK VOLTAGE MONITOR +PRINTED NUMBER WIDTH, 13, 2, { Full precision on each of 8 columns of printout + .000025 .020 60. 60. + 1 1 1 1 -1 + 5 5 10 10 100 20 +C The following series capacitors represent 20% compensation of the +C positive-sequence series line reactance at 60 Hz, at each end: + GENA SWA 89352. + GENB SWB GENA SWA + GENC SWC GENA SWA + RECA TRANA GENA SWA 1 + RECB TRANB GENA SWA + RECC TRANC GENA SWA + TRANA GNDA 7.5398 1 + GNDA .0001 + TRANB 7.5398 + TRANC 7.5398 +C The following piecewise-linear magnetization curve was constructed +C from Tripathy's arc-tangent function (evaluation at regular intervals): +93TRANA NAME 1st NL .559 300. 1 + 0.0 0.0 + .5590 300. + .9344 400. + 1.2555 450. + 1.8057 500. + 3.0251 550. + 4.9429 580. + 8.4609 600. + 13.092 610. + 28.847 620. + 55.572 624. + 753.46 628. + 9999 +C ------------- Following original, pseudo-nonlinear modeling upgraded: +C 98TRANB NAME 2nd NL .559 300. 1 +C .5590 300. +C .9344 400. +C 1.2555 450. +C 1.8057 500. +C 3.0251 550. +C 4.9429 580. +C 8.4609 600. +C 13.092 610. +C 28.847 620. +C 55.572 624. +C 753.46 628. +C 9999 +C BRANCH NAME:3rd NL +C 98TRANC TRANB .559 300. 1 +C ------------- Preceding, original modeling was improved by replacement +C on 23 July 1986 when multi-phase, Type-93, nonlinear +C inductor logic was finally perfected. Instead of Type-98 +C modeling in phases "b" and "c", we copy the original, +C true nonlinear modeling. Replacement cards follow: + BRANCH NAME:2nd NL ! { Hold lower case of this 2nd, but not following 3rd +93TRANB TRANA .559 300. 1 + BRANCH NAME:3rd NL +93TRANC TRANA .559 300. 1 +C Although Tripathy's line was untransposed, we make the continuously- +C transposed assumption here for simplicity, it will be noted: +-1SENDA RECA .137681.07755.6806124.27 +-2SENDB RECB .03009.450289.5000124.27 +-3SENDC RECC +BLANK card ends all branch cards + SWA SENDA 1.0 + SWB SENDB 1.0 + SWC SENDC 1.0 +BLANK card ends all switch cards +14GENA 188000. 60. 0.0 -1. +14GENB 188000. 60. 120. -1. +14GENC 188000. 60. -120. -1. +BLANK card ending source cards +C Total network loss P-loss by summing injections = 0.000000000000E+00 +C Step Time GENA TRANA RECA TRANA TRANB +C TERRA TERRA +C *** Switch "SWA " to "SENDA " closed after 0.00000000E+00 sec. +C *** Switch "SWB " to "SENDB " closed after 0.00000000E+00 sec. +C *** Switch "SWC " to "SENDC " closed after 0.00000000E+00 sec. +C 0 0.0 188000. 0.0 0.0 0.0 0.0 +C 1 .25E-4 187991.6504 .930228E-37 .930004E-37 -.57418E-39 0.0 +C 2 .5E-4 187966.6022 .482578E-37 .482013E-37 .545732E-44 -.24529E-53 +C 3 .75E-4 187924.8578 0.0 0.0 0.0 0.0 +C 4 .1E-3 187866.4209 0.0 0.0 0.0 0.0 +C 5 .125E-3 187791.2965 0.0 0.0 0.0 0.0 +C 10 .25E-3 187165.6493 0.0 0.0 0.0 0.0 +C 20 .5E-3 184670.0031 0.0 0.0 0.0 0.0 +C 30 .75E-3 180535.2129 368529.9098 368561.0118 .0356766432 -.018316651 + GENA TRANA RECA +BLANK card ending output variable requests (just node voltages, here) +C Last step begins: 800 .02 58095.19494 -59199.4152 -58796.2914 1.081609222 +C Last step continued: .299848177 -.932282601 17.5862178 16.50460858 +C Variable max : 188000. 513558.5344 514002.0191 749.9628668 3.237548678 +C Times of max : 0.0 .0184 .0184 .00465 .01645 +C Variable min : -187999.072 -498079.391 -497500.143 -513.064439 -2505.93213 +C Times of min : .008325 .0077 .0077 .011675 .0073 +C ------------------------------------------------------------------------- +C To see how much improvement the 3-phase nonlinearity gives, compare these +C values with the original solution with pseudo-nonlinear L(i) in "b", "c": +C ------------------------------------------------------------------------- +C Last step begins: 800 .02 58095.19494 -50098.9838 -49701.5785 1.086096522 +C Last step continued: .3006006893 -.931914393 19.37948907 18.29339255 +C Variable max : 188000. 520082.5127 520520.0418 749.9593109 3.304226242 +C Times of max : 0.0 .0184 .0184 .00465 .01645 +C Variable min : -187999.072 -498611.424 -498032.337 -516.239708 -2590.47657 +C Times of min : .008325 .0077 .0077 .011675 .0073 +C Plots: { Axis limits: (-5.107, 7.760) { Axis limits: (-0.443, 7.760) + PRINTER PLOT { Axis limits: (-5.177, 7.760) + 194 2. 0.0 20. RECA TRANA CURRENT + 1 SMOOTH { Axis limits: (-0.439, 7.760) + 194 .1 4.5 5.0 RECA TRANA CURRENT IN AMPS +BLANK card terminating plot cards +BEGIN NEW DATA CASE +C 2nd of 4 subcases illustrates user-supplied FORTRAN to provide for smooth +C modeling of magnetic saturation. Special logic presently is built into +C only 2 modules: "INNONL" to bypass normal error checks on characteristic +C (since parameters for hyperbolic tangent curve are inputted this way) and +C to store these parameters in raw form in List-10 vectors CCHAR and VCHAR, +C and second, "SOLVNL" to calculate "i" and di/dv for Newton's method +C (as part of coupled nonlinear solution mixed with any other elements). A +C single block of some 6 lines is involved in "INNONL" (see the check for +C input text: ABUFF(33:39) .NE. 'FORTRAN'). A type-93 branch is being +C used, although others pass through the same logic, so there is no magic +C about this. Remembrance of this special component by "SOLVNL" is due +C to numerical flag -333777 of first point of characteristic. Different +C models could have different values in "SOLVNL", note --- no other code +C is affected. The hyperbolic tangent saturation curve actually requires +C only 2 cards of (x, y) characteristic, but a 3rd is required because of +C existing Type-93 logic that extends the final segment by a factor of 1000 +C (this would overlay the 2nd point, otherwise). There are 2 reactors, and +C these are coupled via the network, resulting in a 2 x 2 Netwon solution +C within "SOLVNL". But there is a 2nd Newton solution that might not be +C noticed --- to find the current given the flux (or voltage). This is one +C dimensional. As for changes to "SOLVNL" for user-supplied FORTRAN, a +C single block is involved, below the check for flag -333777. Finally, +C data for the conventional Type-93 element was copied from DC-4. +C 25 August 2001, add the following test of table dumping and restoring +C half way through the simulation. Answers are not affected. Note the +C definition precedes the last miscellaneous data card (a requirement if +C TSTALL is being used, as here): +$DEPOSIT, TSTALL=-0.5 { Negative TSTALL ===> experimental dump/restore of tables +PEAK VOLTAGE MONITOR, 3, { Request network extrema of both node & branch voltage +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .020 4.0 + 1 1 1 1 1 -1 + 5 5 20 20 + GEN NODE 100. { Create unknown-voltage "NODE" for coupling + NODE TRAN 5.0 5.E4 1 +93TRAN .005 30. 1 + 0.0 0.0 + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 + TRAN 1000. { Need to damp hash within previous NL element + NODE XXXX 500. { Current-limiting, phase-shifting resistor +C User-supplied fortran follows. This is a regular Type-93 NL inductor until +C the time-step loop. Note 3-card characteristic, followed by "9999" bound. +C The characteristic parameter usage is: PSI = a * tanh ( b * i ) + c * i. +93XXXX .08 35.0 3 + -333777. 35.FORTRAN { -333777 = flag; a = peak iron flux + 20. 5.0FORTRAN { b = current mult; c = linear series L + 1.0 1.0FORTRAN FLUX { Dummy 3rd card to protect card 2 + 9999 { End of user-supplied fortran (see request in cols. 33-39) +BLANK card ending program branch cards. +BLANK card terminating program switch cards (none, for this case) +14GEN 70. .1591549 -1. +BLANK card terminating program source cards. +C Total network loss P-loss by summing injections = 4.465360492400E+00 +C GEN 70. 70. .12758172835428 .13968171687261 4.4653604924 +C 0.0 0.0 -.0568672543615 -24.0240608 1.9903539026515 +C ---- Initial flux of coil "TRAN " to " " = 2.86434431E+00 +C ---- Initial flux of coil "XXXX " to " " = 3.08335629E+01 + XXXX TRAN { Selective node voltage outputs: voltages across NL reactors +C Step Time XXXX TRAN TRAN XXXX NODE +C TERRA TERRA TRAN +C 0 0.0 22.00346954 56.62762238 .4773907E-3 .0704767153 .0571050131 +C 1 .02 22.4849728 56.58915579 .6660853E-3 .0696258393 .0572552411 +C 2 .04 20.71249379 56.51611741 .8545941E-3 .0724907376 .0573707115 +BLANK card ending output requests +C 200 4.0 8.696586066 -17.9578249 -.058915918 -.077940538 -.076873743 +C Variable max : 22.4849728 56.62762238 .0944331073 .1005485993 .0955171556 +C Times of max : .02 0.0 1.4 .34 1.32 +C Variable min : -40.5895565 -56.4586274 -.058915918 -.103607476 -.076873743 +C Times of min : 2.48 3.0 4.0 3.4 4.0 + PRINTER PLOT + 143 .5 0.0 4.0 XXXX TRAN { Axis limits: (-5.646, 5.663) + 193 .5 0.0 4.0 XXXX TRAN { Axis limits: (-1.036, 1.005) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 3rd of 4 subcases is modification of 2nd as 1st described in January, +C 1998, newsletter story. Orlando Hevia of Sante Fe, Argentina, suggests +C use of SINH rather than TANH for modeling of some magnetic saturation. +C The numerical flag -333777 of TANH becomes -444777 for SINH use. +PEAK VOLTAGE MONITOR, 3, { Request network extrema of both node & branch voltage +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .020 4.0 + 1 1 1 1 1 -1 + 5 5 20 20 + GEN NODE 100. { Create unknown-voltage "NODE" for coupling + NODE TRAN 5.0 5.E4 1 +93TRAN .005 30. 1 + 0.0 0.0 + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 + TRAN 1000. { Need to damp hash within previous NL element + NODE XXXX 500. { Current-limiting, phase-shifting resistor +C User-supplied fortran follows. This is a regular Type-93 NL inductor until +C the time-step loop. Note 3-card characteristic, followed by "9999" bound. +C The characteristic parameter usage is: i = a * sinh ( b * psi ) + c * psi +93XXXX .08 35.0 1 + -444777. 4.E-5FORTRAN { -444777 = flag; a = 1st param + .16 6.E-5FORTRAN { b = 2nd of 3; c = 3rd of 3 params + 1.0 1.0FORTRAN { Dummy third card to protect card 2 + 9999 { End of user-supplied fortran (see request in cols. 33-39) +BLANK card ending program branch cards. +BLANK card terminating program switch cards (none, for this case) +14GEN 70. .1591549 -1. +BLANK card terminating program source cards. + XXXX TRAN { Selective node voltage outputs: voltages across NL reactors +C 25 August 2001, add the following test of table dumping and restoring +C on step number . Answers are not affected. Note the preceding subcase +C used TSTALL, so had to be defined early. Not so if integer ISTDMP is +C directly defined. This can be done at anwhere that will be read prior +C to entry into the dT loop: +$DEPOSIT, ISTDMP=80 { Time step # for experimental dump/restore of tables +BLANK card ending output requests + PRINTER PLOT + 143 .5 0.0 4.0 XXXX TRAN { Axis limits: (-5.646, 5.663) + 193 .5 0.0 4.0 XXXX TRAN { Axis limits: (-1.036, 1.005) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 4th of 4 subcases is modification of 3rd as 1st described in January, +C 1998, newsletter story. Orlando Hevia of Sante Fe, Argentina, suggests +C use of PSI = A * i**B + C * i for modeling of some magnetic saturation. +C The numerical flag -333777 of TANH becomes -555777 for i**B use. +C Parameters are picked so solution to this 4th subcase approximates the +C the solution to the 3rd. Printer plots have similar shapes and numbers. +C 25 August 2001, cancel tests of table dumping and restoring (see two +C preceding subcases). Note only TSTALL need be cancelled since ISTDMP +C is cancelled automatically after each use. But TSTALL is not. TSTALL +C will remain in effect for all later subcases, if not cancelled. +$DEPOSIT, TSTALL=0.0 { Cancel experimental dumping and restoring of tables +AUTO NAME { Toggle binary NMAUTO of STARTUP that controls branch/switch naming +C The preceding is added 25 October 2002. It decreases List 7 from 9 to 3 as +C the 6 network branches (there are no switches) no longer are being named. +PEAK VOLTAGE MONITOR, 3, { Request network extrema of both node & branch voltage +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .020 4.0 + 1 1 1 1 1 -1 + 5 5 20 20 + GEN NODE 100. { Create unknown-voltage "NODE" for coupling + NODE TRAN 5.0 5.E4 1 +93TRAN .005 30. 1 + 0.0 0.0 + .005 30. + .01 40. + .02 45. + .10 50. + 5.0 100. + 9999 + TRAN 1000. { Need to damp hash within previous NL element + NODE XXXX 500. { Current-limiting, phase-shifting resistor +C User-supplied fortran follows. This is a regular Type-93 NL inductor until +C the time-step loop. Note 3-card characteristic, followed by "9999" bound. +C The characteristic parameter usage is: psi = a * i**B + c * i +93XXXX .08 35.0 1 + -555777. 100.FORTRAN { -555777 = flag; a = 1st param + .22 0.0FORTRAN { b = 2nd of 3; c = 3rd of 3 params + 1.0 1.0FORTRAN { Dummy third card to protect card 2 + 9999 { End of user-supplied fortran (see request in cols. 33-39) +BLANK card ending program branch cards. +BLANK card terminating program switch cards (none, for this case) +14GEN 70. .1591549 -1. +BLANK card terminating program source cards. + XXXX TRAN { Selective node voltage outputs: voltages across NL reactors +BLANK card ending output requests + PRINTER PLOT + 143 .5 0.0 4.0 XXXX TRAN { Axis limits: (-5.646, 5.663) + 193 .5 0.0 4.0 XXXX TRAN { Axis limits: (-1.036, 1.005) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dc8.dat b/benchmarks/dc8.dat new file mode 100644 index 0000000..92d7071 --- /dev/null +++ b/benchmarks/dc8.dat @@ -0,0 +1,153 @@ +BEGIN NEW DATA CASE +C 1st of 2 subcases is added 24 Sept 2001 to illustrate $INCLUDE use within +C the DO KNT loop. This subcase is related to the 1st subcase of DC-58. +C It really should have been added as a new 2nd subcase there, but this was +C not possible since DO KNT is not handled properly if the 2nd or later. +C This request for $INCLUDE, too, came from Prof. Juan Martinez of UPC in +C Barcelona, Spain. The $INCLUDE file does not change the answer. I.e., +C part of the data of DC-58 simply has been removed and placed in a separate +C file. Other changes: TMAX has been shortened to speed execution, and +C there are no extrema. But the resulting DC8.LIS file still compares +C easily with DC58.LIS using Mike Albert's freeware FC. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .005 + 1 1 1 0 0 -1 + 33 1 40 10 100 50 +DO KNT=1, 5 /OUTPUT { Loop twice using PCVP index KNT (seen inside $PARAMETER) +$PARAMETER { This will be serviced by CIMAGE just as any other $-card would be +_BUS1_ = KNT SERIALIZE 'NODE00' +_BUS2_ = KNT + 1. SERIALIZE 'NODE00' +BLANK card ends $PARAMETER definitions that are processed just b4 branch cards +$INCLUDE, dc8incl0.dat { Disk file containts the following without "C " in 1-2: +C -1_BUS1__BUS2_ .306 5.82 .012 100. { Half the length of original +C 92_BUS2_ { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C C VREF VFLASH VZERO COL +C 778000. -1.0 0.0 2.0 +C C COEF EXPON VMIN +C 1250. 26. 0.5 +C 9999. { Bound on exponential segments (only one precedes) +ENDDO KNT { Termination of DO KNT loop. Note a comment on it is tolerable +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14NODE01 408000. 60. +BLANK card ending source data + 1 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C BENCHMARK DC-8 +C Example drawn from the dynamite EMTP Newsletter article by W. Scott Meyer, +C "EMTP Data Modularization and Sorting ...," Volume 4, No. 2, Sec. V, +C November, 1983. $PREFIX and $SUFFIX may be installation-dependent. +C Miscellaneous data cards and TACS have been added to allow execution +C to continue through the reading of switch cards, thereby documenting +C the $INCLUDE evaluation and subsequent sorting. The $INCLUDE file +C DC8INCL1.DAT was created by first subcase of companion data case DC-36. +C For nearly identical case (except for use of dummy internal nodes, which +C makes it more general), see DC-64 (associated with 2nd subcase of DC-36). +C For the use of arguments without any $INCLUDE, see DC-65. +$PREFIX, [] { $INCLUDE files are located in same place as this main data file +$SUFFIX, .dat { File name of $INCLUDE will be followed by this file type + .005 4.0 { DELTAT and TMAX are in fact arbitrary, since no simulation + 1 -1 1 1 1 +TACS HYBRID +99 FIRE1 = TIMEX +99 FIRE2 = TIMEX +99 FIRE3 = TIMEX +13FAKE +98 FIRE452+UNITY 1. 0. 0. TIMEX +98 FIRE552+UNITY 1. 0. 0. TIMEX +98 FIRE652+UNITY 1. 0. 0. TIMEX +BLANK card ends all TACS data +C The following two cards easily could be combined into a single one. But we +C want to illustrate continuation cards. Note the "C" in column 1. Well, +C there once was. Such a C still is permitted on a continuation card, but +C it no longer is required, as the following illustrates: +$INCLUDE, dc8incl1, ACNOD, #MINUS, ##PLUS, $$ { Branch & switch cards + #FIRE, ##MID { use continuation (request "$$") as an illustration +BLANK card ending BRANCH cards { Key word "BRANCH" needed for sorting, note +BLANK card ending SWITCH cards { Key word "SWITCH" needed for sorting, note +$STOP { After switches read, modularization & sorting are confirmed, so halt +EOF ---- Needed so "OVER1" or "SPYING" ("DATA") ends input here during reading +======================================================================== +C The following is a view of DC8INCL1.DAT, which must be made +C into a separate, supporting disk file if the companion test +C case DC-36 has not already created it: +======================================================================== +KARD 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 + 14 15 15 16 16 17 17 18 18 19 19 21 21 21 22 22 22 23 23 23 24 24 24 25 25 + 25 26 26 26 +KARG 1 5 1 5 1 5 1 5 1 5 1 5 3 5 3 5 3 5 3 5 3 5 3 5 1 + 2 1 2 1 2 1 3 1 3 1 3 2 4 5 2 4 5 2 4 5 1 4 5 1 4 + 5 1 4 5 +KBEG 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 + 9 3 9 3 9 3 9 3 9 3 9 9 65 3 9 65 3 9 65 3 9 65 3 9 65 + 3 9 65 3 +KEND 7 13 7 13 7 13 7 13 7 13 7 13 8 13 8 13 8 13 8 13 8 13 8 13 7 + 14 7 14 7 14 7 14 7 14 7 14 14 69 7 14 69 7 14 69 7 13 69 7 13 69 + 7 13 69 7 +KTEX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + 1 1 1 1 +/BRANCH +C3 BEGIN WITH ANODE REACTORS AND PARALLEL RESISTORS (6 PAIRS): + ?????A?????1 3000. + ?????A?????1 1.0 + ?????B?????3 3000. + ?????B?????3 1.0 + ?????C?????5 3000. + ?????C?????5 1.0 + ???????????4 3000. + ???????????4 1.0 + ???????????6 3000. + ???????????6 1.0 + ???????????2 3000. + ???????????2 1.0 +C3 NEXT COME THE SNUBBER CIRCUITS, ACROSS VALVES AND ANODE REACTORS: + ?????A?????? 1200. 0.1 + ?????B?????? 1200. 0.1 + ?????C?????? 1200. 0.1 + ?????A?????? 1200. 0.1 + ?????B?????? 1200. 0.1 + ?????C?????? 1200. 0.1 +C3 NEXT COME THE VALVES: +/SWITCH +11?????1?????? ?????2 +11?????3?????? ?????4 +11?????5?????? ?????6 +11?????4?????A ?????5 +11?????6?????B ?????1 +11?????2?????C ?????3 +========================================================================== +C End of DC8INCL1.DAT disk file; Begin documentation of final cards: +========================================================================== +C $INCLUDE, dc8incl1, ACNOD, #MINUS, ##PLUS, #FIRE, ##MID +C ACNODA MID1 3000. +C ACNODA MID1 1.0 +C ACNODB MID3 3000. +C ACNODB MID3 1.0 +C ACNODC MID5 3000. +C ACNODC MID5 1.0 +C PLUS MID4 3000. +C PLUS MID4 1.0 +C PLUS MID6 3000. +C PLUS MID6 1.0 +C PLUS MID2 3000. +C PLUS MID2 1.0 +C ACNODA MINUS 1200. 0.1 +C ACNODB MINUS 1200. 0.1 +C ACNODC MINUS 1200. 0.1 +C ACNODA PLUS 1200. 0.1 +C ACNODB PLUS 1200. 0.1 +C ACNODC PLUS 1200. 0.1 +C BLANK card ending BRANCH cards +C 11 MID1 MINUS FIRE2 +C 11 MID3 MINUS FIRE4 +C 11 MID5 MINUS FIRE6 +C 11 MID4ACNODA FIRE5 +C 11 MID6ACNODB FIRE1 +C 11 MID2ACNODC FIRE3 +C BLANK card ending SWITCH cards +C $STOP +==================================================================== +C End of documentation of data cards after $INCLUDE processing +==================================================================== diff --git a/benchmarks/dc8incl0.dat b/benchmarks/dc8incl0.dat new file mode 100644 index 0000000..b17512b --- /dev/null +++ b/benchmarks/dc8incl0.dat @@ -0,0 +1,7 @@ +-1_BUS1__BUS2_ .306 5.82 .012 100. { Half the length of original +92_BUS2_ { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) diff --git a/benchmarks/dc8incl1.dat b/benchmarks/dc8incl1.dat new file mode 100644 index 0000000..eaa27c1 --- /dev/null +++ b/benchmarks/dc8incl1.dat @@ -0,0 +1,44 @@ +KARD 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 + 14 15 15 16 16 17 17 18 18 19 19 21 21 21 22 22 22 23 23 23 24 24 24 25 25 + 25 26 26 26 +KARG 1 5 1 5 1 5 1 5 1 5 1 5 3 5 3 5 3 5 3 5 3 5 3 5 1 + 2 1 2 1 2 1 3 1 3 1 3 2 4 5 2 4 5 2 4 5 1 4 5 1 4 + 5 1 4 5 +KBEG 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 + 9 3 9 3 9 3 9 3 9 3 9 9 65 3 9 65 3 9 65 3 9 65 3 9 65 + 3 9 65 3 +KEND 7 13 7 13 7 13 7 13 7 13 7 13 8 13 8 13 8 13 8 13 8 13 8 13 7 + 14 7 14 7 14 7 14 7 14 7 14 14 69 7 14 69 7 14 69 7 13 69 7 13 69 + 7 13 69 7 +KTEX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + 1 1 1 1 +/BRANCH +C3 BEGIN WITH ANODE REACTORS AND PARALLEL RESISTORS (6 PAIRS): + ?????A?????1 3000. + ?????A?????1 1.0 + ?????B?????3 3000. + ?????B?????3 1.0 + ?????C?????5 3000. + ?????C?????5 1.0 + ???????????4 3000. + ???????????4 1.0 + ???????????6 3000. + ???????????6 1.0 + ???????????2 3000. + ???????????2 1.0 +C3 NEXT COME THE SNUBBER CIRCUITS, ACROSS VALVES AND ANODE REACTORS: + ?????A?????? 1200. 0.1 + ?????B?????? 1200. 0.1 + ?????C?????? 1200. 0.1 + ?????A?????? 1200. 0.1 + ?????B?????? 1200. 0.1 + ?????C?????? 1200. 0.1 +C3 NEXT COME THE VALVES: +/SWITCH +11?????1?????? ?????2 +11?????3?????? ?????4 +11?????5?????? ?????6 +11?????4?????A ?????5 +11?????6?????B ?????1 +11?????2?????C ?????3 diff --git a/benchmarks/dc9.dat b/benchmarks/dc9.dat new file mode 100644 index 0000000..3319176 --- /dev/null +++ b/benchmarks/dc9.dat @@ -0,0 +1,1367 @@ +BEGIN NEW DATA CASE +C BENCHMARK DC-9 +C A collection of 28 simple cases for testing CASCADE LINE as described +C in the April, 1998, newsletter. 26th is original DC-9 prior to April, 98. +C 1st of 28 subcases is single-phase and constant parameter distributed. +C It cascades two 100-mile sections of line, with ZnO only at the end. +C Series resistance is at the mid-point, within CASCADE LINE. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .020 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .306 5.82 .012 100. { Half the length of original + 1 1 1.E-3 { Small resistor precedes line section + REPETITION 1 { Connect another 1 section of preceding 100 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SENDA 408000. 60. +BLANK card ending source data + 1 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 28 subcases is single-phase and constant-parameter distributed. +C It cascades two 100-mile sections of line with ZnO at receiving end and +C also at the mid-point (it is within CASCADE LINE as a shunt element). +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 +92RECA { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .306 5.82 .012 100. { 1/4 the length of original +92 1 0RECA { Copy Type-92 ZnO at the receiving end + REPETITION 1 { Connect another 1 section of preceding 100 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SENDA 408000. 60. +BLANK card ending source data + 1 + 144 2. 0.0 20. RECA RECA01 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 3rd of 28 subcases is the 1st, except that 4 sections of 50 +C miles are used rather than 2 sections of 100 miles. Also, series +C resistance has been made sizable (10 ohms rather than .001 ohms). +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .306 5.82 .012 50. { 1/4 the length of original + 1 1 1.E+1 { Small resistor precedes line section + REPETITION 3 { Connect another 3 sections of preceding 50 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SENDA 408000. 60. +BLANK card ending source data + 1 + 194 2. 0.0 20. RECA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 28 subcases is like 1st, except that the line is 3-phase rather +C than single phase. Still constant-parameter distributed, each phase +C has a very small resistor in series at the mid-point. The receiving +C end has 3 compensation-based surge arresters as in DC-38. +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 30 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .305515.8187.01210 100. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 100. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. + 1 1 1.E-3 { Small resistor precedes line section + 2 2 1.E-3 { Small resistor precedes line section + 3 3 1.E-3 { Small resistor precedes line section + REPETITION 1 { Connect another 1 sections of preceding 100 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC 4444. { Phase "c" ZnO is piecewise-linear +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data +C Exclamation point holds lower case of following, note: + RECA01RECa01RECA RECB01RECb01RECB RECC01RECc01RECC SENDA ! +BLANK card terminating names of node voltage outputs + 194 2. 0.0 20. RECA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 28 subcases is like preceding except that lumped elements are +C shunt-connected rather than series, from conductors to ground. +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 30 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .305515.8187.01210 100. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 100. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. + 1 0 1.E-3 { Capacitance to neutral + 2 0 1.E-3 + 3 0 1.E-3 + REPETITION 1 { Connect another 1 sections of preceding 100 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC 4444. { Phase "c" ZnO is piecewise-linear +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + 1 + 194 2. 0.0 20. RECA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 28 subcases is like preceding except that shunt-connected lumped +C elements are more involved. One dummy node (value -1) is used +C as well as ground (value 0) and the conductors (values 1, 2, 3). +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 30 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .305515.8187.01210 100. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 100. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. + 1 -1 1.E-3 { Capacitance to neutral + 2 -1 1.E-3 + 3 -1 1.E-3 + -1 0 1.E-3 { Resistance from neutral to earth + REPETITION 1 { Connect another 1 sections of preceding 100 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC 4444. { Phase "c" ZnO is piecewise-linear +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + 1 + 194 2. 0.0 20. RECA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 7th of 28 subcases merely modularizes the data for a 2-phase line that +C will be used next. It is a modification of 500-kV geometry of DC-59. +C Preceding line sections were continously transposed. The next will be +C highly unbalanced due to vertical configuration, note. Phase 1 has a +C real 3-conductor bundle whereas phase 2 consists of just one conductor +C twice the height, immediately above the 1st phase. +LINE CONSTANTS +$ERASE { Flush the punched card buffer (in case 2nd or later subcase of usage) +ENGLISH { Redundant request is unnecessary: English units are default choice +BRANCH JDA LMA JDB LMB + 1 .375 .0776 4 .0 1.302 .17 51.04 { Modification of DC-59a + 1 .375 .0776 4 .0 1.302 1.00 50.00 + 1 .375 .0776 4 .0 1.302 1.83 51.04 + 2 .375 .0776 4 .0 1.302 1.83 101.40 { 2nd phase is twice as high +BLANK card concludes conductor cards +C Following is old format with "1" in column 28. Newer blank is equivalent: + 100.0 5000.0 1 1 70. 1 +BLANK card ends the one and only frequency card +$PUNCH +BLANK card ends "LINE CONSTANTS" data subcase +BEGIN NEW DATA CASE +C 8th of 28 subcases is like 1st except that a 2-phase, untransposed +C line is involved. This involves 1st use of transformation matrix, +C note. Preceding line sections all were transposed. This one comes +C from cards punched by 7th data subcase. Use of comments cards within +C CASCADE LINE also are illustrated (note those series elements are not +C actually being used; they are comment cards only). Only one phase is +C excited, for more imbalance. There is no phasor solution, either. +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 30 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +$VINTAGE, 1 +-1JDA LMA 9.92820E+00 4.56745E+02 1.62458E+05-1.00000E+02 1 2 +-2JDB LMB 3.89217E-01 3.61489E+02 1.85363E+05-1.00000E+02 1 2 +$VINTAGE, 0 + 0.91340878 -0.63245328 + 0.00000000 0.00000000 + 0.40704349 0.77459851 + 0.00000000 0.00000000 + REPETITION 1 { Connect another 1 section of preceding 100 miles +C 1 1 1.E+1 { Small resistor precedes line section +C 2 2 1.E+1 { Small resistor precedes line section + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92LMA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92LMB LMA 5555. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14JDA 800000. 60. 0. +BLANK card ending source data + 1 + 194 2. 0.0 20. LMA LMB +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 9th of 28 subcases illustrates transposition without CASCADE LINE. +C This establishes the answer for the following case. Note the first +C section ends with (LMA001, LMB001) whereas the 2nd begins with +C (LMB001, LMA001), which shows 1 --> 2 and 2 --> 1 (swap). +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .006 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 +$VINTAGE, 1 +-1JDA LMA001 9.92820E+00 4.56745E+02 1.62458E+05-1.00000E+02 1 2 +-2JDB LMB001 3.89217E-01 3.61489E+02 1.85363E+05-1.00000E+02 1 2 +$VINTAGE, 0 + 0.91340878 -0.63245328 + 0.00000000 0.00000000 + 0.40704349 0.77459851 + 0.00000000 0.00000000 +-1LMB001LMA JDA LMA001 +-2LMA001LMB +92LMA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92LMB LMA 5555. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14JDA 800000. 60. 0. { 1st of 3 sources. Note balanced, +14JDB 800000. 60. -120. { three-phase, sinusoidal excitation +BLANK card ending source data + LMB001LMA001LMB LMA JDA JDB +BLANK card terminating names of node voltage outputs + 194 .5 0.5 5.5 LMA LMB +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 10th of 28 subcases repeats the preceding. But here CASCADE LINE is +C used to perform the transposition and connect the following (second) +C line section. Answers should be identical to preceding case. +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .006 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +$VINTAGE, 1 +-1JDA LMA 9.92820E+00 4.56745E+02 1.62458E+05-1.00000E+02 1 2 +-2JDB LMB 3.89217E-01 3.61489E+02 1.85363E+05-1.00000E+02 1 2 +$VINTAGE, 0 + 0.91340878 -0.63245328 + 0.00000000 0.00000000 + 0.40704349 0.77459851 + 0.00000000 0.00000000 + TRANSPOSITION 2 1 { Transpose 2 phases A --> B, B --> A +C 1 1 1.E+1 { Small resistor precedes line section +C 2 2 1.E+1 { Small resistor precedes line section + REPETITION 1 { Connect another 1 section of preceding 100 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92LMA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92LMB LMA 5555. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14JDA 800000. 60. 0. { 1st of 3 sources. Note balanced, +14JDB 800000. 60. -120. { three-phase, sinusoidal excitation +BLANK card ending source data + 1 + 194 .5 0.5 5.5 LMA LMB +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 11th of 28 subcases illustrates transposition within CASCADE LINE use +C 50-mile, 2-phase line section is unbalanced. After the 1st of these, we +C transpose and connect another. This is done 3 times (4 * 50 = 200 miles). +C diagnostic 9 +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +$VINTAGE, 1 +-1JDA LMA 9.92820E+00 4.56745E+02 1.62458E+05 -50. 1 2 +-2JDB LMB 3.89217E-01 3.61489E+02 1.85363E+05 -50. 1 2 +$VINTAGE, 0 + 0.91340878 -0.63245328 + 0.00000000 0.00000000 + 0.40704349 0.77459851 + 0.00000000 0.00000000 + TRANSPOSITION 2 1 { Transpose 2 phases A --> B, B --> A + REPETITION 1 { Connect another 1 section of 50 miles + TRANSPOSITION 2 1 { Transpose 2 phases A --> B, B --> A + REPETITION 1 { Connect another 1 section of 50 miles + TRANSPOSITION 2 1 { Transpose 2 phases A --> B, B --> A + REPETITION 1 { Connect another 1 section of 50 miles +C 1 1 1.E+1 { Small resistor precedes line section +C 2 2 1.E+1 { Small resistor precedes line section + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92LMA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92LMB LMA 5555. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14JDA 408000. 60. 0. { 1st of 3 sources. Note balanced, +C 14JDB 408000. 60. 0. { three-phase, sinusoidal excitation +BLANK card ending source data + 1 + 194 2. 0.0 20. LMA { LMB +C 144 2. 0.0 20. JDA LMA LMA001 +C 144 2. 0.0 20. JDB LMB LMB001 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 12th of 28 subcases illustrates transposition within CASCADE LINE. +C Preceding data case consisted of manual connection of 3 transpositions and +C line sections following the original line section. That was manual. Here +C the multiplicity is automated by INCLUDE TRANSPOSITION IN LOOP anywhere +C on the REPETITION card. This is new and better as of April 24, 1998. +C diagnostic 9 +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +$VINTAGE, 1 +-1JDA LMA 9.92820E+00 4.56745E+02 1.62458E+05 -50. 1 2 +-2JDB LMB 3.89217E-01 3.61489E+02 1.85363E+05 -50. 1 2 +$VINTAGE, 0 + 0.91340878 -0.63245328 + 0.00000000 0.00000000 + 0.40704349 0.77459851 + 0.00000000 0.00000000 + TRANSPOSITION 2 1 { Transpose 2 phases A --> B, B --> A + REPETITION 3 INCLUDE TRANSPOSITION IN LOOP { Connect another 3 sections of 50 miles +C 1 1 1.E+1 { Small resistor precedes line section +C 2 2 1.E+1 { Small resistor precedes line section + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92LMA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92LMB LMA 5555. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14JDA 408000. 60. 0. { 1st of 3 sources. Note balanced, +C 14JDB 408000. 60. 0. { three-phase, sinusoidal excitation +BLANK card ending source data + 1 + 194 2. 0.0 20. LMA { LMB +C 144 2. 0.0 20. JDA LMA LMA001 +C 144 2. 0.0 20. JDB LMB LMB001 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 13th of 28 subcases illustrates transposition within CASCADE LINE. +C Preceding created 200 miles of line using 4 sections of length 50 miles. +C The only change here is 20 sections of 10 miles each. Each line section +C is preceded by transposition, so this is close to continuous. The plot +C here is smoother than preceding, but not greatly different. +C diagnostic 9 +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +$VINTAGE, 1 +-1JDA LMA 9.92820E+00 4.56745E+02 1.62458E+05 -10. 1 2 +-2JDB LMB 3.89217E-01 3.61489E+02 1.85363E+05 -10. 1 2 +$VINTAGE, 0 + 0.91340878 -0.63245328 + 0.00000000 0.00000000 + 0.40704349 0.77459851 + 0.00000000 0.00000000 + TRANSPOSITION 2 1 { Transpose 2 phases A --> B, B --> A + REPETITION 19 INCLUDE TRANSPOSITION IN LOOP { Connect another 3 sections of 50 miles +C 1 1 1.E+1 { Small resistor precedes line section +C 2 2 1.E+1 { Small resistor precedes line section + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92LMA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92LMB LMA 5555. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14JDA 408000. 60. 0. { 1st of 3 sources. Note balanced, +C 14JDB 408000. 60. 0. { three-phase, sinusoidal excitation +BLANK card ending source data + LMA001LMB001LMA006LMB006LMA011LMB011LMA016LMB016LMA LMB +BLANK card ending node voltage outputs + 194 2. 0.0 20. LMA { LMB +C 144 2. 0.0 20. JDA LMA LMA001 +C 144 2. 0.0 20. JDB LMB LMB001 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 14th of 28 subcases illustrates transposition without CASCADE LINE. +C The preceding pair of cases was for 2 phases; the pair now beginning +C is for 3 phases. This 1st of the pair establishes the answer for the +C following case. Note the first section ends with (RECA01, RECB01, & +C RECC01) whereas the 2nd begins with (RECC01, RECA01, & RECB01), +C which shows 1 --> 2, 2 --> 3, and 3 --> 1 (a normal roll). +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .010 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 +-1SENDA RECA01 .305515.8187.01210 100. 0 { 200-mile, constant- +-2SENDB RECB01 .031991.5559.01937 100. 0 { parameter, 3-phase +-3SENDC RECC01 { transmission line. +-1RECC01RECA SENDA RECA01 +-2RECA01RECB +-3RECB01RECC + RECB01 1.E-3 { Capacitance to neutral + RECC01 1.E-3 + RECA01 1.E-3 +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. 1 +92RECC 4444. 1 +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + RECC01RECB01RECA01RECC RECB RECA SENDA SENDB SENDC +BLANK card terminating names of node voltage outputs + 194 1. 0.0 10. BRANCH + RECA RECB RECC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 15th of 28 subcases repeats the preceding. But here CASCADE LINE is +C used to perform the transposition in the middle, and connect line +C sections. Note the plural: rather than just 2 sections of 100 miles +C each, here we have 4 sections of 50 miles each. Except for error of +C discretization and interpolation of the line history, answers should +C be the same as for the preceding subcase, however. +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .010 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .305515.8187.01210 50. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 50. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. + REPETITION 1 { Connect another 1 sections of preceding 50 miles, making 50 + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A + 1 0 1.E-3 { Capacitance to neutral + 2 0 1.E-3 + 3 0 1.E-3 + REPETITION 1 { Connect another 1 section of preceding 50 miles after R-L-C + REPETITION 1 { Connect another 1 section of preceding 50 miles, making 50 + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. 1 +92RECC 4444. 1 +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + RECC02RECB02RECA02RECC RECB RECA SENDA SENDB SENDC +BLANK card terminating names of node voltage outputs + 194 1. 0.0 10. BRANCH + RECA RECB RECC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 16th of 28 subcases repeats the preceding, only with 10 line sections +C rather than 4. Total line length remains 200 miles, and transposition +C occurs only in the middle (after 5 sections of 20 miles). +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .010 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .305515.8187.01210 20. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 20. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. + REPETITION 4 { Connect another 4 sections of preceding 20 miles, making 80 + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A + 1 0 1.E-3 { Capacitance to neutral + 2 0 1.E-3 + 3 0 1.E-3 + REPETITION 1 { Connect another 1 section of preceding 20 miles after R-L-C + REPETITION 4 { Connect another 4 sections of preceding 20 miles, making 80 + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. 1 +92RECC 4444. 1 +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + RECC05RECB05RECA05RECC RECB RECA SENDA SENDB SENDC +BLANK card terminating names of node voltage outputs + 194 1. 0.0 10. BRANCH + RECA RECB RECC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 17th of 28 subcases repeats the preceding, only with 20 line sections +C rather than 10. Total line length remains 200 miles, and transposition +C occurs only in the middle (after 10 sections of 10 miles). +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .010 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .305515.8187.01210 10. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 10. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. + REPETITION 9 { 9 more sections all by themselves (no lumped elements) + TRANSPOSITION 2 3 1 { Transpose A, B, C --> B, C, A + 1 0 1.E-3 { Capacitance to neutral + 2 0 1.E-3 + 3 0 1.E-3 + REPETITION 1 { 1 more section after 3 lumped elements + REPETITION 9 { 9 more sections all by themselves (no lumped elements) + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. 1 +92RECC 4444. 1 +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + RECC10RECB10RECA10RECC RECB RECA SENDA SENDB SENDC +BLANK card terminating names of node voltage outputs + 194 1. 0.0 10. BRANCH + RECA RECB RECC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 18th of 28 subcases repeats the preceding, only with 40 line sections +C rather than 10. Total line length remains 200 miles, and transposition +C occurs only in the middle (after 20 sections of 5 miles). An important +C difference is the series elements. In the preceding case, they were +C used just once. Here, they are repeated 20 times. But since the +C resistance is so small, answer is not changed appreciably. One final +C difference is the addition of 8 dummy branches to force nodes NTOT +C into 3 digits, which changes the interpretation on STOP CASCADE. +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000025 .010 + 1 1 1 0 1 -1 + 66 1 80 10 100 100 + SENDA DUM1 1.0 { 1st of 8 dummy branches to increase NTOT + SENDA DUM1 1.0 { These branches are disconnected from line + SENDA DUM1 1.0 + SENDA DUM1 1.0 + SENDA DUM1 1.0 + SENDA DUM1 1.0 + SENDA DUM1 1.0 + SENDA DUM1 1.0 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .305515.8187.01210 5. 0 { 200-mile, constant- +-2SENDB RECB .031991.5559.01937 5. 0 { parameter, 3-phase +-3SENDC RECC { transmission line. + REPETITION 19 { 9 more sections of 10 miles for 100 miles total + TRANSPOSITION 2 3 1 { 1 more sections; transpose A, B, C --> B, C, A + 1 0 1.E-3 { Capacitance to neutral + 2 0 1.E-3 + 3 0 1.E-3 + REPETITION 20 { 9 more sections of 10 miles for 100 miles total + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. 1 +92RECC 4444. 1 +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + RECC20RECB20RECA20RECC RECB RECA SENDA SENDB SENDC +BLANK card terminating names of node voltage outputs + 194 1. 0.0 10. BRANCH + RECA RECB RECC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 19th of 28 subcases is like 8th, but it adds shunt-connected lumped +C elements (capacitance) that involve a dummy node (number -1). The +C dummy node is connected to ground by a 1-ohm resistor. +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .006 + 1 1 1 0 1 -1 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +$VINTAGE, 1 +-1JDA LMA 9.92820E+00 4.56745E+02 1.62458E+05-1.00000E+02 1 2 +-2JDB LMB 3.89217E-01 3.61489E+02 1.85363E+05-1.00000E+02 1 2 +$VINTAGE, 0 + 0.91340878 -0.63245328 + 0.00000000 0.00000000 + 0.40704349 0.77459851 + 0.00000000 0.00000000 + TRANSPOSITION 2 1 { Transpose the 2 phases: A --> B, B --> A + 1 -1 1.E-3 { Capacitance to neutral + 2 -1 1.E-3 { Capacitance to neutral + -1 0 1.0 { Resistance from neutral to earth + REPETITION 1 { 1 more sections of 100 miles for 200 miles total + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92LMA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92LMB LMA 5555. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14JDA 408000. 60. 0. { 1st of 3 sources. Note balanced, +14JDB 408000. 60. -120. { three-phase, sinusoidal excitation +BLANK card ending source data + 1 + 194 .5 0.5 5.5 LMA LMB +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 20th of 28 subcases is like the 1st, but with the addition of current +C output for the series resistor in the middle. Also, resistance value +C has been made sizable (20 ohms) to attenuate the surge. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000050 .020 + 1 1 1 0 1 -1 2 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .306 5.82 .012 100. { Half the length of original + 1 1 2.E+1 { Sizable resistor precedes line section } 1 + REPETITION 1 { Connect another section of preceding 100 miles, making 200 + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SENDA 408000. 60. +BLANK card ending source data + 1 + 194 2. 0.0 20. RECA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 21th of 28 subcases is like preceding, but with 4 sections of 50 miles +C rather than 2 of 100. The resistor is repeated 3 times, here, and each +C section has its own output of current, of course. R = 10 ohms, note. +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 2 + 33 1 40 10 100 50 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +-1SENDA RECA .306 5.82 .012 50. { 1/4 the length of original + 1 1 1.E+1 { Small resistor precedes line section } 1 + REPETITION 3 { Connect another 3 sections of preceding 50 miles, making 200 + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA { Type 92 is for v-i curve } 5555. { 5555 flag is for exponentials } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 2.0 +C COEF EXPON VMIN + 1250. 26. 0.5 + 9999. { Bound on exponential segments (only one precedes) +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SENDA 408000. 60. +BLANK card ending source data + 1 + 194 2. 0.0 20. RECA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 22nd of 28 subcases is same as DC-3, only built using CASCADE LINE. +C One can use FC to compare this solution with DC-3. Comments from it: +C Energization of 180-mile 3-phase line represented by 18 identical +C Pi-sections. Transposed at 60 and 120 miles, note. XOPT = 3000. +PRINTED NUMBER WIDTH, 13, 2, + .000050 .010 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 1 1 1 -1 + 5 5 10 10 20 20 { Escalating printout frequency + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI + 1GEN-A 18-B 34.372457.68.15781 + 2GEN-B 18-C 35.735164.43-.031538.002451.79.16587 + 3GEN-C 18-A 35.735164.43-.031537.455151.72-.021938.002451.79.16587 +C Note that receiving-end names correspond to final phase position (B, C, A) +C after two cyclic transpositions that will follow. The final line section +C will connect (18-B17, 18-C17, 18-A17) with (18-B, 18-C, and 18-A). + REPETITION 5 { Connect another 5 sections of preceding 10 miles, making 50 + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A + REPETITION 6 { Connect another 6 sections of preceding 10 miles, making 60 + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A + REPETITION 6 { Connect another 6 sections of preceding 10 miles, making 60 + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 23rd of 28 subcases is like preceding, except that it has added damping +C as explained in the July, 1999, newsletter. Comments document this +C exceptional, extra data card immediately following the line section. +C The idea comes from Orlando Hevia. Value 100K ohms used here results +C in graphically obvious damping (see screen plot) without changing the +C peak value much. Initial ringing is essentially the same although +C following noise disappears much more quickly. +PRINTED NUMBER WIDTH, 13, 2, + .000050 .010 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 1 1 1 -1 + 5 5 10 10 20 20 { Escalating printout frequency + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI + 1GEN-A 18-B 34.372457.68.15781 + 2GEN-B 18-C 35.735164.43-.031538.002451.79.16587 + 3GEN-C 18-A 35.735164.43-.031537.455151.72-.021938.002451.79.16587 +C For added, artificial damping, an extra card having blank columns 1-26 +C must immediately following the line section. Columns 27-32 carry the +C value in ohms of resistor that will parallel each phase of each section: + 1.E5 { Damping resistor parallels each conductor +C Note that receiving-end names correspond to final phase position (B, C, A) +C after two cyclic transpositions that will follow. The final line section +C will connect (18-B17, 18-C17, 18-A17) with (18-B, 18-C, and 18-A). + REPETITION 5 { Connect another 5 sections of preceding 10 miles, making 50 + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A + REPETITION 6 { Connect another 6 sections of preceding 10 miles, making 60 + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A + REPETITION 6 { Connect another 6 sections of preceding 10 miles, making 60 + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) + 144 1. 0.0 10. -2. 2. 18-C 18-B 18-A +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 24th of 28 subcases begins illustration of frequency-dependent line +C sections within CASCADE LINE. Begin with Semlyen F-dependence. +C This initial subcase will connect 2 100-mile sections manually in +C order to establish the right answer. No CASCADE LINE yet. +PRINTED NUMBER WIDTH, 9, 2, { Request maximum precision (for 8 output columns) + 100.E-6 .004 60. + 1 1 1 1 0 -1 + 30 5 50 10 100 100 +C <++++++> Cards punched by support routine on 11-Nov-18 11.00.00 <++++++> +C SEMLYEN SETUP +C $ERASE +C BRANCH SENDA RECA SENDB RECB SENDC RECC +C TOLERANCES 10 5000. { Illustration only; value of FMED actually unchang +C 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous da +C LINE CONSTANTS +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C BLANK card ending conductor cards within "LINE CONSTANTS" data +C 100. 5000. 100. { Transient frequen +C 100. 60.00 100. { Phasor solution frequen +C 100. 6.00 100. 6 20 { log loopi +C BLANK card ending frequency cards of "LINE CONSTANTS" data +C BLANK card ending "LINE CONSTANTS" data cases +C L= 100.0 miles, rho= 100.0, ss freq= 60.00, NSS=0, KFIT=10, KPS=2, KYC=30 +-1ASW1 A5A001 5.73657E-03 5.80501E-04 1 1 2 2 3 + 1.29532159E+01 6.90147263E+01-1.54971081E-04 1.00826561E-03 6.00000000E+01 + 0.00000E+00 1.99246E+04 7.80012E-01 0.00000E+00 2.39630E+03 2.19988E-01 + 0.00000E+00 2.93896E+05-8.84697E-04 0.00000E+00 6.44826E+02-1.46889E-03 +-1BSW1 B5B001 6.99857E-03 5.37300E-04 2 2 2 2 3 + 3.65631810E-01 3.01288921E+01-1.20641047E-05 1.41887940E-03 6.00000000E+01 + 0.00000E+00 2.54663E+05 9.79674E-01 0.00000E+00 2.72320E+03 2.03258E-02 + 0.00000E+00 9.43770E+03-1.26448E-04 0.00000E+00 5.92472E+01-4.28807E-04 +-1CSW1 C5C001 4.15601E-03 5.36306E-04 3 3 2 2 3 + 1.50114817E+00 5.16927471E+01-1.74676422E-05 8.35146102E-04 6.00000000E+01 + 0.00000E+00 6.39606E+05 9.69072E-01 0.00000E+00 2.23039E+03 3.09277E-02 + 0.00000E+00 2.10503E+03-1.22603E-04 0.00000E+00 9.26329E+01-3.41262E-04 + 1.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00-2.75271E-01 0.00000E+00 + 7.22689E-01 0.00000E+00 4.43389E-13 0.00000E+00 1.00000E+00 0.00000E+00 + 1.00000E+00 0.00000E+00-1.00000E+00 0.00000E+00-2.75271E-01 0.00000E+00 + 4.17084E-01 0.00000E+00 5.00000E-01 0.00000E+00-3.01620E-01 0.00000E+00 + 2.29906E-01 0.00000E+00 3.55101E-13 0.00000E+00 8.34169E-01 0.00000E+00 + 4.17084E-01 0.00000E+00-5.00000E-01 0.00000E+00-3.01620E-01 0.00000E+00 +-1A5A001A5A ASW1 A5A001 +-1B5B001B5B +-1C5C001C5C + 0A5A 1. 1 + 0B5B 1. 1 + 0C5C 1. 1 + 0A5A001 1.E-3 + 0B5B001 1.E-3 + 0C5C001 1.E-3 +BLANK card ending branch cards +BLANK card ending switch cards +14ASW1 303. 60. 0.0 -1. +14BSW1 303. 60. -120.0 -1. +14CSW1 303. 60. 120.0 -1. +BLANK card ending source cards + A5A A5A001B5B B5B001C5C C5C001 +BLANK card ending the specification of program outputs (node voltages, here) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 25th of 28 subcases repeats the preceding, only using CASCADE LINE +C to connect together the two Semlyen F-dependent line sections. +PRINTED NUMBER WIDTH, 9, 2, { Reduced precision + 100.E-6 .004 60. + 1 1 1 1 0 -1 + 30 5 50 10 100 100 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +C <++++++> Cards punched by support routine on 11-Nov-18 11.00.00 <++++++> +C SEMLYEN SETUP +C $ERASE +C BRANCH SENDA RECA SENDB RECB SENDC RECC +C TOLERANCES 10 5000. { Illustration only; value of FMED actually unchang +C 200 150 10 230 1 7 7777 0 { Semlyen miscellaneous da +C LINE CONSTANTS +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C BLANK card ending conductor cards within "LINE CONSTANTS" data +C 100. 5000. 100. { Transient frequen +C 100. 60.00 100. { Phasor solution frequen +C 100. 6.00 100. 6 20 { log loopi +C BLANK card ending frequency cards of "LINE CONSTANTS" data +C BLANK card ending "LINE CONSTANTS" data cases +C L= 100.0 miles, rho= 100.0, ss freq= 60.00, NSS=0, KFIT=10, KPS=2, KYC=30 +-1ASW1 A5A 5.73657E-03 5.80501E-04 1 1 2 2 3 + 1.29532159E+01 6.90147263E+01-1.54971081E-04 1.00826561E-03 6.00000000E+01 + 0.00000E+00 1.99246E+04 7.80012E-01 0.00000E+00 2.39630E+03 2.19988E-01 + 0.00000E+00 2.93896E+05-8.84697E-04 0.00000E+00 6.44826E+02-1.46889E-03 +-1BSW1 B5B 6.99857E-03 5.37300E-04 2 2 2 2 3 + 3.65631810E-01 3.01288921E+01-1.20641047E-05 1.41887940E-03 6.00000000E+01 + 0.00000E+00 2.54663E+05 9.79674E-01 0.00000E+00 2.72320E+03 2.03258E-02 + 0.00000E+00 9.43770E+03-1.26448E-04 0.00000E+00 5.92472E+01-4.28807E-04 +-1CSW1 C5C 4.15601E-03 5.36306E-04 3 3 2 2 3 + 1.50114817E+00 5.16927471E+01-1.74676422E-05 8.35146102E-04 6.00000000E+01 + 0.00000E+00 6.39606E+05 9.69072E-01 0.00000E+00 2.23039E+03 3.09277E-02 + 0.00000E+00 2.10503E+03-1.22603E-04 0.00000E+00 9.26329E+01-3.41262E-04 + 1.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00-2.75271E-01 0.00000E+00 + 7.22689E-01 0.00000E+00 4.43389E-13 0.00000E+00 1.00000E+00 0.00000E+00 + 1.00000E+00 0.00000E+00-1.00000E+00 0.00000E+00-2.75271E-01 0.00000E+00 + 4.17084E-01 0.00000E+00 5.00000E-01 0.00000E+00-3.01620E-01 0.00000E+00 + 2.29906E-01 0.00000E+00 3.55101E-13 0.00000E+00 8.34169E-01 0.00000E+00 + 4.17084E-01 0.00000E+00-5.00000E-01 0.00000E+00-3.01620E-01 0.00000E+00 + 1 0 1.E-3 { Capacitance to neutral + 2 0 1.E-3 + 3 0 1.E-3 + REPETITION 1 { Connect another 1 sections of preceding 50 miles, making 200 + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request + 0A5A 1. 1 + 0B5B 1. 1 + 0C5C 1. 1 +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14ASW1 303. 60. 0.0 -1. +14BSW1 303. 60. -120.0 -1. +14CSW1 303. 60. 120.0 -1. +BLANK card ending source data + A5A A5A001B5B B5B001C5C C5C001 +BLANK card ending node voltage outputs +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 26th of 28 subcases is like preceding subcase, but Semlyen line +C modeling is replaced by J. Marti line modeling. Still two 100-mile +C sections are cascaded, however. +PRINTED NUMBER WIDTH, 10, 2, { Reduced precision + .000050 .020 + 1 1 1 0 1 -1 + 30 5 50 10 100 100 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI +C <++++++> Cards punched by support routine on 11-Nov-18 11.00.00 <++++++> +C ***** UNTRANSPOSED JMARTI line segment ****** +C JMARTI SETUP, 1.0, { Note use of PDT0 = 1 to allow reduction of ord +C $ERASE +C BRANCH SENDA RECA SENDB RECB SENDC RECC +C LINE CONSTANTS +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 - 0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C BLANK card ending conductor cards of imbedded "LINE CONSTANTS" data +C 100. 5000. 100. 1 1 +C 100. 60.00 100. 1 1 +C 100. .01 100. 1 9 10 1 +C BLANK card ending frequency cards of inbedded "LINE CONSTANTS" data +C BLANK card ending "LINE CONSTANTS" cases (back to "JMARTI SETUP") +C 1 .48D-7 +C .30 30 0 1 3 0 0 +-1SENDA RECA 1. 1.00 -2 3 + 18 4.7483546376731072800E+02 + -1.18006161060646209E+00 -3.16766872020413360E+00 2.55699269092638702E+01 + -6.01797009623673489E+01 -1.18859418694219202E+02 1.28219132925008535E+03 + 5.89997491758850629E+03 2.93123960674098963E+04 1.15769990477470027E+05 + 4.56828075863527542E+05 1.53829254905850161E+06 6.82459590531661455E+06 + 1.55607339315315970E+07 2.31961726607006118E+07 1.43948936484195535E+07 + 2.41675279090378210E+07 2.45138250143723451E+07 4.76943011379202083E+07 + 3.21677891370685698E-01 8.97689663361987301E-01 1.65645914803404449E+00 + 1.66683409949634776E+00 2.53097172028723927E+00 2.00062220020147664E+01 + 1.24317532805618115E+02 6.57762750995805277E+02 2.78828659956286174E+03 + 1.17239579054727201E+04 4.27765179903550234E+04 2.02713498468649341E+05 + 9.69491855126972544E+05 2.97097124115793128E+06 7.38395608260167297E+06 + 1.21069716520713456E+07 1.32941233143761196E+07 2.52144300149374009E+07 + 14 6.2012595281792895700E-04 + 9.21163821482878787E-02 4.49959993192020458E-01 5.85569758182220901E-01 + 1.39148640698697257E+00 5.62298197490835961E+00 1.70440712502643735E+01 + 1.13333401654647077E+02 5.08692785290631662E+02 2.44410769027288780E+03 + 9.94922166773389450E+02 1.34258890978641612E+04 7.13108058148054174E+05 + 6.17020585096151010E+07 -6.24326786990908981E+07 + 3.32380162906116326E+01 1.56591584681817097E+02 2.11026421609272604E+02 + 4.12916697658035276E+02 4.68653759455945079E+02 7.14803232315465494E+02 + 1.93593005557436050E+03 3.70931080902511576E+03 6.84113065949658449E+03 + 9.03279886786780117E+03 1.87891647818270213E+04 3.39154192586971549E+04 + 3.11467431507017864E+04 3.11778898938524981E+04 +-2SENDB RECB 1. 1.00 -2 3 + 13 2.8580875771920489100E+02 + 3.81761650263625780E+03 -2.69529267120074792E+03 4.45018223196032978E+02 + 2.14658087789413543E+02 8.97324539735147795E+01 1.30479996048504689E+02 + 6.83066754726465888E+01 7.46726687815945383E+01 1.34027409744895681E+03 + 2.50078920872312984E+03 1.87804658322097858E+04 3.91074617528546777E+05 + 5.62682417249109410E+06 + 3.58668998822370755E+00 3.76679183632024107E+00 7.06439014940525656E+00 + 1.09721623541976090E+01 1.40506300112179279E+01 2.34292433673431511E+01 + 4.07689465036720549E+01 7.97671181460381150E+01 1.29186371424101322E+03 + 2.42269462582384268E+03 1.82406263537032428E+04 3.79870364151798015E+05 + 5.48842772234612518E+06 + 12 5.3730880510797227400E-04 + 2.52028254243671146E+00 4.01109349623009948E+01 6.96402856688803383E+01 + 3.57989358491384949E+01 5.71230525753107032E+02 6.38898075449796034E+03 + 4.78340405101482902E+04 3.41271841771830660E+04 5.07996697693548748E+05 + 1.11163339089429100E+07 -1.33632800675941563E+09 1.32461460664639903E+09 + 4.94199695306566128E+02 7.83643468932789893E+03 1.32162679948852129E+04 + 6.60156366445954882E+03 2.62734388612854382E+04 1.06907548589068698E+05 + 2.12743847016397224E+05 2.51865691934913310E+05 6.08900683349632076E+05 + 1.18332010282752617E+06 1.34471502915186296E+06 1.34605974418101414E+06 +-3SENDC RECC 1. 1.00 -2 3 + 14 2.7244405820675621000E+02 + 3.17764328769020324E+02 3.84056941911861316E+02 7.78154566307962341E+02 + 1.03108316719518073E+02 2.00907813594929423E+02 7.57757504866314662E+01 + 1.33832891336631036E+02 6.58793101560571018E+01 6.29912275222635501E+01 + 9.49916573832233411E+01 1.15740687395458577E+03 2.61294978694073052E+03 + 1.54518909503364667E+04 6.88065437367142179E+05 + 2.24584095184176836E+00 5.75878919400151102E+00 3.82714998158506692E+00 + 6.71993501533223281E+00 1.07191091989576162E+01 1.36101548287774819E+01 + 2.35649762525126896E+01 3.87434226439781427E+01 7.02935629984925754E+01 + 1.04171009267287304E+02 1.11593305416259068E+03 2.53309850094363765E+03 + 1.49935463738342951E+04 6.69557374591290136E+05 + 19 5.4249643968434541500E-04 + 5.03387350941083417E-02 6.52560754647720121E+00 6.22874555413331255E+00 + 1.10921489856047871E+01 1.43892714677717013E+01 2.19646982905073643E+01 + 2.39955726673266483E+01 1.21934358335957640E+02 1.92937966105206875E+03 + 2.44231984427209682E+03 2.02708309307978635E+04 -4.49273698439439250E+04 + 2.83136618112942728E+05 3.18181274590489164E+05 3.43779403231728764E+05 + 4.56485000780035210E+09 -4.47900949758226872E+09 8.07451970047741032E+09 + -8.16128522933274556E+09 + 1.81395392158859572E+01 2.39258438884147018E+03 2.16963528059100600E+03 + 3.94822566442155040E+03 5.27570056810359165E+03 7.69075350487642664E+03 + 8.80973914669594160E+03 3.76208534925462009E+04 5.81576243785037660E+04 + 6.47439571523925988E+04 1.97383423873635883E+05 6.74981934148844798E+05 + 5.87155884247283801E+05 1.28272476890128758E+06 1.75714198326300784E+06 + 7.85922959411724192E+06 7.86708882371135429E+06 6.80579508985397965E+06 + 6.81260088494382892E+06 + 0.57153211 0.70710678 -0.41762015 + 0.00000000 0.00000000 0.00000000 + 0.58881414 0.00000000 0.80696147 + 0.00000000 0.00000000 0.00000000 + 0.57153211 -0.70710678 -0.41762015 + 0.00000000 0.00000000 0.00000000 + 1 0 1.E-3 { Capacitance to neutral } 3 + 2 0 1.E-3 + 3 0 1.E-3 + REPETITION 1 { Connect another 1 sections of preceding 100 miles + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +92RECA 5555. { 1st card of 1st of 3 ZnO } 1 +C VREF VFLASH VZERO COL + 778000. -1.0 0.0 4.0 +C COEF EXPON VMIN + 625. 26. 0.5 + 9999. +92RECB RECA 5555. { Phase "b" ZnO is copy of "a" +92RECC 4444. { Phase "c" ZnO is piecewise-linear +C VREF VFLASH VZERO + 0.0 -1.0 0.0 + 1.0 582400. { First point of i-v curve. + 2.0 590800. { Data is copied from DC-39 + 5.0 599200. { which was used to create + 10. 604800. { the ZnO branch cards that + 20. 616000. { are used in phases "a" & + 50. 630000. { "b". But there is some + 100. 644000. { distortion due to the use + 200. 661920. { of linear rather than the + 500. 694400. { more accurate exponential + 1000. 721280. { modeling, of course. + 2000. 756000. + 3000. 778400. { Last point of i-v curve. + 9999. { Terminator for piecewise-linear characteristic +BLANK card follows the last branch card +BLANK line terminates the last (here, nonexistent) switch +14SENDA 408000. 60. 0.0 { 1st of 3 sources. Note balanced, +14SENDB 408000. 60. -120. { three-phase, sinusoidal excitation +14SENDC 408000. 60. 120. { with no phasor solution. +BLANK card ending source data + SENDA RECA01SENDB RECB01SENDC RECC01 +BLANK card ending the specification of program outputs (node voltages, here) + CALCOMP PLOT + 194 2. 0.0 20. RECA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C BENCHMARK DC-9 +C 27th of 28 subcases is a modification of the original DC-9, which +C for some 24 years carried CASCADED PI usage. Data has been converted +C from CASCADED PI (now gone as of April, 1998) to CASCADE LINE + 0.0 0.0 60. + 0 0 1 1 + CASCADE LINE { Request for February, 1998 replacement of old CASCADED PI + 1RA1 MIDA .877 8.40 .1628 + 2RB1 MIDB .747 4.14-.0252 .852 8.43 .1559 + 3RC1 MIDC .735 3.47-.0067 .723 4.17-.0277 .829 8.46 .1571 + REPETITION 1 { Connect another 1 section of preceding +C Ok, we now are at nodes 2A1, 2B1, and 2C1 of Fig. 1 in Sect. IV-F of the +C Rule Book. Next, we must roll, connect some lumped elements in series, +C and finally another (just one) line section: + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A +C 1 1 1.E-3 { Poor approximation to short circuit ignored + 2 2 1.E18 + 3 3 13.1449.071 + REPETITION 1 { Loop once over preceding lumped elements and line section +C Ok, we now are at nodes 4C1, 4A1, and 4B1 of Fig. 1. Next, we must +C roll, connect some lumped elements in series, and finally another line +C section. If final line section is split in half, each half is very close +C to original above, so we can stay within CASCADE LINE longer: + TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A + 1 1 13.14 + 2 2 13.14 + 3 3 13.1449.071 + 1 -1 13.1449.071 + 2 -1 13.1449.071 + 3 -1 13.1449.071 + 0 -1 5.0 13.14 +C REPETITION 1 +C TRANSPOSITION 2 3 1 { Transpose 3 phases A --> B, B --> C, C --> A +C 1 1 13.14 +C 2 2 13.14 +C 3 3 13.1449.071 +C 1 -1 13.1449.071 +C 2 -1 13.1449.071 +C 3 -1 13.1449.071 +C 0 -1 5.0 13.14 +C REPETITION 1 +C Note: the preceding comment cards are equivalent to the following line: + REPETITION 2 INCLUDE TRANSPOSITION IN LOOP { Replace preceding comments + STOP CASCADE { Terminate cascading that began with "CASCADE LINE" request +C Final line section was split in two. Originally, it was approximately one +C double-length section. It becomes two single-length sections of which the +C first of the two is defined by the preceding REPETITION loop. That leaves +C one single-length section to be connected manually: + 1MIDA GENA .877 8.40 .1628 + 2MIDB GENB .747 4.14-.0252 .852 8.43 .1559 + 3MIDC GENC .735 3.47-.0067 .723 4.17-.0277 .829 8.46 .1571 +BLANK card ending branch cards +BLANK card ending switch cards (none for this problem) +14RA1 424.35 60. 10.0 -.1 +14RB1 424.35 60. -110.0 -.1 +14RC1 424.35 60. 130.0 -.1 +14GENA 424.35 60. 0.0 -.1 +14GENB 424.35 60. -120.0 -.1 +14GENC 424.35 60. 120.0 -.1 +$WIDTH, 79, { Request narrow, 80-column LUNIT6 output as an illustration +BLANK card ending source cards +BLANK card ending selective node voltage outputs (none for this problem) + PRINTER PLOT +BLANK card ending plot cards (none allowed for CASCADED PI use, actually) +BEGIN NEW DATA CASE +$WIDTH, 132, { Restore normal 132-column LUNIT6 output for this subcase +C DIAGNOSTIC 0 0 3 { Produce [Y] of CASCADE PI in the .DBG file +C 28th of 28 subcases is the original DC-9 data from April of 1998. This +C is appended 2 August 2009 as the old CASCADED PI code is added back +C into ATP. We do add $PUNCH to illustrate the punching of [Y] on +C branch cards. Compare this output with the data of DC-11. WSM. +C Illustration of many "CASCADED PI" features. See DCPRINT-25 if any +C trouble, and DC-10 for comparison (same solution only manual cascade). + 0.0 0.0 60. + 0 0 1 1 + CASCADED PI 3 60.0 + 1RA1 GA1 .877 8.40 .1628 + 2RB1 GB1 .747 4.14-.0252 .852 8.43 .1559 + 3RC1 GC1 .735 3.47-.0067 .723 4.17-.0277 .829 8.46 .1571 + 1.0 2 0 0 1 1 2 3 + 1.0 1 1 0 0 2 3 1 + 2 999999 + 3 13.1449.071 +BLANK card ending first Class-5 (Series R-L-C) set of data + 1.0 1 1 1 0 3 1 2 + 1 13.14 + 2 13.14 + 3 13.1449.071 +BLANK card ending 2nd Class-5 (Series R-L-C) set of data + 1 -1 13.1449.071 + 2 -1 13.1449.071 + 3 -1 13.1449.071 + -1 5.0 13.14 +BLANK card ending first Class-6 (Shunt R-L-C) set of data + 2.0 1 -1 -1 1 1 2 3 + 1 .829 8.46 .1571 + 2 .723 4.17-.0277 .852 8.43 .1559 + 3 .735 3.47-.0067 .747 4.14-.0252 .877 8.40 .1628 +C Activate the following comment for full precision of [Y] on punched cards: +C $VINTAGE, 2, { Request maximum of 27 columns of precision (not 16) for TR, TX + STOP CASCADE +BLANK card ending branch cards +C In 1998, [Y] was obtained from diagnostic output of overlay 3. As code is +C restored in August of 2009, this no longer is necessary. [Y] automatically +C is placed on branch cards in the punch buffer. It only remains for the user +C to flush them. Any time after STOP CASCADE should work. WSM. +$PUNCH { Output the branch [Y] as could be used for data in DC-11 +BLANK card ending switch cards (none for this problem) +14GA1 424.35 60. 0.0 -.1 +14RA1 424.35 60. 10.0 -.1 +14GB1 424.35 60. -120.0 -.1 +14RB1 424.35 60. -110.0 -.1 +14GC1 424.35 60. 120.0 -.1 +14RC1 424.35 60. 130.0 -.1 +BLANK card ending source cards +C Total network loss P-loss by summing injections = 9.311041032866E+03 +C 1st gen: RA1 417.90316999073 424.35 -.0131358847782 .05382578726276 +C 1st gen: 73.687604192962 10.00000 .05219831324431 104.1253709 +C End last gen: -12.95674346101 44.419110587004 -6432.468410934 9424.6247887975 +C End last gen: -42.48741206788 -106.9593405 -6888.171205186 -0.6825172 +BLANK card ending selective node voltage outputs (none for this problem) + PRINTER PLOT +BLANK card ending plot cards (none allowed for CASCADED PI use, actually) +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dcn1.dat b/benchmarks/dcn1.dat new file mode 100644 index 0000000..5cdbf19 --- /dev/null +++ b/benchmarks/dcn1.dat @@ -0,0 +1,883 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-1 +C Test of automatic U.M. initialization using Type-4 (the induction) mode. +C Continuation of steady-state only (no real transient). No external rotor +C circuit. Machine rating is as follows: +C 2.541 MVA, 4.2 KV, 4 POLE ( 85.67% efficiency at 0.846 PF +C and 14.0E+3 NM.; KIPP TORQUE = 79.157E+3 NM, SLP = 24.3% ) +POWER FREQUENCY, 60, { Corrects possible 50-Hz declaration of European STARTUP +ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60, +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000200 .100 + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +C --------- ROTOR EXTERNAL RESISTANCES + BUSA2 BUSAS2 1.0E-4 10.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 + BUSC2 BUSCS2BUSA2 BUSAS2 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 1.0E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +C --------- MECHANICAL NETWORK COMPONENTS + BUSMG BUSMGR .4548 1 + BUSMGR BUSMG BUSMGR + BUSMG 9.8E+7 1 +C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE + BUSMS BUSMG 1.0E-6 1 +BLANK card ending branch cards +BLANK card ending nonexistent switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C --------- 3-PHASE SOURCES AT ROTOR SIDE (ACTUAL FREQ SET BY SS): +C --------- MECHANICAL INPUT TORQUE (ACTUAL VALUE SET BY SS): +14BUSMS -1 0.000001 0.00001 -1.0 +19 UM { Beginning of U.M. data + 1 +BLANK CARD ENDING CLASS 1 UM DATA CARDS +C UM-1 MACHINE TABLE : + 4 111BUSMG 2 0.1885 + 0.02358 + 0.02358 +2.0 0.0 BUSMS +C UM-1 COIL TABLE + BUSA2 1 +0.412 0.0012 BUSB2 1 +0.412 0.0012 BUSC2 1 +0.110 0.0012 1 +0.110 0.0012 1 + 1 +BLANK card terminating all U.M. data +C --------------+------------------------------ +C From bus name | Names of all adjacent busses. +C --------------+------------------------------ +C BUSA2 |BUSAS2*UM1TLA* +C BUSAS2 |TERRA *BUSA2 * +C BUSB2 |BUSBS2*UM1TLB* +C BUSBS2 |TERRA *BUSB2 * +C BUSC2 |BUSCS2*UM1TLC* +C BUSCS2 |TERRA *BUSC2 * +C BUSMG |TERRA *BUSMGR*BUSMS *UM1MCC* +C BUSMGR |TERRA *BUSMG * +C BUSMS |BUSMG * +C UM1TLA |BUSA2 * +C UM1TLB |BUSB2 * +C UM1TLC |BUSC2 * +C UM1MCC |BUSMG * +C TERRA |BUSAS2*BUSBS2*BUSCS2*BUSMG *BUSMGR* +C --------------+------------------------------ +BLANK card ending all electric-network sources +C Total network loss P-loss by summing injections = 1.399999999990E+01 +C Total network loss P-loss by summing injections = 1.879270126241E+04 +C Total network loss P-loss by summing injections = 1.879220126241E+04 +C Total network loss P-loss by summing injections = 1.880006219404E+04 +C Last inject: BUSCS2 -1500. 3000. 182.2227379651 376.33814334153 +C Last inject: 2598.0762113533 120.0000 329.27992939481 61.0399614 + BUSAS2BUSA2 BUSMG { Selective node voltage outputs +C Step Time BUSAS2 BUSA2 BUSMG BUSA2 BUSMG +C BUSAS2 BUSMGR +C +C UM-1 UM-1 UM-1 UM-1 UM-1 +C OMEGM THETAM IPA IPB IPC +C 0 0.0 3000. 1784.374675 184.725648 -194.050415 203.0844855 +C 184.725648 .7853981634 -194.050415 376.2746528 -182.224238 +C 1 .2E-3 2991.476701 1834.302202 184.7256479 -217.778001 203.0844854 +C 184.725648 .822343293 -217.778001 374.6919354 -156.913934 +BLANK card terminating output variable requests +C 500 0.1 3000. 1783.984613 184.7241591 -193.987564 203.0828486 +C 184.725648 19.25796297 -193.987564 376.1921117 -182.204548 +C Variable maxima : 3000. 1928.26504 184.725648 376.2415171 203.0844855 +C 184.725648 19.25796297 376.2415171 376.2781467 376.2139786 +C Times of maxima : 0.0 .001 0.0 .0944 0.0 +C 0.0 0.1 .0944 .0166 .0722 +C Variable minima : -3000. -1928.26734 184.7241591 -376.246896 203.0828486 +C 184.725648 .7853981634 -376.246896 -376.228394 -376.231626 +C Times of minima : .075 .026 0.1 .0194 0.1 +C 0.0 0.0 .0194 .0916 .0972 + PRINTER PLOT + 194 10 0.0 100 UM-1 OMEGM UM-1 THETAM { Plot limits: (0.000, 1.847) + 194 20 0.0 100 BUSMG BUSMGRUM-1 TQGEN { Plot limits: (-4.168, 0.203) +BLANK card terminating plot cards +BEGIN NEW DATA CASE +C 2nd of 7 subcases is related to first. Solution is nearly the same. Two +C changes have been made. First, prediction rather than compensation is +C used ("1" in column 15 on 2nd card). Second, two copies of the induction +C machine are in parallel (armature terminals). The two machines do have +C separate (but identical) mechanical networks, however. The impedance that +C connects armature coils to the infinite bus has been halved in order to +C keep the solution the same until the fault (armature phase "a" to ground) +C at 20 msec. This simulation has been stopped at 50 msec, but others have +C run to 1/2 second with interesting results. For example, fault current +C still shows a sizable dc offset that is decaying very slowly. The speed +C demonstrates a small but troublesome oscillation on each time step. If +C the fault switch is erased, then the simulation agrees closely with the +C first subcase. +POWER FREQUENCY, 60, { Corrects possible 50-Hz declaration of European STARTUP +ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60, +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .000200 .050 + 1 1 1 0 1 -1 + 5 5 20 20 100 1 105 5 120 20 +C Impedance (series R-L) connects armature coils with sinusoidal sources: + BUSA2 BUSAS2 .50E-4 5.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 + BUSC2 BUSCS2BUSA2 BUSAS2 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 .50E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +C ======== Begin mechanical network for 1st of 2 parallel induction machines: + BUSMG BUSMGR .4548 1 + BUSMGR BUSMG BUSMGR + BUSMG 9.8E+7 1 + BUSMG 9.8E+7 1 + BUSMS BUSMG 1.0E-6 { To measure electromagnetic torque } 1 +C ======== Begin mechanical network for 2nd of 2 parallel induction machines: + GUSMG GUSMGR .4548 1 + GUSMGR GUSMG GUSMGR + GUSMG 9.8E+7 1 + GUSMS GUSMG 1.0E-6 { To measure electromagnetic torque } 1 +BLANK card ending branch cards + BUSA2 .0199 1.0 { Retard by dt/2 so close at 20 msec } 1 +BLANK card terminating all switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C --------- 3-PHASE SOURCES AT ROTOR SIDE (ACTUAL FREQ SET BY SS): +C --------- MECHANICAL INPUT TORQUE (ACTUAL VALUE SET BY SS): +14BUSMS -1 0.000001 0.00001 -1.0 +14GUSMS -1 0.000001 0.00001 -1.0 +19 UM { Beginning of U.M. data + 1 1 +BLANK CARD ENDING CLASS 1 UM DATA CARDS +C UM-1 MACHINE TABLE : + 4 111BUSMG 2 0.1885 + 0.02358 + 0.02358 +2.0 0.0 BUSMS +C UM-1 COIL TABLE + BUSA2 1 +0.412 0.0012 BUSB2 1 +0.412 0.0012 BUSC2 1 +0.110 0.0012 1 +0.110 0.0012 1 + 1 + 4 111GUSMG 2 0.1885 + 0.02358 + 0.02358 +2.0 0.0 GUSMS + BUSA2 1 +0.412 0.0012 BUSB2 1 +0.412 0.0012 BUSC2 1 +0.110 0.0012 1 +0.110 0.0012 1 + 1 +BLANK card terminating all U.M. data +BLANK card ending all electric-network sources +C Total network loss P-loss by summing injections = 1.434204163862E+06 +C Total network loss P-loss by summing injections = 1.746481733467E+06 +C Total network loss P-loss by summing injections = 2.447413291234E+07 +C Total network loss P-loss by summing injections = 2.447413191234E+07 +C Total network loss P-loss by summing injections = 2.447414763420E+07 +C Step Time BUSAS2 BUSA2 BUSMG BUSA2 BUSA2 +C TERRA BUSAS2 +C +C BUSMS GUSMG GUSMG GUSMS UM-1 +C BUSMG GUSMGR TERRA GUSMG TQGEN +C +C UM-1 UM-1 UM-1 UM-1 UM-1 +C IPB IPC IE1 IE2 IE3 +C +C UM-2 UM-2 UM-2 UM-2 UM-2 +C IPA IPB IPC IE1 IE2 +C 0 0.0 3000. 1784.374675 184.725648 0.0 -388.10083 +C -3965.07077 203.0844855 0.0 -3965.07077 -4168.15526 +C 376.2746528 -182.224238 62.0743506 -362.34101 -87.7863885 +C -194.050415 376.2746528 -182.224238 62.0743506 -362.34101 +C 1 .2E-3 2991.476701 1834.404076 184.725648 0.0 -435.553965 +C -3965.07077 203.0844854 -.092693806 -3965.07077 -4168.06256 +C 374.6920465 -156.915064 161.7505543 -308.470816 146.7202621 +C -217.776982 374.6920465 -156.915064 161.7505543 -308.470816 + BUSAS2BUSA2 BUSMG { Selective node voltage outputs +BLANK card terminating output variable requests +C 250 .05 3000. 0.0 183.9807585 -1085.80689 804.5211912 +C -3965.07077 201.4660671 -114.046535 -3965.07077 -3834.24844 +C 480.8586416 -288.589529 192.2606971 -403.962505 211.7018082 +C -150.261378 499.5514745 -288.045306 219.3886975 -425.409154 +C Variable max : 3000. 1928.308447 184.725648 3888.235034 2395.399979 +C -3965.07077 203.0844855 3222.786447 -3965.07077 13430.35234 +C 480.8586416 536.090637 1076.526092 1065.863054 274.4477824 +C 1549.98802 499.5514745 544.7564009 1078.265346 1064.943318 +C Times of maxima : 0.0 .001 0.0 .0374 .0292 +C .0412 0.0 .032 .0412 .0272 +C .05 .0388 .0306 .0276 .0244 +C .0374 .05 .0388 .0306 .0276 +C Variable minima : -3000. -1928.21025 183.9697478 -6518.05923 -785.871968 +C -3965.07077 201.4385025 -17586.9944 -3965.07077 -7353.74079 +C -465.029322 -560.658809 -574.664871 -544.13558 -1315.26592 +C -2074.00287 -474.993058 -576.837968 -574.678392 -556.13293 +C Times of minima : .025 .0094 .0478 .0288 .0208 +C 0.0 .0478 .0272 0.0 .032 +C .042 .0472 .026 .049 .029 +C .0286 .042 .0472 .026 .049 + PRINTER PLOT +C 193.05 0.0 .5 165.185.UM-1 OMEGM UM-2 OMEGM { Plot limits: () + 194 5. 0.0 50 UM-1 TQGEN UM-2 TQGEN { Plot limits: (-0.739, 1.343) +C 193.05 0.0 .5 UM-1 TQGEN UM-2 TQGEN { Plot limits: () + 194 10 0.0 50 BUSA2 { Plot limits: (-6.518, 3.888) +C 193.05 0.0 .5 BUSA2 { Plot limits: () +BLANK card terminating plot cards +BEGIN NEW DATA CASE +C 3rd of 7 subcases is unrelated to preceding 2. Oh, the U.M. is involved +C as an induction motor, but this subcase illustrates troubled starting +C from zero. The data is from Gabor Furst of suburban Vancouver, B.C., +C Canada. In E-mail dated April 8th, he wrote about attached data files +C TCOMP.DAT and TPRED.DAT (compensation and prediction, respectively). +C Using prediction and no automatic initialization, one observes +C divergence of the iteration for mechanical speed OMEGM on step 3. +C This is for TPRED. TCOMP has no such trouble (see following subcase). +C WINDSYN is Gabor Furst's MS Windows program that generates data for +C the U.M. From comments that follow, WINDSYN seems to have been used +C to produce the data. There were several "/" cards for sorting, but WSM +C removed them to simplify the data. He also removed AVERAGE OUTPUT, +C since it had nothing to do with the troubled iteration for speed. The +C maximum number of iterations for U.M. speed is MAXZNO, which originally +C was introduced as the iteration limit for ZnO surge arresters. Since the +C default value is 50, this has been reduced to 20. Even 10 would be fine. +C Additional iterations do not help. As the .DBG file will show, speed +C is neither converging nor diverging; it just bounces around over a very +C wide range that includes both positive and negative values. The three +C switches in series with the armature windings were removed without effect. +C Subcases 3, 4, and 5 were added to DCN1 on 18 April 2003. WSM. +C WindSyn test case +C generated on 4/7/03 for RoundDamp +PRINTED NUMBER WIDTH, 11, 1, { Return to default precision for dT loop columns +ZINC OXIDE 20 { MAXZNO is used as iteration limit for omega of U.M. +POWER FREQUENCY, 50.0, + .50E-4 .020 + 1 1 1 1 +C Note about preceding dT and T-max. Obviously, T-max is immaterial since +C the simulation will end on step 3. As for dT, 50 usec is the value Gabor +C Furst used. It can be changed over a wide range without affecting the halt +C on step 3. As dT becomes smaller, the speed error becomes bigger. Smaller +C dT (50 usec already is small) provides no help. Shown below, OMEGM is on +C the order of 1.E+13 as the iteration diverges. Using 1/2 msec, this will +C drop to 1.E9. Yes, better, but still completely wrong. The correct value +C is less than unity (the machine started with speed equal to zero). +C ELECTRIC NETWORK DATA +C BUS**>BUS**>BUS**>BUS**><****R<****L<**** +C short circuit level = 83 MVA +C the machine rating entered was 834.47 kVA + SRCA MOTA .767 3.83 + SRCB MOTB .767 3.83 + SRCC MOTC .767 3.83 + MOTA 1.E06 + MOTB 1.E06 + MOTC 1.E06 +C + INERS INER 1.E-6 + IX 7.E+07 {inetia in uF} +C the damping term in ohms + INER .11 {damping 1/mho} +BLANK card ending BRANCHes + INERS IX -1 1000. +BLANK card ending SWITCHes +C SOURCE DATA +C .......1.........2.........3.........4.........5.........6.........7.........8 +C Source voltages +14SRCA 8164.965 50.00 0.0 { Vt } +14SRCB 8164.965 50.00 240.0 +14SRCC 8164.965 50.00 120.0 +C next the source records required +C source for the mechanical analogue +14INERS -1 0.000001 .0000001 +C Note about 4 preceding Type-14 sources. Gabor Furst had T-start = -1.0 +C in columns 61-70. This added a phasor solution, but it did not help. The +C error termination on Step 3 is unaffect, so WSM removed the phasor solution. +19 { Begin U.M. data, which is an electrical source of type 19 (columns 1-2) +C Col.2 = 0 Decoupled, = 1 Autoinitialize ----- Col. 15 =0 Compensation, =1 Prediction + 0 1 { Col. 2 ==> no automatic initialization; col. 15 ==> prediction +BLANK + 3 1 111 INER 2 .157 { Col. 2 ==> Type-3 U.M. + 1.125287 + 1.125287 +C Armature coils + MOTA 1 + .980484 .031413 MOTB 1 + .980484 .031413 MOTC 1 +C Rotor coils + 2.388701 .031413 1 + 2.388701 .031413 1 +BLANK card ending U.M. data +BLANK card ending SOURCEs +C .......1.........2.........3.........4.........5.........6.........7.........8 +C NODE VOLTAGE OUTPUT + MOTA MOTB MOTC +C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Final 7 output variables pertain to Type-19 U.M. components (names are generated internally); +C Step Time MOTA MOTB MOTC UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN OMEGM IPA IPB IPC IE1 IE2 +C *** Phasor I(0) = 1.9294775E-17 Switch "INERS " to "IX " closed in the steady-state. +C 0 0.0 8164.95874 -4082.4879 -4082.4709 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 8163.9516 -3970.9169 -4193.0347 -.1455E-10 0.0 -8326.4506 4049.95584 4276.49477 -9920.3201 155.828901 +C 2 .1E-3 .7986173E9 -.333422E9 -.465196E9 -.157354E9 213.40578 -.809326E9 .3378925E9 .4714332E9 -.965174E9 .8156453E8 +BLANK card ending requests for node voltage output +C ------------------------------------------------------------------------------------------------------------------------------------ +C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ +C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ +C ------------------------------------------------------------------------------------------------------------------------------------ +C You lose, fella. The EMTP logic has detected an error condition ... +C KILL code number Overlay number Nearby statement number +C 91 19 14400 +C KILL = 91. The mechanical speed iteration of the U.M. has failed to converge within iteration limit ITUMAX = 20 at time T = +C 1.50000000E-04. This is for machine number JM = 1, which has a required convergence tolerance EPSOM = 1.57000000E-01. It is +C possible that the time-step DELTAT of the simulation is too large, or that EPSOM or ITUMAX is too small. These are easily +C checked. More complicated is nonconvergence due to an error with U.M. data, about which little can be said in general. +C Further information supporting this KILL = 91 error stop can be found +C toward the end of the .DBG file. Values of the OMEGM iteration appear: +C Error. Speed iteration did not converge. Look at the series of speeds: +C 2.76E+13 -9.62E+11 -2.36E+13 -2.20E+13 -2.95E+13 2.56E+13 2.46E+13 -2.89E+13 +C -2.43E+13 2.64E+13 -2.71E+13 5.11E+12 -2.55E+13 6.30E+12 2.69E+13 -3.06E+12 +C 2.19E+13 -7.18E+12 2.92E+13 -1.72E+13 -4.27E+12 +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 4th of 7 subcases is the same as the preceding except that prediction has +C been replaced by compensation. In theory, this is TCOMP. But in fact, +C Gabor mistakenly sent a synchronous machine for TPRED and TCOMP. The same +C phenomenon can be illustrated using these, but that is not being done. +C Subsequent reception of TPREDB and TCOMPB contained the desired Type-3 +C data, and this, in fact, is what is being used. This simulation only +C lasts 2.5 cycles, but can be extended to 1/4 second to see that OMEGM does +C reach its terminal load speed of nearly 157 radians/sec (the synchronous +C mechanical speed corresponding to zero slip). +C WindSyn test case +C generated on 4/13/03 for Single Cage UM 3 - decoupled start with compensation +NEW LIST SIZES +BLANK { Default dimensioning is adequate for List 1 through 10 + 0 0 36400 +BLANK { Default dimensioning is adequate for List 21 through 30 + 240000 { Final card of VARDIM data is for offsets for supporting programs +C The preceding 5 cards size tables for much longer simulations. If dT is +C smaller and/or T-max is much larger, List 13 will truncate batch-mode plots +C over the entire timespan. The preceding 36400 is the limit in LISTSIZE.BPA +POWER FREQUENCY, 50.0, +C AVERAGE OUTPUT { Activate to suppress trap rule oscillation in armature volt. + .000500 .050 + 1 1 1 1 1 -1 + 5 5 +C ELECTRIC NETWORK DATA +C BUS**>BUS**>BUS**>BUS**><****R<****L<**** +C short circuit level = 83 MVA +C the machine rating entered was 834.47 kVA + SRCA MOTA .767 3.83 + SRCB MOTB .767 3.83 + SRCC MOTC .767 3.83 + MOTA 1.E06 + MOTB 1.E06 + MOTC 1.E06 +C + INERS INER 1.E-6 + IX 7.E+07 {inetia in uF} +C the damping term in ohms + INER .11 {damping 1/mho} +BLANK ending BRANCHes + INERS IX -1 1000. +BLANK card ending SWITCHes +C SOURCE DATA +C .......1.........2.........3.........4.........5.........6.........7.........8 +C Source voltages +14SRCA 8164.965 50.00 0.0 { Vt } +14SRCB 8164.965 50.00 240.0 +14SRCC 8164.965 50.00 120.0 +C +C next the source records required +C source for the mechanical analogue +14INERS -1 0.000001 .0000001 +C Note about 4 preceding Type-14 sources. Gabor Furst had T-start of cols. +C 61-70 equal to -1.0, but the effect was to add a small trapezoidal rule +C oscillation to the armature voltages. This then was removed by his use of +C AVERAGE OUTPUT. Well, removing the phasor solution not only saves the work +C of this computation, it also eliminates the trapezoidal rule oscillation +C and does away with the need for AVERAGE OUTPUT. Otherwise, the startup +C seems unaffected. So, no phasor solution. Since the machine begins with +C all variables equal to zero, it is not surprising that the phasor solution +C did little good. Without the phasor solution, this simulation is similar +C to DC-35, note. Each starts a 3-phase induction motor without either auto +C initialization or manually-supplied initial conditions. Each begins with +C all variables equal to zero. +C UM dat +19 +C Col.2 = 0 Decoupled, = 1 Autoinitialize ----- Col. 15 =0 Compensation, =1 Prediction + 0 0 { Col. 2 ==> no automatic initialization; col. 15 ==> compensation +BLANK +C 3 1 111 INER 2 .157 { Gabor's EPSOM + 3 1 111 INER 2 .005 +C Note about preceding. Gabor had EPSOM = .157, which is 0.1% of 157 radians +C per second. This is the default value: the speed iteration will continue +C until the change is less than 0.1% or synchronous speed = 2 * 3.14 * 50 = +C 314 rad/sec. But this is electrical. For mechanical, 2 pole pairs will +C reduce this to 157 rad/sec. Well, the effect of using EPSOM = .157 is +C hash that looks almost like (but is not) trapezoidal rule oscillation. The +C frequency is high, but less than 0.5/dT of the trapezoidal rule. Lowered +C EPSOM has no physical effect, & effects the overall simulation negligibly. +C But the hash looks bad. To prove that EPSOM is responsible, WSM decreases +C the tolerance, thereby making the OMEGM curve perfectly smooth. + 1.125287 + 1.125287 +C Armature coils + MOTA 1 + .980484 .031413 MOTB 1 + .980484 .031413 MOTC 1 +C Rotor coils + 2.388701 .031413 1 + 2.388701 .031413 1 +BLANK card ending U.M. data +BLANK card ending SOURCEs + MOTA MOTB MOTC +C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Final 7 output variables pertain to Type-19 U.M. components (names are generated internally); +C Step Time MOTA MOTB MOTC UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN OMEGM IPA IPB IPC IE1 IE2 +C *** Switch "INERS " to "IX " closed before 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-3 7578.83363 -2749.8665 -4828.9671 -.8882E-14 0.0 -30.178727 10.9499 19.2288271 -35.938915 5.69216487 +C 2 .1E-2 7266.22683 -1583.9333 -5682.2935 -.49474828 0.0 -88.512952 27.9245391 60.5884132 -105.37025 22.452127 +C 3 .0015 6775.59911 -383.70148 -6391.8976 -5.3447769 0.0 -142.14459 35.0395236 107.105068 -169.12977 49.5195201 +C 4 .002 6119.87287 821.040152 -6940.913 -21.8133 0.0 -189.82973 32.3949561 157.434779 -225.74199 85.8908064 +C 5 .0025 5314.27286 2001.14898 -7315.4218 -59.931159 0.0 -230.46855 20.3228376 210.145711 -273.90453 130.343662 +C 10 .005 -161.65687 6576.68037 -6415.0235 -1020.0826 .015959779 -302.60731 -155.04575 457.653057 -358.12087 419.838698 +BLANK card ending request for node voltage outputs +C 100 .05 -7657.0908 3639.92922 4017.16154 -3480.5588 2.07810665 67.2105663 -384.61622 317.405655 9.05104642 474.85305 +C Variable maxima: 7663.44456 7638.23782 7699.01515 12225.9976 3.05521655 428.48451 354.32403 561.493051 509.492281 713.091662 +C Times of maxima: .02 .0465 .013 .045 .0405 .0145 .041 .0075 .0145 .009 +C Variable minima: -7657.0908 -7725.8797 -7609.1885 -17792.623 0.0 -390.53593 -582.50024 -348.59254 -470.03027 -425.76675 +C Times of minima: .05 .0165 .043 .0345 0.0 .0445 .0105 .038 .045 .0395 + CALCOMP PLOT + 144 5. 0.0 50. MOTA MOTB MOTC + 194 5. 0.0 50. BRANCH + UM-1 IPA UM-1 IPB UM-1 IPC + 194 5. 0.0 50. UM-1 IE1 UM-1 IE2 + 194 5. 0.0 50. UM-1 TQGEN + 194 5. 0.0 50. -1. 3.0UM-1 OMEGM +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 5th of 7 subcases is a corrected version of the 3rd. Gabor Furst +C reported his discovery in E-mail dated April 14th. He proposed that +C we "initialize ... with the machine breaker open, thus the machine +C isolated from the system, using autoinitialization for which prediction +C ought to work. Then we close the breaker say in the first time step. +C ... the run did not fail, but the ensuing transient was not the same +C as obtained from the regular compensation ... Then something suddenly +C dawned on me. ... I decided to fool ATP into reading a starting +C frequency of 0.1 Hz, this the constant FREQ in record 1. Lo and behold +C this worked. The results were the same as the run with the decoupled +C compensation method." As stored by WSM, the latest data files have +C names TCOMPNEW and TPREDNEW. +C WindSyn test case +C generated on 4/13/03 for Single Cage UM 3 - decoupled start with compensation +NEW LIST SIZES +BLANK + 0 0 36400 +BLANK + 240000 +POWER FREQUENCY, 50.0, +C AVERAGE OUTPUT { No longer need to remove hash (smaller EPSOM solves this) + .000500 .050 + 1 1 1 1 1 -1 + 5 5 +C ELECTRIC NETWORK DATA +C BUS**>BUS**>BUS**>BUS**><****R<****L<**** +C short circuit level = 83 MVA +C the machine rating entered was 834.47 kVA + SRCA BUSMA .767 3.83 + SRCB BUSMB .767 3.83 + SRCC BUSMC .767 3.83 + MOTA 1.E06 + MOTB 1.E06 + MOTC 1.E06 +C + INERS INER 1.E-6 + IX 7.E+07 {inetia in uF} +C the damping term in ohms + INER .11 {damping 1/mho} +BLANK card ending BRANCHes +C Following 3 switches have T-close = dT/2. They will close on 1st time step: + BUSMA MOTA .000025 1000. + BUSMB MOTB .000025 1000. + BUSMC MOTC .000025 1000. + INERS IX -1. 1000. +BLANK card ending SWITCHes +C SOURCE DATA +C .......1.........2.........3.........4.........5.........6.........7.........8 +C Source voltages +14SRCA 8164.965 50.00 0.0 { Vt } -1. +14SRCB 8164.965 50.00 240.0 -1. +14SRCC 8164.965 50.00 120.0 -1. +C +C next the source records required +C source for the mechanical analogue +14INERS -1 0.000001 .0000001 -1. +C UM dat +19 +C Col.2 = 0 Decoupled, = 1 Autoinitialize ----- Col. 15 =0 Compensation, =1 Prediction + 1 1 { Col. 2 ==> automatic initialization; col. 15 ==> compensation +BLANK +C Note about following. As for preceding subcase, EPSOM has been reduced +C from the default .157 to .005 to eliminate trapezoidal-rule-like hash. That +C is a detail, but not critically important. What is critically important +C is the addition of a believable initial frequency. Gabor used 0.1, and +C WSM arbitrarily reduces this (after all, the machine begins at zero) to .02: +C 3 1 111 INER 2 .157 0.1 { Gabor's card + 3 1 111 INER 2 .005 .02 + 1.125287 + 1.125287 + 0.0 INERS +C Armature coils + MOTA 1 + .980484 .031413 MOTB 1 + .980484 .031413 MOTC 1 +C Rotor coils + 2.388701 .031413 1 + 2.388701 .031413 1 +BLANK card ending U.M. data +C Total network loss P-loss by summing injections = 5.000000000000E-01 +C Total network loss P-loss by summing injections = 5.000000000000E-01 +C Total network loss P-loss by summing injections = 5.179447380305E-01 +C Total network loss P-loss by summing injections = 1.794473528970E-02 +BLANK card ending SOURCEs +C .......1.........2.........3.........4.........5.........6.........7.........8 +C NODE VOLTAGE OUTPUT + MOTA MOTB MOTC +C First 3 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Final 7 output variables pertain to Type-19 U.M. components (names are generated internally); +C Step Time MOTA MOTB MOTC UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN OMEGM IPA IPB IPC IE1 IE2 +C *** Phasor I(0) = -2.7471728E-06 Switch "INERS " to "IX " closed in the steady-state. +C 0 0.0 0.0 0.0 0.0 0.0 .062831853 0.0 0.0 0.0 0.0 0.0 +C *** Close switch "BUSMA " to "MOTA " after 5.00000000E-04 sec. +C *** Close switch "BUSMB " to "MOTB " after 5.00000000E-04 sec. +C *** Close switch "BUSMC " to "MOTC " after 5.00000000E-04 sec. +C 1 .5E-3 0.0 0.0 0.0 0.0 -.00681755 0.0 0.0 0.0 0.0 0.0 +C 2 .1E-2 6889.95385 -1506.2217 -5383.7322 -.1421E-13 -.00681755 -54.409056 11.8944338 42.5146218 -21.051495 -64.794511 +C 3 .0015 6774.81805 -449.01361 -6325.8044 -1.7336905 -.00681755 -134.73081 21.3086355 113.422179 -63.308508 -160.38081 +C 4 .002 6346.75373 699.055774 -7045.8095 -15.789751 -.00681755 -169.06787 8.33061014 160.737257 -104.6984 -201.10611 +C 5 .0025 5296.81585 1959.48466 -7256.3005 -48.513561 -.00681755 -198.66848 -11.619478 210.287956 -152.37686 -236.14834 +C 10 .005 -72.939405 6516.97381 -6444.0344 -921.49692 .009585296 -253.15369 -206.10455 459.258236 -455.87668 -299.54205 +BLANK card ending request for node voltage outputs +C 100 .05 -7628.9146 3673.42423 3955.49034 -2802.3519 2.11520703 113.847447 -403.726 289.878558 -477.50811 61.7298745 +C Variable maxima: 7647.20791 7607.33076 7662.95758 12363.5249 3.10899113 461.052708 354.903207 540.669936 431.477956 547.201164 +C Times of maxima: .02 .0465 .0135 .045 .0405 .014 .041 .007 .0395 .014 +C Variable minima: -7628.9146 -7700.2932 -7587.2219 -18068.854 -.00681755 -390.16525 -600.55828 -358.58824 -711.87989 -472.887 +C Times of minima: .05 .0165 .0435 .035 .004 .044 .0105 .0375 .0085 .0445 +C 78901234567890123456789012345678901234567890123456789012345678901234567890 + 144 5. 0.0 50. MOTA MOTB MOTC + 194 5. 0.0 50. BRANCH + UM-1 IPA UM-1 IPB UM-1 IPC + 194 5. 0.0 50. UM-1 IE1 UM-1 IE2 + 194 5. 0.0 50. UM-1 TQGEN + 194 5. 0.0 50. -1. 3.0UM-1 OMEGM +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 7 subcases illustrates the starting of 2 parallel induction +C motors. Compensation is used, and the two machines are separated by +C two stub lines (short distributed-parameter transmission lines that +C isolate the uses of compensation). The two machines are identical; +C each is a copy of that used in the 4th subcase. The stub lines include +C use of "Stub line, dT =" to free the data from dependence on dT. Much +C larger time step dT is being used as an illustration. Whereas Gabor Furst +C supplied the data with dT = 5 usec, note that 0.2 msec is being used. +C Plots of machine torque, speed, and armature current are little affected +C by the huge increase. The speed is slightly reduced. This seems right: +C as the stub lines lengthen, they represent a higher impedance. +C Single Cage UM 3 - decoupled initialization with compensation of two +C parallel units on the same bus, using delay lines to permit compensation. +C the delay line is the minimum length for DELTAT = 5 usec. +NEW LIST SIZES +BLANK { Default dimensioning is adequate for List 1 through 10 + 0 0 36400 +BLANK { Default dimensioning is adequate for List 21 through 30 + 240000 { Final card of VARDIM data is for offsets for supporting programs +PRINTED NUMBER WIDTH, 10, 2, { dT loop output is width 10 including 2 blanks +POWER FREQUENCY, 50., +C AVERAGE OUTPUT +C Note about preceding. The terminal voltage begins with some hash that +C takes a cycle or so to disappear. Perhaps Gabor Furst added the request +C to average successive output points in an attempt to remove this hash. +C But the hash disappears naturally, and in any case is not seen in any +C of the other plots. It seems best to omit AVERAGE OUTPUT. This assures +C the user that what he sees is what the trapezoidal rule really produced. + .000200 .050 { Gabor Furst's original data had dT = 5 usec & T-max = 3 sec + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +C ELECTRIC NETWORK DATA +C BUS**>BUS**>BUS**>BUS**><****R<****L<**** +C short circuit level = 83 MVA +C the machine rating entered was 834.47 kVA + SRCA BUSMA .767 3.83 + SRCB BUSMB .767 3.83 + SRCC BUSMC .767 3.83 +C DELAY LINE TO MOTOR #1 +-1BUSMA MOTA 0.001 .0987 0.408 1.00 { Stub line, dT = 5.E-6 +-2BUSMB MOTB 0.001 .0987 0.408 1.00 +-3BUSMC MOTC +C DELAY LINE TO MOTOR #2 +-1BUSMA MOT2A 0.001 .0987 0.408 1.00 { Stub line, dT = 5.E-6 +-2BUSMB MOT2B 0.001 .0987 0.408 1.00 +-3BUSMC MOT2C +C Note about preceding "{ Stub line ..." declaration. This can begin in +C any column. However, the string beginning with the comment symbol and +C ending with the equal sign is fixed. It is to be followed by the value +C of DELTAT for which the line was designed. Without this new feature, use +C of the original DELTAT = 5.E-6 would have been fine, but 10.E-6 would +C have failed. A KILL = 29 error message from overlay 12 would report: "The +C distributed parameter branch card connecting ... is associated with a +C propagation mode having a travel time equal to 6.34583328E-06 seconds. +C But this is less than the time-step size DELTAT, which is illegal. ..." +C Of course, the dT value is free-format. Note that there is an implied +C restriction to narrow-format (as shown). Input data is limited to 80 +C columns, and a switch to the wide alternative of $VINTAGE, 1, would not +C allow sufficient space for the required tag. + INERS INER 1.E-6 + IX 7.E+07 {inetia in uF} +C the damping term in ohms + INER .11 {damping 1/mho} +C + INERS2INER2 1.E-6 + IX2 7.E+07 {inetia in uF} +C the damping term in ohms + INER2 .11 {damping 1/mho} +BLANK card ending BRANCHes + INERS IX -1 1000. + INERS2IX2 -1 1000. +BLANK card ending SWITCHes +C .......1.........2.........3.........4.........5.........6.........7.........8 +C SOURCE DATA +C .......1.........2.........3.........4.........5.........6.........7.........8 +C Source voltages +14SRCA 8164.965 50.00 0.0 { Vt } -1. +14SRCB 8164.965 50.00 240.0 -1. +14SRCC 8164.965 50.00 120.0 -1. +C next the source records required +C source for the mechanical analogue +14INERS -1 0.000001 .0000001 -1. +14INERS2-1 0.000001 .0000001 -1. +C UM dat +19 +C Col.2 = 0 Decoupled, = 1 Autoinitialize ----- Col. 15 =0 Compensation, =1 Prediction + 0 0 { Col. 2 ==> no automatic initialization; col. 15 ==> compensation +BLANK + 3 1 111 INER 2 .005 + 1.125287 + 1.125287 +C Armature coils + MOTA 1 + .980484 .031413 MOTB 1 + .980484 .031413 MOTC 1 +C Rotor coils + 2.388701 .031413 1 + 2.388701 .031413 1 +C MOTOR #2 + 3 1 111 INER2 2 .005 + 1.125287 + 1.125287 +C Armature coils + MOT2A 1 + .980484 .031413 MOT2B 1 + .980484 .031413 MOT2C 1 +C Rotor coils + 2.388701 .031413 1 + 2.388701 .031413 1 +C +BLANK ending U.M. data +BLANK card ending SOURCEs +C Total network loss P-loss by summing injections = 8.383893803907E+03 + MOTA MOTB MOTC MOT2A MOT2B MOT2C +C First 6 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Final 14 output variables pertain to Type-19 U.M. components (names are generated internally); +C Step Time MOTA MOTB MOTC MOT2A MOT2B MOT2C UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN OMEGM IPA IPB IPC +C +C UM-1 UM-1 UM-2 UM-2 UM-2 UM-2 UM-2 UM-2 UM-2 +C IE1 IE2 TQGEN OMEGM IPA IPB IPC IE1 IE2 +C *** Phasor I(0) = 1.9294775E-17 Switch "INERS " to "IX " closed in the steady-state. +C *** Phasor I(0) = 1.9294775E-17 Switch "INERS2" to "IX2 " closed in the steady-state. +C 0 0.0 8292.999 -4204.56 -4088.44 8292.999 -4204.56 -4088.44 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .2E-3 7873.737 -3552.14 -4321.6 7873.737 -3552.14 -4321.6 -.67E-15 0.0 -25.9511 12.45117 13.49991 +C -30.9139 .7212851 -.67E-15 0.0 -25.9511 12.45117 13.49991 -30.9139 .7212851 +C 2 .4E-3 7448.395 -2919.71 -4528.69 7448.395 -2919.71 -4528.69 -.057368 0.0 -50.2764 22.71035 27.56607 +C -59.8784 3.339283 -.057368 0.0 -50.2764 22.71035 27.56607 -59.8784 3.339283 +C 3 .6E-3 6736.265 -2173.17 -4563.09 6736.265 -2173.17 -4563.09 -.334498 0.0 -72.5229 30.6493 41.87361 +C -86.3546 7.717967 -.334498 0.0 -72.5229 30.6493 41.87361 -86.3546 7.717967 +BLANK card ending request for node voltage outputs +C 250 .05 -6924.74 3242.656 3682.084 -6924.74 3242.656 3682.084 -4162.72 1.765433 64.78601 -344.98 280.1937 +C 26.66602 423.799 -4162.72 1.765433 64.78601 -344.98 280.1937 26.66602 423.799 +C Variable maxima: 8292.999 6906.117 7023.04 8292.999 6906.117 7023.04 9190.36 2.47045 375.2239 326.9388 512.8368 +C 447.0417 636.5509 9190.36 2.47045 375.2239 326.9388 512.8368 447.0417 636.5509 +C Times of maxima: 0.0 .0466 .0128 0.0 .0466 .0128 .0446 .0402 .0144 .041 .0074 +C .0144 .009 .0446 .0402 .0144 .041 .0074 .0144 .009 +C Variable minima: -7141.3 -6993.5 -6921.3 -7141.3 -6993.5 -6921.3 -14054.6 0.0 -353.402 -514.36 -321.777 +C -423.298 -393.798 -14054.6 0.0 -353.402 -514.36 -321.777 -423.298 -393.798 +C Times of minima: .0102 .0164 .0024 .0102 .0164 .0024 .0344 0.0 .0444 .0108 .0378 +C .0446 .0396 .0344 0.0 .0444 .0108 .0378 .0446 .0396 + CALCOMP PLOT + 144 5. 0.0 50. MOTA MOT2B MOTC + 194 5. 0.0 50. BRANCH + UM-1 IPA UM-2 IPB UM-2 IPC + 194 5. 0.0 50. UM-1 IE1 UM-2 IE2 + 194 5. 0.0 50. UM-1 TQGEN UM-2 TQGEN + 194 5. 0.0 50. -1. 3.0UM-1 OMEGM UM-2 OMEGM +C About the preceding plots, not that variables of UM-1 and UM-2 have been +C mixed on the same plot. This is for the first 3. Since both machines are +C in parallel, and have comparable solutions, it makes little difference +C which machine is monitored. The final 2 plots show torque for both machines +C and mechanical speed for both machines. In each case, the two curves lie +C on top of each other. +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 7th of 7 subcases illustrates the starting of 2 parallel induction +C motors. Compensation is used, yet the two machines are separated by +C two resistors rather than the two stub lines of the preceding subcase. +C Needless to say, this should not work. The result should be an error +C termination. But this does not happen. Instead, the simulation seems +C physically valid. Why? Data added by WSM on 15 May 2003. Gabor Furst +C of suburban Vancouver, B.C., Canada, is the source of the data, and the +C original discoverer of the phenomenon. +C VERIFY U.M. COMPENSATION { Request for additional verification of compensation +C The preceding did not help. It did not result in a KILL code, so omit. +NEW LIST SIZES +BLANK { Default dimensioning is adequate for List 1 through 10 + 0 0 36400 +BLANK { Default dimensioning is adequate for List 21 through 30 + 240000 { Final card of VARDIM data is for offsets for supporting programs +PRINTED NUMBER WIDTH, 10, 2, { dT loop output is width 10 including 2 blanks +POWER FREQUENCY, 50., +C Single Cage UM 3 - decoupled initialization of two oarallel motors with compensation +C on the same bus, using a small separating resistance, no delay line + .000200 .050 { Gabor Furst's original data had dT = 50 usec & T-max = 3 sec + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +C short circuit level = 83 MVA +C the machine rating entered was 834.47 kVA + SRCA BUSMA .767 3.83 + SRCB BUSMB .767 3.83 + SRCC BUSMC .767 3.83 +C separation resistance to enable compensation used + BUSMA BUSM2A .0001 + BUSMB BUSM2B .0001 + BUSMC BUSM2C .0001 +C + INERS INER 1.E-6 + IX 7.E+07 {inetia in uF} +C the damping term in ohms + INER .11 {damping 1/mho} +C + INERS2INER2 1.E-6 + IX2 7.E+07 {inetia in uF} +C the damping term in ohms + INER2 .11 {damping 1/mho} +BLANK card ending BRANCHes + BUSMA MOTA -1 1000. + BUSMB MOTB -1 1000. + BUSMC MOTC -1 1000. + BUSM2AMOT2A -1 1000. + BUSM2BMOT2B -1 1000. + BUSM2CMOT2C -1 1000. + INERS IX -1 1000. + INERS2IX2 -1 1000. +BLANK card ending SWITCHes +14SRCA 8164.965 50.00 0.0 { Vt } +14SRCB 8164.965 50.00 240.0 +14SRCC 8164.965 50.00 120.0 +C Note about 3 preceding sinusoidal sources that drive the armature. These +C were present in the steady state (T-start < 0), but the result was sizable +C hash in the terminal voltages MOTA, MOTB, and MOTC. Since the machine is +C not rotating, anyway, little should be lost by omitting this phasor +C excitation. In fact, doing so removes the hash. +C source for the mechanical analogue: +14INERS -1 0.000001 .0000001 -1 +14INERS2-1 0.000001 .0000001 -1 +C UM dat +19 { Begin U.M. data, which is an electrical source of type 19 (columns 1-2) +C Col.2 = 0 Decoupled, = 1 Autoinitialize ----- Col. 15 =0 Compensation, =1 Prediction + 0 0 { Col. 2 ==> no automatic initialization; col. 15 ==> compensation +BLANK + 3 1 111 INER 2 .005 + 1.125287 + 1.125287 +C Armature coils + MOTA 1 + .980484 .031413 MOTB 1 + .980484 .031413 MOTC 1 +C Rotor coils + 2.388701 .031413 1 + 2.388701 .031413 1 +C MOROR #2 + 3 1 111 INER2 2 .005 + 1.125287 + 1.125287 +C Armature coils + MOT2A 1 + .980484 .031413 MOT2B 1 + .980484 .031413 MOT2C 1 +C Rotor coils + 2.388701 .031413 1 + 2.388701 .031413 1 +C +BLANK ending U.M. data +BLANK card ending SOURCEs + MOTA MOTB MOTC MOT2A MOT2B MOT2C +C First 6 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Final 14 output variables pertain to Type-19 U.M. components (names are generated internally); +C Step Time MOTA MOTB MOTC MOT2A MOT2B MOT2C UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN OMEGM IPA IPB IPC +C +C UM-1 UM-1 UM-2 UM-2 UM-2 UM-2 UM-2 UM-2 UM-2 +C IE1 IE2 TQGEN OMEGM IPA IPB IPC IE1 IE2 +C *** Phasor I(0) = 0.0000000E+00 Switch "BUSMA " to "MOTA " closed in the steady-state. +C *** Phasor I(0) = 0.0000000E+00 Switch "BUSMB " to "MOTB " closed in the steady-state. +C *** Phasor I(0) = 0.0000000E+00 Switch "BUSMC " to "MOTC " closed in the steady-state. +C *** Phasor I(0) = 0.0000000E+00 Switch "BUSM2A" to "MOT2A " closed in the steady-state. +C *** Phasor I(0) = 0.0000000E+00 Switch "BUSM2B" to "MOT2B " closed in the steady-state. +C *** Phasor I(0) = 0.0000000E+00 Switch "BUSM2C" to "MOT2C " closed in the steady-state. +C *** Phasor I(0) = 1.9294775E-17 Switch "INERS " to "IX " closed in the steady-state. +C *** Phasor I(0) = 1.9294775E-17 Switch "INERS2" to "IX2 " closed in the steady-state. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .2E-3 7240.705 -3225.84 -4014.87 7240.704 -3225.84 -4014.87 .222E-15 0.0 -11.6229 5.178161 6.444723 +C -13.8456 .8710926 .111E-15 0.0 -11.6229 5.17816 6.444722 -13.8456 .8710925 +C 2 .4E-3 7174.532 -2801.06 -4373.47 7174.529 -2801.06 -4373.47 -.011547 0.0 -34.6415 14.79876 19.84276 +C -41.2606 3.46871 -.011547 0.0 -34.6415 14.79876 19.84276 -41.2606 3.46871 +C 3 .6E-3 7080.386 -2366.65 -4713.73 7080.38 -2366.65 -4713.73 -.126229 0.0 -57.1634 22.94012 34.22327 +C -68.0724 7.758324 -.126229 0.0 -57.1634 22.94011 34.22326 -68.0724 7.758322 +BLANK card ending request for node voltage outputs +C 500 0.1 7163.172 -3287. -3876.18 7163.163 -3286.96 -3876.2 -3508.64 4.758604 -93.893 346.3427 -252.45 +C 85.2129 -430.499 -3508.8 4.761365 -93.8933 346.3423 -252.449 85.22058 -430.497 +C Variable maxima: 7240.705 7193.512 7308.916 7240.704 7193.504 7308.921 9757.768 4.758604 396.7719 362.7327 522.4827 +C 472.4152 655.3924 9757.762 4.761365 396.7715 362.7323 522.482 472.4147 655.3916 +C Times of maxima: .2E-3 .0866 .0132 .2E-3 .0866 .0132 .0648 0.1 .0142 .081 .0074 +C .0142 .009 .0648 0.1 .0142 .081 .0074 .0142 .009 +C Variable minima: -7218.2 -7310.4 -7175.71 -7218.2 -7310.4 -7175.71 -14940.3 0.0 -377.803 -532.812 -350.203 +C -451.967 -440.193 -14940.2 0.0 -377.803 -532.811 -350.203 -451.967 -440.192 +C Times of minima: .0898 .0164 .0632 .0898 .0164 .0632 .0546 0.0 .0844 .0106 .0776 +C .0854 .0802 .0546 0.0 .0844 .0106 .0776 .0854 .0802 + CALCOMP PLOT + 144 5. 0.0 50. MOTA MOT2B MOTC + 194 5. 0.0 50. BRANCH + UM-1 IPA UM-2 IPB UM-2 IPC + 194 5. 0.0 50. UM-1 IE1 UM-2 IE2 + 194 5. 0.0 50. UM-1 TQGEN UM-2 TQGEN + 194 5. 0.0 50. -1. 3.0UM-1 OMEGM UM-2 OMEGM +C About the preceding plots, note that variables of UM-1 and UM-2 have been +C mixed on the same plot. This is for the first 3. Since both machines are +C in parallel, and have comparable solutions, it makes little difference +C which machine is monitored. The final 2 plots show torque for both machines +C and mechanical speed for both machines. In each case, the two curves lie +C on top of each other. +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dcn10.dat b/benchmarks/dcn10.dat new file mode 100644 index 0000000..275ba4f --- /dev/null +++ b/benchmarks/dcn10.dat @@ -0,0 +1,212 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-10 +C Test of U.M. for the option of data that is nearly compatible with the +C Type-59 S.M. Like DCNEW-9, only here compensation will NOT be employed +C Also, the general interface to send any U.M. variables to TACS will be +C illustrated, even though TACS does nothing with those variables. +UM TO TACS { Declaration for special connection of Type-92 TACS sources to U.M. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (if 8 output columns) +NAMES ARE LEFT ADJUSTED { ATP will halt if any A6 name begins with a blank +C NAMES ARE RIGHT ADJUSTED { ATP will halt if any A6 name ends with a blank +C Left-adjusted names are the most common, but right-adjusted names also are +C possible as the preceding comment demonstrates. Protection against failure +C to do either begins 11 January 2001. Once turned on, either service remains +C in effect unless and/or until the other is declared, or execution ends. That +C is why declaration here in the first subcase is sufficient for illustration +C of KILL = 81 in the 2nd subcase. + .000200 .150 60. 60. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID { We use TACS only to illustrate the definition by U.M. variables +92TQGEN { Name of Type-92 TACS source must be the same as 1st of 2 U.M. variabl +C Note that the preceding connection was especially simple because there +C is no need to be concerned about the number of the U.M. (here, only 1). +C More generally, the otherwise unused columns 41-52 have been reserved +C for the machine variable as 2A6 information. E.g., "UM-1 OMEGM ". +C In this case, note that the name of columns 3-8 is arbitrary. But for +C the simple case (here) where columns 41-52 are blank, the 1st machine +C that has an output variable matching the name of columns 3-8 will be +C accepted for the connection. The 2nd of 2 connections will follow. On +C a comment card, first, will the the simplied form. It will be followed +C by the real connection in general form. Note that within TACS, the +C U.M. variable IE1 has been given the name FIELD: +C 92IE1 { 2nd of 2 Type-92 TACS sources would be this way if simplified form +92FIELD UM-1 IE1 { Connect IE1 of UM-1 to FIELD +33TQGEN FIELD { Output the just-defined variables (should equal U.M. outputs) +BLANK card ending all TACS data +$BLANK HALT { Halt execution if any truly blank card is found (see 2nd subcase) +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 8285. + MCC1 BMCC2 B 8285. + MCC1 CMCC2 C 8285. + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 + SWT AMCC2 A 4830. + SWT BMCC2 B 4830. + SWT CMCC2 C 4830. + MCC2 ASWT A 13.01 + MCC2 BSWT B 13.01 + MCC2 CSWT C 13.01 +BLANK card ending branch cards + SWT A .01661667 .09161667 + SWT B .01661667 .09161667 + SWT C .01661667 .09161667 +BLANK card ending switch cards +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +19 UM + SMDATA 1 { The "1" in column 15 requests prediction (not compensation) +BLANK card ending Class-1 U.M. data cards +59NAVL A 21229. 60. -44.896562 + NAVL B + NAVL C +C TOLERANCES 10. .0001 .00001 +PARAMETER FITTING 1. + 6 5 2 1. 1. 892.4 26. +1800. 1907. 3050. +C -1. + .13 1.79 1.71 .169 .228 .13504 .20029 + 4.3 .85 .032 .05 .13 + 1 .3 .027691 33.68813 BUSM1 + 2 .26 .046379 60.9591 + 3 .22 .255958 90.81823 BUSM3 + 4 .22 .263573 123.6634 BUSM4 + 5 .258887 4.925036 BUSM5 + 6 .0101995 BUSM6 +C Note about the preceding 6 mass cards of Type-59 S.M. data. The name of +C columns 71-76 of any one is for the associated mechanical node that EMTP +C will create (needed for capacitor to ground). Beginning 24 August 1993, +C this can be left blank if the user is willing to accept a default name of +C the form "MASSXX" where the last 2 bytes will be serialized 01, 02, ... +C By erasing the name BUSM2 on the second card, name MASS02 will replace +C this for output identification of the speed or angle of mass 2. + 11111111 333333 + FINISH +BLANK card ending all U.M. data cards +BLANK card ending all source cards (including the U.M.) +C Total network loss P-loss by summing injections = 1.775796786600E+07 +C Total network loss P-loss by summing injections = 7.638165971780E+16 +C Total network loss P-loss by summing injections = 7.637910321429E+16 +C Total network loss P-loss by summing injections = 7.638932291442E+16 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn +C SWT A Open Open Open +C SWT B Open Open Open +C SWT C Open Open Open +C BUSM2 BUSM1 -6.37300003E+05 2.75937500E+01 6.37300004E+05 +C BUSM3 BUSM2 -1.18962667E+06 7.40000000E+01 1.18962667E+06 +C BUSM4 BUSM3 -1.65698001E+06 3.29125000E+02 1.65698004E+06 +C BUSM5 BUSM4 -2.12433334E+06 5.92375000E+02 2.12433343E+06 +C BUSM6 BUSM5 0.00000000E+00 -1.01718750E+01 1.01718750E+01 +C +C EQV C 349966.92087687 389997. -1273.107108884 1348.5187481005 +C 172106.98504408 26.1870700 -444.6359221728 -160.7481140 + NAVH ANAVH BNAVH C +C Step Time BUSM1 MASS02 BUSM3 BUSM4 BUSM5 BUSM6 NAVH A NAVH B +C TERRA TERRA TERRA TERRA TERRA TERRA +C +C NAVH C MASS02 BUSM3 BUSM4 BUSM5 BUSM6 TACS TACS +C BUSM1 MASS02 BUSM3 BUSM4 BUSM5 TQGEN FIELD +C +C UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 UM-1 +C TQGEN IPA IPB IPC IE1 IE2 IE3 IE4 +C *** Phasor I(0) = -6.3730000E+05 Switch "BUSM2 " to "BUSM1 " closed +C *** Phasor I(0) = -1.1896267E+06 Switch "BUSM3 " to "BUSM2 " closed +C *** Phasor I(0) = -1.6569800E+06 Switch "BUSM4 " to "BUSM3 " closed +C *** Phasor I(0) = -2.1243333E+06 Switch "BUSM5 " to "BUSM4 " closed +C *** Phasor I(0) = 0.0000000E+00 Switch "BUSM6 " to "BUSM5 " closed +C 0 0.0 376.9911184 376.9911184 376.9911184 376.9911184 376.9911184 376.9911184 54291.46171 -385072.283 +C 330780.8214 -637300.003 -.1189627E7 -.165698E7 -.2124333E7 0.0 0.0 0.0 +C .21243333E7 9214.54515 -27456.1142 18241.56904 4313.224983 0.0 0.0 0.0 +C 1 .2E-3 376.9911184 376.9911184 376.9911184 376.9911184 376.9911187 376.9911184 85269.74103 -396001.181 +C 310731.44 -637300.003 -.1189627E7 -.165698E7 -.2124333E7 -.192711E-3 .21243018E7 4313.233628 +C .21243018E7 11174.95518 -27770.8483 16595.89276 4313.233628 .6697334554 .6667285885 .2799719954 +C 2 .4E-3 376.9911184 376.9911184 376.9911184 376.9911184 376.9911198 376.9911184 115771.1286 -404685.302 +C 288914.173 -637300.003 -.1189627E7 -.165698E7 -.2124333E7 -.001299907 .21242469E7 4313.23836 +C .21242469E7 13071.84176 -27927.6144 14855.77263 4313.23836 1.005987367 1.411747548 .5923226394 +BLANK card ending output requests (here, just node voltages) +C *** Open switch "SWT C" to " " after 1.00200000E-01 sec. +C 750 .15 378.9579362 378.7971923 378.5677025 378.0740682 377.9402794 362.6550115 65967.40283 -252359.489 +C 236314.7086 -.1741593E7 -.3694241E7 -.8111971E7 -.3604052E7 -368811.077 -460638.075 5379.270269 +C -460638.075 -21046.2714 -15182.1684 36228.43977 5379.270269 -9232.64421 26381.86541 10855.49107 +C maxima : 387.546885 384.6217924 381.1685641 380.8913616 381.7465385 390.8419992 669322.4023 586897.097 +C 532948.8001 656967.1906 .13443971E7 .27857511E7 .10534159E7 763826.7801 .71276709E7 6509.720036 +C .71276709E7 75438.29546 60328.31828 75306.29416 6509.720036 45317.49759 40466.3349 15877.68389 +C Times of max : .1358 .1368 .1382 .116 .1124 .12 .1202 .1264 +C .1148 .1226 .1234 .1258 .0582 .1342 .1276 .0908 +C .1276 .1368 .0444 .1298 .0908 .1382 .0434 .0434 +C minima : 370.1878672 373.9938537 376.0186341 375.3497638 375.1213723 361.1452453 -592541.345 -633283.817 +C -571219.198 -.1828159E7 -.3694241E7 -.8111971E7 -.4003952E7 -499216.781 -.1775882E7 0.0 +C -.1775882E7 -76280.1719 -68226.6079 -73182.9387 3602.587589 -55011.5332 -43534.6089 -18695.7515 +C Times of min : .111 .1106 .0518 .1402 .138 .1464 .1116 .1178 +C .1234 0.1 .15 .15 .1406 .1078 .1024 0.0 +C .1024 .127 .0356 .0414 .1156 .1132 .126 .1258 + PRINTER PLOT + 19415. 150. UM-1 TQGEN { Axis limits : (-1.776, 7.128) + 18415. 150. BUSM6 { Axis limits : (0.000, 3.908) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 2nd subcase illustrates halt due to NAMES ARE LEFT ADJUSTED (NALA) as +C left over from the 1st subcase. Data is from 3rd subcase of DC-20 as +C added 11 January 2001. All TACS variables except 1 have been deleted, +C and this one (OUT1) has been shifted right by one byte to create an +C error. Also, on the electrical side, NOD2 has been shifted right +C by one byte. So, there are two errors. Either one would be enough +C to halt execution. + .0001 0.02 + 1 1 1 1 1 -1 + 10 10 100 100 +TACS HYBRID + 1 OUT1 +GEN1 + 1.0 + 1.0 1.0 +14GEN1 100000. 400.0 -1.0 +33 OUT1 +BLANK card ends final TACS data + NOD1 NOD2 1.00 +BLANK card after last electric network branch + NOD2 -1.0 1.0 +BLANK card ends switches +14NOD1 -1 100.0 50.0 -1.0 +BLANK card after last electric network source +C Auxiliary name " OUT1 " is not properly left-adjusted or right-adjusted. This is for TEXVEC cell 15 out of a total of 18. +C Bus name " NOD2 " is not properly left-adjusted or right-adjusted. This is for node number 3 out of a total of 3. +C ------------------------------------------------------------------------------------------------------------------------------------ +C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ +C ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ ... Etc. (boiler plate until we come to following) +C KILL code number Overlay number Nearby statement number +C 81 4 8299 +C KILL = 81. A 6-character data name is not properly left-adjusted or right-adjusted as the preceding warning message documents. Of + NOD1 NOD2 +BLANK card ends selective node voltage outputs +BLANK card terminating plotting +BEGIN NEW DATA CASE +C Non-existent 3rd data subcase is used only to illustrate termination +C on a truly blank card. This will happen because $BLANK HALT appears +C earlier (in fact, in a preceding data subcase). As explained in the +C October, 1993, newsletter, STARTUP variable NOBRAN could be used +C instead of this $-card, which is restricted to just this disk file. + +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BLANK { 14 Dec 94, we add more, to make 5 even when comments are destroyed +BEGIN NEW DATA CASE +BLANK diff --git a/benchmarks/dcn11.dat b/benchmarks/dcn11.dat new file mode 100644 index 0000000..607d84c --- /dev/null +++ b/benchmarks/dcn11.dat @@ -0,0 +1,338 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-11 +C Test of Type-59 S.M. model as inserted into SCE Navaho SSR simulation. +C Data is close to DC-53 except for two critical changes. For second +C subcase, only the switching times differ, whereas a very large time +C step (1.0 msec) is illustrated. For the first subcase, imbalance has +C been added, some branches have been removed, as have all 3 switches. +C Modified under the direction of Prof. Juan Martinez in Barcelona, Spain. +C At end of November, 1992, answer changes. Original data case is at end. +C Answers change again 10 February 1999 following massive changes from +C TEPCO (Tokyo Electric Power Company) in Japan. See April newsletter. +C But changes are negligible physically. The printer plot is identical +C most extrema numbers agree to 5th or 6th decimal digits or more. +C Also, 2nd subcase is unaffected, just as DC-53 was unaffected. +PRINTED NUMBER WIDTH, 11, 2, { 10 output columns/line, 2 blanks between columns + .000100 .150 60. 60. { Note normal, small time step of 100 micros. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 6885. { 1st of 3 is not equal to 2nd + MCC1 BMCC2 B 8285. { Middle branch has value of DC-53 + MCC1 CMCC2 C 9685. { 3rd of 3 is not equal to 2nd + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 +BLANK card ending branch cards +C The switching of DC-53 is absent here; no such disturbance. +BLANK card ending switch cards (nonexistent in this case) +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +59NAVL A 22680.58 60. -54.0211 + NAVL B 22979.09 -173.4837 { Note imbalance of phase "b" + NAVL C 23016.47 65.6058 { Note imbalance of phase "c" + 1 1 2 1. 1. 892.4 26. -1800. 1971. 3050. + { Q-axis saturation card } -1. +1.699938 1.66 1.66 1.79 1.66 1.665788 +1.68448 1.58 1.58 1.71 1.58 1.82859 +.13 .001048657.003712619.005256733.01838716 + 1 1. .8626875 +BLANK card ending rotor mass cards + 11 + 21 + 31 + 51 +BLANK card that ends all Type-59 S.M. output requests + FINISH +BLANK card ending all source cards (including the U.M.) +C Total network loss P-loss by summing injections = 1.163302277902E+07 +C Last gen: EQV C 349966.92087687 389997. -971.2639768061 994.56516956163 +C Last gen: 172106.98504408 26.1870700 214.02374602844 167.5731328 +C negative sequence current. CMNEG, CANEG = 1.7691466407E+03 -2.4102642 +C zero sequence current. CMZER, CAZER = 2.6519080001E-10 3.1004260 +C Phase "a" injection Phase "b" injection +C Magnitude Degrees Magnitude Degrees +C Actual: 2.3843232E+04 -106.1941936 2.0780921E+04 134.0864766 +C Pos. seq.: 2.2360894E+04 -103.7977668 2.2360894E+04 136.2022332 +C Id, Iq, Io : -2.53616898057E+04 7.45565606771E+03 -4.58934787522E-10 +C Field current of the generator: 4.9045746694E+03 4.9015187243E+03 +C Electromechanical torque: 1.1286120653E+00 1.3137425906E+00 +C Critical level of total air-gap MMF: 1.64767809698E+03 1.56827192364E+03 + NAVH ANAVH BNAVH C +C Step Time NAVH A NAVH B NAVH C MACH 1 MACH 1 MACH 1 +C ID IQ I0 +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IA IB IC EFD MFORCE MANG +C 0 0.0 5599.6834 -385524.4 377160.9 -25361.69 7455.6561 -.4589E-9 +C -6649.729 -14458.19 21107.915 -513.7626 2779.1613 .28315792 +C 1 .1E-3 26730.203 -393133.6 363540.77 -25187.57 7475.4887 .25147E-8 +C -5775.752 -15005.47 20781.226 -513.7626 2779.3697 .28320007 +C 2 .2E-3 38231.503 -399254.6 358065.86 -25015.67 7506.4801 -.3989E-8 +C -4893.915 -15531.11 20425.027 -513.7626 2779.6132 .28328413 +BLANK card ending output requests (here, just node voltages) +C 1500 .15 8215.5099 -385535.2 374535.31 -25151.67 7386.4018 -.662E-12 +C -6559.891 -14365.26 20925.15 -513.7626 2779.4552 .28226463 +C Variable max: 435639.24 432010.75 447141.66 -22925.62 11916.607 .68779E-8 +C 24027.489 20616.106 22620.101 -513.7626 2794.7473 .29938993 +C Times of max: .0208 .0763 .0318 .0268 .0373 .9E-3 +C .0883 .0938 .049 0.0 .037 .0374 +C Variable min: -435608.2 -433039.4 -447067.2 -28120.71 7280.2589 -.6854E-8 +C -24045.91 -20648.92 -22645.71 -513.7626 2778.2618 .28204632 +C Times of min: .0292 .0012 .0235 .0977 .0581 .8E-3 +C .0966 .1355 .0407 0.0 .016 .1082 + PRINTER PLOT + 194 5. 50. MACH 1TQ GEN { Axis limits: (0.000, 1.514) +BLANK card ending all plot cards +BEGIN NEW DATA CASE +C 2nd of two subcases showing Type-59 S.M. simulation. Here we balance +C the electric network (see MCC1 A to MCC2 A and following 2 R-L-C +C branches --- all equal), and run with 10 times the time-step size. +C --- Modified with Guido's and Juan Martinez's approval during Oct., 1990. +C --- Answers have changed. The original data case is unexecuted at end. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) + .001 .150 60. 60. { Note abnormally large time-step size + 1 1 1 1 1 -1 + 5 5 20 20 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 8285. { Unlike 1st subcase, here balance + MCC1 BMCC2 B 8285. { Unlike 1st subcase, here balance + MCC1 CMCC2 C 8285. { Unlike 1st subcase, here balance + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 + SWT AMCC2 A 4830. + SWT BMCC2 B 4830. + SWT CMCC2 C 4830. + MCC2 ASWT A 13.01 + MCC2 BSWT B 13.01 + MCC2 CSWT C 13.01 +BLANK card ending branch cards + SWT A 0. .075 { DC-53 uses T-clo, T-open: .01661667 .09161667 + SWT B 0. .075 { DC-53 uses T-clo, T-open: .01661667 .09161667 + SWT C 0. .075 { DC-53 uses T-clo, T-open: .01661667 .09161667 +BLANK card ending switch cards +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +59NAVL A 21229. 60. -44.896562 + NAVL B + NAVL C +C Following TOLERANCES card is new (added 13 October 1990). +C Note: After Prof. Juan Martinez's changes of October, 1989, the speed +C iteration of the Type-59 S.M. has been slowed for some reason. +C The old data used the default limit of 10 iterations, which led +C to an error stop on the first time-step. We increase the limit +C to 20 one year later, and all is well. WSM and JM, 13 October 90 +TOLERANCES 20 +PARAMETER FITTING 2. { +1800 below ignores saturation + 6 5 6 2 1. 1. 892.4 26. 1800. +BLANK card for Q-axis saturation? + .13 1.79 1.71 .169 .228 .13504 .20029 + 4.3 .85 .032 .05 .13 + 1 .3 .027691 33.68813 + 2 .26 .046379 60.9591 + 3 .22 .255958 90.81823 + 4 .22 .263573 123.6634 + 5 .258887 4.925036 + 6 .0101995 +BLANK card ending rotor mass cards + 2 5 6 8 2 + 51 + 11 + 31 + 41 +BLANK card that ends all Type-59 S.M. output requests + FINISH +BLANK card ending all source cards (including the U.M.) +C Total network loss P-loss by summing injections = 1.775782562050E+07 +C Last gen: EQV C 349966.92087687 389997. -1273.1121012 1348.5241961806 +C Last gen: 172106.98504408 26.1870700 -444.6381511542 -160.7480946 +C Id, Iq, Io : -3.15542117823E+04 1.32614561915E+04 2.52046565230E-11 +C Field current of the generator: 4.3132669924E+03 4.3132669924E+03 +C Electromechanical torque: 2.1243643866E+00 2.1243643866E+00 +C Exciter electromechanical torque: 6.9376969460E-03 6.9376969460E-03 +C Critical level of total air-gap MMF: 1.64767815421E+03 1.54285260456E+03 + NAVH ANAVH BNAVH C +C Step Time NAVH A NAVH B NAVH C MACH 1 MACH 1 +C ID IQ +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IG IKQ IA IB IC +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C TQ GEN TQ EXC ANG 2 ANG 5 ANG 6 +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C VEL 4 VEL 5 VEL 6 TOR 1 TOR 2 +C *** Switch "SWT A" to " " closed after 0.00000000E+00 sec. +C *** Switch "SWT B" to " " closed after 0.00000000E+00 sec. +C *** Switch "SWT C" to " " closed after 0.00000000E+00 sec. +C 0 0.0 54291.79404 -385072.51 330780.7161 -31554.2118 13261.45619 +C -.1483E-11 -.77929E-11 9214.69265 -27456.5111 18241.81844 +C 2.124364387 .0069376969 88.7845725 86.45613646 86.39662907 +C 0.0 .568434E-13 0.0 .6393906251 1.193529167 +C 1 .001 174073.2365 -337932.389 163859.1521 -35450.7946 14276.51122 +C -19.0383823 -65.3413592 20939.5491 -30711.2398 9771.69074 +C 2.353853632 .0069876924 88.7845725 86.45583635 86.39662625 +C -.39289E-4 -.01047592 -.984784E-4 .6393906251 1.193529171 +BLANK card ending output requests (here, just node voltages) +C 150 .15 104120.6498 -549880.101 370127.7961 -10378.3288 61259.50668 +C -918.769883 -3222.21883 50081.07325 -27679.4258 -22401.6474 +C 4.077244752 .0059772423 97.53252996 96.26891526 90.87958692 +C 3.298889083 4.442742009 18.01072049 .3456291178 .4410601898 +C Variable max: 584560.4323 523526.0746 482640.6539 24211.12592 73069.06183 +C 1218.279553 3694.25919 70874.41849 58367.25927 74193.34934 +C 6.953584119 .0099150625 100.2577288 96.26891526 99.81642058 +C 4.363352162 4.570081111 18.01072049 1.793972008 3.631195484 +C Times of max: .104 .143 .147 .097 .11 +C .028 .027 .12 .028 .113 +C .111 .075 .135 .15 .116 +C .144 .095 .15 .083 .133 +C Variable min: -515451.327 -592812.443 -535266.411 -88064.2423 -46392.7197 +C -1106.26611 -4026.24392 -73843.3003 -66442.5528 -70813.3153 +C -1.64765566 .0059717165 87.73359188 85.82030263 85.38065158 +C -1.43086845 -1.52953914 -15.1785599 -.657183376 -1.30826843 +C Times of min: .145 0.1 .106 .015 .027 +C .11 .11 .11 .019 .025 +C .086 .149 .05 .023 .034 +C .123 .12 .129 .106 .106 + PRINTER PLOT + 194 5. 50. MACH 1ID { Axis limits: (-8.806, 0.000) + CALCOMP PLOT + 19415. 150. MACH 1TQ GEN +BLANK card ending all plot cards +BEGIN NEW DATA CASE +BLANK + + + +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-11 +C Test of Type-59 S.M. model as inserted into SCE Navaho SSR simulation. +C Data is close to DC-53 except for two critical changes. For second +C subcase, only the switching times differ, whereas a very large time +C step (1.0 msec) is illustrated. For the first subcase, imbalance has +C been added, some branches have been removed, as have all 3 switches. +C This is old data case, as it existed prior to December, 1992 changes. +C Only the 1st of 2 subcases, having saturation, was affected. +PRINTED NUMBER WIDTH, 11, 2, { 10 output columns/line, 2 blanks between columns + .000100 .150 60. 60. { Note normal, small time step of 100 micros. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +51NAVH AMCC1 A 162.67 507.51 +52NAVH BMCC1 B 6.51 162.97 +53NAVH CMCC1 C + MCC1 AMCC2 A 6885. { 1st of 3 is not equal to 2nd + MCC1 BMCC2 B 8285. { Middle branch has value of DC-53 + MCC1 CMCC2 C 9685. { 3rd of 3 is not equal to 2nd + MCC2 AEQV A 19.52 + MCC2 BEQV B 19.52 + MCC2 CEQV C 19.52 + TRANSFORMER TRAN A + 9999 + 1NAVL ANAVL C .1 26. + 2NAVH A 31.23 311.09 + TRANSFORMER TRAN A TRAN B + 1NAVL BNAVL A + 2NAVH B + TRANSFORMER TRAN A TRAN C + 1NAVL CNAVL B + 2NAVH C + NAVL A 2500. 1.13 + NAVL B 2500. 1.13 + NAVL C 2500. 1.13 +BLANK card ending branch cards +C The switching of DC-53 is absent here; no such disturbance. +BLANK card ending switch cards (nonexistent in this case) +14EQV A 389997. 60. -93.81293 -1. +14EQV B 389997. 60. -213.81293 -1. +14EQV C 389997. 60. 26.18707 -1. +59NAVL A 22680.58 60. -54.0211 + NAVL B 22979.09 -173.4837 { Note imbalance of phase "b" + NAVL C 23016.47 65.6058 { Note imbalance of phase "c" + 1 1 2 1. 1. 892.4 26. -1800. 1971. 3050. + { Q-axis saturation card } -1. +1.699938 1.66 1.66 1.79 1.66 1.665788 +1.68448 1.58 1.58 1.71 1.58 1.82859 +.13 .001048657.003712619.005256733.01838716 + 1 1. .8626875 +BLANK card ending rotor mass cards + 11 + 21 + 31 + 51 +BLANK card that ends all Type-59 S.M. output requests + FINISH +BLANK card ending all source cards (including the U.M.) +C Total network loss P-loss by summing injections = 1.163302277902E+07 +C Last gen: EQV C 349966.92087687 389997. -971.2639768061 994.56516956163 +C Last gen: 172106.98504408 26.1870700 214.02374602844 167.5731328 +C negative sequence current. CMNEG, CANEG = 1.7691466407E+03 -2.4102642 +C zero sequence current. CMZER, CAZER = 2.7353740917E-10 -3.0706010 +C Phase "a" injection Phase "b" injection +C Magnitude Degrees Magnitude Degrees +C Actual: 2.3843232E+04 -106.1941936 2.0780921E+04 134.0864766 +C Pos. seq.: 2.2360894E+04 -103.7977668 2.2360894E+04 136.2022332 +C Id, Iq, Io : -2.53612689520E+04 7.45708752411E+03 -4.72587309806E-10 +C Field current of the generator: 5.5452995580E+03 5.5422562163E+03 +C Electromechanical torque: 1.1130233521E+00 1.3137425906E+00 +C Critical level of total air-gap MMF: 1.64767815421E+03 1.54285260456E+03 + NAVH ANAVH BNAVH C +C Step Time NAVH A NAVH B NAVH C MACH 1 MACH 1 MACH 1 +C ID IQ I0 +C +C MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 MACH 1 +C IA IB IC EFD MFORCE MANG +C 0 0.0 5599.6834 -385524.4 377160.9 -25361.27 7457.0875 -.4505E-9 +C -6649.729 -14458.19 21107.915 -580.9228 3395.4664 .22584782 +C 1 .1E-3 13085.416 -390180.1 374232. -25223.92 7476.9523 .25149E-8 +C -5796.276 -15015.04 20811.319 -580.9228 3395.6875 .2259019 +C 2 .2E-3 37828.479 -398608.8 357822.77 -25088.33 7504.2792 -.3991E-8 +C -4936.097 -15549.08 20485.175 -580.9228 3395.9341 .22598696 +BLANK card ending output requests (here, just node voltages) +C 1500 .15 6837.3696 -387443.2 377929.02 -25561.24 8765.6491 -.272E-11 +C -5791.244 -15542.29 21333.536 -580.9228 3400.4457 .22974172 +C Variable max: 437711.89 436396.74 452297.2 -23535.78 11308.112 .6877E-8 +C 23270.336 21727.34 22760.711 -580.9228 3410.6932 .24092559 +C Times of max: .0208 .0096 .0318 .0685 .0375 .9E-3 +C .0382 .1271 .0825 0.0 .0371 .0376 +C Variable min: -437366.3 -434952.8 -452173.8 -27271.05 7457.0875 -.6855E-8 +C -23480. -21940.25 -22982.56 -580.9228 3395.4664 .22584782 +C Times of min: .0292 .018 .0068 .0398 0.0 .001 +C .0299 .0854 .0408 0.0 0.0 0.0 + PRINTER PLOT + 194 5. 50. MACH 1TQ GEN { Axis limits: (0.000, 1.474) +BLANK card ending all plot cards + diff --git a/benchmarks/dcn12.dat b/benchmarks/dcn12.dat new file mode 100644 index 0000000..872f311 --- /dev/null +++ b/benchmarks/dcn12.dat @@ -0,0 +1,2334 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-12 +C Automatic steady-state initialization for Type-4 U.M. (a 3-phase induction +C machine). Power coils are non-compensated. Rotor coils have external +C resistances. Apply a step to the input torque at 0.02 sec (step 100). +C Rating: 720 KVA, 4.2 KV, 4-pole ( 85.67% efficiency at 0.846 pf +C and 14.0E+3 NM.; Kipp torque = 45.09E+2 NM, slip = 2.5%) +C 4 May 2006, append the 8 subcases of IM.DAT making a total of 9. This +C is to document use of the new Type-56 Induction Machine from TEPCO. +PRINTED NUMBER WIDTH, 13, 2, { Request maximum precision (for 8 output columns) +ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60 +0.0002 0.900 + 1 2 0 0 1 -1 + 5 5 20 20 100 1 110 10 200 200 +C --------- ROTOR EXTERNAL RESISTANCES + BUSA1 1.E-10 1 + BUSB1 BUSA1 1 + BUSC1 BUSA1 1 +C -------- TRANSMISSION LINES + BUSA2 BUSAS2 1.0E-4 10.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 1 + BUSC2 BUSCS2BUSA2 BUSAS2 1 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 1.0E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +C --------- MECHANICAL NETWORK COMPONENTS + BUSMG BUSMGR .4548 1 + BUSMGR BUSMG BUSMGR + BUSMG 9.8E+7 { Rotor mass = capacitance } 1 +C ------- Near-zero resistance to measure electromechanical torque (a current): + BUSMS BUSMG 1.0E-6 1 +BLANK card ending all branch cards +BLANK card ending all (here, nonexistent) switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C ----------- Mechanical input torque, with value set by steady-state solution: +14BUSMS -1 0.000001 0.00001 -1.0 +C -------- Step change to input torque occurs at time .020 seconds (Step 100): +14BUSMS -1 3900.0 0.00001 +0.02 +C ----------------------- Type-4 U.M. (3-phase induction machine) data follows: +19 UM + 1 1 +BLANK card ending Class-1 U.M. data +C UM-1 MACH TABLE + 4 111BUSMG 2 0.0188 + 0.02358 + 0.02358 +2.0 BUSMS +C UM-1 COIL TABLE + BUSA2 1 +0.412 0.0012 BUSB2 1 +0.412 0.0012 BUSC2 1 +0.110 0.0012 BUSB1 1 +0.110 0.0012 BUSC1 1 + BUSA1 1 +BLANK card ending all U.M. data cards +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 7.171020819312E+05 +C Total network loss P-loss by summing injections = 8.732408663441E+05 +C Total network loss P-loss by summing injections = 1.223706646064E+07 +C Total network loss P-loss by summing injections = 1.223706596064E+07 +C Total network loss P-loss by summing injections = 1.223707382155E+07 +C Zero-th time step documents initial conditions, cut on right edge: + BUSAS2BUSA2 BUSA1 BUSMG +C Step Time BUSAS2 BUSA2 BUSA1 BUSMG BUSA1 +C TERRA +C +C BUSB2 BUSC2 BUSMG BUSMG BUSMS +C BUSBS2 BUSCS2 BUSMGR TERRA BUSMG +C +C UM-1 UM-1 UM-1 UM-1 UM-1 +C IPA IPB IPC IE1 IE2 +C 0 0.0 3000. 1784.374676 .1471233E-7 184.725648 147.1233291 +C 376.2746526 -182.224238 203.0844855 0.0 -3965.07077 +C -194.050415 376.2746526 -182.224238 0.0 0.0 +C 1 .2E-3 2991.476701 1834.404076 .1467203E-7 184.7256479 146.7202619 +C 374.6920464 -156.915064 203.0844854 -.092695802 -3965.07077 +C -217.776982 374.6920464 -156.915064 161.7505543 -308.470816 +BLANK card ending output requests (node voltages only, here) +C For some unknown reason, these agree with VAX to only 4 or 5 digits, often: +C 4500 0.9 3000. 2139.363254 -.929034E-9 188.3186232 -9.29033753 +C 206.6043639 -188.546337 207.0345461 -12.7407524 -65.0707659 +C -18.0580266 206.6043639 -188.546337 15.99476461 -6.70442708 +C Variable max : 3000. 2142.192646 .1471233E-7 189.143889 147.1233291 +C 376.2746526 376.1164039 207.9418304 3898.215212 -65.0707659 +C 376.0215626 376.2746526 376.1164039 228.3663773 6.204481463 +C Times of max : 0.0 .5668 0.0 .2202 0.0 +C 0.0 .0222 .2202 .0202 .8786 +C .011 0.0 .0222 .0544 .3316 +C Variable min : -3000. -2142.13595 -.123856E-8 184.7253125 -12.385633 +C -375.871946 -376.188889 203.0841166 -661.121518 -3965.07077 +C -376.241942 -375.871946 -376.188889 -24.9469672 -362.34101 +C Times of min : .075 .5418 .564 .02 .564 +C .0082 .0138 .02 .3084 0.0 +C .0194 .0082 .0138 .3076 0.0 + PRINTER PLOT + 193 .1 0.0 0.9 UM-1 TQGEN { Axis limits: (-4.168, 0.389) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 1st of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C Begin several illustrations of TEPCO (Tokyo Electric Power Company in Japan) +C IM (Induction Machine) model that entered the UTPF on 7 April 2006. The +C coding is by Cao Xinglin of TEPCO Systems Corp, as communicated to BPA via +C Atsushi Kurita of TEPCO. Number 56 is the new ATP source type code that is +C to appear in columns 1-2 at the beginning of IM data. First, ATPIG56.DAT +C The TEPCO data had 21 permanently-closed switches of which only 6 have been +C retained. The remainder were removed without any confusion or difficulty +C in order to drop nonessenttial and unrelated complexity. The six switches +C that have been retained serve to pass armature currents of the two parallel +C machines to TACS. The phasor solution output of the switches clearly shows +C opposite directions for the power flow: positive (out) of the generator IG1 +C and negative (into) the motor IM1. The phasor solution provides very good +C initialization, and simulation of this continues for 1.25 cycles in the dT +C loop to demonstrate stability of the steady state. Most machine variables +C are nearly constant as extrema clearly demonstrate. The original TEPCO data +C simulated to 10 seconds (5000 cycles) to demonstrate longer-term stability, +C but this has been drastically shortened to save computer time. +C G400 PG=500kW,QG=-232kVar +C L300 PL=250kW +C L400 PL=200kW,QL=-259kVar +C M400 PL=50kW,QL=27kVar +C MODE G400:LV +PRINTED NUMBER WIDTH, 11, 1, { Restore values that are common within STARTUP +POWER FREQUENCY, 50., { So one cycle is 20 msec, note +C 0.00025 10. 0.0 0.0 --- TEPCO's T-max was 10 seconds, note + 0.00025 .025 0.0 0.0 { 1.25 cycles is enough to verify steady state + 1 1 1 1 1 -1 + 5 5 20 20 100 100 +TACS HYBRID +33VIG PIGEN QIGEN PIM QIM +C +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +91IM1A -1.0 +91IM1B -1.0 +91IM1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +99QIM1 = IM1A*(N400B-N400C) +99QIM2 = IM1B*(N400C-N400A) +99QIM3 = IM1C*(N400A-N400B) +99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0) +99PIM = N400A*IM1A+N400B*IM1B+N400C*IM1C +99PPIM = PIM/1000000. +99QQIM = QIM/1000000. +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG PPIM QQIM +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PIM -50000. +77QIM -27600. +C +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +BLANK card ends TACS data +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N300A 1.039918398 + N200B N300B N200A N300A + N200C N300C N200A N300A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** ( 1.00478) + N400A 221.1645148 + N400B N400A + N400C N400A + N400A 18.56624062 + N400B N400A + N400C N400A +$VINTAGE, 0 +C +BLANK card ends electric network branches +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// +C Only 6 of the 21 original switches are retained. This allows separate +C names for the two IM busses even though the two are in parallel. In +C fact, IG1A is the same as IM1A, etc. for B and C: + IG1A N400A MEASURING + IG1B N400B MEASURING + IG1C N400C MEASURING + IM1A N400A MEASURING + IM1B N400B MEASURING + IM1C N400C MEASURING +BLANK card ends switches +C /// SOURCE DATA /// +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH { Key word that ends data for this particular (the 1st of 2) IM +C |BUS | | SLIP || TM0 | +C | A6 | | E10.6 || E10.6 | +56IM1A 2.736296 0.0 +56IM1B +56IM1C +C CLASS2 +C TY < RMVA >< RSKV >< FREQ > + 0 1 0.0625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.062 0.075 0.031 0.075 2.58 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.97 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH { Key word that ends data for this particular (the 2nd of 2) IM +BLANK card terminating ATP source cards +C Total network loss P-loss by summing injections = 8.693842500266E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C IG1A N400A 6.13352336E+01 2.91346671E+01 6.79031642E+01 25.4080 1.66673295E+05 -7.75683916E+04 +C IG1B N400B -5.43625497E+00 -6.76852040E+01 6.79031642E+01 -94.5920 1.66673295E+05 -7.75683916E+04 +C IG1C N400C -5.58989787E+01 3.85505369E+01 6.79031642E+01 145.4080 1.66673295E+05 -7.75683916E+04 +C IM1A N400A -6.18285824E+00 3.35138837E+00 7.03274769E+00 151.5403 -1.66673368E+04 -9.20498467E+03 +C IM1B N400B 5.99381659E+00 3.67881812E+00 7.03274769E+00 31.5403 -1.66673368E+04 -9.20498467E+03 +C IM1C N400C 1.89041650E-01 -7.03020649E+00 7.03274769E+00 -88.4597 -1.66673368E+04 -9.20498467E+03 +C +C Column headings for the 29 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 24 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 5 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C P Q ISA ISB ISC IRA IRB IRC WR ANG +C +C IM-1 IM-1 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 IM-2 +C TQ TM P Q ISA ISB ISC IRA IRB IRC +C +C IM-2 IM-2 IM-2 IM-2 TACS TACS TACS TACS TACS +C WR ANG TQ TM VIG PIGEN QIGEN PIM QIM +C *** Phasor I(0) = 6.1335234E+01 Switch "IG1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = -5.4362550E+00 Switch "IG1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = -5.5898979E+01 Switch "IG1C " to "N400C " closed in the steady-state. +C *** Phasor I(0) = -6.1828582E+00 Switch "IM1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = 5.9938166E+00 Switch "IM1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = 1.8904165E-01 Switch "IM1C " to "N400C " closed in the steady-state. +C 0 0.0 500019.886 -232705.17 61.3352336 -5.436255 -55.898979 -11.518219 60.1819687 -48.66375 316.625821 1.57079633 +C 1608.95108 1608.95108 -50002.011 -27614.954 -6.1828582 5.99381659 .18904165 -.58621064 -5.1267795 5.71299012 +C 305.562938 1.57079633 -148.95686 -148.95686 1.0047 500000. -232000. -50000. -27600. +C 1 .25E-3 500145.619 -232725.27 58.8756131 -.11553737 -58.760076 -11.479526 60.1817443 -48.702218 316.625814 1.64995278 +C 1609.32268 1608.95108 -49988.051 -27614.135 -6.4248212 5.68592478 .738896446 -.57282271 -5.1329244 5.70574715 +C 305.562934 1.64718706 -148.91265 -148.95686 1.00481726 500145.619 -232725.27 -49988.051 -27614.135 +C 2 .5E-3 500279.634 -232738.55 56.0518759 5.20801006 -61.259886 -11.440363 60.1804072 -48.740044 316.625795 1.72910923 +C 1609.6677 1608.95108 -49976.514 -27614.492 -6.6274021 5.34328199 1.28412013 -.55938995 -5.1392418 5.69863173 +C 305.562921 1.72357779 -148.87311 -148.95686 1.00485913 500279.634 -232738.55 -49976.514 -27614.492 +BLANK card ending names of ATP output variables (none for this case) +C 100 .025 500666.577 -231710.46 -29.009861 67.689943 -38.680082 -7.5010766 58.7427696 -51.241693 316.626251 9.48642268 +C 1610.05009 1608.95108 -50027.397 -27567.289 -3.3454225 -3.6840913 7.02951382 .767497344 -5.7887829 5.02128552 +C 305.560218 9.20981993 -148.95965 -148.95686 1.00485987 500666.577 -231710.46 -50027.397 -27567.289 +C Variable max: 501351.888 -230444.64 67.8036384 67.9774295 67.7273265 -7.5010766 60.1819687 -48.66375 316.62671 9.48642268 +C 1612.20306 1608.95108 -49882.18 -27466.013 7.01961078 7.02912135 7.02951382 .767497344 -5.1267795 5.71299012 +C 305.562938 9.20981993 -148.58255 -148.95686 1.0049302 501351.888 -230444.64 -49882.18 -27466.013 +C Times of max: .005 .01 .0185 .00525 .012 .025 0.0 0.0 .021 .025 +C .0045 0.0 .0045 .009 .0115 .01825 .025 .025 0.0 0.0 +C 0.0 .025 .00475 0.0 .1E-2 .005 .01 .0045 .009 +C Variable min: 499173.557 -232738.55 -67.822794 -67.743906 -67.960287 -11.518219 58.7427696 -51.241693 316.623142 1.57079633 +C 1605.49808 1608.95108 -50027.634 -27615.163 -7.0288686 -7.0157093 -7.0236834 -.58621064 -5.7887829 5.02128552 +C 305.560211 1.57079633 -148.96079 -148.95686 1.0047 499173.557 -232738.55 -50027.634 -27615.163 +C Times of min: .015 .5E-3 .0085 .01525 .002 0.0 .025 .025 .009 0.0 +C .0145 0.0 .024 .75E-3 .0215 .00825 .015 0.0 .025 .025 +C .02175 0.0 .02375 0.0 0.0 .015 .5E-3 .024 .75E-3 + PRINTER PLOT { No need for vector plotting as all variables are smooth + 1942.5 0. 25. BRANCH { Plot limits: (-7.029, 7.029) + IM-2 ISA IM-2 ISB IM-2 ISC +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 3rd of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 2nd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This second case is a +C simplification of ATPIGT56.DAT which has just a single IM. Like the first +C subcase, this second one involves no transient. The phasor solution merely +C is continued for one cycle to confirm the sinusoidal steady state. Of the +C original 19 permanently-closed switches, only 10 could be eliminated without +C tampering with TACS control system logic. The 9 switches that remain are +C used to pass currents to TACS. As for outputs, these have been reduced +C drastically by elimination of the request for every node voltage (a 1-punch +C in column 2). This reduces the voltage outputs from 31 to 0. +POWER FREQUENCY, 50 +C 0.00025 1.0 0.0 0.0 { TEPCO simulation extended to Tmax = 1 sec + 0.00025 .020 0.0 0.0 + 1 1 1 1 1 -1 + 5 5 20 20 +TACS HYBRID +C OUTPUT +33VIG PPIG QQIG TM +C +88FLG1 = TIMEX .GE. 0.1 +88FLG2 = TIMEX .GE. 0.5 +88TM = 1.0+FLG1*0.2+FLG2*0.3 +77TM 1.0 +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +C +C *************** CONTROLL MODEL BLOCK ************** +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB5 = N400AD*(N400B-N400C) +99QCB6 = N400BD*(N400C-N400A) +99QCB7 = N400CD*(N400A-N400B) +99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. +99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. +C 33PACCB1 +C 33QACCB1 +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG VIG +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PACCB 0.0 +77QACCB 6.25 +BLANK card ends TACS data +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** + N400A N400AD 176.7332792 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 16.56943663 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +$VINTAGE, 0 +BLANK card terminating branch cards + N250A N300A -1.0 8.10 + N250B N300B -1.0 8.10 + N250C N300C -1.0 8.10 + IG1A N400A MEASURING 1 + IG1B N400B MEASURING 1 + IG1C N400C MEASURING 1 + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING +BLANK card ending switch cards +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.1 1.1 TM + 0.1 1.2 + 0.5 1.5 + 9999 { Special terminator for any Class-4 data (here, 2 cards) +C CLASS5 +C | BUS|N| +C | A4 |I2 +C 73PGEN 1 + FINISH { Key word that ends data for this particular (the one and only) IM +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 7.668433002012E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 +C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 +C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 +C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 +C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 +C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 +C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 +C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 +C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 +C +C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B N400C P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS +C IRC WR ANG TQ TM VIG PPIG QQIG TM +C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state. +C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state. +C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state. +C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state. +C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state. +C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state. +C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state. +C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 +C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0 +C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 +C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0 +C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 +C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0 +BLANK card ending output variables (none specified here) +C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 +C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0 +C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 +C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0 +C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 +C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0 +C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 +C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0 +C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 +C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0 + 1942.5 0. 25. BRANCH { Plot limits: (-6.796, 6.798) + IG1A N400A IG1B N400B IG1C N400C +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 4th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 3rd of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This third case is a +C simplification of IGTMT56.DAT which has just a single IM. Like the first +C two, this third subcase involves no transient. The phasor solution merely +C is continued for one cycle to confirm the sinusoidal steady state. Of the +C original 19 permanently-closed switches, only 10 could be eliminated without +C tampering with TACS control system logic. 6 of the 9 switches that remain +C are used to pass currents to TACS. As for outputs, these have been reduced +C drastically by elimination of the request for every node voltage (a 1-punch +C in column 2). This reduces the voltage outputs from 31 to 0. +POWER FREQUENCY, 50 +C +C 0.00025 1.0 0.0 0.0 --- TEPCO's T-max was 1.0 seconds, note + 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state + 1 1 1 1 1 -1 + 5 5 20 20 +TACS HYBRID +C OUTPUT +33VIG PPIG QQIG TM +C +88FLG1 = TIMEX .GE. 0.1 +88FLG2 = TIMEX .GE. 0.5 +C 88TM = 1.0+FLG1*0.2+FLG2*0.3 +88TM = 1.0+FLG1*0.4838+FLG2*0.3709 +77TM 1.0 +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +C +C *************** CONTROLL MODEL BLOCK ************** +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB5 = N400AD*(N400B-N400C) +99QCB6 = N400BD*(N400C-N400A) +99QCB7 = N400CD*(N400A-N400B) +99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. +99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. +C 33PACCB1 +C 33QACCB1 +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG VIG +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PACCB 0.0 +77QACCB 6.25 +C IM TORQUE +C 99TM =TIMEX +C 88TM =TIMEX .GE. 0.1 +$DISABLE +C ---FOR.IG.No1(1/4)--- +C ====== TIME OF MOTOR TO GEN MODE ===== +77MSLIP -0.785129 +11MOTGEN 0.0 -1.0 +90BUSMG -1.0 +99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100. +33MSLIP +99BUSMS =(TIMEX.GE.MOTGEN)*1592 +$ENABLE +BLANK card ending TACS data +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** + N400A N400AD 176.7332792 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 16.56943663 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +$VINTAGE, 0 +C +$DISABLE +C ---FOR.IG.No1(2/4)--- +C --------- MECHANICAL NETWORK COMPONENTS +C Tm=1.12 :M :2H ==> 7.09E+6 pole:1 +C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 + BUSMG 7.09E6 +C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE + BUSMS BUSMG 1.0E-8 +$ENABLE +BLANK card ending branch cards +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 8.10 + N250B N300B -1.0 8.10 + N250C N300C -1.0 8.10 + IG1A N400A MEASURING 1 + IG1B N400B MEASURING 1 + IG1C N400C MEASURING 1 + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING +BLANK card ending switch cards +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +$DISABLE +C ---FOR.IG.No1(3/4)--- +14BUSMS -1 0.0001 0.0001 .0 -1.0 +$ENABLE +C /// SOURCE DATA /// +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | + TM + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 +C 73PGEN 1 + FINISH +BLANK card ending source cards +C Total network loss P-loss by summing injections = 7.668433002012E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 +C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 +C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 +C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 +C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 +C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 +C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 +C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 +C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 +C +C Column headings for the 19 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 4 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B N400C P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS +C IRC WR ANG TQ TM VIG PPIG QQIG TM +C *** Phasor I(0) = 9.4867414E-03 Switch "N250A " to "N300A " closed in the steady-state. +C *** Phasor I(0) = -6.1803311E-01 Switch "N250B " to "N300B " closed in the steady-state. +C *** Phasor I(0) = 6.0854637E-01 Switch "N250C " to "N300C " closed in the steady-state. +C *** Phasor I(0) = 6.1335313E+01 Switch "IG1A " to "N400A " closed in the steady-state. +C *** Phasor I(0) = -5.4362697E+00 Switch "IG1B " to "N400B " closed in the steady-state. +C *** Phasor I(0) = -5.5899043E+01 Switch "IG1C " to "N400C " closed in the steady-state. +C *** Phasor I(0) = 3.0415099E+01 Switch "N400AD" to " " closed in the steady-state. +C *** Phasor I(0) = 9.4105655E+00 Switch "N400BD" to " " closed in the steady-state. +C *** Phasor I(0) = -3.9825664E+01 Switch "N400CD" to " " closed in the steady-state. +C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 +C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 1.0 +C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 +C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 1.0 +C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 +C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 1.0 +BLANK card ending names for output purposes (none here) +C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 +C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 1.0 +C Variable maxima: 67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 +C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 1.0 +C Times of maxima: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 +C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 0.0 +C Variable minima: -67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 +C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 1.0 +C Times of minima: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 +C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 0.0 + PRINTER PLOT { No need for vector plotting as all variables are smooth +C For variety, let's not repeat the 50-Hz ac sinusoids of the preceding two +C subcases. Instead, let's plot the rotor angle ANG which should be a +C perfect ramp if rotor speed is constant. + 1942.5 0. 25. BRANCH { Plot limits: ( 0.000, 7.903 ) + IM-1 ANG +BLANK card ending batch-mode plot cards +BEGIN NEW DATA CASE +C 5th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 4th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This fourth case is a +C simplification of DCN12T56.DAT, so named because it is like DCN12 (in long +C form, DCNEW-12) except that the U.M. of that old standard test case has been +C replaced by a Type-56 IM. Unlike the preceding 3 IM illustrations, this one +C _does_ involve transients. A comment card of that old data states: "Apply +C a step to the input torque at 0.02 sec (step 100). Unlike the preceding +C illustrations, there is no TACS (control system modeling). Also, 1 phasor +C solution for initial conditions suffices (compare with the five of DCNEW-12, +C each indicated by 1 line of output that begins "Total network loss P-loss +C by summing injections = ..."). Of course, the compensation of DCNEW-12 is +C nowhere to be seen. The TEPCO IM does not use compensation. Also gone is +C the external rotor inertia that Prof. Hian Lauw modeled using a capacitor +C (that unforgetable electrical analog used with the U.M.). Machine variable +C names are are a little different, but are easily recognizable. For example, +C the PRINTER PLOT of shaft torque (UM-1, TQGEN) has become (IM-1, TQ). +C But the shape is the same: a slightly underdamped rise to a constant. In +C fact, the plot limits are nearly the same. DCNEW-12 has ( -4.168 0.389 ) +C whereas this new IM simulation produces ( -4.168 0.388 ). +C About solution speed, WSM's old 133-MHz Pentium PC running real MS-DOS to +C support DBOS reports the following: DCNEW-12 TEPCO 56 +C Seconds for overlays 1-5 : 2.088 2.033 +C Seconds for overlays 6-11 : 0.220 0.220 +C Seconds for overlays 12-15 : 0.165 0.165 +C Seconds for time-step loop : 2.637 1.484 +C Seconds after DELTAT-loop : 0.330 0.385 +C -------------------- +C Totals : 5.440 4.286 +C Bob Schultz reported: 7.80 6.59 +C (this final row is the total job time, written only on the screen). So, +C at least for the default tolerances used, there would seem to be no worry +C that the Type-56 TEPCO IM simulates substantially slower. The surprising +C preceding result shows faster simulation even though compensation is not +C being used. Who would have predicted this? WSM's congratulations to Mr. +C Cao for a job well done. WSM. 10 April 2006 +PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough +0.0002 0.900 + 1 1 1 1 1 -1 + 5 5 20 20 100 1 110 10 200 200 +C -------- TRANSMISSION LINES + BUSA2 BUSAS2 1.0E-4 10.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 1 + BUSC2 BUSCS2BUSA2 BUSAS2 1 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 1.0E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +BLANK card ending all branch cards +BLANK card ending all (here, nonexistent) switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C ----------- Mechanical input torque, with value set by steady-state solution: +C |BUS | | SLIP || TM0 | +C | A6 | | E10.6 || E10.6 | +56BUSA2 2.0 +56BUSB2 +56BUSC2 +C CLASS2 +C TY < RMVA >< RSKV >< FREQ > + 0 2 0.72 4.2 60.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0168163 0.0184649 0.0044898 0.0184649 0.3628347 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 4.8361824 0.05425244 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | + 0.02 -0.070204 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH +BLANK card ending all source cards +C Bus K Phasor node voltage Phasor branch current Power flow Power loss +C Bus M Rectangular Polar Rectangular Polar P and Q P and Q +C +C BUSA2 1784.3750743312 1928.5009532126 -194.050261711 376.33642682066 -291068.3111111 7.0814553076206 +C -731.5200070041 -22.2916012 322.44937910011 121.0395584 -216709.4929969 266964.5756532 +C +C BUSAS2 3000. 3000. 194.05026171096 376.33642682066 291075.39256644 +C 0.0 0.0 -322.4493791001 -58.9604416 483674.06865017 +C +C Total network loss P-loss by summing injections = 8.732396776993E+05 +C Node Source node voltage Injected source current Injected source power +C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. +C +C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808 +C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356 +C +C Column headings for the 17 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1 +C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C ISC IRA IRB IRC WR ANG TQ TM +C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485 +C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 +C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612 +C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 +C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295 +C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 + BUSAS2BUSA2 +BLANK card ending output requests (node voltages only, here) +C 4500 0.9 3000. 2139.14561 -18.05955 206.541811 -188.48226 -81144.03 -729966.82 -18.05955 206.541811 +C -188.48226 9.2806015 -16.003198 6.72259646 188.318532 340.252637 -259.39252 -65.075052 +C Variable maxima : 3000. 2142.5602 375.961666 376.274485 375.920036 38275.6628 -648850.48 375.961666 376.274485 +C 375.920036 12.3551834 24.9125877 308.4899 189.143066 340.252637 387.73688 -65.075052 +C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0 +C .0222 .564 .3076 0.0 .22 0.9 .3086 .02 +C Variable minima : -3000. -2142.6793 -376.12582 -375.68519 -376.20297 -873758.65 -769663.96 -376.12582 -375.68519 +C -376.20297 -147.12317 -228.11722 -6.2184031 184.7252 1.57079633 -4168.4668 -3965.0683 +C Times of minima : .025 .5584 .0194 .0082 .0138 .2E-3 .1896 .0194 .0082 +C .0138 0.0 .0546 .3312 .0198 0.0 .0138 0.0 + PRINTER PLOT + 193 .1 0.0 1.0 IM-1 TQ { Axis limits: (-4.168, 0.388) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 6th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 5th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This fifth case is a +C simplification of WSMATPIG.DAT which has just a single IM. Like the first +C three, this second subcase involves no transient. The phasor solution merely +C is continued for one cycle to confirm the sinusoidal steady state. Of the +C original 19 permanently-closed switches, only 10 could be eliminated without +C tampering with TACS control system logic. The 9 switches that remain are +C used to pass 6 currents and 3 voltages to TACS. As for outputs, these have +C been reduced drastically by elimination of the request for every node voltage +C (a 1-punch in column 2). This reduces the voltage outputs from 31 to 0. New +C is illustration of the declaration to size IM tables within the working space +C of List 25. This is immediately below. The Type-56 TEPCO IM and Prof. Hian +C Lauw's Type-19 U.M. share the same working space, so what is not used by one +C model is available for the other. There should be protection against any +C attempt to use more space than exists. +C LIM56 LIMTM { 32X, 2I8 data +ABSOLUTE I.M. DIMENSIONS 3 12 { 2 and 10 are the defaults +POWER FREQUENCY, 50 +PRINTED NUMBER WIDTH, 11, 1, { This is the default choice; return to its use +C 0.00025 1.0 0.0 0.0 { Original TEPCO simulation was to 1.0 second + 0.00025 .020 0.0 0.0 + 1 1 1 1 1 -1 + 5 5 20 20 +TACS HYBRID +C OUTPUT +33VIG PPIG QQIG +C +C /// G1 BRANCH VOLTAGE MONITOR /// + VAB +N400A -N400B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91IG1A -1.0 +91IG1B -1.0 +91IG1C -1.0 +C /// VOLTAGE FEED BACK /// +99VIG = SQRT(N400A*N400A+N400B*N400B+N400C*N400C)/6600.0 +C /// POWER MONITOR(I.G.) /// +99QIG1 = IG1A*(N400B-N400C) +99QIG2 = IG1B*(N400C-N400A) +99QIG3 = IG1C*(N400A-N400B) +99QIGEN = (QIG1+QIG2+QIG3)/SQRT(3.0) +99PIGEN = N400A*IG1A+N400B*IG1B+N400C*IG1C +99PPIG = PIGEN/1000000. +99QQIG = QIGEN/1000000. +C +C *************** CONTROLL MODEL BLOCK ************** +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB5 = N400AD*(N400B-N400C) +99QCB6 = N400BD*(N400C-N400A) +99QCB7 = N400CD*(N400A-N400B) +99QACCB1 = ((QCB5+QCB6+QCB7)/SQRT(3.0))/1000000. +99PACCB1 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000000. +C 33PACCB1 +C 33QACCB1 +C +C /// TACS OUTPUT VARIABLES /// +C 33PPIG QQIG VIG +C /// TACS INITIAL CONDITIONS /// +77VIG 1.00478 +77PPIG .5000 +77QQIG -.232 +77PIGEN 500000. +77QIGEN -232000. +77PACCB 0.0 +77QACCB 6.25 +$DISABLE +C ---FOR.IG.No1(1/4)--- +C ====== TIME OF MOTOR TO GEN MODE ===== +77MSLIP -0.785129 +11MOTGEN 0.0 -1.0 +90BUSMG -1.0 +99MSLIP = (1.0-BUSMG/(2.*PI*50.))*100. +33MSLIP +99BUSMS =(TIMEX.GE.MOTGEN)*1592 +$ENABLE +BLANK card ending TACS data +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=250W + N300A 174.2211826 + N300B N300A + N300C N300A +C ***INSIDE LOAD*** + N400A N400AD 176.7332792 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 16.56943663 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +$VINTAGE, 0 +C +$DISABLE +C ---FOR.IG.No1(2/4)--- +C --------- MECHANICAL NETWORK COMPONENTS +C Tm=1.12 :M :2H ==> 7.09E+6 pole:1 +C --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 + BUSMG 7.09E6 +C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE + BUSMS BUSMG 1.0E-8 +$ENABLE +BLANK card ending branch cards +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 8.10 + N250B N300B -1.0 8.10 + N250C N300C -1.0 8.10 + IG1A N400A MEASURING 1 + IG1B N400B MEASURING 1 + IG1C N400C MEASURING 1 + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING +BLANK card ending switch cards +C /// SOURCE DATA /// +C < RMVA >< RSKV >< FREQ > + 0 1 0.625 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0113 0.0903 0.0093 0.114 4.3 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.12 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 { Special terminator for any Class-4 data of Type-56 IM +C CLASS5 +C | BUS|N| +C | A4 |I2 +C 73PGEN 1 + FINISH { Key word that ends data for this particular (the one and only) IM +BLANK CARD ending source cards +C Total network loss P-loss by summing injections = 7.668433002012E+01 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 9.48674141E-03 -7.08165989E-01 7.08229529E-01 -89.2325 2.55614433E+01 1.90801481E+03 +C N250B N300B -6.18033107E-01 3.45867235E-01 7.08229529E-01 150.7675 2.55614433E+01 1.90801481E+03 +C N250C N300C 6.08546366E-01 3.62298754E-01 7.08229529E-01 30.7675 2.55614433E+01 1.90801481E+03 +C IG1A N400A 6.13353129E+01 2.91346959E+01 6.79032482E+01 25.4080 1.66673707E+05 -7.75685834E+04 +C IG1B N400B -5.43626967E+00 -6.76852871E+01 6.79032482E+01 -94.5920 1.66673707E+05 -7.75685834E+04 +C IG1C N400C -5.58990432E+01 3.85505912E+01 6.79032482E+01 145.4080 1.66673707E+05 -7.75685834E+04 +C N400AD 3.04150988E+01 2.84265505E+01 4.16310823E+01 43.0644 0.00000000E+00 0.00000000E+00 +C N400BD 9.41056550E+00 -4.05535235E+01 4.16310823E+01 -76.9356 0.00000000E+00 0.00000000E+00 +C N400CD -3.98256643E+01 1.21269730E+01 4.16310823E+01 163.0644 0.00000000E+00 0.00000000E+00 +C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 3 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IG1A IG1B IG1C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B N400C P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS +C IRC WR ANG TQ TM VIG PPIG QQIG +C 0 0.0 61.3353129 -5.4362697 -55.899043 500021.122 -232705.75 61.3353129 -5.4362697 -55.899043 -11.518226 60.1820406 +C -48.663815 316.625821 1.57079633 1608.95506 1608.95506 1.0047 0.5 -.232 +C 1 .25E-3 58.8756985 -.11556078 -58.760138 500146.874 -232725.18 58.8756985 -.11556078 -58.760138 -11.47952 60.1818161 +C -48.702296 316.625814 1.64995278 1609.32678 1608.95506 1.004818 .500146874 -.23272518 +C 2 .5E-3 56.0520126 5.20791534 -61.259928 500280.855 -232736.13 56.0520126 5.20791534 -61.259928 -11.440292 60.1804828 +C -48.740191 316.625795 1.72910923 1609.67255 1608.95506 1.00485787 .500280855 -.23273613 +BLANK CARD ending names for output (none here) +C 80 .02 61.3263774 -5.4750126 -55.851365 499968.129 -232316.99 61.3263774 -5.4750126 -55.851365 -8.3606667 59.018657 +C -50.65799 316.626716 7.90328979 1608.32331 1608.95506 1.00485137 .499968129 -.23231699 +C Variable max:67.8022815 67.9777456 67.7244575 501371.216 -230406.62 67.8022815 67.9777456 67.7244575 -8.3606667 60.1820406 +C -48.663815 316.626716 7.90328979 1612.25579 1608.95506 1.00491917 .501371216 -.23040662 +C Times of max: .0185 .00525 .012 .005 .01 .0185 .00525 .012 .02 0.0 +C 0.0 .02 .02 .0045 0.0 .1E-2 .005 .01 +C Variable min:-67.822135 -67.74161 -67.961789 499154.6 -232736.13 -67.822135 -67.74161 -67.961789 -11.518226 59.018657 +C -50.65799 316.623113 1.57079633 1605.43816 1608.95506 1.0047 .4991546 -.23273613 +C Times of min: .0085 .01525 .002 .015 .5E-3 .0085 .01525 .002 0.0 .02 +C .02 .009 0.0 .0145 0.0 0.0 .015 .5E-3 + PRINTER PLOT { No need for vector plotting as all variables are smooth + 194 2. 0. 20. BRANCH { Plot limits: (-6.796, 6.798) + IM-1 ISA IM-1 ISB IM-1 ISC +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 7th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 6th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This sixth subcase +C is a simplification of WSM12TAC.DAT which is like DCN12 (in long form, +C DCNEW-12) except that the U.M. of that old standard test case has been +C replaced by a Type-56 IM. The solution here seems to be the same as the 4th +C subcase except that TACS is involved, and is used to initiate the transient +C rather than such special capability within the Type-56 IM model itself. +PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough +C ABSOLUTE U.M. DIMENSIONS, 20, 2, 50, 60 +0.0002 0.900 + 1 3 1 1 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +33TM { The only TACS output variable will be this torque TM, which is a step +88FLG1 = TIMEX .GE. 0.02 +88TM = 1.0-FLG1*0.98358791 +77TM 1.0 +BLANK +C -------- TRANSMISSION LINES + BUSA2 BUSAS2 1.0E-4 10.0 1 + BUSB2 BUSBS2BUSA2 BUSAS2 1 + BUSC2 BUSCS2BUSA2 BUSAS2 1 +C --------- CONNECTIVITY OF EMTP FOR ELECTRIC NETWORK + BUSAS2 1.0E+6 + BUSBS2 BUSAS2 + BUSCS2 BUSAS2 +BLANK card ending all branch cards +BLANK card ending all (here, nonexistent) switch cards +C --------- SOURCES FOR INFINITE BUS +14BUSAS2 3000.0 60.0 0.0 -1.0 +14BUSBS2 3000.0 60.0 -120.0 -1.0 +14BUSCS2 3000.0 60.0 +120.0 -1.0 +C |BUS | | SLIP || TM0 | +C | A6 | | E10.6 || E10.6 | +56BUSA2 2.0 +56BUSB2 +56BUSC2 +C CLASS2 +C TY < RMVA >< RSKV >< FREQ > + 0 2 0.72 4.2 60.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.0168163 0.0184649 0.0044898 0.0184649 0.3628347 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 4.8361824 0.05425244 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | + 0.02 -0.0702041 TM + 9999 +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH { Key word that ends data for this particular (the one and only) IM +BLANK card ending all source cards +C Total network loss P-loss by summing injections = 8.732396776993E+05 +C Node Source node voltage Injected source current Injected source power +C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. +C BUSAS2 3000. 3000. 194.05326171096 376.33797371872 291079.89256644 564506.96057808 +C 0.0 0.0 -322.4493791001 -58.9600503 483674.06865017 0.5156356 + BUSAS2BUSA2 { Names of nodes for voltage output +C Column headings for the 18 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C First 2 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 1 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time BUSAS2 BUSA2 BUSA2 BUSB2 BUSC2 IM-1 IM-1 IM-1 IM-1 +C BUSAS2 BUSBS2 BUSCS2 P Q ISA ISB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 TACS +C ISC IRA IRB IRC WR ANG TQ TM TM +C 0 0.0 3000. 1784.37507 -194.05026 376.274485 -182.22422 -873204.93 -650128.48 -194.05026 376.274485 +C -182.22422 -147.12317 -161.36673 308.4899 184.725648 1.57079633 -4168.1528 -3965.0683 1.0 +C 1 .2E-3 2991.4767 1835.51059 -217.76576 374.681612 -156.91585 -873758.65 -650481.06 -217.76576 374.681612 +C -156.91585 -146.71413 -161.74471 308.458843 184.725648 1.64468659 -4167.9016 -3965.0683 1.0 +C 2 .4E-3 2965.95523 1874.03852 -240.24413 370.961295 -130.71716 -873055.73 -650212.21 -240.24413 370.961295 +C -130.71716 -146.30323 -162.12329 308.426525 184.725647 1.71857685 -4167.6433 -3965.0683 1.0 +BLANK card ending output requests (node voltages only, here) +C 4500 0.9 3000. 2139.14389 -18.055352 206.54004 -188.48469 -81125.234 -729968.29 -18.055352 206.54004 +C -188.48469 9.31443983 -15.992732 6.67829219 188.318584 340.24976 -259.2923 -65.075057 .01641209 +C Variable maxima : 3000. 2142.56391 375.961666 376.274485 375.939009 38282.079 -648850.48 375.961666 376.274485 +C 375.939009 12.4231891 24.885902 308.4899 189.143064 340.24976 387.735739 -65.075057 1.0 +C Times of maxima : 0.0 .5834 .011 0.0 .0222 .3106 .0082 .011 0.0 +C .0222 .5642 .308 0.0 .2204 0.9 .309 .0204 0.0 +C Variable minima : -3000. -2142.6794 -376.12582 -375.69165 -376.20297 -873758.65 -769666.51 -376.12582 -375.69165 +C -376.20297 -147.12317 -228.64774 -6.1496539 184.725187 1.57079633 -4168.4668 -3965.0683 .01641209 +C Times of minima : .025 .5584 .0194 .025 .0138 .2E-3 .1896 .0194 .025 +C .0138 0.0 .0548 .3318 .0202 0.0 .0138 0.0 .0202 + PRINTER PLOT + 193 .1 0.0 1.0 IM-1 TQ IM-1 TM { Axis limits: (-4.168, 0.388) +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 8th of 9 subcases of BENCHMARK DCNEW-12 is added 4 May 2006. +C 7th of 8 data subcases that illustrate Type-56 TEPCO IM (induction machine). +C For background of the model, see top of 1st subcase. This seventh case is a +C simplification of ATPSGIUM.DAT which has no Type-56 IM. Instead, it uses +C the U.M. to model an induction machine. It establishes the standard of +C comparison for the following subset which replaces the U.M. by a Type-56 IM. +C Like the first three subcases, this seventh one involves no transient. The +C phasor solution merely is continued for one cycle to confirm the sinusoidal +C steady state. Of the original 33 permanently-closed switches, only 12 could +C be eliminated without tampering with TACS control system logic, leaving 21. +C There is a lot of TACS modeling, and this required more storage than the +C usual 3 * default of List 19. So, NEW LIST SIZES has been added to expand +C the space for TACS while at the same time reducing a lot of other sizes. +C Different from previous illustrations, Type-58 S.M. modeling is used. +NEW LIST SIZES + 70 60 50 20 250 50 300 0 0 0 + 0 20 0 0 0 0 0 0 12500 0 + 0 0 0 + 240000 +ABSOLUTE TACS DIMENSIONS +C 40 170 200 50 120 2500 350 180 +C Expand various TACS Tables on 1 April 2007. Force acceptance +C without worrying about probable waste that might be involved: +C 57 256 285 36 85 713 998 171 --- default +C Tacs table number 1 2 3 4 5 6 7 8 +C Present figure 145 64 32 50 91 2229 212 165 +C Program limit 230 65 80 50 170 8000 420 300 + 230 65 80 50 170 8000 420 300 +PRINTED NUMBER WIDTH, 12, 2, { 1 fewer digit than DCN12 so 2 rows are enough +POWER FREQUENCY, 50 +C 0.00025 10. 0.0 0.0 { Note TEPCO Tmax was 10 seconds + 0.00025 .020 0.0 0.0 { 1 cycle is enough to verify steady state + 1 1 1 1 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID +C OUTPUT +33VT4 PPG4 QQG4 +33VT5 PPG5 QQG5 +C +C /// G1 S.G. GOVERNOR MODEL G400/// +00WGREF4 +PLUS1 1.0 +99GOVNR4 = -WGREF4+WGFBK4 +C +99GOV014 = GOVNR4*(1/0.04/0.1) +99GOV3R4 = GOV034*(1.0/0.1) +00GOV024 +GOV014 -GOV3R4 1.0 +01GOV034 +GOV024 1.0 + 1.0 + 1.0 +99GOV044 = PLUS1-GOV034 +99GOV054 = GOV044*(1.0/0.6) +99TQTR4 = TQT4*(1.0/0.6) +00GOV064 +GOV054 -TQTR4 1.0 +01TQT4 +GOV064 1.0 -0.02 1.1 + 1.0 + 1.0 +C /// G1 S.G. GOVERNOR MODEL G500/// +00WGREF5 +PLUS1 1.0 +99GOVNR5 = -WGREF5+WGFBK5 +C +99GOV015 = GOVNR5*(1/0.04/0.1) +99GOV3R5 = GOV035*(1.0/0.1) +00GOV025 +GOV015 -GOV3R5 1.0 +01GOV035 +GOV025 1.0 + 1.0 + 1.0 +99GOV045 = PLUS1-GOV035 +99GOV055 = GOV045*(1.0/0.6) +99TQTR5 = TQT5*(1.0/0.6) +00GOV065 +GOV055 -TQTR5 1.0 +01TQT5 +GOV065 1.0 -0.02 1.1 + 1.0 + 1.0 +C +C /// G1 S.G. AVR MODEL G400/// +C +77DROOP4 0.0 +77DROP14 0.0 +77DROP24 0.0 +99DROP24 = DROP14*0.04 +99PUFB14 = (PUFBK4+DROP24)*(1.0/0.035) +99VGFBR4 = VGFBK4*(1.0/0.035) +00PUFB24 +PUFB14 -VGFBR4 1.0 +99LLIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*(-9999.) +99ULIM24 = (TIMEX.LT.0.001)*VGREF4+(TIMEX.GE.0.001)*9999. +01VGFBK4 +PUFB24 1.0 LLIM24ULIM24 + 1.0 + 1.0 +C +99AVR014 = VGREF4-VGFBK4 +99LLIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0) +99ULIM14 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0) +01AVR024 +AVR014 1.0 LLIM14ULIM14 + 10.0 + 1.56 +99AVR034 = AVR014*(10.0*1.56/1.56) +C +99AVR044 = AVR024+AVR034+GAIN4 +99AVR054 = AVR044*(1.0/0.2) +99AVR7R4 = AVR074*(1.0/0.2) +99AVR064 = AVR054-AVR7R4 +99LLIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*(-9999.) +99ULIM34 = (TIMEX.LT.0.001)*GAIN4+(TIMEX.GE.0.001)*9999. +01AVR074 +AVR064 1.0 LLIM34ULIM34 + 1.0 + 1.0 +99EF4 = AVR074/GAIN4 +C +C /// G1 S.G. AVR MODEL G500/// +C +77DROOP5 0.0 +77DROP15 0.0 +77DROP25 0.0 +99DROP25 = DROP15*0.04 +99PUFB15 = (PUFBK5+DROP25)*(1.0/0.035) +99VGFBR5 = VGFBK5*(1.0/0.035) +00PUFB25 +PUFB15 -VGFBR5 1.0 +99LLIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*(-9999.) +99ULIM25 = (TIMEX.LT.0.001)*VGREF5+(TIMEX.GE.0.001)*9999. +01VGFBK5 +PUFB25 1.0 LLIM25ULIM25 + 1.0 + 1.0 +C +99AVR015 = VGREF5-VGFBK5 +99LLIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(-10.0) +99ULIM15 = (TIMEX.LT.0.001)*0.0+(TIMEX.GE.0.001)*(10.0) +01AVR025 +AVR015 1.0 LLIM15ULIM15 + 10.0 + 1.56 +99AVR035 = AVR015*(10.0*1.56/1.56) +C +99AVR045 = AVR025+AVR035+GAIN5 +99AVR055 = AVR045*(1.0/0.2) +99AVR7R5 = AVR075*(1.0/0.2) +99AVR065 = AVR055-AVR7R5 +99LLIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*(-9999.) +99ULIM35 = (TIMEX.LT.0.001)*GAIN5+(TIMEX.GE.0.001)*9999. +01AVR075 +AVR065 1.0 LLIM35ULIM35 + 1.0 + 1.0 +99EF5 = AVR075/GAIN5 +C +C /// SG BRANCH VOLTAGE MONITOR /// + VAB4 +N400A -N400B 1.0 + VAB5 +N500A -N500B 1.0 +90N400A -1.0 +90N400B -1.0 +90N400C -1.0 +91GSG4A -1.0 +91GSG4B -1.0 +91GSG4C -1.0 +91IM4A -1.0 +91IM4B -1.0 +91IM4C -1.0 +90N500A -1.0 +90N500B -1.0 +90N500C -1.0 +91GSG5A -1.0 +91GSG5B -1.0 +91GSG5C -1.0 +92SGOMG4 -1.0 +92SGOMG5 -1.0 +C /// VOLTAGE FEED BACK G400/// +99PUFBK4 = SQRT(N400A*N400A + N400B*N400B + N400C*N400C)/6600.0 +00VT4 +PUFBK4 1.0 +C /// POWER MONITOR(S.G.) /// +99QSG4A = GSG4A*(N400B-N400C) +99QSG4B = GSG4B*(N400C-N400A) +99QSG4C = GSG4C*(N400A-N400B) +99QSGEN4 = (QSG4A+QSG4B+QSG4C)/SQRT(3.0) +99PSGEN4 = N400A*GSG4A+N400B*GSG4B+N400C*GSG4C +99PPG4 = PSGEN4/1000000. +99QQG4 = QSGEN4/1000000. +C /// VOLTAGE FEED BACK G500/// +99PUFBK5 = SQRT(N500A*N500A + N500B*N500B + N500C*N500C)/6600.0 +00VT5 +PUFBK5 1.0 +C /// POWER MONITOR(S.G.) /// +99QSG5A = GSG5A*(N500B-N500C) +99QSG5B = GSG5B*(N500C-N500A) +99QSG5C = GSG5C*(N500A-N500B) +99QSGEN5 = (QSG5A+QSG5B+QSG5C)/SQRT(3.0) +99PSGEN5 = N500A*GSG5A+N500B*GSG5B+N500C*GSG5C +99PPG5 = PSGEN5/1000000. +99QQG5 = QSGEN5/1000000. +C +99QIM1 = IM4A*(N400B-N400C) +99QIM2 = IM4B*(N400C-N400A) +99QIM3 = IM4C*(N400A-N400B) +99QIM = (QIM1+QIM2+QIM3)/SQRT(3.0) +99PIM = N400A*IM4A+N400B*IM4B+N400C*IM4C +99PPIM = PIM +99QQIM = QIM +33PPG4 PPG5 QQG4 QQG5 PPIM QQIM +C *************** CONTROLL MODEL BLOCK ************** +C /// G400 /// +99DROOP4 = (QSGEN4-QSGI4)/625000./VT4 +00DROP14 +DROOP4 +99WGFBK4 = SGOMG4/314.159265 +99RPMSG4 = 30.0*SGOMG4/PI +C /// G500 /// +99DROOP5 = (QSGEN5-QSGI5)/625000./VT5 +00DROP15 +DROOP5 +99WGFBK5 = SGOMG5/314.159265 +99RPMSG5 = 30.0*SGOMG5/PI +C +90N300A -1.0 +90N300B -1.0 +90N300C -1.0 +91N250A -1.0 +91N250B -1.0 +91N250C -1.0 +C /// POWER MONITOR ACCB(BETWEEN N250 AND N300) /// +99QCB1 = N250A*(N300B-N300C) +99QCB2 = N250B*(N300C-N300A) +99QCB3 = N250C*(N300A-N300B) +99QACCB = ((QCB1+QCB2+QCB3)/SQRT(3.0))/1000. +99PACCB = (N300A*N250A+N300B*N250B+N300C*N250C)/1000. +C 33PACCB +C 33QACCB +C /// L300 P & Q /// +91N300AD -1.0 +91N300BD -1.0 +91N300CD -1.0 +99PACCB3 = (N300A*N300AD+N300B*N300BD+N300C*N300CD)/1000. +C 33PACCB3 +C /// L400 P & Q /// +91N400AD -1.0 +91N400BD -1.0 +91N400CD -1.0 +99QCB4 = N400AD*(N400B-N400C) +99QCB5 = N400BD*(N400C-N400A) +99QCB6 = N400CD*(N400A-N400B) +99QACCB4 = ((QCB4+QCB5+QCB6)/SQRT(3.0))/1000. +99PACCB4 = (N400A*N400AD+N400B*N400BD+N400C*N400CD)/1000. +C 33PACCB4 +C 33QACCB4 +C /// L500 P & Q /// +91N500AD -1.0 +91N500BD -1.0 +91N500CD -1.0 +99QCB7 = N500AD*(N500B-N500C) +99QCB8 = N500BD*(N500C-N500A) +99QCB9 = N500CD*(N500A-N500B) +99QACCB5 = ((QCB7+QCB8+QCB9)/SQRT(3.0))/1000000. +99PACCB5 = (N500A*N500AD+N500B*N500BD+N500C*N500CD)/1000000. +C 33PACCB5 +C 33QACCB5 +C +C 33EF4 EF5 +C /// TACS GOV,AVR REF /// +11VGREF4 1.00758 -1.0 +11VGREF5 1.01249 -1.0 +C IF/AGLINE +11GAIN4 2.661027 -1.0 +11GAIN5 2.655261 -1.0 +11QSGI4 242000.0 -1.0 +11QSGI5 242000.0 -1.0 +C /// TACS INITIAL CONDITIONS /// +77PPIM -300000. +77QQIM -167000. +77PPG4 .500000 +77QQG4 .242000 +77VGREF4 1.00758 +77VGFBK4 1.00758 +77PUFBK4 1.00758 +77VT4 1.00758 +77VGREF5 1.01249 +77PUFBK5 1.01249 +77VGFBK5 1.01249 +77VT5 1.01249 +77PPG5 .500000 +77QQG5 .242000 +C Vini/0.035 +77VGFBR4 28.78800 +77PUFB14 28.78800 +C GAIN4/0.2:2.661027 +77AVR7R4 13.3051350 +77AVR054 13.3051350 +C GAIN4: +77AVR044 2.661027 +77AVR074 2.661027 +C G500 +C Vini/0.035 +77VGFBR5 28.9282857 +77PUFB15 28.9282857 +C GAIN5/0.2:2.655261 +77AVR055 13.2763050 +77AVR7R5 13.2763050 +C GAIN5 +77AVR045 2.655261 +77AVR075 2.655261 +C +77PUFB24 0.0 +77AVR065 0.0 +77RPMSG4 3000.0 +77WGREF4 1.0 +77WGFBK4 1.0 +77SGOMG4 314.159265 +77TQT4 1.0 +77GOVNR4 0.0 +77GOV014 0.0 +77GOV024 0.0 +77GOV034 0.0 +77GOV3R4 0.0 +77GOV044 1.0 +77GOV054 1.66666667 +77GOV064 0.0 +77TQTR4 1.66666667 +77AVR014 0.0 +77AVR024 0.0 +77AVR034 0.0 +77AVR064 0.0 +77EF4 1.0 +77WGREF5 1.0 +77WGFBK5 1.0 +77SGOMG5 314.159265 +77TQT5 1.0 +77PUFB25 0.0 +77RPMSG5 3000.0 +77GOVNR5 0.0 +77GOV015 0.0 +77GOV025 0.0 +77GOV035 0.0 +77GOV3R5 0.0 +77GOV045 1.0 +77GOV055 1.66666667 +77GOV065 0.0 +77TQTR5 1.66666667 +77AVR015 0.0 +77AVR025 0.0 +77AVR035 0.0 +77EF5 1.0 +C +C ---FOR.IM.No1(1/4)--- +C ====== TIME OF MOTOR TO GEN MODE ===== +77MSLIPM 2.719739 +90BUSMGM -1.0 +99MSLIPM = (1.0-BUSMGM/(2.*PI*50.))*100. +C 300kW/2*PI*F +99BUSMSM =954.9 +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +BLANK CARD +C /// NETWORK DATA /// +$VINTAGE, 1 +C Bus1->Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW + N300A N300AD 108.8762611 + N300B N300BDN300A N300AD + N300C N300CDN300A N300AD +C ***INSIDE LOAD*** + N400A N400AD 986.5321930 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 1727.590765 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N400A N500A 0.871200000 4.326060536 + N400B N500B N400A N500A + N400C N500C N400A N500A +C ***INSIDE LOAD*** ( ) + N500A N500AD 177.9930622 + N500B N500BDN500A N500AD + N500C N500CDN500A N500AD + N500ADN500A 588.6919231 + N500BDN500B N500ADN500A + N500CDN500C N500ADN500A +$VINTAGE, 0 +C ---FOR.IM.No1(2/4)--- +C Tm=1.97 :M :2H ==> 7.49E+6 pole:1 1.97*0.375MVA/(2*PI*F)**2 + BUSMGM 7.49E6 +C -------- FOR MEASUREMENT OF ELECTROMECHANICAL TORQUE + BUSMSMBUSMGM 1.0E-8 +BLANK CARD +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 10.0 + N250B N300B -1.0 10.0 + N250C N300C -1.0 10.0 + GSG4A N400A MEASURING + GSG4B N400B MEASURING + GSG4C N400C MEASURING + IM4A N400A MEASURING 1 + IM4B N400B MEASURING 1 + IM4C N400C MEASURING 1 + GSG5A N500A MEASURING + GSG5B N500B MEASURING + GSG5C N500C MEASURING + N300AD MEASURING + N300BD MEASURING + N300CD MEASURING + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING + N500AD MEASURING + N500BD MEASURING + N500CD MEASURING +BLANK CARD +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SOURCE DATA /// +C ---FOR.IM.No1(3/4)--- +14BUSMSM-1 0.0001 0.0001 .0 -1.0 +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C Bus2->Bus3->Bus4-><---------R(ohm)<----------L(mH)<---------C(mmF) +C *** XS *** ( j0.012(pu) : 0.1663869437mH ) + N100A N200A .1663869437 + N100B N200B N100A N200A + N100C N200C N100A N200A +C *** XT *** ( j0.075(pu) : 1.039918398mH ) + N200A N250A 1.039918398 + N200B N250B N200A N250A + N200C N250C N200A N250A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N300A N400A 0.871200000 4.326060536 + N300B N400B N300A N400A + N300C N400C N300A N400A +C ***OUTSIDE LOAD*** ACCB POWER FLOW P=400KW + N300A N300AD 108.8762611 + N300B N300BDN300A N300AD + N300C N300CDN300A N300AD +C ***INSIDE LOAD*** + N400A N400AD 986.5321930 + N400B N400BDN400A N400AD + N400C N400CDN400A N400AD + N400ADN400A 1727.590765 + N400BDN400B N400ADN400A + N400CDN400C N400ADN400A +C *** ZL *** ( 0.2+j0.312(pu) : 0.8712ohm,4.326060536mH ) + N400A N500A 0.871200000 4.326060536 + N400B N500B N400A N500A + N400C N500C N400A N500A +C ***INSIDE LOAD*** ( ) + N500A N500AD 177.9930622 + N500B N500BDN500A N500AD + N500C N500CDN500A N500AD + N500ADN500A 588.6919231 + N500BDN500B N500ADN500A + N500CDN500C N500ADN500A +$VINTAGE, 0 +BLANK CARD +C --*----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 +C /// SWITCH DATA /// + N250A N300A -1.0 10.0 + N250B N300B -1.0 10.0 + N250C N300C -1.0 10.0 + GSG4A N400A MEASURING + GSG4B N400B MEASURING + GSG4C N400C MEASURING + IM4A N400A MEASURING 1 + IM4B N400B MEASURING 1 + IM4C N400C MEASURING 0 + GSG5A N500A MEASURING + GSG5B N500B MEASURING + GSG5C N500C MEASURING + N300AD MEASURING + N300BD MEASURING + N300CD MEASURING + N400AD MEASURING + N400BD MEASURING + N400CD MEASURING + N500AD MEASURING + N500BD MEASURING + N500CD MEASURING +BLANK CARD +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C XL------->Xd------->Xq------->Xd'------>Xq'------>Xd''----->Xq''-----> +0.0235 0.098 2.33 2.22 0.215 2.22 0.161 0.21 +C Td0'--->Tq0'----->Td0''---->Tq0''---->X0------->Rn------->Xn-------> +1.55 0.0 0.032 0.295 0.1032 +C 1-2:ML MASS NUMBER +C HICO:The moment of intertia of mass number "ML". Unit is (million pound-feet)/(rad/sec**2)).... +C < RMVA >< RSKV >< FREQ > + 0 1 0.375 6.6 50.0 +C Rs || Lsl || Rr || Lrl || Msru || Msrs || Flxs | +C E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 || E10.6 | +0.062 0.075 0.031 0.075 2.58 +C CLASS3 +C | M || D || EMSOM | |NM|P|E|M| +C | E10.6 || E10.6 || E10.6 | |I4|I2I2I2 + 1.97 0.0 1 1 1 +C CLASS4 +C T || TM | |TBUS| +C E10.6 || E10.6 | | A6 | +C 0.02 .000264555 + 9999 +C CLASS5 +C | BUS|N| +C | A4 |I2 + FINISH +BLANK CARD ending source cards +C Total network loss P-loss by summing injections = 1.000121334411E+06 +C Output for steady-state phasor switch currents. +C Node-K Node-M I-real I-imag I-magn Degrees Power Reactive +C N250A N300A 2.51255296E-03 -1.55308344E+00 1.55308548E+00 -89.9073 6.76991997E+00 4.18423111E+03 +C N250B N300B -1.34626599E+00 7.74365788E-01 1.55308548E+00 150.0927 6.76991997E+00 4.18423111E+03 +C N250C N300C 1.34375344E+00 7.78717657E-01 1.55308548E+00 30.0927 6.76991997E+00 4.18423111E+03 +C GSG4A N400A 6.17662457E+01 -2.88761587E+01 6.81828545E+01 -25.0564 1.66682896E+05 8.05074090E+04 +C GSG4B N400B -5.58906098E+01 -3.90530585E+01 6.81828545E+01 -145.0564 1.66682896E+05 8.05074090E+04 +C GSG4C N400C -5.87563589E+00 6.79292172E+01 6.81828545E+01 94.9436 1.66682896E+05 8.05074090E+04 +C IM4A N400A -3.70892829E+01 1.99471256E+01 4.21129757E+01 151.7280 -9.99999888E+04 -5.54217136E+04 +C IM4B N400B 3.58193589E+01 2.21466984E+01 4.21129757E+01 31.7280 -9.99999888E+04 -5.54217136E+04 +C IM4C N400C 1.26992399E+00 -4.20938240E+01 4.21129757E+01 -88.2720 -9.99999888E+04 -5.54217136E+04 +C GSG5A N500A 6.16852582E+01 -2.83272148E+01 6.78785841E+01 -24.6656 1.66684112E+05 8.06702138E+04 +C GSG5B N500B -5.53747168E+01 -3.92573933E+01 6.78785841E+01 -144.6656 1.66684112E+05 8.06702138E+04 +C GSG5C N500C -6.31054146E+00 6.75846081E+01 6.78785841E+01 95.3344 1.66684112E+05 8.06702138E+04 +C N300AD 4.94900247E+01 -8.74559074E-06 4.94900247E+01 0.0000 0.00000000E+00 0.00000000E+00 +C N300BD -2.47450199E+01 -4.28596143E+01 4.94900247E+01 -120.0000 0.00000000E+00 0.00000000E+00 +C N300CD -2.47450048E+01 4.28596230E+01 4.94900247E+01 120.0000 0.00000000E+00 0.00000000E+00 +C N400AD 5.62982343E+00 -9.93396450E+00 1.14183432E+01 -60.4587 0.00000000E+00 0.00000000E+00 +C N400BD -1.14179773E+01 9.14121415E-02 1.14183432E+01 179.5413 0.00000000E+00 0.00000000E+00 +C N400CD 5.78815390E+00 9.84255236E+00 1.14183432E+01 59.5413 0.00000000E+00 0.00000000E+00 +C N500AD 3.12448854E+01 -2.88753581E+01 4.25444376E+01 -42.7430 0.00000000E+00 0.00000000E+00 +C N500BD -4.06292364E+01 -1.26211854E+01 4.25444376E+01 -162.7430 0.00000000E+00 0.00000000E+00 +C N500CD 9.38435098E+00 4.14965436E+01 4.25444376E+01 77.2570 0.00000000E+00 0.00000000E+00 +C Column headings for the 26 EMTP output variables follow. These are divided among the 5 possible classes as follows .... +C Next 2 output variables are branch currents (flowing from the upper node to the lower node); +C Next 12 output variables belong to IM (with "IM" an internally-added upper name of pair). +C Next 12 output variables belong to TACS (with "TACS" an internally-added upper name of pair). +C Step Time IM4A IM4B IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 IM-1 +C N400A N400B P Q ISA ISB ISC IRA IRB +C +C IM-1 IM-1 IM-1 IM-1 IM-1 TACS TACS TACS TACS +C IRC WR ANG TQ TM VT4 PPG4 QQG4 VT5 +C +C TACS TACS TACS TACS TACS TACS TACS TACS +C PPG5 QQG5 PPG4 PPG5 QQG4 QQG5 PPIM QQIM +C 0 0.0 -37.089283 35.8193589 -299999.97 -166265.14 -37.089283 35.8193589 1.26992399 -3.3020869 -30.789557 +C 34.0916437 305.614953 1.57079633 -893.94476 -893.94476 1.00758 0.5 .242 1.01249 +C 0.5 .242 0.5 0.5 .242 .242 -300000. -167000. +C 1 .25E-3 -38.530914 33.9675872 -299996.42 -166298.13 -38.530914 33.9675872 4.56332653 -3.2222768 -30.827832 +C 34.0501083 305.61495 1.64720007 -893.73559 -893.94476 1.00780767 .497455836 .241616478 1.01275637 +C .497447005 .242093747 .497455836 .497447005 .241616478 .242093747 -299996.42 -166298.13 +C 2 .5E-3 -39.73648 31.9076793 -299887.98 -166278.12 -39.73648 31.9076793 7.82880046 -3.1419208 -30.867462 +C 34.0093826 305.61494 1.7236038 -893.55897 -893.94476 1.00766614 .49747865 .241619001 1.01263793 +C .497469507 .242096958 .49747865 .497469507 .241619001 .242096958 -299887.98 -166278.12 +BLANK card ending names for output variables (none here) +C 80 .02 -37.095485 35.7780641 -300088.5 -165860.96 -37.095485 35.7780641 1.31742052 3.16334023 -34.036289 +C 30.8729489 305.612633 7.68306549 -893.8068 -893.94476 1.00768225 .49747812 .242225269 1.01263226 +C .49750592 .242807717 .49747812 .49750592 .242225269 .242807717 -300088.5 -165860.96 +C Variable maxima : 42.0472768 42.088666 -299449.52 -165559.49 42.0472768 42.088666 42.0016152 3.16334023 -30.789557 +C 34.0916437 305.614953 7.68306549 -892.13839 -893.94476 1.00780767 0.5 .243498409 1.01275637 +C 0.5 .243680337 0.5 0.5 .243498409 .243680337 -299449.52 -165559.49 +C Times of maxima : .0115 .01825 .0045 .00975 .0115 .01825 .005 .02 0.0 +C 0.0 0.0 .02 .00475 0.0 .25E-3 0.0 .009 .25E-3 +C 0.0 .00925 0.0 0.0 .009 .00925 .0045 .00975 +C Variable minima : -42.060504 -42.029619 -300088.5 -166298.13 -42.060504 -42.029619 -42.056444 -3.3020869 -34.036289 +C 30.8729489 305.612633 1.57079633 -893.94476 -893.94476 1.00758 .497098096 .241616478 1.01249 +C .497272118 .242 .497098096 .497272118 .241616478 .242 -300088.5 -167000. +C Times of minima : .0015 .00825 .02 .25E-3 .0015 .00825 .015 0.0 .02 +C .02 .02 0.0 0.0 0.0 0.0 .01525 .25E-3 0.0 +C .01525 0.0 .01525 .01525 .25E-3 0.0 .02 0.0 + PRINTER PLOT { No need for vector plotting as all variables are smooth + 194 2. 0. 20. BRANCH { Plot limits: (-4.206, 4.209) + IM4A N400A IM4B N400B IM-1 ISC +C Note the replacement of the 3rd switch current by the 3rd stator current in +C the preceding plot. They should be the same. Compare with the preceding +C subcase for which the plot of switch currents had limits (-4.216, 4.215). +BLANK CARD ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF +Note: ATPIGUM.DAT is being ignored because it does not involve any + Type-56 IM modeling. + + IGIMUM.DAT is being ignored for the same reason. This accounts + for all 10 of the data cases tested by RUNIM.BAT; 8 have been + retained and massaged whereas 2 have been ignored. diff --git a/benchmarks/dcn13.dat b/benchmarks/dcn13.dat new file mode 100644 index 0000000..76ba763 --- /dev/null +++ b/benchmarks/dcn13.dat @@ -0,0 +1,305 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-13 +C 1st of 6 test cases that generate data for Noda F-dependence of DCN-14 +C Like TAKU12, only here 200 miles long for DC-38 (not 180 as for DC-3). +C Use only 1 phase of 3-phase, 500-kV line --- Phase 1, plus closest +C ground wire. This gives Noda approximation for use with DC-37. +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's ARMA model fitter. No printout of F-scan +DCN14A.CCC { Output file name (blank requests use of default TAKUNODA.CCC) +C ============================================================================= +HOMOGENEOUS LINE { declares that this case is for a homogeneous line +C * This time, only "HOMOGENEOUS LINE" is available. This means +C homogeneous, frequency-dependent transmission line. +C * More options will be add in the future, for example, "CORONA LINE" +C with nonlinear corona branches inside the line model, and +C "CREAT LINE" with creat capacitances inside the line model. +C == Fitting Parameters ======================================================= + 50.0E-6 { time step (if negative, optimum time step request) <<<<<<<<<<<<< + 4 12 { min and max orders for voltage deformation matrix [H] + 1 6 { min and max orders for characteristic admittance matrix [Y0] +C 3.0 0.5 2.0 { error constants: EpsA, EpsM1, EpsM2 in percent + 1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<< +NO SYMMETRY { pair(s) of phases having symmetry (here, none) +C ----------------------------------------------------------------------------- +C * The fitting parameter part consists of 4 lines. +C * ARMAfit will determin the best order for each phase in the range +C specified in the above. The recommended values are : +C 4, 12 for voltage deformation matrix [H] +C 1, 6 for characteristic admittance matrix [Y0] +C Too big order does not give accurate fitting and stability. +C * The meaning of the error constants above is as follows : +C EpsA : permitted error in the stage of Least-Square fitting +C EpsM1 : error determining modal traveling timings +C EpsM2 : error detecting dominant modes in each phase response +C The recommended values are : +C EpsA = 3.0 %, EpsM1 = 0.5 %, EpsM2 = 2.0 % +C Too small value does not give accurate fitting, because the line +C parameters given by CABLE PARAMETERS, CABLE CONSTANTS, or LINE +C CONSTANTS include errors due to many approximations, assumptions, +C and numerical calculations. An ARMA model does not reproduce +C a frequency characteristic which cannot exist physically. +C * If phase #1 and #3 have symmetry regarding to the center line of +C the line configuration, we can specify as the above, and then +C ARMAfit will take care of the symmetry to reduce the fitting time. +C If more than 2 pairs of phases have symmetry, we can specify as +C follows : 1, 4 2, 5 3, 6 { three pairs. +C * The next part will be the frequency scan from CABLE PARAMETERS, +C CABLE CONSTANTS, or LINE CONSTANTS. +C ============================================================================= +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +LINE CONSTANTS +BRANCH GEN-A 18-A GEN-B 18-B GEN-C 18-C +C LINE CONSTANTS DATA FOR JOHN DAY TO LOWER MONUMENTAL 500-KV LINE. + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK card ending conductor cards of imbedded "LINE CONSTANTS" data +C 100. 5000. 180. 1 1 +C 100. 60.00 180. 1 1 +C 100. .01 180. 1 9 10 1 +100. 10. 200. 1 3 10 1 +100. 1.E6 200. 1 1 +BLANK card ending frequency cards of inbedded "LINE CONSTANTS" data +C At this point, disk file DCN14A.CCC has been created. This is input +C to Taku Noda's fitter --- a separate Salford DBOS program that will +C produce data (disk file DCN14A.DAT) for branch cards of DCN14.DAT +BLANK card ending "LINE CONSTANTS" cases +BEGIN NEW DATA CASE +C 2nd of 6 subcases +C 1994-1995, this was at end of DC-27. This is for a single-phase +C cable (core and sheath). Cable data came from CESI (see DCNEW-6). +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's ARMA model fitter. No printout of F-scan +DCN14B.CCC { Output file name (blank requests use of default TAKUNODA.CCC) +HOMOGENEOUS LINE { declares that this case is for a homogeneous line +C -1. { time step (if negative, optimum time step request) <<<<<<<<<<<<< + 3.0E-6 { time step (if negative, optimum time step request) <<<<<<<<<<<<< + 4 12 { min and max orders for voltage deformation matrix [H] + 1 6 { min and max orders for characteristic admittance matrix [Y0] +C 3.0 0.5 3.0 { error constants: EpsA, EpsM1, EpsM2 in percent --- out 3 Dec 95 + 1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<< +NO SYMMETRY { pair(s) of phases having symmetry (here, none) +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +CABLE CONSTANTS +CABLE PARAMETERS { Transfer to new (August, 1994) cable constants code +C MISCELLANEOUS DATA CARD + 2 -1 1 0 1 0 0 0 +C CARDS INDICATING NUMBER OF CONDUCTORS PER SC COAXIAL CABLE + 2 +C GEOMETRICAL AND PHYSICAL DATA CARDS + .0206 .02865 .06395 .0689 .0775 + 1.775E-8 1. 1. 3.5 9.1E-8 1. 1. 2.25 +C CROSS-SECTION LOCATION CARD + 1.05 0. +C EARTH RESISTIVITY AND FREQUENCY CARDS + 300. 1. 6 10 600. + 300. 1.E8 600. +BLANK card ending frequency cards within CABLE PARAMETERS +C At this point, disk file DCN14B.CCC has been created. This is input +C to Taku Noda's fitter --- a separate Salford DBOS program that will +C produce data (disk file DCN14B.DAT) for branch cards of DCN14.DAT +BLANK card ending "CABLE CONSTANTS" data cases +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-13 +C 3rd of 6 subcases +C Generate data to represent 180-miles of BPA 500-kV overhead line as studied +C in DC-3. Output is used within DCNEW-14 which repeats the +C simulation using Taku Noda's frequency dependence rather than 18 Pi-circuits +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's ARMA model fitter. No printout of F-scan +DCN14C.CCC { Output file name (blank requests use of default TAKUNODA.CCC) +C ============================================================================= +HOMOGENEOUS LINE { declares that this case is for a homogeneous line + 50.0E-6 { time step (if negative, optimum time step request) <<<<<<<<<<<<< + 4 12 { min and max orders for voltage deformation matrix [H] + 1 6 { min and max orders for characteristic admittance matrix [Y0] +C 3.0 0.5 2.0 { error constants: EpsA, EpsM1, EpsM2 in percent + 1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<< + 1, 3 { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +C --- 1st, look at the LINE CONSTANTS data for John Day to Lower Monumental +C This is 500-kV, so use for DC-3 (close enough for government work): +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 -0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C +C 27. 60. 1 138. +C 27. 6.0 1 138. 7 20 +CABLE CONSTANTS +CABLE PARAMETERS { Use for overhead line because of LINE CONSTANTS trouble + 1 2 1 0 1 0 0 0 0 0 0 0 { transposed line + 3 2 2 1 +2.03454E-2 .5550E-2 .49022E-2 0.0 .4572 0.0 + 3.90E-8 1.0 12.24E-8 1.0 { rho = cross-sec. area * Rdc / l + 15.24 15.24 -6.096 23.622 23.622 0. + 15.24 15.24 6.096 30.0228 30.0228 -3.93192 + 30.0228 30.0228 3.93192 +C Next come 2 frequency cards. The first loops over meaningful frequencies for +C the line length (here 1 Hz through 100 kHz: 10 points/decade for 5 decades) +C The second is for a single nearly-infinite frequency (here 100 MHz): + 27. 1.0 5 10 289682. { 180 miles is about 290 Km + 27. 1.E8 289682. { 2nd of 2 is for high freq +BLANK card ending frequency cards within CABLE PARAMETERS +C At this point, disk file DCN14C.CCC has been created. This is input +C to Taku Noda's fitter --- a separate Salford DBOS program that will +C produce data (disk file DCN14C.DAT) for branch cards used by DCN14.DAT +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 4th of 6 subcases +C Generate data to represent 138-miles of BPA 500-kV overhead line as studied +C in DC-31 and DC-41. Output is used within DCNEW-14 which repeats the +C simulation using Taku Noda's frequency dependence rather than Hauer (DC-41) +C or Semlyen (DC-31). +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's ARMA model fitter. No printout of F-scan +DCN14D.CCC { Output file name (blank requests use of default TAKUNODA.CCC) +HOMOGENEOUS LINE { declares that this case is for a homogeneous line + 20.0E-6 { time step (if negative, optimum time step request) <<<<<<<<<<<<< + 4 12 { min and max orders for voltage deformation matrix [H] + 1 6 { min and max orders for characteristic admittance matrix [Y0] +C 3.0 0.5 2.0 { error constants: EpsA, EpsM1, EpsM2 in percent + 1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<< + 1, 3 { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +C --- 1st, look at the LINE CONSTANTS data for John Day to Lower Monumental +C 1.3636 .05215 4 1.602 -20.75 50. 50. +C 1.3636 .05215 4 1.602 -19.25 50. 50. +C 2.3636 .05215 4 1.602 -0.75 77.5 77.5 +C 2.3636 .05215 4 1.602 0.75 77.5 77.5 +C 3.3636 .05215 4 1.602 19.25 50. 50. +C 3.3636 .05215 4 1.602 20.75 50. 50. +C 0.5 2.61 4 0.386 -12.9 98.5 98.5 +C 0.5 2.61 4 0.386 12.9 98.5 98.5 +C +C 27. 60. 1 138. +C 27. 6.0 1 138. 7 20 +CABLE CONSTANTS +CABLE PARAMETERS { Use for overhead line because of LINE CONSTANTS trouble + 1 2 1 0 1 0 0 0 0 0 0 0 { transposed line + 3 2 2 1 +2.03454E-2 .5550E-2 .49022E-2 0.0 .4572 0.0 + 3.90E-8 1.0 12.24E-8 1.0 { rho = cross-sec. area * Rdc / l + 15.24 15.24 -6.096 23.622 23.622 0.00 + 15.24 15.24 6.096 30.0228 30.0228 -3.93192 + 30.0228 30.0228 3.93192 +C Next come 2 frequency cards. The first loops over meaningful frequencies for +C the line length (here 1 Hz through 100 kHz: 10 points/decade for 5 decades) +C The second is for a single nearly-infinite frequency (here 100 MHz): + 27. 1.0 5 10 222089. { 138 miles is about 222 Km + 27. 1.E8 222089. { 2nd of 2 is for high freq +BLANK card ending frequency cards within CABLE PARAMETERS +C At this point, disk file DCN14D.CCC has been created. This is input +C to Taku Noda's fitter --- a separate Salford DBOS program that will +C produce data (disk file DCN14D.DAT) for branch cards used by DCN14.DAT +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C 5th of 6 subcases +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's fitter, for which data follows +DCN14E.CCC { Output file name (blank requests use of default TAKUNODA.CCC) +HOMOGENEOUS LINE { declares that this case is for a homogeneous line + 10.0E-6 { time step (if negative, optimum time step request) <<<<<<<<<<<<< + 4 12 { min and max orders for voltage deformation matrix [H] + 1 6 { min and max orders for characteristic admittance matrix [Y0] +C 3.0 0.5 2.0 { error constants: EpsA, EpsM1, EpsM2 in percent + 1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<< + 1, 6, 2, 5, 3, 4 { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< +NODA SETUP END { Bound of fitter data; begin CABLE PARAMETERS data +C At this point, we have LINE CONSTANTS data, so would like to use this. +C But, it is not smooth enough for Noda, so use CABLE PARAMETERS +C approximate equivalent of the following: +C COULEE-RAVER 500-KV +C 1.3636 .05215 4 1.602 -17.1875 49.06 +C 1.3636 .05215 4 1.602 -18.25 48.0 +C 1.3636 .05215 4 1.602 -19.3125 49.06 +C 2.3636 .05215 4 1.602 -27.1875 85.06 +C 2.3636 .05215 4 1.602 -28.25 84.0 +C 2.3636 .05215 4 1.602 -29.3125 85.06 +C 3.3636 .05215 4 1.602 -17.1875 121.06 +C 3.3636 .05215 4 1.602 -18.25 120.0 +C 3.3636 .05215 4 1.602 -19.3125 121.06 +C 4.3636 .05215 4 1.602 17.1875 121.06 +C 4.3636 .05215 4 1.602 18.25 120.0 +C 4.3636 .05215 4 1.602 19.3125 121.06 +C 5.3636 .05215 4 1.602 27.1875 85.06 +C 5.3636 .05215 4 1.602 28.25 84.0 +C 5.3636 .05215 4 1.602 29.3125 85.06 +C 6.3636 .05215 4 1.602 17.1875 49.06 +C 6.3636 .05215 4 1.602 18.25 48.0 +C 6.3636 .05215 4 1.602 19.3125 49.06 +C 0.5 2.61 4 .386 -9.0 163.96 +C 0.5 2.61 4 .386 9.0 163.96 +CABLE CONSTANTS +BRANCH A1 A2 B1 B2 C1 C2 A'1 A'2 B'1 B'2 C'1 C'2 +CABLE PARAMETERS + 1 0 1 0 1 0 0 0 0 0 0 0 + 6 2 3 1 +2.03454E-2 .5550E-2 .49022E-2 0.0 .521 0.0 +C The data ".521 m" above is average separation of phase wires in the bundle +C i.e., ( 1.501ft + 1.501ft + 2.125ft ) / 3 = 1.709 ft = .521 m +C Data on the following card are resistivities and relative permeabilities +C of phase wires and ground wires +C 3.8995E-8 1.0 12.24E-8 1.0 { modified rho to match rho in double.dat + 2.92E-8 1.0 9.501E-8 1.0 + 14.846 14.846 -5.563 25.819 25.819 -8.611 + 36.791 36.791 -5.563 36.791 36.791 5.563 + 25.818 25.819 8.611 14.846 14.846 5.563 + 49.975 49.975 -2.743 49.975 49.975 2.743 + 100. 1.0 6 10 80450. { 50 miles is about 80 Km + 100. 1.E8 80450. { 2nd of 2 is for high freq +BLANK card ending frequency cards within CABLE PARAMETERS +C At this point, disk file DCN14E.CCC has been created. This is input +C to Taku Noda's fitter --- a separate Salford DBOS program that will +C produce data (disk file DCN14E.DAT) for branch cards used by DCN14.DAT +BLANK card ending CABLE CONSTANTS data subcases +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-13 +C 6th of 6 subcases +C Generate data to represent 180-miles of BPA 500-kV overhead line as studied +C in DC-3. Output is used within DCNEW-14 which repeats the +C simulation using Taku Noda's frequency dependence rather than 18 Pi-circuits +C NODA SETUP, 1, { Request Taku Noda's ARMA model fitter. 1 ==> F-scan printout +NODA SETUP { Request Taku Noda's ARMA model fitter. No printout of F-scan +DCN14F.CCC { Output file name (blank requests use of default TAKUNODA.CCC) +C ============================================================================= +HOMOGENEOUS LINE { declares that this case is for a homogeneous line + 50.0E-6 { time step (if negative, optimum time step request) <<<<<<<<<<<<< + 4 12 { min and max orders for voltage deformation matrix [H] + 1 6 { min and max orders for characteristic admittance matrix [Y0] +C 3.0 0.5 2.0 { error constants: EpsA, EpsM1, EpsM2 in percent + 1.0, 0.1, 3.0, 5 { error constants: EpsA, EpsM1, EpsM2 in %, MAX ITARATION <<< + 1, 3 { pair(s) of phases having symmetry <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< +NODA SETUP END { Bound of fitter data; begin LINE CONSTANTS data +LINE CONSTANTS +UNTRANSPOSED { Request conventional untransposed representation +C --- 1st comes line geometry for John Day to Lower Monumental + 1.3636 .05215 4 1.602 -20.75 50. 50. + 1.3636 .05215 4 1.602 -19.25 50. 50. + 2.3636 .05215 4 1.602 -0.75 77.5 77.5 + 2.3636 .05215 4 1.602 0.75 77.5 77.5 + 3.3636 .05215 4 1.602 19.25 50. 50. + 3.3636 .05215 4 1.602 20.75 50. 50. + 0.5 2.61 4 0.386 -12.9 98.5 98.5 + 0.5 2.61 4 0.386 12.9 98.5 98.5 +BLANK card ending conductor cards +C Next come 2 frequency cards. The first loops over meaningful frequencies for +C the line length (here 1 Hz through 100 kHz: 10 points/decade for 5 decades) +C The second is for a single nearly-infinite frequency (here 100 MHz): + 27. 1.0 1 180. 5 10 + 27. 1.E8 1 180. +BLANK card ending frequency cards +C At this point, disk file DCN14F.CCC has been created. This is input +C to Taku Noda's fitter --- a separate Salford DBOS program that will +C produce data (disk file DCN14F.DAT) for branch cards used by DCN14.DAT +BLANK card ending LINE CONSTANTS data subcases + + + + diff --git a/benchmarks/dcn14.dat b/benchmarks/dcn14.dat new file mode 100644 index 0000000..5755054 --- /dev/null +++ b/benchmarks/dcn14.dat @@ -0,0 +1,466 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 1st of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for 500-Kv line energization +C that was adapted from BENCHMARK DC-37. There is only one phase, so +C this is a zero-sequence energization. The external Noda file DCN14A.DAT +C was produced by Taku's fitter as it processed DCN14A.CCC (see DCN13.DAT). +C DIAGNOSTIC 9 9 9 +PRINTED NUMBER WIDTH, 13, 2, + .000050 .020 + 1 1 1 1 1 -1 + 5 5 20 20 +-1SEND REC Noda line DCN14A.DAT SHOW 5 { + REC 100. { R = 100 ohms at receiving end + PHASOR 1.0 { Extra node for sinusoidal value +-1SENDOPRECOP Noda line DCN14A.DAT SHOW 5 { +-1SENDOPREC37 .306 5.82 .012 200. +BLANK card terminating branch data +BLANK card terminating all (in this case, nonexistent) switches +14SEND 408000. 60. -1. +14SENDOP 408000. 60. +C 14PHASOR 171783. 60. -63.03864 -1. Sept, 95 +C 14PHASOR 167553. 60. -63.92034 -1. { 24 Oct 95 +14PHASOR 161945. 60. -65.23648 -1. { 15 Dec 95 +BLANK card ending source data +C SEND 408000. 408000. 828.88239617701 1454.6091982437 .16909200882E9 .287215850537E8 +C 0.0 0.0 -1195.341747336 -55.2615112 .243849716456E9 43849716.4564481 +C +C REC 73659.800560567 167553.22961161 -736.5980056057 1675.5322961161 -.14037042377E9 +C -150493.5830348 -63.9203429 1504.9358303482 116.0796571 .19681465346E-8 +C Total network loss P-loss by summing injections = 1.420609591332E+10 +C Step Time RECOP REC REC37 SEND PHASOR SENDOP +C 0 0.0 0.0 73659.80056 0.0 408000. 73659.70723 0.0 +C 1 .5E-4 0.0 76407.32341 1689.017016 407927.5198 76483.18702 407927.5198 +C 2 .1E-3 0.0 79203.65163 1710.134462 407710.1048 79279.49271 407710.1048 +C 3 .15E-3 0.0 81971.46352 1730.644305 407347.8324 82047.63077 407347.8324 + 1 +C 400 .02 346718.6299 165886.2597 -124994.318 126078.9337 165889.8045 126078.9337 +C Variable maxima : 735330.9757 167562.0623 829744.565 408000. 167551.9757 407991.9464 +C Times of maxima : .00205 .0196 .0168 0.0 .00295 .01665 +C Variable minima : -736625.335 -167610.097 -883109.582 -407991.946 -167552.349 -407991.946 +C Times of minima : .00625 .0113 .00765 .00835 .0113 .00835 + 144 2. 0.0 20. PHASOR REC + 144 2. 0.0 20. RECOP REC37 +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 2nd of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for all 3 phases (uncoupled) of +C 600 meters of 2-wire (core, sheath) cable that feed a GIS substation. This +C data came from Dr. Ivano Bonfanti of CESI in the summer of 1994. Using +C JMARTI modeling, the natural oscillation after deenergization is +C underdamped, and is unstable. Taku Noda stabilized this! The original +C simulation had dT = 1 usec and Tmax = 60 msec. To speed the simulation +C we increased the step size and decreased the end-time. See story in the +C January, 1995, newsletter. + 3.E-06 15.E-03 50. + 500 3 1 1 1 +C NO LOAD OPENING +C FEEDING SYSTEM MODEL Xo/Xd = 1.5 IEC OSCILLATIONS +C +51SORGERRETEIR 7.697 11.56 +52SORGESRETEIS 0.465 7.70 +53SORGETRETEIT + RETEIRCELLAR 33.0 2.27 + CELLAR 8.55 1.9 + CELLAR .9425 + RETEISCELLAS 33.0 2.27 + CELLAS 8.55 1.9 + CELLAS .9425 + RETEITCELLAT 33.0 2.27 + CELLAT 8.55 1.9 + CELLAT .9425 +C +C AUTOTRANSFORMER MODEL (3 WINDs, SINGLE PHASE) +C + TRANSFORMER .554 1560.INTERR6.6E+5 + 9999 + 1T1000RTR400R .855 130.3464.1 + 2TR400R 1.E-62309.4 + 3TERZIR 1.1E-3 .0803 122. + T1000R 109. 4.6E-3 + T1000RTR400R 513. 5.7E-3 + TR400R 230. 4.9E-3 + TR400RTERZIR 324. 2.1E-3 + TERZIR 88. 5.7E-3 + TRANSFORMER .554 1560.INTERR6.6E+5 + 9999 + 1T1000STR400S .855 130.3464.1 + 2TR400S 1.E-62309.4 + 3TERZISTERZFS 1.1E-3 .0803 122. + T1000S 109. 4.6E-3 + T1000STR400S 513. 5.7E-3 + TR400S 230. 4.9E-3 + TR400STERZIS 324. 2.1E-3 + TERZIS 88. 5.7E-3 + TRANSFORMER .554 1560.INTERR6.6E+5 + 9999 + 1T1000TTR400T .855 130.3464.1 + 2TR400T 1.E-62309.4 + 3TERZITTERZFT 1.1E-3 .0803 122. + T1000T 109. 4.6E-3 + T1000TTR400T 513. 5.7E-3 + TR400T 230. 4.9E-3 + TR400TTERZIT 324. 2.1E-3 + TERZIT 88. 5.7E-3 +C +C CONNECTIONS AMONG TERTIARIES +C + TERZIS .59E-3 + TERZIS 15. 30.E-3 + TERZFSTERZIT .59E-3 + TERZIT 15. 30.E-3 + TERZFTTERZIR 1.3E-3 + TERZIR 15. 66.E-3 +C -------------------------------------------------------------------- +C +C 600 m CABLE - SINGLE PIECE +C +C PHASE R +C +-1T1000RLINEIR Noda line DCN14B.DAT SHOW 5 { 1 of 2 +-2 GUAI2R +C +C PHASE S - +C +-1T1000SLINEIS Noda line DCN14B.DAT SHOW 5 { 1 of 2 +-2 GUAI2S +C +C PHASE T - +C +-1T1000TLINEIT Noda line DCN14B.DAT SHOW 5 { 1 of 2 +-2 GUAI2T +C -------------------------------------------------------------------- +C +C Overhead line (JMARTI modeling) connected to cable; it is open ended +C +-1LINEIRLINEFR 2. 0.00 -2 3 + 6 0.41594447322080191000E+03 + -0.670999919281493567E+04 0.115596661243669278E+05 0.993927202053121437E+04 + 0.437799474890913553E+05 0.615071877212520224E+06 0.484919159975218028E+07 + 0.126247917999855034E+03 0.125541194952814835E+03 0.131618421672545515E+04 + 0.303558850109017385E+04 0.221727916316544798E+05 0.187747576728828368E+06 + 6 0.94711343051337508200E-05 + 0.627144078924490600E+02 0.380804893328911476E+03 0.174977451831839358E+04 + 0.348074471363108660E+04 0.113940782723808953E+05 0.101795194165061461E+07 + 0.870408197488144106E+04 0.491231452549212191E+05 0.122949026800477048E+06 + 0.101854126642379532E+06 0.193028023946739763E+06 0.116009868370252406E+07 +-2LINEISLINEFS 2. 0.00 -2 3 + 2 0.23495426137547622100E+03 + 0.145541128869323956E+03 0.317230857963757554E+05 + 0.769613905473121634E+02 0.169101759187606077E+05 + 2 0.94676914504312110400E-05 + -0.565298558630553235E+05 0.348690682154812385E+07 + 0.613123991654509772E+07 0.345523296629063972E+07 +-3LINEITLINEFT 2. 0.00 -2 3 + 2 0.18990790696897147400E+03 + 0.715297322023219522E+02 0.126259964321454504E+04 + 0.643449751540205739E+02 0.114317717964364147E+04 + 1 0.95267726581649492100E-05 + 0.625041670201623627E+07 + 0.625078786252403353E+07 + 0.55923422 -0.70710678 0.44272643 + 0.00000000 0.00000000 0.00000000 + 0.61197564 0.00000000 -0.77973496 + 0.00000000 0.00000000 0.00000000 + 0.55923422 0.70710678 0.44272643 + 0.00000000 0.00000000 0.00000000 +C 600 m CABLE SHEAT GROUNDING + GUAI2R 1.E-03 + GUAI2S 1.E-03 + GUAI2T 1.E-03 +C -------------------------------------------------------------------- +BLANK CARD ENDING BRANCHES +C SWITCH CARDS + RETEIRTR400R -1. 1.E-06 3 + RETEISTR400S -1. 1.E-06 3 + RETEITTR400T -1. 1.E-06 3 +BLANK CARD ENDING SWITCHES +C SOURCE CARDS +14SORGER 326600. 50. -10. -1. 1. +14SORGES 326600. 50. -130. -1. 1. +14SORGET 326600. 50. -250. -1. 1. +BLANK CARD ENDING SOURCES + TR400RTR400STR400TT1000RT1000ST1000TLINEIRLINEISLINEIT +BLANK CARD ENDING NODE VOLTAGE REQUEST + 1441.5 0.0 15. TR400RTR400STR400T +BLANK CARD ENDING PLOT REQUEST +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 3rd of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for 500-Kv line energization +C The 18 old (around 1970), cascaded Pi-circuits in DC-3 have been +C replaced by reference to the external Nodal file DCN14C.DAT (see below). +PRINTED NUMBER WIDTH, 13, 2, + .000050 .100 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 1 1 1 -1 2 + 5 5 10 10 20 20 100 100 { Printout +-1GEN-A 18-A Noda line DCN14C.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +C Step Time 18-C 18-B 18-A E-A E-B E-C M-C +C POLE-A POLE-B POLE-C GEN-C +C *** Switch "E-A " to "POLE-A" closed after 0.00000000E+00 sec. +C 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +C 1 .5E-4 0.0 0.0 0.0 0.0 -.298225E-4 0.0 0.0 .433681E-20 +C 2 .1E-3 0.0 0.0 0.0 0.0 -.596344E-4 0.0 0.0 .867362E-20 +C 3 .15E-3 0.0 0.0 0.0 0.0 -.892467E-4 0.0 0.0 .130104E-19 +C 4 .2E-3 0.0 0.0 0.0 0.0 -.118807E-3 0.0 0.0 .173472E-19 +C 5 .25E-3 0.0 0.0 0.0 0.0 -.148281E-3 0.0 0.0 .21684E-19 +C 10 .5E-3 0.0 0.0 0.0 0.0 -.29411E-3 0.0 0.0 .433681E-19 +C 20 .1E-2 0.0 -.1156E-19 -.26977E-19 -.26977E-19 -.574156E-3 0.0 0.0 .867362E-19 +C 40 .002 0.0 -.042648677 -.042653832 -.192009171 -.001055655 0.0 0.0 .173472E-18 +BLANK card ending output variables requests (node voltages, here) +C 2000 0.1 0.0 -.951949629 .9242773228 .0636028753 -.0031009 .0016317758 .0014052925 0.0 +C Variable maxima : 0.0 1.414644389 1.532499021 1.725016394 .0053208621 .0068965948 .0062319486 .0017896749 +C Times of maxima : 0.0 .023 .017 .0131 .01055 .01595 .0179 .006 +C Variable minima : 0.0 -1.96464238 -1.21489183 -1.30405718 -.004371267 -.004528488 -.006055026 -.002037552 +C Times of minima : 0.0 .0156 .0264 .02125 .0161 .022 .01425 .012 + 144 2. 0.0 20. 18-A 18-B 18-C + 14410. 0.0100. 18-A 18-B 18-C +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 4th of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for a fault on a 3-phase line. +C The old (around 1980) Hauer frequency dependence in DC-41 has been +C replaced by reference to the external Nodal file DCN14D.DAT (see below). +C IPLOT has been decreased to unity (DC-41 had 8) so all details can be seen. +PRINTED NUMBER WIDTH, 12, 2, { Request maximum precision (for 9 output columns) + 20.E-6 20.E-3 60. 60. + 1 1 1 1 1 -1 + 5 5 20 20 100 100 + 0GENA BEGINA 14. + 0GENB BEGINBGENA BEGINA + 0GENC BEGINCGENA BEGINA +C Taku Noda's 3_phase line follows. See DCNEW-13 for creation of the data: +C $LISTOFF +-1BEGINAENDA Noda line DCN14D.DAT SHOW 5 { 1 of 3 +-2BEGINBENDB +-3BEGINCENDC + ENDC 1.E18 +C $LISTON +BLANK card ending branch cards + ENDA .00413 1.0 +BLANK card ending switch cards (just the fault switch, here) +14GENA 428. 60. -90.0 -1. +14GENB 428. 60. -210.0 -1. +14GENC 428. 60. 30.0 -1. +BLANK card ending source cards +C Total network loss P-loss by summing injections = -1.013945364547E+01 +C GENC 370.65887281974 428. -.4805293859127 .93518318711039 -3.21188654066 200.12920204162 +C 214. 30.0000000 .80228367970955 120.9195832 -200.1034264941 -0.0160491 +C Step Time ENDC ENDB ENDA BEGINC BEGINB BEGINA GENA GENB GENC +C +C 0 0.0 398.546371 -399.93767 -1.9823321 381.890844 -382.3653 .22786864 .26207E-13 -370.65887 370.658873 +C 1 .2E-4 396.229497 -401.60165 1.39573871 379.97479 -384.04649 3.4865286 3.2270134 -372.26184 369.03483 +C 2 .4E-4 394.45906 -403.31911 4.87008728 378.294669 -385.67355 6.81831965 6.45384335 -373.84365 367.389809 +C 3 .6E-4 392.661642 -405.02177 8.33699876 376.588353 -387.28347 10.1450332 9.6803064 -375.40421 365.723902 + 1 +C 1000 .02 -297.12285 -545.53844 0.0 -90.750721 -331.99965 367.631455 407.052189 -318.06599 -88.986204 +C Variable maxima : 627.936494 580.071468 461.651958 440.730397 458.783591 441.364716 427.998648 427.99985 427.99985 +C Times of maxima : .0145 .00948 .00414 .01532 .01014 .00416 .00416 .00972 .01528 +C Variable minima : -686.76985 -589.84135 -1.9823321 -492.71846 -441.34178 -413.11665 -428. -427.9994 -427.9994 +C Times of minima : .00602 .01928 0.0 .00676 .0014 .01306 .0125 .01806 .00694 + CALCOMP PLOT + 144 2. 0.0 20. ENDC ENDB ENDA +BLANK card ending plot cards +BEGIN NEW DATA CASE +C 5th of 7 simulations using Taku Noda frequency dependence is 6-phase +C (double circuit) simulation from Robert Hasibar of BPA. Trivial example. +C * TRANSIENT STUDY - TEST OF MARTI VS NODA * +C * LINE MODELS, DOUBLE CCT LINE, 500 KV, 50 MILES * +C * LINE ENERGIZING TRANSIENT * + 10.E-6 50.E-3 60. 0.0 + 1 3 0 0 1 -1 + 5 5 20 20 100 100 +51SENDA BUSA 2. 23. +52SENDB BUSB 3. 60. +53SENDC BUSC +C ------- CONNECTION TO ENERGIZED CCT, OPEN AT END + 0BUSA A'1 .001 + 0BUSB B'1 .001 + 0BUSC C'1 .001 +-1A1 A2 Noda line DCN14E.DAT SHOW 5 { 1 of 6 } +-2B1 B2 +-3C1 C2 +-4A'1 A'2 +-5B'1 B'2 +-6C'1 C'2 +BLANK +C ------ SWITCHES CLOSING ON ONE CCT, OPEN ENDED + BUSA A1 4.00E-3 10.00 1 + BUSB B1 4.00E-3 10.00 1 + BUSC C1 5.00E-3 10.00 1 +BLANK card ending switch cards +14SENDA 449.0 60. 0.0 -1. +14SENDB 449.0 60. -120.0 -1. +14SENDC 449.0 60. 120.0 -1. +BLANK card ending source cards + A1 B1 C1 A'1 B'1 C'1 + A2 B2 C2 A'2 B'2 C'2 +C First 12 output variables are electric-network voltage differences (upper voltage minus lower voltage); +C Next 3 output variables are branch currents (flowing from the upper node to the lower node); +C Step Time A1 B1 C1 A'1 B'1 C'1 A2 B2 C2 +C +C +C A'2 B'2 C'2 BUSA BUSB BUSC +C A1 B1 C1 +C 0 0.0 -47.555111 13.2189276 97.5574018 466.992437 -236.49344 -229.76061 -47.534179 13.5543977 98.3705012 +C 469.7859 -237.50992 -230.23688 0.0 0.0 0.0 +C 1 .1E-4 -47.55419 14.3348568 98.5451711 468.117239 -232.73895 -230.38265 -47.199522 14.3042986 98.9495346 +C 470.213646 -235.11275 -231.02914 0.0 0.0 0.0 +BLANK card ending node voltage outputs +C 5000 .05 480.786349 -277.80271 -196.03887 480.786311 -277.80253 -196.03878 455.975175 -288.37514 -224.15388 +C 509.351281 -277.122 -165.19716 .120430376 .254870926 -.16641182 +C Variable maxima : 539.744875 695.834292 649.312458 539.744347 695.834921 649.310907 681.214671 952.100849 858.770718 +C 679.373497 910.604531 800.998841 1.41622866 1.95524118 2.20395638 +C Times of maxima : .0163 .00734 .00958 .0163 .00734 .00958 .01596 .00702 .00929 +C .01647 .00728 .00985 .01343 .01656 .0079 +C Variable minima : -592.97516 -677.85138 -538.36103 -592.97451 -677.85157 -538.36051 -707.88181 -817.48709 -616.73697 +C -749.2678 -901.75017 -598.57197 -1.0836199 -2.2438628 -1.6491224 +C Times of minima : .00789 .01463 .01798 .00789 .01463 .01798 .0087 .01518 .01794 +C .00808 .01464 .01739 .02072 .00831 .00622 + 144 .5 3.0 8.0 A2 B2 C2 + 144 .5 3.0 8.0 A'2 B'2 C'2 + 144 5. 0.0 50. A2 B2 C2 + 144 5. 0.0 50. A'2 B'2 C'2 +BLANK .... PLOTS +BLANK ---- CASE +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 6th of 7 simulations using Taku Noda frequency dependence +C Test of Taku Noda's frequency dependence for 500-Kv line energization +C The 18 old (around 1970), cascaded Pi-circuits in DC-3 have been +C replaced by reference to the external Nodal file DCN14F.DAT (see below). +C This is untransposed. For corresponding transposed, see 3rd subcase +PRINTED NUMBER WIDTH, 13, 2, + .000050 .100 3000. { XOPT = 3 KHz means reactance in ohms at this freq. + 1 1 1 1 1 -1 + 5 5 10 10 20 20 100 100 { Printout +-1GEN-A 18-A Noda line DCN14F.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } + 0M-A GEN-A 400.0 { 400 Ohm closing resistors, to be shorted by + 0M-B GEN-B 400.0 { breaker poles at times 9.98, 14, and 14 + 0M-C GEN-C 400.0 { msec, respectively.} 1 + 0POLE-AM-A 15.0 + 0POLE-BM-B 15.0 + 0POLE-CM-C 15.0 +BLANK card ending branch cards + E-A POLE-A 0. 20.0 1 + E-B POLE-B 0.00398 20.0 { Closing will be at 4.0 msec, all computer } 3 + E-C POLE-C 0.00398 20.0 { This backoff from 4.0 was needed by PRIME } 1 + M-A GEN-A 0.00998 20.0 { Breaker poles across 400 Ohm closing + M-B GEN-B 0.013998 20.0 { resistors. Note artificial opening + M-C GEN-C 0.013998 20.0 { time (in fact, there is no opening). +BLANK card ending switches +14E-A -1.0 60.0 -90.0 +14E-B -1.0 60.0 -210.0 +14E-C -1.0 60.0 30.0 +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) + 144 2. 0.0 20. 18-A 18-B 18-C + 144 2. 10. 30. 18-A 18-B 18-C +BLANK card ending plot cards +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-14 +C 7th of 7 simulations uses the 180-mile line of preceding data, but with +C 15 ohms of source impedance. Illustrate FREQUENCY SCAN as mentioned +C in the October, 1999, newsletter. Add this data 30 Aug 1999. +FREQUENCY SCAN, 150., 2., 300., 0, { 160 < f < 300 Hz in 2-Hz increments +PRINTED NUMBER WIDTH, 13, 2, + .000050 -1.0 60. { XOPT = 60 Hz means reactance in ohms at this freq. + 1 1 1 0 1 + E-A GEN-A 15. + E-B GEN-B 15. + E-C GEN-C 15. +-1GEN-A 18-A Noda line DCN14F.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } +BLANK card ending branch cards +BLANK card ending switches + POLAR OUTPUT VARIABLES { 1st of 3 alternatives for output gives mag, angle +C Preceding is one of 3 alternatives. The other two are, after commented: +C BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag +C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag +14E-A -4.0 60.0 -90.0 -1. +14E-B -4.0 60.0 -210.0 -1. +14E-C -4.0 60.0 30.0 -1. +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) + F-SCAN COMPONENTS MAG ANGLE { Access "mag" and "angle" next + 14614.160.300. 18-A 18-A +C 18630. 60.150. CUR CUR { Node voltage at CUR is branch voltage to ground +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK +EOF + +C BENCHMARK DCNEW-14 +C 31 Aug 99. Is preceding 7th subcase correct? Curves are nice and +C smooth, so it might be. But there are trouble signs as the following +C data will demonstrate. One does not even need FREQUENCY SCAN to +C show the trouble. Return to 14F and add phasor solution. It will +C be found that the total network loss is negative. Also, sinusoidal +C continuation in the dT loop indicates discontinuity on 1st step. It +C is not large, but it is there. The graph clearly shows error in +C the initialization. Why? +C Total network loss P-loss by summing injections = -1.011651505719E-03 +C Node Source node voltage Injected source current Injected source power +C name Rectangular Polar Rectangular Polar P and Q MVA and P.F. +C +C E-A -.244921271E-15 4.0 -.0062090388311 .00621276289868 -.4301610373E-3 .01242552579737 +C 4.0 90.0000000 -.2150805186E-3 -178.0160729 -.0124180776621 -0.0346191 +C +C E-B 3.4641016151378 4.0 .00279398778041 .0061561611401 -.6462844164E-3 .0123123222802 +C -2. -30.0000000 .00548561320782 63.0088877 -.012295348567 -0.0524909 +C +C E-C -3.464101615138 4.0 .00312691699591 .00631003036364 .64793947977E-4 .01262006072728 +C -2. -150.0000000 -.0054807730559 -60.2941694 -.0126198943936 0.0051342 +PRINTED NUMBER WIDTH, 13, 2, + .000050 .020 60. { XOPT = 60 Hz means reactance in ohms at this freq. + 1 1 1 1 1 + E-A GEN-A 15. + E-B GEN-B 15. + E-C GEN-C 15. +-1GEN-A 18-A Noda line \data\DCN14F.DAT SHOW 2 { 1 of 3 } +-2GEN-B 18-B { 2 of 3 } +-3GEN-C 18-C { 1 of 3 } +BLANK card ending branch cards +BLANK card ending switches +C POLAR OUTPUT VARIABLES { 1st of 3 alternatives for output gives mag, angle +C Preceding is one of 3 alternatives. The other two are, after commented: +C BOTH POLAR AND RECTANGULAR { Request for (in order): mag, angle, real, imag +C RECTANGULAR OUTPUT VARIABLES { 3rd of 3 alternative outputs gives real, imag +14E-A -4.0 60.0 -90.0 -1. +14E-B -4.0 60.0 -210.0 -1. +14E-C -4.0 60.0 30.0 -1. +BLANK card ending sources + 18-C 18-B 18-A +BLANK card ending output variables requests (node voltages, here) + 144 2. 0.0 20. 18-A 18-B 18-C +BLANK card ending plot cards +BEGIN NEW DATA CASE +BLANK + diff --git a/benchmarks/dcn14a.dat b/benchmarks/dcn14a.dat new file mode 100644 index 0000000..b892c18 --- /dev/null +++ b/benchmarks/dcn14a.dat @@ -0,0 +1,28 @@ +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +C +HOMOGENEOUS LINE + 1 5.00000E-05 { number of phase, simulation time step +C +C *** VOLTAGE DEFORMATION MATRIX [H] +C +C PHASE (1,1) + 5.00000E-05 1.24597E-03 { time step, minimum traveling time + 4 { optimum order + 0 5.969431914164398E-02 1.000000000000000E+00 + 1 2.289971547980218E-01 -5.985243545688631E-01 + 2 3.762498447625687E-03 -6.347502688893164E-01 + 3 -1.457411458419343E-01 1.418271271277303E-01 + 4 -8.539973950602750E-02 1.536456265335129E-01 +C +C *** CHARACTERISTIC ADMITTANCE MATRIX [Y0] +C +C PHASE (1,1) + 5.00000E-05 { time step + 4 { optimum order + 0 2.614944102110727E-03 1.000000000000000E+00 + 1 -5.535421233252427E-03 -2.071873741368711E+00 + 2 2.176948359452540E-03 7.383297450571961E-01 + 3 1.827868851940790E-03 7.546724356210192E-01 + 4 -1.084298021598133E-03 -4.211041919965391E-01 +C +C diff --git a/benchmarks/dcn14b.dat b/benchmarks/dcn14b.dat new file mode 100644 index 0000000..9115133 --- /dev/null +++ b/benchmarks/dcn14b.dat @@ -0,0 +1,77 @@ +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +C +HOMOGENEOUS LINE + 2 3.00000E-06 { number of phase, simulation time step +C +C *** VOLTAGE DEFORMATION MATRIX [H] +C +C PHASE (1,1) + 3.00000E-06 6.75805E-06 { time step, minimum traveling time + 4 { optimum order + 0 7.286049449792022E-04 1.000000000000000E+00 + 1 9.906262384163144E-01 -4.176351660398795E-03 + 5 -7.373001706215802E-01 -1.119114441375865E-03 + 6 -2.938106476069763E-03 3.194032706542605E-04 + 7 -7.978731493703800E-04 -7.446053117704493E-01 +C +C PHASE (1,2) + 3.00000E-06 6.75805E-06 { time step, minimum traveling time + 8 { optimum order + 0 4.046754522503577E-03 1.000000000000000E+00 + 1 -9.969170216901739E-01 -2.306020096476430E+00 + 2 2.280757828006307E+00 1.493341523851259E+00 + 3 -1.479584912487246E+00 4.211252852435258E-02 + 5 3.074953921470504E-01 -4.159037605810046E-01 + 6 -7.280006677887518E-02 2.812879244985315E-01 + 7 4.065780940365870E-01 -1.282938858666938E-01 + 8 -9.736179650260008E-01 5.211741372806977E-02 + 9 5.240418972746891E-01 -1.864142010977771E-02 +C +C PHASE (2,1) +NO RESPONSE +C +C PHASE (2,2) + 3.00000E-06 6.75805E-06 { time step, minimum traveling time + 8 { optimum order + 0 5.350262997980100E-03 1.000000000000000E+00 + 1 -1.395681110784445E-02 -3.440851233533544E-01 + 2 1.326166915384821E-02 -9.422265136728691E-01 + 3 -4.168173211843362E-03 3.636967840895941E-01 + 5 -9.971258034764495E-03 -3.860830890183709E-02 + 6 7.092036781583107E-02 1.178156965846012E-02 + 7 5.328145292137466E-01 2.250885115296594E-02 + 8 -6.070387276387101E-02 -3.265606762258792E-02 + 9 -4.706488084757210E-01 2.255960549925552E-02 +C +C *** CHARACTERISTIC ADMITTANCE MATRIX [Y0] +C +C PHASE (1,1) + 3.00000E-06 { time step + 5 { optimum order + 0 3.859542086576558E-02 1.000000000000000E+00 + 1 -1.110332759098080E-01 -2.871951390491078E+00 + 2 7.112978820441651E-02 1.832093247528086E+00 + 3 6.693288919989086E-02 1.737752651066777E+00 + 4 -9.609912638600680E-02 -2.483978126630408E+00 + 5 3.047430402604619E-02 7.860836185842369E-01 +C +C PHASE (1,2) + 3.00000E-06 { time step + 5 { optimum order + 0 -3.859508433897017E-02 1.000000000000000E+00 + 1 1.112169949748113E-01 -2.876786331606199E+00 + 2 -7.162342507198295E-02 1.844983338516370E+00 + 3 -6.654070346806802E-02 1.727647969083082E+00 + 4 9.605911324538668E-02 -2.483099568000865E+00 + 5 -3.051689534122890E-02 7.872545920698329E-01 +C +C PHASE (2,2) + 3.00000E-06 { time step + 4 { optimum order + 0 6.704851552109256E-02 1.000000000000000E+00 + 1 -1.296043867660216E-01 -1.916319805628241E+00 + 2 4.306150700206237E-03 3.773516364302083E-02 + 3 1.120161398584670E-01 1.673773569348989E+00 + 4 -5.376641914874569E-02 -7.951889076587744E-01 +C +C diff --git a/benchmarks/dcn14c.dat b/benchmarks/dcn14c.dat new file mode 100644 index 0000000..5a4c437 --- /dev/null +++ b/benchmarks/dcn14c.dat @@ -0,0 +1,120 @@ +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +C +HOMOGENEOUS LINE + 3 5.00000E-05 { number of phase, simulation time step +C +C *** VOLTAGE DEFORMATION MATRIX [H] +C +C PHASE (1,1) + 5.00000E-05 1.02333E-03 { time step, minimum traveling time + 4 { optimum order + 0 1.443372099351530E-02 1.000000000000000E+00 + 1 5.674707936439972E-01 -2.213712948218999E+00 + 2 -1.216877824615872E+00 1.411155508329739E+00 + 3 7.464684138440453E-01 -1.022152523789019E-01 + 4 -1.103264678961453E-01 -9.405063431077212E-02 +C +C PHASE (1,2) + 5.00000E-05 1.02333E-03 { time step, minimum traveling time + 7 { optimum order + 0 -2.791461642069847E-03 1.000000000000000E+00 + 1 -2.954728928897438E-01 -3.969559300014527E+00 + 2 1.251332380697392E+00 5.922131236667756E+00 + 3 -1.918568302607040E+00 -3.788220233081747E+00 + 4 1.156352059341086E+00 5.057271572500741E-01 + 5 1.965868241862606E-02 5.389878915997826E-01 + 6 -2.983846376517990E-01 -2.355529857438397E-01 + 7 8.787417233413977E-02 2.648623735673994E-02 +C +C PHASE (1,3) + 5.00000E-05 1.02333E-03 { time step, minimum traveling time + 7 { optimum order + 0 -2.791460714097602E-03 1.000000000000000E+00 + 1 -2.954728965445490E-01 -3.969558722504415E+00 + 2 1.251332209744265E+00 5.922129352743413E+00 + 3 -1.918567702168378E+00 -3.788218087499293E+00 + 4 1.156351361374158E+00 5.057262906071653E-01 + 5 1.965891702885150E-02 5.389878284107508E-01 + 6 -2.983845445280063E-01 -2.355528867216630E-01 + 7 8.787411580834784E-02 2.648622899860549E-02 +C +C PHASE (2,1) + 5.00000E-05 1.02333E-03 { time step, minimum traveling time + 7 { optimum order + 0 -2.791461386549456E-03 1.000000000000000E+00 + 1 -2.954728937207253E-01 -3.969559246501973E+00 + 2 1.251332365293889E+00 5.922131076751647E+00 + 3 -1.918568251693904E+00 -3.788220084080545E+00 + 4 1.156352011187948E+00 5.057271420501863E-01 + 5 1.965868228979945E-02 5.389878446623542E-01 + 6 -2.983846163726222E-01 -2.355529636890973E-01 + 7 8.787416440275590E-02 2.648623484172534E-02 +C +C PHASE (2,2) + 5.00000E-05 1.02333E-03 { time step, minimum traveling time + 4 { optimum order + 0 1.443372099395003E-02 1.000000000000000E+00 + 1 5.674707936420907E-01 -2.213712948295643E+00 + 2 -1.216877824659896E+00 1.411155508440316E+00 + 3 7.464684139031922E-01 -1.022152524074021E-01 + 4 -1.103264679107750E-01 -9.405063431719396E-02 +C +C PHASE (2,3) +SAME AS 2, 1 +C +C PHASE (3,1) +SAME AS 1, 3 +C +C PHASE (3,2) +SAME AS 1, 2 +C +C PHASE (3,3) +SAME AS 1, 1 +C +C *** CHARACTERISTIC ADMITTANCE MATRIX [Y0] +C +C PHASE (1,1) + 5.00000E-05 { time step + 4 { optimum order + 0 3.055262298341744E-03 1.000000000000000E+00 + 1 -9.165137077555383E-03 -2.985938931099106E+00 + 2 9.275825886473464E-03 2.997521942120895E+00 + 3 -3.277191155910626E-03 -1.037176549371371E+00 + 4 1.112400567632687E-04 2.559355003902293E-02 +C +C PHASE (1,2) + 5.00000E-05 { time step + 5 { optimum order + 0 -5.142589432561739E-04 1.000000000000000E+00 + 1 1.646134446341264E-03 -3.251717047763426E+00 + 2 -1.639034202449516E-03 3.353063568385085E+00 + 3 1.780243579355588E-04 -5.416854826552239E-01 + 4 5.478096450157691E-04 -9.689459919827055E-01 + 5 -2.186753035996956E-04 4.092849548087791E-01 +C +C PHASE (1,3) + 5.00000E-05 { time step + 5 { optimum order + 0 -5.142589459420627E-04 1.000000000000000E+00 + 1 1.646134630414743E-03 -3.251717386216864E+00 + 2 -1.639034728620719E-03 3.353064587107179E+00 + 3 1.780248650769529E-04 -5.416865171521971E-01 + 4 5.478094863645750E-04 -9.689456253198268E-01 + 5 -2.186753073062834E-04 4.092849423742300E-01 +C +C PHASE (2,2) + 5.00000E-05 { time step + 4 { optimum order + 0 3.055262298301144E-03 1.000000000000000E+00 + 1 -9.165137099811368E-03 -2.985938938412141E+00 + 2 9.275825949523170E-03 2.997521962709356E+00 + 3 -3.277191215104367E-03 -1.037176568618670E+00 + 4 1.112400752038880E-04 2.559355601089206E-02 +C +C PHASE (2,3) +SAME AS 1, 2 +C +C PHASE (3,3) +SAME AS 1, 1 +C +C diff --git a/benchmarks/dcn14d.dat b/benchmarks/dcn14d.dat new file mode 100644 index 0000000..16732ed --- /dev/null +++ b/benchmarks/dcn14d.dat @@ -0,0 +1,125 @@ +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +C +HOMOGENEOUS LINE + 3 2.00000E-05 { number of phase, simulation time step +C +C *** VOLTAGE DEFORMATION MATRIX [H] +C +C PHASE (1,1) + 2.00000E-05 7.65070E-04 { time step, minimum traveling time + 5 { optimum order + 0 1.634680122743764E-02 1.000000000000000E+00 + 1 5.206331712485042E-01 -2.923063615032820E+00 + 2 -1.556744476718157E+00 3.090441022286113E+00 + 3 1.636943269932634E+00 -1.397256455092740E+00 + 4 -7.465587020332506E-01 2.383698858324649E-01 + 5 1.295668710812874E-01 -8.302822274442364E-03 +C +C PHASE (1,2) + 2.00000E-05 7.65070E-04 { time step, minimum traveling time + 8 { optimum order + 0 -7.014731601185900E-03 1.000000000000000E+00 + 1 -2.526427879600038E-01 -4.991376507522455E+00 + 2 1.359122143233154E+00 9.714963411447028E+00 + 3 -2.651909534824436E+00 -8.455802590758138E+00 + 4 2.188430448126846E+00 1.403890251884100E+00 + 5 -1.821402756442904E-01 3.349278231307157E+00 + 6 -9.499887702177091E-01 -2.818613065781518E+00 + 7 6.221087581680896E-01 9.026986324514164E-01 + 8 -1.259652492804643E-01 -1.050383630171599E-01 +C +C PHASE (1,3) + 2.00000E-05 7.65070E-04 { time step, minimum traveling time + 8 { optimum order + 0 -7.014852932180746E-03 1.000000000000000E+00 + 1 -2.526413138742912E-01 -4.991490997076841E+00 + 2 1.359150000027424E+00 9.715463294920708E+00 + 3 -2.652044498612255E+00 -8.456628213253694E+00 + 4 2.188653172257823E+00 1.404468123900867E+00 + 5 -1.822832754490423E-01 3.349228266220471E+00 + 6 -9.499918884648708E-01 -2.818768176779127E+00 + 7 6.221514277731158E-01 9.027775002549259E-01 + 8 -1.259787707257214E-01 -1.050497981766758E-01 +C +C PHASE (2,1) + 2.00000E-05 7.65070E-04 { time step, minimum traveling time + 8 { optimum order + 0 -7.014875061589763E-03 1.000000000000000E+00 + 1 -2.526416637581949E-01 -4.991448792389100E+00 + 2 1.359139781818117E+00 9.715269221995056E+00 + 3 -2.651992694805142E+00 -8.456283834549016E+00 + 4 2.188560653776896E+00 1.404190559030579E+00 + 5 -1.822132442849975E-01 3.349298458703469E+00 + 6 -9.500036654121499E-01 -2.818732432230227E+00 + 7 6.221398785435693E-01 9.027528038069907E-01 + 8 -1.259741708165086E-01 -1.050459843574403E-01 +C +C PHASE (2,2) + 2.00000E-05 7.65070E-04 { time step, minimum traveling time + 5 { optimum order + 0 1.634680122745785E-02 1.000000000000000E+00 + 1 5.206331712483433E-01 -2.923063615040727E+00 + 2 -1.556744476722558E+00 3.090441022290071E+00 + 3 1.636943269934621E+00 -1.397256455081961E+00 + 4 -7.465587020276071E-01 2.383698858260282E-01 + 5 1.295668710781211E-01 -8.302822274914965E-03 +C +C PHASE (2,3) +SAME AS 2, 1 +C +C PHASE (3,1) +SAME AS 1, 3 +C +C PHASE (3,2) +SAME AS 1, 2 +C +C PHASE (3,3) +SAME AS 1, 1 +C +C *** CHARACTERISTIC ADMITTANCE MATRIX [Y0] +C +C PHASE (1,1) + 2.00000E-05 { time step + 4 { optimum order + 0 3.075933692463484E-03 1.000000000000000E+00 + 1 -9.423080431921643E-03 -3.051075450094170E+00 + 2 9.885804560618088E-03 3.178487844288851E+00 + 3 -3.806048116449330E-03 -1.203725760917014E+00 + 4 2.673902978187516E-04 7.631336988962403E-02 +C +C PHASE (1,2) + 2.00000E-05 { time step + 5 { optimum order + 0 -4.984686936165751E-04 1.000000000000000E+00 + 1 1.550995282371442E-03 -3.160234840540234E+00 + 2 -1.449840443748530E-03 3.060859930065863E+00 + 3 2.505680685735637E-05 -2.164636434491773E-01 + 4 5.877698893949631E-04 -1.108711897165093E+00 + 5 -2.155128412584812E-04 4.245504511267935E-01 +C +C PHASE (1,3) + 2.00000E-05 { time step + 5 { optimum order + 0 -4.984686847399497E-04 1.000000000000000E+00 + 1 1.550994971005756E-03 -3.160234272276718E+00 + 2 -1.449839494813657E-03 3.060858052835369E+00 + 3 2.505574081421364E-05 -2.164614247127801E-01 + 4 5.877703758919583E-04 -1.108712976194292E+00 + 5 -2.155129081581439E-04 4.245506203865269E-01 +C +C PHASE (2,2) + 2.00000E-05 { time step + 4 { optimum order + 0 3.075933692400385E-03 1.000000000000000E+00 + 1 -9.423080459930639E-03 -3.051075459234357E+00 + 2 9.885804634453481E-03 3.178487868166087E+00 + 3 -3.806048179905128E-03 -1.203725781274680E+00 + 4 2.673903155112521E-04 7.631337551023810E-02 +C +C PHASE (2,3) +SAME AS 1, 2 +C +C PHASE (3,3) +SAME AS 1, 1 +C +C diff --git a/benchmarks/dcn14e.dat b/benchmarks/dcn14e.dat new file mode 100644 index 0000000..9196b4a --- /dev/null +++ b/benchmarks/dcn14e.dat @@ -0,0 +1,422 @@ +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +C +HOMOGENEOUS LINE + 6 1.00000E-05 { number of phase, simulation time step +C +C *** VOLTAGE DEFORMATION MATRIX [H] +C +C PHASE (1,1) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 5 { optimum order + 0 -1.820449358845869E-02 1.000000000000000E+00 + 1 5.750592530603305E-01 -1.304988217890632E+00 + 2 -5.395055881438786E-01 -2.956559642042579E-01 + 3 -4.711408144619113E-01 9.294011226417515E-01 + 4 6.625704288641090E-01 -3.904245063588455E-01 + 5 -1.973184906856412E-01 7.316526857293001E-02 +C +C PHASE (1,2) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 -9.211288200221253E-03 1.000000000000000E+00 + 1 -1.417244058922043E-01 -4.508645700553578E+00 + 2 8.014089429365220E-01 7.614359007854310E+00 + 3 -1.565034904886514E+00 -5.171721901207178E+00 + 4 1.384102826084890E+00 -2.212949450310290E-01 + 5 -4.383859807220958E-01 2.136027138340319E+00 + 6 -1.261162699550283E-01 -8.967558981146823E-01 + 7 1.134611914365543E-01 3.585754238771107E-03 + 8 -1.850011080190381E-02 4.444654447119257E-02 +C +C PHASE (1,3) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 1.691710594325642E-03 1.000000000000000E+00 + 1 -9.664774269656204E-02 -5.094427927847075E+00 + 2 4.614567373155429E-01 1.081229974522734E+01 + 3 -9.459440845115551E-01 -1.246001759907420E+01 + 4 1.060572610255421E+00 8.670163774404315E+00 + 5 -7.242486016121505E-01 -4.008450650157182E+00 + 6 3.291338377581127E-01 1.403163126155819E+00 + 7 -1.038317992025898E-01 -3.743441072312586E-01 + 8 1.781733209945929E-02 5.161363860398079E-02 +C +C PHASE (1,4) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 7 { optimum order + 0 6.010555813858434E-03 1.000000000000000E+00 + 1 -6.391923497246116E-02 -3.018219017565491E+00 + 2 8.903648845903421E-02 2.231442489415442E+00 + 3 1.216673216887752E-01 1.603376398251159E+00 + 4 -3.272059103061751E-01 -2.928189585759270E+00 + 5 1.936122648073129E-01 1.143016835443267E+00 + 6 3.982849923798457E-03 3.721441281773494E-02 + 7 -2.318433541239298E-02 -6.864149353667948E-02 +C +C PHASE (1,5) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 6 { optimum order + 0 1.745451513885777E-02 1.000000000000000E+00 + 1 -1.408964668979102E-01 -2.926765017320501E+00 + 2 2.053298319854510E-01 2.382266769323588E+00 + 3 1.303376914760308E-01 7.079790313864891E-01 + 4 -4.784754819194331E-01 -2.043645891645196E+00 + 5 3.443692691264522E-01 1.069516845332284E+00 + 6 -7.811935881829171E-02 -1.893503903918445E-01 +C +C PHASE (1,6) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 1.076773797534795E-02 1.000000000000000E+00 + 1 -3.082861389179323E-01 -4.036899324080916E+00 + 2 1.036363491800832E+00 5.481736549599319E+00 + 3 -1.029325423833567E+00 -1.235189728355480E+00 + 4 -4.931472440809845E-01 -4.050617593149470E+00 + 5 1.721484803252787E+00 4.275449323793868E+00 + 6 -1.285271272281329E+00 -1.620510189923721E+00 + 7 3.789843487045305E-01 1.609703343860601E-01 + 8 -3.157030261969317E-02 2.506062769807806E-02 +C +C PHASE (2,1) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 -1.116924622191583E-02 1.000000000000000E+00 + 1 -2.286213312429682E-01 -4.639055694613412E+00 + 2 1.258732833626315E+00 8.308418894594341E+00 + 3 -2.498926526249618E+00 -6.660267686475108E+00 + 4 2.354858713231138E+00 1.381504198073491E+00 + 5 -9.782856153972982E-01 1.296084890090691E+00 + 6 2.776238430522800E-02 -7.804800033231928E-01 + 7 9.183614271653773E-02 7.090384837820783E-02 + 8 -1.618735476742084E-02 2.289155326732724E-02 +C +C PHASE (2,2) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 4 { optimum order + 0 -1.870077114995310E-02 1.000000000000000E+00 + 1 8.447550466740950E-01 -1.358409234431250E+00 + 2 -1.040630028289381E+00 8.360881545012997E-03 + 3 -1.177369707329462E-01 3.385043005980365E-01 + 4 3.397795005477427E-01 1.906259332314379E-02 +C +C PHASE (2,3) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 -7.126192723265815E-03 1.000000000000000E+00 + 1 -6.940915676233129E-02 -4.060900871997705E+00 + 2 4.024879696076717E-01 5.328824683615105E+00 + 3 -7.095222395561835E-01 -5.674300628316951E-01 + 4 4.264035302418893E-01 -4.630271805273972E+00 + 5 1.680988199147881E-01 3.763777136952146E+00 + 6 -3.476892445025494E-01 -4.887939381796398E-01 + 7 1.610249275574338E-01 -5.021479548295720E-01 + 8 -2.426841377745294E-02 1.569428125453229E-01 +C +C PHASE (2,4) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 6 { optimum order + 0 -9.823632738044446E-04 1.000000000000000E+00 + 1 -5.847277777141779E-02 -4.062522089612343E+00 + 2 2.385654488438660E-01 6.362840498373406E+00 + 3 -3.589513916083727E-01 -4.612640966770036E+00 + 4 2.448019073696510E-01 1.297571370768184E+00 + 5 -6.875346174732695E-02 1.040792413913173E-01 + 6 3.792638189592632E-03 -8.932802691083100E-02 +C +C PHASE (2,5) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 4.928693552063745E-03 1.000000000000000E+00 + 1 -9.994172376053111E-02 -4.356166214844768E+00 + 2 3.201857761172300E-01 6.831851082501528E+00 + 3 -2.916681493137933E-01 -3.306942375994469E+00 + 4 -2.274012489423471E-01 -2.976918876890802E+00 + 5 6.433213964717783E-01 4.848038709751604E+00 + 6 -4.908956854946107E-01 -2.610566564231565E+00 + 7 1.588207828650521E-01 6.214638763937025E-01 + 8 -1.734984149478499E-02 -5.075963595645942E-02 +C +C PHASE (2,6) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 1.663735633510400E-02 1.000000000000000E+00 + 1 -2.352620041234276E-01 -4.258774729916155E+00 + 2 6.781097185167516E-01 6.458072807623049E+00 + 3 -4.881841950261403E-01 -2.785384426618644E+00 + 4 -7.553385375581491E-01 -3.250738776562411E+00 + 5 1.639615786258839E+00 4.815535352959639E+00 + 6 -1.201984171606008E+00 -2.523480192474770E+00 + 7 3.924729687840988E-01 5.932229196462226E-01 + 8 -4.606692158092449E-02 -4.845295294819264E-02 +C +C PHASE (3,1) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 4.502252037804154E-03 1.000000000000000E+00 + 1 -2.028953640871758E-01 -4.464640765726056E+00 + 2 8.372569367278720E-01 7.702213922566358E+00 + 3 -1.367390127186634E+00 -6.189616433690076E+00 + 4 1.016031958858107E+00 2.149209296810993E+00 + 5 -2.873088725740847E-01 -4.495489915337939E-01 + 6 1.551627303662298E-02 5.743375972255866E-01 + 7 -3.557521814009607E-02 -4.095799989500917E-01 + 8 1.986216132761648E-02 8.762537377340793E-02 +C +C PHASE (3,2) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 -8.543062778354421E-03 1.000000000000000E+00 + 1 -8.433196693931977E-02 -4.176476342281367E+00 + 2 4.950521677218623E-01 5.917702042769532E+00 + 3 -9.026777809112294E-01 -1.737143729718833E+00 + 4 6.225887204079393E-01 -3.567716085456782E+00 + 5 6.526192209635821E-02 3.479217013080263E+00 + 6 -3.201459239047119E-01 -7.193738370155720E-01 + 7 1.558953689269164E-01 -3.131981731716024E-01 + 8 -2.309944461946108E-02 1.169891117938790E-01 +C +C PHASE (3,3) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 4 { optimum order + 0 -9.592107091308533E-03 1.000000000000000E+00 + 1 9.117597055975096E-01 -1.362293955540065E+00 + 2 -1.180821508519519E+00 -5.116422737894101E-02 + 3 -1.206767343066024E-01 4.089355281685734E-01 + 4 4.005288236054523E-01 5.725979751842032E-03 +C +C PHASE (3,4) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 -5.298750475323026E-03 1.000000000000000E+00 + 1 -4.419578804887726E-02 -4.367488028438621E+00 + 2 2.762693587862101E-01 6.828965052299458E+00 + 3 -5.337994254096440E-01 -3.429627595547015E+00 + 4 4.335299518227569E-01 -2.132625641611581E+00 + 5 -7.806266849290433E-02 3.121899942807616E+00 + 6 -9.656141905990519E-02 -9.908418708825006E-01 + 7 5.633253078961140E-02 -1.067496152877778E-01 + 8 -8.213789911924837E-03 7.646775666059945E-02 +C +C PHASE (3,5) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 7 { optimum order + 0 -1.311107125426699E-03 1.000000000000000E+00 + 1 -7.652052196328984E-02 -4.949644430361765E+00 + 2 3.895743940810275E-01 9.841818688388603E+00 + 3 -7.639523745669841E-01 -9.750573653179178E+00 + 4 7.362279122414467E-01 4.587618875662723E+00 + 5 -3.453727282057475E-01 -4.328532144881355E-01 + 6 5.830012914047354E-02 -4.060823132668843E-01 + 7 3.054296398502213E-03 1.097160472676668E-01 +C +C PHASE (3,6) + 1.00000E-05 2.78479E-04 { time step, minimum traveling time + 8 { optimum order + 0 1.060025342648437E-02 1.000000000000000E+00 + 1 -1.727187413399021E-01 -4.236513482905280E+00 + 2 5.175081038824737E-01 6.330817863018998E+00 + 3 -4.044200665101635E-01 -2.481385368481112E+00 + 4 -5.123851133196808E-01 -3.636971710015763E+00 + 5 1.192020995167054E+00 5.086337294916203E+00 + 6 -8.899057981031765E-01 -2.617180031199672E+00 + 7 2.945699263538578E-01 6.008542708829498E-01 + 8 -3.526955955684442E-02 -4.595883435220900E-02 +C +C PHASE (4,1) +SAME AS 3, 6 +C +C PHASE (4,2) +SAME AS 3, 5 +C +C PHASE (4,3) +SAME AS 3, 4 +C +C PHASE (4,4) +SAME AS 3, 3 +C +C PHASE (4,5) +SAME AS 3, 2 +C +C PHASE (4,6) +SAME AS 3, 1 +C +C PHASE (5,1) +SAME AS 2, 6 +C +C PHASE (5,2) +SAME AS 2, 5 +C +C PHASE (5,3) +SAME AS 2, 4 +C +C PHASE (5,4) +SAME AS 2, 3 +C +C PHASE (5,5) +SAME AS 2, 2 +C +C PHASE (5,6) +SAME AS 2, 1 +C +C PHASE (6,1) +SAME AS 1, 6 +C +C PHASE (6,2) +SAME AS 1, 5 +C +C PHASE (6,3) +SAME AS 1, 4 +C +C PHASE (6,4) +SAME AS 1, 3 +C +C PHASE (6,5) +SAME AS 1, 2 +C +C PHASE (6,6) +SAME AS 1, 1 +C +C *** CHARACTERISTIC ADMITTANCE MATRIX [Y0] +C +C PHASE (1,1) + 1.00000E-05 { time step + 5 { optimum order + 0 3.481800061265186E-03 1.000000000000000E+00 + 1 -1.183463131614449E-02 -3.387988121931990E+00 + 2 1.330674945564107E-02 3.782733542762323E+00 + 3 -3.729639243679818E-03 -1.020007188639592E+00 + 4 -2.531444062756514E-03 -7.562334965005327E-01 + 5 1.307165105693139E-03 3.814952643261169E-01 +C +C PHASE (1,2) + 1.00000E-05 { time step + 3 { optimum order + 0 -6.373056558093330E-04 1.000000000000000E+00 + 1 1.877974111274725E-03 -2.955671555538725E+00 + 2 -1.844038896887066E-03 2.911358579482816E+00 + 3 6.033704414759495E-04 -9.556870234577183E-01 +C +C PHASE (1,3) + 1.00000E-05 { time step + 3 { optimum order + 0 -2.035170454552820E-04 1.000000000000000E+00 + 1 5.961747942524063E-04 -2.950614440945183E+00 + 2 -5.818012084043019E-04 2.901248685274553E+00 + 3 1.891434471339824E-04 -9.506341982139872E-01 +C +C PHASE (1,4) + 1.00000E-05 { time step + 3 { optimum order + 0 -1.316261417020442E-04 1.000000000000000E+00 + 1 3.927437751714781E-04 -2.962473841293428E+00 + 2 -3.906294831759445E-04 2.925036525466032E+00 + 3 1.295118498605936E-04 -9.625626816258901E-01 +C +C PHASE (1,5) + 1.00000E-05 { time step + 2 { optimum order + 0 -2.860794931526030E-04 1.000000000000000E+00 + 1 5.713846149255064E-04 -1.997986507221245E+00 + 2 -2.853051636283668E-04 9.979866114629704E-01 +C +C PHASE (1,6) + 1.00000E-05 { time step + 5 { optimum order + 0 -6.214807426686216E-04 1.000000000000000E+00 + 1 2.157009000352494E-03 -3.525630177057857E+00 + 2 -2.503139606874094E-03 4.228182200865833E+00 + 3 7.821402548131481E-04 -1.530703196071165E+00 + 4 4.245058570688297E-04 -5.206192705971318E-01 + 5 -2.390347626935644E-04 3.487704428780515E-01 +C +C PHASE (2,2) + 1.00000E-05 { time step + 5 { optimum order + 0 3.428068256302180E-03 1.000000000000000E+00 + 1 -1.350250766266379E-02 -3.933761441601054E+00 + 2 1.984674695677796E-02 5.770371844832484E+00 + 3 -1.280580927070882E-02 -3.708525443506793E+00 + 4 2.941067065612037E-03 8.409811275345203E-01 + 5 9.243465468084659E-05 3.093391274126262E-02 +C +C PHASE (2,3) + 1.00000E-05 { time step + 3 { optimum order + 0 -6.598349519610774E-04 1.000000000000000E+00 + 1 1.970075380572805E-03 -2.983289672225318E+00 + 2 -1.960745389785873E-03 2.966718702898964E+00 + 3 6.505049602479800E-04 -9.834290211856371E-01 +C +C PHASE (2,4) + 1.00000E-05 { time step + 2 { optimum order + 0 -2.935224886110626E-04 1.000000000000000E+00 + 1 5.679781811560971E-04 -1.949532134306189E+00 + 2 -2.744558446625156E-04 9.495346715590204E-01 +C +C PHASE (2,5) + 1.00000E-05 { time step + 3 { optimum order + 0 -3.044564317964533E-04 1.000000000000000E+00 + 1 9.091392855789777E-04 -2.988928182960128E+00 + 2 -9.049101338999510E-04 2.977858873112734E+00 + 3 3.002272800729317E-04 -9.889306899445727E-01 +C +C PHASE (2,6) + 1.00000E-05 { time step + 2 { optimum order + 0 -2.860716214067283E-04 1.000000000000000E+00 + 1 5.713687654819787E-04 -1.997986216751994E+00 + 2 -2.852971859332962E-04 9.979863210233085E-01 +C +C PHASE (3,3) + 1.00000E-05 { time step + 4 { optimum order + 0 3.418037725398955E-03 1.000000000000000E+00 + 1 -1.287126606177576E-02 -3.763794333117312E+00 + 2 1.810656844148757E-02 5.291703856717313E+00 + 3 -1.127148931544720E-02 -3.292024615766265E+00 + 4 2.618149210342647E-03 7.641150921716633E-01 +C +C PHASE (3,4) + 1.00000E-05 { time step + 3 { optimum order + 0 -6.587329355070580E-04 1.000000000000000E+00 + 1 1.970661896107247E-03 -2.992897069861893E+00 + 2 -1.965125685211319E-03 2.985795551828753E+00 + 3 6.531967246058496E-04 -9.928984819101707E-01 +C +C PHASE (3,5) + 1.00000E-05 { time step + 2 { optimum order + 0 -2.935156575357480E-04 1.000000000000000E+00 + 1 5.679633995759592E-04 -1.949528808800043E+00 + 2 -2.744478942745420E-04 9.495313464806250E-01 +C +C PHASE (3,6) + 1.00000E-05 { time step + 3 { optimum order + 0 -1.312858660208155E-04 1.000000000000000E+00 + 1 3.923619939756532E-04 -2.967646526843861E+00 + 2 -3.908798430466766E-04 2.935350139578207E+00 + 3 1.298037151480776E-04 -9.677036104630532E-01 +C +C PHASE (4,4) +SAME AS 3, 3 +C +C PHASE (4,5) +SAME AS 2, 3 +C +C PHASE (4,6) +SAME AS 1, 3 +C +C PHASE (5,5) +SAME AS 2, 2 +C +C PHASE (5,6) +SAME AS 1, 2 +C +C PHASE (6,6) +SAME AS 1, 1 +C +C diff --git a/benchmarks/dcn14f.dat b/benchmarks/dcn14f.dat new file mode 100644 index 0000000..85526f8 --- /dev/null +++ b/benchmarks/dcn14f.dat @@ -0,0 +1,114 @@ +C PUNCH-OUT FILE GENERATED BY ARMAFIT (NODA SETUP) +C +HOMOGENEOUS LINE + 3 5.00000E-05 { number of phase, simulation time step +C +C *** VOLTAGE DEFORMATION MATRIX [H] +C +C PHASE (1,1) + 5.00000E-05 1.01847E-03 { time step, minimum traveling time + 5 { optimum order + 0 -1.618603942766297E-02 1.000000000000000E+00 + 1 5.283576414112414E-01 -1.546326488049669E+00 + 2 -6.202536280929268E-01 -1.255803281968069E-01 + 3 -2.255420925351951E-01 8.467716899824520E-01 + 4 3.608917603626888E-01 -4.331466440657848E-02 + 5 -2.605271695420050E-02 -1.303251774211437E-01 +C +C PHASE (1,2) + 5.00000E-05 1.01847E-03 { time step, minimum traveling time + 7 { optimum order + 0 1.425916902329563E-03 1.000000000000000E+00 + 1 -2.206716721409532E-01 -3.929516854486178E+00 + 2 8.650618381895728E-01 5.682774206375364E+00 + 3 -1.212941520034601E+00 -3.216450924475544E+00 + 4 5.542093380804710E-01 -1.974986534403593E-01 + 5 2.444611640267575E-01 1.010581827760833E+00 + 6 -3.110448298336584E-01 -3.996131371272936E-01 + 7 7.949976481088462E-02 4.972353925643327E-02 +C +C PHASE (1,3) + 5.00000E-05 1.01847E-03 { time step, minimum traveling time + 8 { optimum order + 0 1.132461018363957E-02 1.000000000000000E+00 + 1 -3.928177240303176E-01 -3.695684653488628E+00 + 2 1.312688115505119E+00 4.340935718598091E+00 + 3 -1.218620722344229E+00 -1.516401855302920E-01 + 4 -8.020125642995566E-01 -3.826892034008682E+00 + 5 2.248810046810998E+00 3.462429050431854E+00 + 6 -1.506416280926211E+00 -1.412001233014955E+00 + 7 3.505547859496243E-01 3.266708403395200E-01 + 8 -3.510266848814765E-03 -4.381750183330484E-02 +C +C PHASE (2,1) + 5.00000E-05 1.01847E-03 { time step, minimum traveling time + 7 { optimum order + 0 8.274605024283042E-04 1.000000000000000E+00 + 1 -2.872138842123906E-01 -4.149117097735179E+00 + 2 1.212198215496757E+00 6.593153215455022E+00 + 3 -1.914005612116588E+00 -4.738289268738541E+00 + 4 1.242052377296491E+00 1.125097082162070E+00 + 5 -7.331894050186853E-02 3.625173114473219E-01 + 6 -2.669967931525611E-01 -2.182197145539570E-01 + 7 8.645717668826403E-02 2.485847436469388E-02 +C +C PHASE (2,2) + 5.00000E-05 1.01847E-03 { time step, minimum traveling time + 4 { optimum order + 0 1.124660680255742E-02 1.000000000000000E+00 + 1 7.401000445185836E-01 -2.440426284771180E+00 + 2 -1.828792986100930E+00 1.866842023194471E+00 + 3 1.421220673581931E+00 -3.816207006611643E-01 + 4 -3.434502268787097E-01 -4.446879527970040E-02 +C +C PHASE (2,3) +SAME AS 2, 1 +C +C PHASE (3,1) +SAME AS 1, 3 +C +C PHASE (3,2) +SAME AS 1, 2 +C +C PHASE (3,3) +SAME AS 1, 1 +C +C *** CHARACTERISTIC ADMITTANCE MATRIX [Y0] +C +C PHASE (1,1) + 5.00000E-05 { time step + 4 { optimum order + 0 3.011008138610101E-03 1.000000000000000E+00 + 1 -9.192442910688124E-03 -3.040044814720984E+00 + 2 9.558823261855779E-03 3.137339584853382E+00 + 3 -3.584323666404843E-03 -1.154529167413408E+00 + 4 2.069351787018355E-04 5.723439967673888E-02 +C +C PHASE (1,2) + 5.00000E-05 { time step + 1 { optimum order + 0 -6.121961056642382E-04 1.000000000000000E+00 + 1 6.122883080424115E-04 -9.995998928355355E-01 +C +C PHASE (1,3) + 5.00000E-05 { time step + 3 { optimum order + 0 -4.521369897144550E-04 1.000000000000000E+00 + 1 1.268292283328286E-03 -2.843316615697138E+00 + 2 -1.180203209462610E-03 2.686718069749836E+00 + 3 3.640479024767173E-04 -8.434014255306825E-01 +C +C PHASE (2,2) + 5.00000E-05 { time step + 2 { optimum order + 0 3.168306064450878E-03 1.000000000000000E+00 + 1 -6.270813066160334E-03 -1.975263780973325E+00 + 2 3.102509615154264E-03 9.752738018258046E-01 +C +C PHASE (2,3) +SAME AS 1, 2 +C +C PHASE (3,3) +SAME AS 1, 1 +C +C diff --git a/benchmarks/dcn15.dat b/benchmarks/dcn15.dat new file mode 100644 index 0000000..02a602a --- /dev/null +++ b/benchmarks/dcn15.dat @@ -0,0 +1,484 @@ +BEGIN NEW DATA CASE +C BENCHMARK DCNEW-15 +C Exhaustive test of PostScript output as received from Robert Meredith +C of NYPA (the New York Power Authority) in White Plains. Prior to +C being copied to a new DCN15 on 15 November 1995, this was separate +C disk file PLOTTEST.DAT that creates 158-Kbyte .PS file as output +C when NYMAX = 1024 and NXMAX = 1280 (the NYPA choices) are used. +C January, 1996, newsletter should summarize associated changes. +BEGIN NEW DATA CASE {using blank_card_skeleton and atp "/KEYWORD" sorting +C RUN 4.75 CYCLES PAST ENERGIZATION AT .5 CY; ATTEMPT CLEAR 2.5 LATER AT 3 +C UNUSED OPTIONS DELETED/SUPPRESSED - SEE EENERG-40.DAT FOR MORE COMPLETE LIST +C FREE FORMAT TIME STEP- 1000/CYCLE FOR 5.25 CYCLES = .0875 SEC +C SHORTEN TO 1.65 CYCLES = .0275 SEC + .000016666666, .0875 , 60.000 , 0.,,,,,,, +C PRN> PLT> NET> SS> MAX> SAVE> NENERG> > + 1 5 0 0 1 -1 + 5 5 20 20 100 100 500 500 +TACS HYBRID {(from blank_card_skeleton.incs) +C ANALYZE LISC CAPACITIVE INRUSH DURING E. GARDEN CITY A-GROUND FAULT +C BY SUBTRACTING FAULT AND REACTOR CURRENTS FROM INRUSH IN TACS +C TYPE 90 TACS SOURCES DERIVED FROM NETWORK VOLTAGES: +C <----A---><----A---><----A---> +90BUSBV 0. 999. +C TYPE 91 TACS SOURCES DERIVED FROM NETWORK SWITCH CURRENTS (1ST NODE) +C <----A---><----A---><----A---> +C 4 SHUNT REACTOR CURRENTS (OUT OF LISC) +91EGCHWX 0. 999. +91EGCHWY 0. 999. +91EGCHWZ 0. 999. +91ISLNDX 0. 999. +91ISLNDY 0. 999. +91ISLNDZ 0. 999. +91SPRB1X 0. 999. +91SPRB1Y 0. 999. +91SPRB1Z 0. 999. +C FAULT CURRENT AT E. GARDEN CITY (USE CAUTION-LINE SWITCHES EXIST IF XFMRS) +C ALSO OUT OF LISC +91EGCHWA 0. 999. +C INRUSH TO LISC AT SPRAIN BROOK (ENERGIZATION SWITCHES MUST COME FIRST) +C THESE CURRENTS ARE INTO LISC +91SPRBRA 0. 999. +91SPRBRB 0. 999. +91SPRBRC 0. 999. +C FORTRAN STATEMENTS; 99= INPUT; 98= OUTPUT; 88= INSIDE +C =< FREE FORMAT FORTRAN TO COL 80 -----> +C REACTOR TOTAL AMPS +99REACTA = EGCHWX +ISLNDX +SPRB1X +99REACTB = EGCHWY +ISLNDY +SPRB1Y +99REACTC = EGCHWZ +ISLNDZ +SPRB1Z +C CAPACITIVE CURRENT INTO LISC IS NET OF ABOVE; BY PHASE +99CAPINA = SPRBRA -REACTA -EGCHWA +99CAPINB = SPRBRB -REACTB +99CAPINC = SPRBRC -REACTC +C S-BLOCKS OF ORDER 1 IN COL 2 INTEGRATE VOLTAGES TO GET FLUXES (TIMES 250.0). +C + + + + + +C N0 & D0> +C CD+< IN1> +< IN2> +< IN3> +< IN4> +< IN5> < A >< B >< C >< D >< E > +C TACS OUTPUT REQUESTS - TYPE 33 +C +33REACTA REACTB REACTC CAPINA CAPINB CAPINC BUSBV +BLANK CARD ENDING ALL ATP-SORTED TACS CARDS (from blank_card_skeleton.incs) +C SIMPLE LISC SHUNT REACTORS: +$VINTAGE, 1 +C <----><---->RRRRRRRRRRRRRRRRXXXXXXXXXXXXXXXXCCCCCCCCCCCCCCCC P + EGCHWX 15.8 793.5 + EGCHWY 15.8 793.5 + EGCHWZ 15.8 793.5 + ISLNDX 15.8 793.5 + ISLNDY 15.8 793.5 + ISLNDZ 15.8 793.5 + SPRB1X 7.93 396.7 + SPRB1Y 7.93 396.7 + SPRB1Z 7.93 396.7 +$VINTAGE, 0 +C SIMPLE LISC MODEL +$VINTAGE, 1 +C <----><---->RRRRRRRRRRRRRRRRXXXXXXXXXXXXXXXXCCCCCCCCCCCCCCCC P + SPRB1AMAINLA .4 2. + SPRB1BMAINLB .4 2. + SPRB1CMAINLC .4 2. + MAINLAISLNDA .3 1. + MAINLBISLNDB .3 1. + MAINLCISLNDC .3 1. + ISLNDAEGCHWA .4 2. + ISLNDBEGCHWB .4 2. + ISLNDCEGCHWC .4 2. +C 200 MVAR AT MAINL FOR PIPE; 300 MVAR SPLIT FOR SCFF; 200 MVAR AT ISLND + MAINLA 4.45 + MAINLA 3.34 + ISLNDA 3.34 + EGCHWA 4.45 + MAINLB 4.45 + MAINLB 3.34 + ISLNDB 3.34 + EGCHWB 4.45 + MAINLC 4.45 + MAINLC 3.34 + ISLNDC 3.34 + EGCHWC 4.45 +$VINTAGE, 0 +C OTHER CIRCUITS: +C 10000 MVA DUNWOOD; 5000 MVA EASTVIEW; 5000 MVA W 49TH +$VINTAGE, 1 +C <----><---->RRRRRRRRRRRRRRRRXXXXXXXXXXXXXXXXCCCCCCCCCCCCCCCC P + SRCDUASPRDUA .6 11.9 + SRCDUBSPRDUB .6 11.9 + SRCDUCSPRDUC .6 11.9 + SRCEAASPREAA 1.2 23.8 + SRCEABSPREAB 1.2 23.8 + SRCEACSPREAC 1.2 23.8 + SRCW4ASPRW4A 1.2 23.8 + SRCW4BSPRW4B 1.2 23.8 + SRCW4CSPRW4C 1.2 23.8 +$VINTAGE, 0 +C SIMPLE SPRAIN REACTORS: +$VINTAGE, 1 +C <----><---->RRRRRRRRRRRRRRRRXXXXXXXXXXXXXXXXCCCCCCCCCCCCCCCC P + SPX5SA 3.17 158.7 + SPX5SB 3.17 158.7 + SPX5SC 3.17 158.7 +C DUMMY BUS TO DERIVE A UNIQUE SPRAIN BROOK PHASE B VOLTAGE FOR TACS + SPRBRABUSBV 1.0 +$VINTAGE, 0 +BLANK CARD ENDING ALL ATP-SORTED BRANCH CARDS (from blank_card_skeleton.incs) +C ********************************************* STUDY-DEPENDENT CABLE SWITCHING: +C SWITCH CARD: COL 1-2 IS 0 FOR ORDINARY & GAUSS. STATISTICS SWITCHES, NOT TACS. +C CLOSING, OPENING TIMES AND STATISTICS PARAMETERS BELOW ARE IN SECONDS. +C 67890123 MEASURING 56789012345678 P +C STATISTICS P +C THREE PHASE ENERGIZATION FROM SPRAIN BROOK AT 180 DEGREES +C ATTEMPT OPEN AT 3 CY + SPRBRASPRB1A .0083333 .05 1. 1 + SPRBRBSPRB1B .0083333 .05 1. 1 + SPRBRCSPRB1C .0083333 .05 1. 1 +C 67890123 MEASURING 56789012345678 P +C A PHASE FAULT AT E. GARDEN CITY CABLE + EGCHWA MEASURING 1 +C *************************************************** CABLE CROSSING COMPONENTS: +C ANALYSIS OF LISC INRUSH COMPONENTS: +C MONITORING SIMPLE LISC SHUNT REACTORS: +C 67890123 MEASURING 56789012345678 P + EGCHWAEGCHWX MEASURING 1 + EGCHWBEGCHWY MEASURING 1 + EGCHWCEGCHWZ MEASURING 1 + ISLNDAISLNDX MEASURING 1 + ISLNDBISLNDY MEASURING 1 + ISLNDCISLNDZ MEASURING 1 + SPRB1ASPRB1X MEASURING 1 + SPRB1BSPRB1Y MEASURING 1 + SPRB1CSPRB1Z MEASURING 1 +C MONITORING OTHER CIRCUITS: +C 67890123 MEASURING 56789012345678 P + SPRDUASPRBRA MEASURING 1 + SPRDUBSPRBRB MEASURING 1 + SPRDUCSPRBRC MEASURING 1 + SPREAASPRBRA MEASURING 1 + SPREABSPRBRB MEASURING 1 + SPREACSPRBRC MEASURING 1 + SPRW4ASPRBRA MEASURING 1 + SPRW4BSPRBRB MEASURING 1 + SPRW4CSPRBRC MEASURING 1 +C MONITORING SIMPLE SPRAIN REACTORS: +C 67890123 MEASURING 56789012345678 P + SPRBRASPX5SA MEASURING 1 + SPRBRBSPX5SB MEASURING 1 + SPRBRCSPX5SC MEASURING 1 +BLANK CARD ENDING ALL ATP-SORTED SWITCH CARDS (from blank_card_skeleton.incs) +C VOLTAGE SOURCES BEHIND SIMPLE LINES: +C *= VOLTAGE IF POSITIVE; CURRENT IF NEGATIVE +C +14SRCDUA 1 281691. 60. 0. -1.0 +14SRCDUB 1 281691. 60. -120. -1.0 +14SRCDUC 1 281691. 60. - 70. -1.0 +14SRCEAA 1 281691. 60. 0. -1.0 +14SRCEAB 1 281691. 60. -120. -1.0 +14SRCEAC 1 281691. 60. - 70. -1.0 +14SRCW4A 1 281691. 60. 0. -1.0 +14SRCW4B 1 281691. 60. -120. -1.0 +14SRCW4C 1 281691. 60. - 70. -1.0 +BLANK CARD ENDING ALL ATP-SORTED SOURCE CARDS (from blank_card_skeleton.incs) +C < >< >< >< >< >< >< >< > + SPRBRA SPRBRB SPRBRC EGCHWA EGCHWB EGCHWC +C First 6 output variables are electric-network voltage differences (upper +C Next 25 output variables are branch currents (flowing from the upper nod +C Next 7 output variables belong to TACS (with "TACS" an internally-added +C Step Time SPRBRA SPRBRB SPRBRC EGCHWA EGCHWB EGCHWC +C +C +C EGCHWA EGCHWB EGCHWC ISLNDA ISLNDB ISLNDC +C EGCHWX EGCHWY EGCHWZ ISLNDX ISLNDY ISLNDZ +C +C SPRDUB SPRDUC SPREAA SPREAB SPREAC SPRW4A +C SPRBRB SPRBRC SPRBRA SPRBRB SPRBRC SPRBRA +C +C SPRBRC TACS TACS TACS TACS TACS +C SPX5SC REACTA REACTB REACTC CAPINA CAPINB +C Phasor I(0) = 0.0000000E+00 Switch "EGCHWA" to " " closed in the +C Phasor I(0) = 0.0000000E+00 Switch "EGCHWA" to "EGCHWX" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "EGCHWB" to "EGCHWY" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "EGCHWC" to "EGCHWZ" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "ISLNDA" to "ISLNDX" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "ISLNDB" to "ISLNDY" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "ISLNDC" to "ISLNDZ" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "SPRB1A" to "SPRB1X" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "SPRB1B" to "SPRB1Y" closed in the +C Phasor I(0) = 0.0000000E+00 Switch "SPRB1C" to "SPRB1Z" closed in the +C Phasor I(0) = 1.8020056E+01 Switch "SPRDUA" to "SPRBRA" closed in the +C Phasor I(0) = -7.4949973E+02 Switch "SPRDUB" to "SPRBRB" closed in the +C Phasor I(0) = -7.9731518E+02 Switch "SPRDUC" to "SPRBRC" closed in the +C Phasor I(0) = 9.0100278E+00 Switch "SPREAA" to "SPRBRA" closed in the +C Phasor I(0) = -3.7474986E+02 Switch "SPREAB" to "SPRBRB" closed in the +C Phasor I(0) = -3.9865759E+02 Switch "SPREAC" to "SPRBRC" closed in the +C Phasor I(0) = 9.0100278E+00 Switch "SPRW4A" to "SPRBRA" closed in the +C Phasor I(0) = -3.7474986E+02 Switch "SPRW4B" to "SPRBRB" closed in the +C Phasor I(0) = -3.9865759E+02 Switch "SPRW4C" to "SPRBRC" closed in the +C Phasor I(0) = 3.6040111E+01 Switch "SPRBRA" to "SPX5SA" closed in the +C Phasor I(0) = -1.4989995E+03 Switch "SPRBRB" to "SPX5SB" closed in the +C Phasor I(0) = -1.5946304E+03 Switch "SPRBRC" to "SPX5SC" closed in the +C 0 0.0 271505.166 -135494. 93140.8164 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C -749.49973 -797.31518 9.01002785 -374.74986 -398.65759 9.01002785 +C -1594.6304 0.0 0.0 0.0 0.0 0.0 +C 1 .16667E-4 271497.931 -134010.58 94739.6338 0.0 0.0 0.0 +C 0.0 0.0 0.0 0.0 0.0 0.0 +C -752.0737 -795.35514 11.6960229 -376.03685 -397.67757 11.6960229 +C -1590.7112 0.0 0.0 0.0 0.0 0.0 +BLANK CARD ending output requests +C 5250 .0875 344649.527 191299.527 323640.302 0.0 -47145.895 198177.748 +C 0.0 -481.43288 -381.56041 7.33790777 -482.30918 -382.59923 +C -406.62434 315.059242 422.024548 -203.31217 157.529621 422.024548 +C 630.115247 53.1490298 -1931.3137 -1533.2089 667.309594 1931.31368 +C Var maxima: 616453.613 329566.742 345463.852 0.0 406069.593 394188.344 +C 0.0 543.895482 530.803784 67.0966974 542.272824 529.035963 +C 1967.10962 1126.57279 6928.95568 983.554811 563.286397 6928.95568 +C 1842.77914 396.264811 2155.88852 2102.39918 3263.3985 4668.06408 +C Times max : .066666664 .038716665 .053233331 0.0 .056549998 .054416664 +C 0.0 .060783331 .058666664 .037849998 .060799998 .058683331 +C .00905 .022149999 .020933332 .00905 .022149999 .020933332 +C .023983332 .054149998 .060799998 .058666664 .009433333 .016233333 +C Var minima: -616441.36 -328926.65 -344125.86 0.0 -391677.76 -380868.54 +C 0.0 -601.24473 -655.23512 -71.518615 -601.0409 -654.05062 +C -2812.3738 -2427.7615 -6394.8627 -1406.1869 -1213.8807 -6394.8627 +C -1728.9227 -417.04027 -2395.2787 -2605.0808 -3285.1431 -5318.9546 +C Times min : .07498333 .029766665 .061583331 0.0 .065483331 .063366664 +C 0.0 .034366665 .015183333 .012383333 .034366665 .015216666 +C .018033333 .016716666 .045366665 .018033333 .016716666 .045366665 +C .015316666 .0124 .034383332 .015233333 .0087 .010816666 + 2 Fault Current to Ground + Sprain Brook Energization of Lisc at 180 Degrees; 4 SHUNT REACTORS ON + INTO A-PHASE-TO-GROUND FAULT AT E. GARDEN CITY CABLE; CBS OPEN 2.5 CY LATER + CASE PLOTTEST.DAT +C +C COL 3 IS 4 FOR NODE VOLTS;8 FOR BRANCH VOLTS;9 FOR AMPS,TACS,FREQ SCAN +C COL 4 IS 2 FOR CYCLES; 5 FOR MICROSEC; 6 FOR HERTZ; 7 FOR LOG HERTZ +C COL 5-7 ARE BLANK TO INDICATE EXTENDED PRECISION OF PLOT SCALES, ETC. +C WRITE "BRANCH" STARTING IN FIRST NODE COL FOR PLOTTING OF UP TO 4 BRANCHES +C CAN ALSO LABEL ON 4-NODE OR 'BRANCH' CARD: +C 34S/" + 192 -.4E6.4E6BRANCH LISC STUDY AMPERES--------+ + EGCHWA +C SCALE PER INCH